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Abstract

Every day we make choices under uncertainty; choosing what route to work or which queue

in a supermarket to take, for example. It is unclear how outcome variance, e.g. uncertainty

about waiting time in a queue, affects decisions and confidence when outcome is stochastic

and continuous. How does one evaluate and choose between an option with unreliable but

high expected reward, and an option with more certain but lower expected reward? Here we

used an experimental design where two choices’ payoffs took continuous values, to exam-

ine the effect of outcome variance on decision and confidence. We found that our partici-

pants’ probability of choosing the good (high expected reward) option decreased when the

good or the bad options’ payoffs were more variable. Their confidence ratings were affected

by outcome variability, but only when choosing the good option. Unlike perceptual detection

tasks, confidence ratings correlated only weakly with decisions’ time, but correlated with the

consistency of trial-by-trial choices. Inspired by the satisficing heuristic, we propose a “sto-

chastic satisficing” (SSAT) model for evaluating options with continuous uncertain out-

comes. In this model, options are evaluated by their probability of exceeding an

acceptability threshold, and confidence reports scale with the chosen option’s thus-defined

satisficing probability. Participants’ decisions were best explained by an expected reward

model, while the SSAT model provided the best prediction of decision confidence. We fur-

ther tested and verified the predictions of this model in a second experiment. Our model and

experimental results generalize the models of metacognition from perceptual detection

tasks to continuous-value based decisions. Finally, we discuss how the stochastic satisfi-

cing account of decision confidence serves psychological and social purposes associated

with the evaluation, communication and justification of decision-making.
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Introduction

Every morning most people have to pick a route to work. While the shortest route may be con-

sistently busy, others may be more variable, changing from day to day. The choice of which

route to take impacts the commuting time and is ridden with uncertainty. Decision making

under uncertainty has been studied extensively using scenarios with uncertain rewards [1–3].

In such scenarios, participants choose between multiple lotteries where each lottery can lead to

one of the two (or several) consequences with different probabilities. Standard models like

expected utility theory [4,5] and prospect theory [6] suggest parsimonious formulations for

how the statistics of such binomial (or multinomial) distributions of outcomes determine the

value (otherwise known as utility) of a lottery. These models, for example, explain the fact that

in certain ranges people prefer a small certain reward to bigger more uncertain ones [7,8].

However, the commuting problem described here highlights the pervasive but much less

studied relevance of outcome variance to decisions with continuous (rather than binary) out-

comes. It is not straightforward how one’s choice and evaluation of the route could be decided

using the heuristics applicable to binary win/lose outcomes.

Early studies of bounded rationality [9–11] introduced the concept of satisficing according

to which, individuals replace the computationally expensive question of “which is my best

choice?” with the simpler and most-of-the-times adequately beneficial question “which option

is good enough?”. More precisely, instead of finding the best solution, decision makers settle

for an option that satisfices an acceptability threshold [9]. In the case of commuting, such

acceptability threshold could be "the latest time one affords to arrive at work". A generalization

of the satisficing theory to decision-making under uncertainty suggests that when outcomes

are variable, one could evaluate—with reasonably simple and general assumptions about the

probability distributions of outcomes—the available options’ probability of exceeding an

acceptability threshold [12,13]. Our commuter’s stochastic satisficing heuristic could then be

expressed as "which route is more likely to get me to work before X o’clock?"

The effect of uncertainty on confidence report is commonly studied in perceptual detection

tasks where one has to detect a world state from noisy stimuli (e.g. dots moving to the left or

right) [14–20]. Sanders and colleagues (2016) argued that confidence report in perceptual deci-

sions relates to the Bayesian formulation of confidence used in hypothesis testing. In this view,

subjective confidence conveys the posterior probability that an uncertain choice is correct,

given the agent’s prior knowledge and noisy input information. Generalizing this scheme to

value-based contexts, our probabilistic satisficing heuristic is naturally fit to account for the

computational underpinnings of choice confidence and draws strong predictions about how

confidence would vary with outcome variance. In fact, if choices were made by the probabilis-

tic satisficing heuristic described above, confidence in those choices would be directly propor-

tional to the probability that the chosen option exceeded the acceptability threshold. A choice

whose probability of exceeding the acceptability threshold is higher should be made more con-

fidently than another that barely passes the criterion, even if they have equal expected values.

Here we asked if, and how, human decision makers learn and factor outcome variance in

their evaluation of choices between options with independent continuous returns. We

hypothesised that decision makers use a stochastic satisficing heuristic to evaluate their choices

and that their confidence conveys the estimated probability of the chosen option’s value to

exceed the satisficing criterion. In two experiments, we used two-armed bandit tasks in which

the expected values and variances associated with outcomes of each arm were systematically

manipulated. We tested the stochastic satisficing model against a reward maximizing model

[4,5,13,21] and an expected utility model [22–24] that propose alternative ways of computing

choice and confidence as a function of the estimated statistics of options’ returns.

Stochastic satisficing account of confidence in uncertain value-based decisions
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Results

Participants performed a two-armed bandit task online where rewards were hidden behind

two doors (Fig 1A) and the reward magnitudes followed different probability distributions

(Fig 1B). On each trial, the participant decided which door to open, and expressed their choice

confidence using a combined choice-confidence scale. Choosing the left side of the scale indi-

cated choice of the left door and distance from the midline (ranged between 1: uncertain, to 6:

certain) indicated the choice confidence. After the decision, the reward behind the chosen

door was revealed and a new trial started. Each experimental condition was devised for a

whole block of consecutive trials during which the parameters (mean and variance) governing

the reward distribution for each door were held constant. Each block lasted between 27 and 35

trials (drawn from a uniform distribution). Transition from one block to the next happened

seamlessly and participants were not informed about the onset of a new block.

Experiment 1

Within each condition, the rewards behind the doors were drawn from Gaussian distributions,

one with a higher mean (65, i.e. the “good” option) than the other door (35, i.e. the “bad”

option). The variances of the bad and good options could independently be high (H = 252 =

625) or low (L = 102 = 100), resulting in a 2x2 design comprising four experimental conditions:

‘vH-vH’, ‘vL-vH’, ‘vH-vL’ and ‘vL-vL’ (Fig 1B). In this notation, the first Capital letter indicates

the variance of the bad (low expected value) option, and the second letter indicates the vari-

ance of the good (high expected value) options. Participants’ trial-by-trial probability of choos-

ing the good option, in each condition, started at chance level and increased with learning

until it reached a stable level after about 10 trials. To assess the level of performance after learn-

ing, we averaged the probability of choosing the good option between trials 10 to 25 in each

experimental condition. Probability of choosing the good option was highest in the ‘vL-vL’

and lowest during the ‘vH-vH’ condition (Fig 1D). A repeated measure ANOVA test with the

variances of the good and bad options as within-subject factors was used to evaluate this pat-

tern. The effects of both variance factors were significant (variance of good option: F(1,194) =

22.24, p = 0.00001, variance of bad option: F(1,194) = 5.2, p = 0.026). This result indicated an

asymmetric effect of outcomes’ payoff variances on choice: increased variance of the good

option reduced the probability of choosing the good option, whereas increased variance of the

bad option increased the probability of choosing the bad option. This variance-dependent

choice pattern demonstrates that decision-making depended not only on the expected

rewards, but also on their variances.

To examine the pattern of confidence reports, we calculated the average confidence

reported on trials 10 to 25 in each condition (Fig 1E). Using a repeated measures ANOVA we

found that the main effect of the good, but not the bad, option’s reward was significant when

choosing the good option (good option variance: F(1,194) = 33.32, p<0.00001, bad option var-

iance effect: F(1, 194) = 0.02, p = 0.89). When choosing the bad option, confidence ratings

were generally lower (paired t-test t(64) = 8.3, p = 10−12) and were not significantly different

across experimental conditions. Therefore, variance affected confidence reports, but only

when choosing the good option.

Several studies in perceptual decision making reported a strong relationship between deci-

sion confidence and reaction time [16,19]. We tested the correlation between each partici-

pant’s trial-by-trial reaction times and their confidence ratings (Fig 2A). Consistent with

previous results, we found that the participants’ correlation coefficients tended to be below 0,

as fast responses were linked to higher confidence (t-test, p = 0.0015 in experiment 1).

Stochastic satisficing account of confidence in uncertain value-based decisions
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Fig 1. Design and results of experiment 1. (A) On each trial participants had to choose between two doors, using a confidence scale. The

choice was determined by the side of the scale used by the participant. Upon decision, the chosen door was opened and the reward was

revealed. See a working demo at http://urihertz.net/BanditConfDemo/ (B) Four different experimental conditions were embedded in a

continuous two-armed bandit task. In each condition, one door had a low expected reward (Bad option) and the other had a high expected

reward (Good option). Expected rewards (mB and mG) were constant across conditions. The variances of the two distributions, however,

changed across conditions and were either high or low, resulting in a 2x2 design (VB (Low/High) x VG (Low/High)). Each condition lasted

between 27 to 35 consecutive trials. (C) Stochastic satisficing model suggests that decisions are evaluated based on the probability of each
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However, these were not as strongly linked across the population, with average correlation

coefficient of R = -0.05, below the critical value of R(240) = 0.13 for significance of 0.05.

We examined the relations between confidence and another behavioural measure–choice

stability. We summed the number of choice switches in five trials sliding window, and subtract

it from five to define the trial-by-trial choice stability. This measure ranged between 5, when

no switches were made and the same option was chosen on all five trials, and 1 when the par-

ticipant switched between every trial in the five trials window. We correlated each participant’s

trial-by-trial stability measure with confidence reports (Fig 2B). We found that the partici-

pants’ correlation coefficients were highly significant in the individual level and in the group

level (average R = 0.26 in experiment 1, p = 10−13).

Fitting models to choice

To examine the use of a probabilistic satisficing heuristic and acceptability threshold in deci-

sions under uncertainty we devised a set of models competing models (See Methods). We

started with a model aimed at maximizing rewards (‘Reward’ model, hereafter) that tracks the

expected reward from each door on every time-step [13,21,25]. Choice is then made according

to the expected reward of each option [4]. We also tested an expected utility model (‘Utility’

model) which penalized options for their payoff’s variance, according to the participant’s risk-

averse attitude [4,22,23] (In the supplementary materials we describe the performance of

door’s outcome exceeding an acceptability threshold (grey dot-dashed line). This probability (area under the curve) is higher for the door

with the high mean expected reward (top) than for the door with the low mean (bottom). (D) Participants’ frequency of choosing the good

option in each experimental condition, averaged across trials 10 to 25. (E) Participants’ confidence reports when choosing the good

(middle panel) or bad (right panel) option. Reports were averaged between trials 10 to 25 of each experimental block. When choosing the

good option, confidence ratings were higher when variance of the good option was low, regardless of the variance of the bad option.

Confidence reports were not significantly different across conditions when choosing the bad option. Error bars represent SEM (� p<0.05,
��� p<0.0005).

https://doi.org/10.1371/journal.pone.0195399.g001

Fig 2. Correlations between confidence, reaction time, and stability in Experiment 1. (A) We correlated each

participant’s reaction times with confidence ratings. We found that the participants’ correlation coefficients tended to

be below 0, as fast responses were associated with higher confidence. However, these were not as strongly linked across

the population, with average correlation of R = -0.05 (dashed line). (B) We examined the relations between confidence

and choice stability. We found that the participants’ correlation coefficients were highly significant in the individual

level and in the group level (average R = 0.26, dashed line). Dashed red lines indicate the average correlation

coefficient. Dark colours indicate below significance correlation (Critical value of R(240) = 0.13, p = 0.05). ��

p< 0.005, ���� p< 0.00005.

https://doi.org/10.1371/journal.pone.0195399.g002
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another variant of expected utility model, using power utility function instead of exponential

utility function, S7 Fig).

We added two other models, ‘Reward–T’ and ‘Utility-T’, to our set of competing models by

formalizing the use of acceptability threshold and adding a free parameter ‘threshold’ to the

‘Reward’ and ‘Utility’ models. In these models, on each trial, the unchosen option drifted

towards the value of this parameter. This ‘threshold’ therefore represented the participant’s

expectations of outcome in the game. When this threshold was very high, the participant

would assume that the unchosen option drifted toward this high threshold, making him likely

to switch options often. A participant with a low threshold, however, might stick to an option

even if it yielded low reward, as since the unchosen option would drift towards an even lower

threshold.

We formalized the probabilistic satisficing heuristic in a stochastic satisficing (‘SSAT’)

model [13] in which the mean and variance of rewards obtained by each of the two doors are

tracked in a trial-by-trial manner (see Methods). In this model, decision was made by compar-

ing the probability of each option yielding a reward above an acceptability threshold, i.e. being

good enough. In fact, given the estimated probability distribution over the rewarding outcome

of a choice, the model computed the total mass under this distribution that is above the accept-

ability threshold (Fig 1C). This cumulative quantity was then used to determine the probability

of choosing that option. Such mechanism can capture the asymmetric effect of payoff variance

on choice, as the good option (i.e. higher than threshold) becomes less likely to exceed the

acceptability threshold as its variance increases, while the bad option (below threshold)

becomes more likely to exceed the threshold as its variance increases. Upon making the choice

and receiving reward feedback from the environment, the model updates the distribution over

the value of the chosen action. We also examined a drift version of the SSAT model in which

the value of the unchosen action drifts toward the acceptability threshold (‘SSAT-T’), similar

to the drifting mechanism described above for ‘Reward-T’ and ‘Utility-T’ models.

In the light of previous theoretical studies that examined the optimality of the satisficing,

maximizing and risk aversive models in accruing rewards [13,23,26], we examined our models’

performance in the experimental design. We also examined the rewards accrued by a model

with full knowledge of the reward distribution (‘Omniscient’), and the actual amount of

reward accrued by our participants. For each model we identified the set of parameters that

maximized the model’s accumulated reward under the reward distributions in Experiment 1.

We used these parameters to simulate each model, and compared the amount of reward

accrued by each model (S1 Fig). In accordance with the theoretical optimality analysis [13,23],

we found that all three models performed similarly, and accrued similar amount of reward.

When the drifting mechanism was added (drift of the unchosen option towards the acceptabil-

ity threshold) performance of all models decreased. None of the models accrued as much

reward as the ‘omniscient’ model, as all of them had to learn the statistics of the changing envi-

ronment. In addition, all models performed much better than our participants, indicating that

participants’ behaviour was noisy, falling short of the optimal strategy.

Another line of analysis was carried out to elucidate the differences between the models and

how they operate in our experimental design. We examined the differences in values assigned

to each option in a steady state (i.e. after learning the reward distributions) calculated by each

model in the four conditions of our experimental design (S2 Fig). We found that all models

assigned higher values to the high mean reward option than to the low mean reward option in

almost all the cases and conditions. An optimal (greedy) decision maker would therefore be

able to accumulate similar amount of rewards using either model. However, the value differ-

ences assigned by each model were different in magnitude, if not in direction. This means that

a noisy/exploratory decision maker (e.g. softmax) may be more likely to choose the low mean

Stochastic satisficing account of confidence in uncertain value-based decisions
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reward option in one condition compared with other conditions. Taken together, the two anal-

yses demonstrate that all models have a similar potential for collecting reward under optimal

condition and decision policy. However, our second analysis provided a prediction of the pat-

tern of suboptimal choice when decisions are noisy.

We fitted all models to the choices made by the participants (240 trials per participant,

model fitting was done for each participant independently) using Monte-Carlo-Markov-Chain

(MCMC) procedure [27]. After correction for the number of parameters using Watanabe-

Akaike information criterion (WAIC) [28], we compared posterior likelihood estimates

obtained for each participant, for each model (Table 1). The models using drifting thresholds

all performed better (lower WAIC score) than those not using it, and the ‘Reward-T’ model

gave the best fit to the choice data (paired t-test vs. Reward p = 0.00003, vs. Utility p = 0.00001,

vs. Utility-T p = 0.006, vs. SSAT p = 0.0002, vs. SSAT-T p = 0.0002, Fig 3A). The models’ com-

parisons results were also apparent when comparing the models’ estimated probability of

choosing the good option in each condition to the participants’ choice pattern (S3 Fig). The

models lacking the drift-to-threshold mechanism showed less correspondence to the beha-

vioural results. In addition, both ‘Utility’ models failed to replicate the low probability of

choosing the good option in the vHvH condition (compared to vLvH condition), as they

penalised both high and low mean options for variance in the same manner. We examined

how many participants’ choices were best explained by each of our six models and found that

while some participants’ behaviour was better explained by one of the other models, most of

the participants’ choices were best explained by models that did not track reward variance, in

line with the model comparison results (S4 Fig).

Examining the individual parameters fitted by the models we observed a high correspon-

dence between the ‘Reward-T’ and ‘SSAT-T’ models for both the parameters estimated for

acceptability threshold and the parameters estimated for learning rate (Table 2). This corre-

spondence was captured by high correlation between the individual threshold parameters (R2

= 0.89) and learning-rate parameters (R2 = 0.86) (S5 Fig). Such similarity was not found

between the ‘SSAT-T’ and ‘Utility-T’ models for threshold parameters (R2 = 0.38) nor learn-

ing-rate parameters (R2 = 0.6).

Model predictions for confidence ratings

We hypothesize that confidence in choice reflects the subjective probability that the value of

the chosen option exceeded the acceptability threshold (i.e., the total mass under the value dis-

tribution of the chosen option that is more than the acceptability threshold). To test this

hypothesis, we compared the predictions of our models for confidence to the empirical confi-

dence reports. We used the free parameters fitted to trial-by-trial choice data for each individ-

ual participant, and the values assigned to each option by the different models to draw

predictions for the confidence reports for the corresponding individual. Following previous

studies that examined confidence in value-based decisions [29,30], we defined confidence, for

the ‘Reward’ and ‘Utility’ models, as proportional to the estimated decision variable: means of

options’ rewards for ‘Reward’ models and the expected utilities of options for the ‘Utility’ mod-

els. We focused on trials 10–25 of each experimental condition and regressed the models’ pre-

dictions for these trials from the confidence reports made in these trials by each participant, in

order to obtain the individual goodness of fit for each model (R2) (left column of Table 1,

higher is better). We found that the model which gave the best predictions for trial-by-trial

confidence reports was the ‘SSAT-T’ model, which formalized confidence reports as the proba-

bility of exceeding an acceptability threshold (paired t-test vs. Reward p = 0.04, vs. Reward-T

p = 0.03, vs. Utility p = 0.005, vs. Utility-T p = 0.00002, vs. SSAT p = 0.16, Fig 3B).

Stochastic satisficing account of confidence in uncertain value-based decisions
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To examine the pattern of confidence reports generated by each model, we calculated the

average confidence for each model’s simulation when choosing the good option and when

choosing the bad option in each condition. All models predicted lower confidence when

choosing the bad, as compared to the good, option (Fig 4 and S6 Fig for the non-drifting mod-

els), similar to the observed confidence reports. Additionally, all models predicted similar con-

fidence levels across conditions when the bad option was chosen. When choosing the good

option, however, the SSAT-T model’s predictions were the most consistent with the reports

made by participants. Only the SSAT-T model predicted higher confidence when variance of

the good option was low (i.e. ‘vL-vL’,’vH-vL’). The other models did not predict a variance

effect on confidence.

Our model-comparison approach showed that the use of acceptability threshold parameter

helped explaining participants’ choice behaviour, which was best captured by the ‘Reward-T’

model. Confidence, on the other hand, followed most closely the ‘SSAT-T’ model prediction

of reporting the probability of exceeding the acceptability threshold. A counterintuitive predic-

tion of the model borne out by the behavioural data was the difference between the two condi-

tions involving unequal variances (i.e. vL-vH and vH-vL conditions). Stochastic satisficing

predicted–and the data confirmed–a difference in confidence (c.f. Fig 4, compare vL-vH and

vH-vL) despite identical expected values for the chosen (good) option in these two conditions.

Table 1. Models performance in experiment 1.

Model Sum WAIC Mean ± STD WAIC Mean ± STD Confidence R2

Reward 14,273 226.55 ± 67.67 0.21 ± 0.22

Utility 14,320 227.29 ± 67.48 0.18 ± 0.18

SSAT 14,047 222.96 ± 67.96 0.21 ± 0.22

Reward-T 13,518 214.57 ± 68.79 0.21 ± 0.21

Utility-T 13,813 219.25 ± 64.38 0.17 ± 0.16

SSAT-T 13,695 217.38 ± 67.61 0.24 ± 0.21

https://doi.org/10.1371/journal.pone.0195399.t001

Fig 3. Models comparison in experiment 1. (A) We compared the ‘Reward T’ model to all the other models by examining the paired

differences in WAIC scores across models and participants. The graph presents the differences of each model’s WAIC from the ‘Reward

T’ model. The ‘Reward T’ model performed significantly better than all other models in explaining participants’ choices. (B) We

compared the ‘SSAT T’ model to all other models by examining the paired differences in R2 scores across models and participants. The

‘SSAT T’ model gave a significantly better prediction of confidence reports than all other models except the ‘SSAT’ model. Error bars

represent SEM. � p<0.05, �� p<0.005, ��� p<0.0005, ���� p<0.00005.

https://doi.org/10.1371/journal.pone.0195399.g003
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In Experiment 2, we focused on the choice between options with unequal variances to further

tease apart the cognitive substrates of stochastic satisficing.

Experiment 2

To conduct a more rigorous test of the parsimony and plausibility of the stochastic satisficing

heuristic, in Experiment 2, we designed a new payoff structure for the two-arm bandit, focus-

ing on options with unequal variances in all conditions (Fig 5A). We kept the mean and vari-

ance of the bad option constant across conditions (mean = 35 and variance = 102 = 100) while

varying the mean and variance of the better option in a 2x2 design. Mean reward of the good

option could be low (mL = 57; still better than the bad option) or high (mH = 72), and its vari-

ance could be independently low (vL = 52 = 25) or high (vH = 202 = 400). Thus, we constructed

four experimental conditions all involving options with unequal variances and large or small

Table 2. Estimated models’ parameters for experiment 1 (Mean ± STD).

Model Beta Learning Rate Acceptability Threshold Variance Learning Rate Risk Aversion

Reward 6.84 ± 3.67 0.61 ± 0.21

Utility 0.71 ± 0.38 0.55 ± 0.23 0.36 ± 0.15 0.91 ± 1.06

SSAT 5.65 ± 3.46 0.64 ± 0.21 0.52 ± 0.13 0.32 ± 0.21

Reward-T 8.48 ± 3.88 0.56 ± 0.19 0.33 ± 0.13

Utility-T 0.86 ± 0.45 0.49 ± 0.20 0.41 ± 0.17 0.39 ± 0.13 0.66 ± 0.63

SSAT-T 5.34 ± 2.37 0.58 ± 0.18 0.35 ± 0.13 0.31 ± 0.15

https://doi.org/10.1371/journal.pone.0195399.t002

Fig 4. Model predictions for confidence reports in experiment 1. (A) Trial-by-Trial confidence reports averaged across participants (grey line) and model

predictions during each experimental condition are displayed (shaded areas represent SEM). While the ‘Reward T’ and the ‘Utility T’ models gave similar

confidence predictions across conditions, the ‘SSAT T’ model best corresponded with the data, as its confidence predictions increased when the variance of the

good option was low. (B) Models’ predictions for confidence reports when choosing the good option (Top Row) and when choosing the bad option (bottom row).

Predictions were averaged between trials 10–25 in each block. The average reports made by participants is displayed in grey. All models predicted higher

confidence when choosing the good option than when choosing the bad option. ‘The SSAT T’ model gave the best predictions of confidence reports. Error bars

represent SEM. The fit of the ‘Reward’, ‘Utility’ and ‘SSAT’ models are depicted in S6 Fig.

https://doi.org/10.1371/journal.pone.0195399.g004
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differences in their expected values. We followed the optimality analysis described above with

the reward distribution of Experiment 2, and found that our models predicted a distinctive

and different pattern of confidence in each condition of the new design (S8 Fig).

We examined choices and confidence reports in experiment 2 in a new group of partici-

pants (N = 31). The probability of choosing the good option increased with the mean reward

of the good option (mixed effects ANOVA, F(1,89) = 21.25, p = 0.0001) and decreased with its

variance (F(1,89) = 15.03, p = 0.0005) (Fig 5B). Confidence when choosing the bad option did

Fig 5. Experiment 2 design and behavioural results. (A) In experiment 2 the rewards’ mean and variance of the bad option (black lines) were kept constant across

experimental conditions, while the mean and variance of the good option varied. Mean values could be high (mH) or low (mL), and variances could be independently high

(vH) or low (vL), resulting in four experimental conditions. (B) Experimental results (33 subjects). Both choices and confidence reports were averaged between trials 10 to

25 of each experimental block. Frequency\ of choosing the good option gradually increased as the mean expected reward increased, and as the variance decreased. (C)

When choosing the good option (middle panel), confidence ratings did not differ between the ‘mL-vL’ and ‘mH-vH’ condition. When choosing the bad option (right

panel) confidence reports were not significantly different between conditions. Error bars represent SEM. (� p<0.05, ��� p<0.0005).

https://doi.org/10.1371/journal.pone.0195399.g005

Fig 6. Correlations between confidence, reaction time, and stability in Experiment 2. (A) We correlated each

participant’s reaction times with confidence ratings. We found that the participants’ correlation coefficients tended to

be below 0, as fast responses were associated with higher confidence. However, these were not as strongly linked across

the population, with average correlation of R = -0.067 (dashed line). (B) We examined the relations between

confidence and choice stability. We found that the participants’ correlation coefficients were highly significant in the

individual level and in the group level (average R = 0.44, dashed line). Dashed red lines indicate the average correlation

coefficient. Dark colours indicate below significance correlation (Critical value of R(160) = 0.16, p = 0.05). ��

p< 0.005, ���� p< 0.00005.

https://doi.org/10.1371/journal.pone.0195399.g006
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not change significantly across conditions (Fig 5C). When choosing the good option, confi-

dence was significantly affected by variance (F(1,89) = 35, p<0.00001) and mean (F(1,89) = 88,

p<0.00001) of the good option’s rewards. However, while confidence in the ‘mH-vL’ was sig-

nificantly higher than all other conditions (‘mH-vL’ vs ‘mH-vH’: t(30) = 4, p = 0.0003), and

confidence in the ‘mL-vH’ was lower than all other conditions (‘mL-vH’ vs. ‘mL-vL’: t(30) =

4.9, p = 0.00002), the critical comparison of ‘mL-vL’ and ‘mH-vH’ did not show a difference

(‘mL-vL’ vs. ‘mH-vH’: t(30) = 0.4, p = 0.68). Finally, we examined the relations between confi-

dence report and reaction time and found that the participants’ correlation coefficients were

significantly lower than zero (t-test, p = 0.0014, Fig 6). However, just like in Experiment 1 the

overall link across participants between confidence and reaction time was not very strong,

with average correlation coefficient of R = -0.067, below the critical value of R(160) = 0.16 for

significance of 0.05. We examined the relationship between confidence reports and choice sta-

bility, and found that the participants’ correlation coefficients were significantly higher than 0

(t-test, p< 10−13, Fig 6), with average correlation coefficient of R = 0.44.

Model-fitting and predictions

We fitted all models to the choices made by participants in Experiment 2. Like in Experiment

1, adding the acceptability threshold parameter helped explaining participants’ choice behav-

iour in all models (Table 3). We found again that the best description of the data was given by

the ‘Reward-T’ model, however not as strongly as in experiment 1 (paired t-test T vs. Reward

p = 0.25, vs. Utility p = 0.07, vs. Utility-T p = 0.05, vs. SSAT p = 0.28, vs. SSAT-T p = 0.06, Fig

7A). In accordance, all models’ estimated probability of choosing the good option in each con-

dition followed the participants’ choice pattern (S9 Fig). When examining the relationship

between individual parameters fitted by the models, we found again a high correspondence

between the parameters estimated for Acceptability Threshold and Learning Rates between

the ‘Reward-T’ and ‘SSAT-T’ model (Table 4), captured by high correlation between the indi-

vidual threshold parameters (R2 = 0.9) and learning rate parameters (R2 = 0.82) (S10 Fig).

Such similarity was not found between the ‘SSAT-T’ and ‘Utility-T’ models for neither thresh-

old parameters (R2 = 0.15) nor learning rate parameters (R2 = 0.34).

Experiment 2 was explicitly designed to test the models’ predictions of choice confidence.

We examined whether the models estimated trial-by-trial decision variables (means of rewards

for ‘Reward’ models, expected utility for the ‘Utility’ models, and probability of exceeding

acceptability threshold for the ‘SSAT’ models). Just like in Experiment 1, we focused on trials

10–25 of each experimental condition, and regressed the models’ predictions from these trials

from the confidence reports made in these trials for each participant, to obtain the individual

goodness of fit for each model (R2) (right column of Table 3, higher is better). We found that

the model which gave the best predictions of trial-by-trial confidence reports in Experiment 2

was the ‘SSAT-T’ model (paired t-test vs. Reward p = 0.0000003, vs. Reward-T p = 0.02, vs.

Utility p = 0.02, vs. Utility-T p = 0.0004, vs. SSAT p = 0.00004, Fig 7B).

Table 3. Models performance in experiment 2.

Model Sum WAIC Mean ± STD WAIC Mean ± STD Confidence R2

Reward 3,971 128.09 ± 43.39 0.18 ± 0.15

Utility 3,803 122.69 ± 35.86 0.34 ± 0.19

SSAT 3,957 127.66 ± 44.48 0.21 ± 0.18

Reward-T 3,629 117.09 ± 33.31 0.35 ± 0.15

Utility-T 3,770 121.62 ± 35.46 0.31 ± 0.13

SSAT-T 3,703 119.48 ± 33.62 0.41 ± 0.18

https://doi.org/10.1371/journal.pone.0195399.t003

Stochastic satisficing account of confidence in uncertain value-based decisions

PLOS ONE | https://doi.org/10.1371/journal.pone.0195399 April 5, 2018 11 / 23

https://doi.org/10.1371/journal.pone.0195399.t003
https://doi.org/10.1371/journal.pone.0195399


To demonstrate the pattern of confidence reports generated by each model, we calculated

the average confidence for each model’s simulation when choosing the good and the bad

options in each condition. The most striking qualitative difference between the models was in

their predictions of confidence reports when choosing the good option. All models predicted

the lowest confidence for choosing the good option with low mean and high variance (‘mL-

vH’) (Fig 8 and S11 Fig). Highest confidence was predicted when choosing the good option

with high mean and low variance (‘mH-vL’) by all models. However, ‘SSAT-T’ model was the

only one following the pattern observed in the participants’ reported confidence, predicting

similar confidence ratings for the low mean, low variance (‘mL-vL’) and the high mean, high

variance (‘mH-vH’) conditions, as the probability of exceeding the satisficing threshold was

the same for these two conditions. Critically, because these two conditions had different

expected rewards, the ‘Reward-T’ model predicted different confidence levels for them. Even

though ‘Utility-T’ model penalized options’ values according to their variance, it failed to

recover the behavioural pattern and predicted lower confidence reports in the ‘mL-vL’, com-

pared to the ‘mH-vH’, condition.

Fig 7. Models comparison in experiment 2. (A) We compared the ‘Reward T’ (lowest WAIC) model WAIC score to the other models

by examining the paired differences in WAIC scores across models and participants. The graph presents the differences of each model

WAIC from that of ‘Reward T’ model. The ‘Reward T’ model performance was not significantly better than most of the other models in

explaining participants’ choices. (B) We compared ‘SSAT T’ model (highest R2) to all other models by examining the paired differences

in R2 -scores across models and participants. The ‘SSAT T’ model gave a significantly better prediction of confidence reports than all

other models. Error bars represent SEM. � p<0.05, �� p<0.005, ��� p<0.0005, ���� p<0.00005.

https://doi.org/10.1371/journal.pone.0195399.g007

Table 4. Estimated models’ parameters for experiment 2 (mean ± STD).

Model Beta Learning Rate Acceptability Threshold Variance Learning Rate Risk Aversion

Reward 9.20 ± 3.73 0.56 ± 0.20

Utility 1.05 ± 0.52 0.54 ± 0.19 0.31 ± 0.13 1.00 ± 0.95

SSAT 5.22 ± 2.9 0.61 ± 0.21 0.51 ± 0.79 0.42 ± 0.15

Reward-T 12.17 ± 3.72 0.54 ± 0.17 0.38 ± 0.11

Utility-T 1.76 ± 1.4 0.43 ± 0.17 0.51 ± 0.15 0.36 ± 0.15 0.69 ± 0.59

SSAT-T 6.54 ± 2.25 0.51 ± 0.17 0.41 ± 0.09 0.33 ± 0.21

https://doi.org/10.1371/journal.pone.0195399.t004
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Discussion

We set out to examine decision-making and confidence reports in uncertain value-based

choices. In a two-armed bandit task played by human participants, the probability of choosing

the good option increased as the variance of either options’ outcomes decreased. However,

confidence ratings were associated with variance only when choosing the good (higher mean)

option, as items with low variance outcomes were chosen with higher decision confidence.

Confidence ratings associated with choosing the bad (i.e. lower mean) option were always low

and were independent of the variances of the options’ outcomes. We examined how bounded

rationality heuristics may account for this pattern of behaviour, first by introducing an accept-

ability threshold representing an expectation about the outcomes’ values, and by proposing a

stochastic satisficing model in which decisions are made by comparing the options’ probability

of exceeding this acceptability threshold [31]. We found that choice behaviour could be

accounted for by adding a threshold parameter to a simple TD learning mechanism which

tracks the expected reward of each option [21,25]. Confidence reports, however, were best cap-

tured by the stochastic satisficing model, as confidence reports scaled with the chosen option’s

satisficing probability. To directly test a critical prediction of this model, a second experiment

involving options with unequal variances and means was simulated first and then empirically

performed. As predicted by the ‘SSAT-T’ model, participants’ confidence reports matched the

options’ probability of exceeding a threshold, and not the options’ expected outcome.

In our experiments, models aimed at maximizing expected utility [4,22], modelling the

impact of risk aversion on options’ values, were not successful at explaining participants

choices or confidence reports. Maximizing the expected exponential utility function boiled

Fig 8. Model predictions for confidence reports in experiment 2. (A) Trial-by-Trial confidence reports (grey line) and model predictions during each

experimental condition are displayed, averaged across participants (shaded areas represent SEM). The ‘SSAT T’ model best corresponded with the data, as its

confidence predictions were dependent on both the mean and the variance of the reward distributions. (B) Models’ predictions for confidence reports when

choosing the good option (Top Row) and when choosing the bad option (bottom row). Predictions were averaged between trials 10–25 in each block. The average

reports made by participants is displayed in grey. SSAT-T model gave the best prediction of confidence reports. Error bars represent SEM. The fit of the ‘Reward’,

‘Utility’ and ‘SSAT’ models are depicted in S11 Fig.

https://doi.org/10.1371/journal.pone.0195399.g008
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down to penalizing outcomes according to their variance (i.e. Mean-Variance paradigm, see

Methods and [23,24]). An important feature of this instantiation of risk aversion is that the

effect of variance is always in the same direction, reducing the value or utility of both good and

bad options. This means that when the variance of the bad option increases, the likelihood of

choosing the good option should increase. This was not the case in our experimental results.

Our stochastic satisficing model provides a mechanism by which variance effect is not sym-

metrical for good and bad option–when the bad option’s variance increases, its value (i.e. the

probability of surpassing an acceptability threshold) increases.

Our results suggest a divergence between choice and confidence reports. Choices were best

explained by the ‘Reward-T’ model, which does not track outcome’s variance, while confi-

dence reports were best explained by the ‘SSAT-T’ model and were affected by the outcomes’

variance. Our optimality analysis also demonstrated this separation between the performance

of a ‘greedy’ decision-maker, insensitive to the size of the value-difference between options,

and a ‘noisy’ decision-maker whose likelihood of choosing the high-value option, as well as its

decision confidence, scale with the amount of evidence favouring that option. Such separation

of actions and evaluation of actions is in line with the second-order framework for self-evalua-

tion of decision performance [18]. In the second-order model suggested by Fleming and Daw,

action and confidence stem from parallel processes. Sensory input is assumed to be sampled

independently by the action and evaluation processes. In this framework, confidence is first

affected by its independent sample, and then by the action chosen by the action process. Our

results are in line with such parallel processing. Actions were accounted for by a parallel and

correlated process to the confidence generating process, and confidence was conditional on

the action selected by the client.

The second-order model [18] and other recent studies [14,17,19,32] have formulized confi-

dence as the probability of having made a correct choice over tracked outcome or evidence dis-

tribution. This approach builds on the line of research about the representation of evidence

distribution, and suggests that confidence summarizes this probabilistic representation, esti-

mating the probability of being correct. Probability of being correct is more readily defined in

perceptual detection tasks where option outcomes are not independent (e.g. the target can be

in only one of two locations but not both) and there is an objective criterion for correctness.

Our stochastic satisficing model expands these observations from perceptual decisions to sce-

narios where outcomes are stochastic. In such scenarios, our theory-based analysis of data sug-

gests, participants use an arbitrary criterion, the acceptability threshold, to evaluate the

probability of an outcome to exceed the threshold, analogous to the evaluation of correctness

probability in detection tasks. Confidence would then reflect the probability that the chosen

option exceeded the “good enough” acceptability threshold. As the likelihood of exceeding the

acceptability threshold increases–either by reducing the outcome variance (Experiment 1) or

increasing the outcome mean (Experiment 2)–so does decision confidence.

Another important divergence of our design from perceptual decision tasks is the relatively

weak link between reaction time and confidence reports. In perceptual decision making, the

entire process of evidence accumulation is encapsulated in one trial and a drift diffusion

model can therefore capture this process and predict response time and confidence at the

same time [16,29]. In our learning task, evidence about each option’s reward distribution was

accumulated across trials–on each trial, the participant sampled one option and learned from

its reward. In this case, the link between reaction time and confidence reports may not be as

strong as in the perceptual tasks. Our ‘choice stability’ measure was found to be highly corre-

lated with confidence reports. This measure can be interpreted as an indication of how many

favourable examples the participant accumulated before making the confidence report. This

process is similar to the evidence accumulation process modelled by the drift diffusion model,
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but in our case the accumulation is across trials and not within a trial. This discrimination is

important and may shed light on evidence accumulation process in the brain. Our design pro-

vides an opportunity for future research on the neural mechanism of metacognition, as it inte-

grates previous knowledge about representation of variance [33,34] in the brain with the

literature on neural mechanism of metacognition [15,35], and allows a better dissociation of

decision and confidence in the brain.

In the 1950s Simon introduced the concept of satisficing, by which decision makers settle

for an option that satisfies some threshold or criterion instead of finding the optimal solution.

The idea is illustrated in the contrast between ’looking for the sharpest needle in the haystack’

(optimizing) and ’looking for a needle sharp enough to sew with’ (satisficing) (p. 244) [12,36].

This notion of acceptability threshold has been extended to other ambiguous situations [37],

for example for setting a limit (i.e. threshold) to the time and resources an organization invests

in learning a new capability [12], where suboptimal solution may be balanced with preventing

unnecessary cost. We suggest that stochastic satisficing serves a similar objective by extending

the basic idea of satisficing into stochastic contexts with continuous payoff domains [13]. We

found stochastic satisficing to be particularly useful at explaining decisions’ confidence, i.e.

evaluation of decisions. Bounded rationality was originally developed to explain administrative

decision making [11], in which decisions are often evaluated explicitly, and the decision maker

is held accountable for the outcome [38]. Stochastic satisficing may therefore serve psychologi-

cal and social purposes associated with the evaluation, communication and justification of

decision-making [39,40]. As it strives to avoid catastrophe, i.e. receiving a reward below

acceptability threshold, stochastic satisficing may be useful to minimize regret, similarly to sta-

tus quo bias [41,42]. Choosing the option less likely to provide unacceptable payoffs can serve

as a safe argument for justifying decisions to oneself or others [38], in the spirit of the saying

“nobody ever got fired for buying IBM”.

Methods

Participants

We recruited participants through Amazon M-Turk online platform [43]. All participants pro-

vided an informed consent. Experiments were approved by UCL Research Ethics Committee

(project ID 5375/001). Participants earned a fixed monetary compensation, but also a perfor-

mance-based bonus if they collected more than 10,000 points. 88 participants were recruited

for the first experiment, in order to obtain power of 0.8 with expected effect size of 0.4 for vari-

ance effect on confidence. The actual effect size obtained in Experiment 1 was 0.6, and we

therefore recruited 33 subjects for the second experiment. 25 participants were excluded from

analysis as their performance was at chance level (16 participants) or for using only one level

for confidence reports (9 participants). Data from 96 participants (62 males aged 32±9 (mean

±std), and 34 females aged 32±8) were analysed.

Experimental procedure and design

On each trial participants chose between two doors, each leading to a reward between 1 and

100 points (Fig 1A). Each door had a fixed colour-pattern along the task, but the positions (left

vs. right) were chosen randomly. Subjects made choices by using a 12-level confidence scale:

1–6 towards one option and 1–6 towards the other, with 6 indicating ‘most certain’ and 1 indi-

cating ‘most uncertain’. Following choice, subjects observed the reward of the chosen door

drawn from a normal distribution N(μi,σi
2), where i was a or b, indicating one or the other

door. A working demo of the task can be found here: http://urihertz.net/BanditConfDemo/.
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Experiment 1 consisted of 240 trials and included six stable blocks where the mean and vari-

ance of each option’s reward remained constant. Each block lasted at least 25 trials. The transi-

tion from one block to another occurred along 10 trials during which the mean and variance

associated with each door changed gradually in a linear fashion, from their current to the new

levels corresponding to the upcoming block. Embedded within these six blocks, four blocks fol-

lowed a 2x2 design where the mean rewards of the two options were 65 (for the good option)

and 35 (for the bad option), and their variances could be independently high (H = 252 = 625) or

low (L = 102 = 100) (Fig 1B). This design included four conditions: ‘vL-vL’,’vH-vL’,’vL-vH’ and

‘vH-vH’, where the first and the second letters indicated the magnitude of the variance of the

good and the bad options, respectively.

Experiment 2 consisted of 160 trials and was similarly composed of blocks of fixed reward

probability distributions. In all four blocks, the reward of one option always followed a Gauss-

ian distribution with a mean of 35 and a variance of 100 (102). The mean of the other option

could take either high (mH = 72) or low (mL = 57), and its variance could be either high

(vH = 202 = 400) or low (vL = 52 = 25). This produced a 2x2 design, with the four conditions

denoted by ‘mL-vL’, ‘mL-vH’, ‘mH-vH’, ‘mL-vL’(Fig 5A).

Models

Six different models were fitted to the participants’ choices. These included models that track

only mean of the rewards from each option, and models that track both mean and variance.

The ‘Reward’ model assumes that expected reward of the outcomes govern choices, and it

tracks the means of the rewards using a temporal difference algorithm [21,25].

Qaðt þ 1Þ ¼ QaðtÞ þ aðRðtÞ � QaðtÞÞ

Qbðt þ 1Þ ¼ QbðtÞ
ð1Þ

(

Where a and b indicate the chosen and the un-chosen options, respectively. α is the learning

rate. A softmax action-selection rule was used:

pðaÞ ¼
expðbQaðtÞÞ

expðbQaðtÞÞ þ expðbQbðtÞÞ
ð2Þ

Where β is the rate of exploration. Therefore, the ‘Reward’ model has 2 free parameters: {α, β}.
The ‘Utility’ model tracks both mean and variance of rewards from the two options. Track-

ing the mean of rewards is done in a similar manner to the ‘Reward’ model (Eq (1)). Tracking

of variance is done using a similar temporal difference rule:

Vaðt þ 1Þ ¼ VaðtÞ þ g � ððRðtÞ � QaðtÞÞ
2
� VaðtÞÞ

Vbðt þ 1Þ ¼ VbðtÞ
ð3Þ

(

Where γ is the variance learning rate. This model assumes an increasing and concave exponen-

tial utility function [5,24]by which the utility of a reward decreases as the reward increases:

UðQÞ ¼ � e� lQ l > 0 ð4Þ

λ denotes the risk sensitivity of the participant, the larger λ is, the more risk averse the par-

ticipant is. When rewards are governed by a Gaussian distribution is it possible to evaluate the
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expected utility of an option analytically [22,24].

EUaðtÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pVaðtÞ

p

Z1

� 1

� elxe�
ðx� QaðtÞÞ

2VaðtÞ dx ð5Þ

Using the tracked variance and mean of the rewards, the value to maximize (for option a,

for example) is:

EUaðtÞ / QaðtÞ �
lVaðtÞ

2
ð6Þ

This is a formulation of the variance-mean balance, in which choices’ expected utility

depends on the expected reward, and penalized by the variance of rewards [23,24]. A softmax

rule (Eq (2)) was used for action selection with the expected utilities as the values associated

with each option. The ‘Utility’ model has 4 free parameters: {α, γ, λ, β}.
The Stochastic satisficing (SSAT) model employs a threshold heuristic [13]. It tracks the

means (Eq (1)) and variances (Eq (3)) associated with the two options. The probability of pay-

off being higher than the acceptability threshold, T, is calculated using a cumulative Gaussian

distribution equation:

SPaðtÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pVaðtÞ

p

Z1

T

� elxe�
ðx� QaðtÞÞ

2VaðtÞ dx ð7Þ

where SPa indicated the probability of action a being satisficing. A softmax (Eq (2)) rule is

used to calculate choice probabilities according to the options’ satisficing probabilities (SPa

and SPb).

In addition to these three models, we tested a version of all three models in which the

unchosen option (in the example below option b was not chosen) drifts towards an acceptabil-

ity threshold T:

Qaðt þ 1Þ ¼ QaðtÞ þ aðRðtÞ � QaðtÞÞ

Qbðt þ 1Þ ¼ QbðtÞ þ aðT � QbðtÞÞ
ð8Þ

(

This rule was use in the ‘Reward-T’ and ‘Utility-T’ models, adding to them an additional

free parameter T. This rule was also used in the ‘SSAT-T’ model, using the threshold parameter

T which was already used in the ‘SSAT’ model.

Optimization analyses

We carried two analyses to examine the optimal performance our models are capable of in our

experimental design, in terms of amount of reward accrued. In the first analyses we used

parameter estimation (Nelder-Mead algorithm implemented by Matlab’s fminsearch function)

to identify a set of parameters that maximizes each model’s accumulated reward. We then sim-

ulated the model choices using the identified parameters, and tracked how much reward was

collected by each model over 100 repetitions.

In the second optimality analyses we set the reward distribution parameters, and exam-

ined the differences in values assigned to each option in each experimental design by the

different models. We changed the value of the acceptability threshold, and examined how

it affected the model’s estimations. This analysis allows a detection of the pattern of confi-

dence and choice probabilities across conditions during steady state–after the reward distri-

butions were learned.
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Model fitting and model comparison

For each model, we used Hamiltonian Monte Carlo sampling implemented in the STAN soft-

ware package [44] to fit the free parameters of each model to the choice data, in a subject-by-

subject fashion, in order to maximize likelihood [45]. The Markov Chain Monte Carlo

(MCMC) process used for optimization produces a likelihood distribution over the parameter

space of the model, for each subject. For model comparisons, we calculated Watanabe Akaike

Information Criterion (WAIC) that uses these likelihood distributions and penalizes for the

number of free parameters [28]. We then simulated each model, using the estimated posterior

distribution over the individual parameters of that model, in order to produce the model’s

value estimations associated with each option during the experiment. We used these estimated

values to predict the model’s confidence ratings for the choices made by participants.

Supporting information

S1 Fig. Trial-by-trial optimality analysis experiment 1. We identified parameters that maxi-

mized the amount of reward accumulated by each of our models with the reward distribution

from experiment 1, and examined the amount of reward collected by the models using these

parameters over 100 repetitions. We also examined the rewards accrued by a model with full

knowledge of the reward distribution (‘Omniscient’), and the actual amount of reward accrued

by our participants. We found that all three models performed similarly, and accrued similar

amount of reward. When the drifting mechanism was added (drift of the unchosen option

towards the acceptability threshold) performance of all models decreased. All models did not

accrue as much reward as the ‘Omniscient’ model, as all of them had to learn and adapt to a

dynamic and changing environment. In addition, all models performed much better than our

participants, indicating that participants’ behaviour was noisy, falling short of the optimal

strategy.

(PDF)

S2 Fig. Value-Differences optimality analysis in experiment 1. We examined the differences

in values assigned to the two options by each model in the four conditions of our experimental

design. We used the reward distributions mean and variances in each condition, and varied

the acceptability threshold (blue to yellow lines). We found that all models assigned higher val-

ues to the high mean reward option than to the low mean reward option in almost all the cases

and conditions. A greedy decision maker would therefore be able to accumulate similar

amount of rewards using each model. However, different models assigned different value dif-

ferences in each condition. This means that a noisy decision maker (modeled using softmax)

may be more likely to choose the low mean reward option in some conditions, according to

the models’ predictions.

(PDF)

S3 Fig. Models fit to choices in experiment 1. (A) Trial-by-Trial frequency of choosing the

good option across participants (grey line) and models estimations of probability of choosing

the good option (coloured lines), averaged across participants (shaded areas represent SEM).

(B) Models’ estimations were averaged between trials 10–25 in each block. The average choices

made by participants is displayed in grey. The models lacking the drift-to-threshold mecha-

nism (top row) showed less correspondence to the behavioural results. In addition, both ‘Util-

ity’ models failed to replicate the low probability of choosing the good option in the vHvH

condition (compared to vLvH condition), as they penalised both high and low mean options

for variance in the same manner, whereas the SAT models penalised the good (high mean)

option for variance, but promoted the bad option when its variance increased. The overall best
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fitting model, across all trials, was the ‘Reward T’. Error bars represent SEM.

(PDF)

S4 Fig. Distribution of best model fits across participants. We examined how many of the

participants’ choices were best explained by each of our six models in both experiments (left

panels), and how many participants’ confidence reports were best predicted by the models

(right panels). We found that in Experiment 1 most of the participants’ choices were best

explained by models that did not track reward variance, in line with the model comparisons

we performed. In Experiment 2 choice responses were split between models that tracked vari-

ance and models that did not track variance. Best confidence ratings predictions were also dis-

tributed across participants. We found that in Experiment 1 most participants’ confidence

reports were affected by variance, with half of the participants’ confidence reports best pre-

dicted by the SSAT or SSAT-T models. In Experiment 2 the picture was even more robust,

with even greater share of the participants’ reports being affected by outcome variance. The

distributions of confidence and choices were found to be different (Two-sample Kolmogorov-

Smirnov test, Experiment 1: p = 0.0049, Experiment 2: p = 0.03).

(PDF)

S5 Fig. Relations between estimated parameters in different models in experiment 1. We

compared the individual parameters estimated for each of our drift (and best performing)

models. The Reward-T and SSAT-T models’ parameters for learning rates and threshold were

almost identical for all our participants. Reward model gave the best fit to decisions, while the

SSAT-T model gave the best fit to confidence reports. This indicates that these models may use

a shared mechanism for decisions, but the SSAT-T model uses the reward variance informa-

tion to generate confidence reports. Parameters estimations were not as similar for the

SSAT-T and the Utility-T.

(PDF)

S6 Fig. Model predictions for confidence reports in experiment 1. (A) Trial-by-Trial confi-

dence reports (grey line) and model predictions during each experimental condition are dis-

played, averaged across participants (shaded areas represent SEM). (B) Models’ predictions for

confidence reports when choosing the good option (Top Row) and when choosing the bad

option (bottom row). Predictions were averaged between trials 10–25 in each block. The average

reports made by participants is displayed in grey. All models predicted higher confidence when

choosing the good option than when choosing the bad option. Error bars represent SEM.

(PDF)

S7 Fig. Power utility model performance in experiment 1. To examine other utility functions

we fitted a utility model which transforms the rewards in each trial according to the power util-

ity function [1,2]:

UðRÞ ¼
Rð1� gÞ

1 � g
0 � g < 1

Where γ is the risk aversion factor–the closer it is to 1 the participant is more risk averse (and

the closer the function is to log(r)). We used a model that learns from these transformed val-

ues, i.e. from utilities and not directly from the rewards, but was otherwise exactly the same as

the ‘Reward’ model:

Qaðt þ 1Þ ¼ QaðtÞ þ aðUðRðtÞÞ � QaðtÞÞ

Qbðtþ 1Þ ¼ QbðtÞ

(
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When option a is chosen, its value is updated according to the difference between its current

value and the utility of the option’s current reward, with a learning rate α. Decision in each

trial was then carried using a softmax rule.

We fitted this ‘Power’ model to the choice data, and an additional ‘Power-T’ model which

added the drift to threshold of the unchosen option mechanism:

Qaðt þ 1Þ ¼ QaðtÞ þ aðUðRðtÞÞ � QaðtÞÞ

Qbðtþ 1Þ ¼ QbðtÞ þ aðT � QbðtÞÞ

(

We examined the fit of these models to the data and how well they predicted the confidence

reports.

We found that the ‘Power’ and ‘Power-T’ models performed very similarly to the ‘Reward’ and

‘Reward-T’ models respectively. Their WAIC values were: ‘Power’ 228.06 ± 67.46, ‘Power-T’:

214.51 ± 68.66, whereas the ‘Reward’ models WAIC values were: ‘Reward’ 226.55 ± 67.67,

‘Reward-T’ 214.57 ± 68.79. ‘Power-T’ was as good as our best model in explaining choice

behaviour.

We than examined how well the ‘Power’ models explained confidence reports. Again, they

fared similarly to the ‘Reward’ models with linear fit (R2) of: Power’ 0.21 ± 0.22, ‘Power-T’:

0.21 ± 0.21, whereas the ‘Reward’ models WAIC values were: ‘Reward’ 0.21 ± 0.22, ‘Reward-T’

0.21 ± 0.21.

Finally, we examined the predicted confidence reports in the four condition blocks, and found

that the patterns predicted by the ‘Power-T’ model were identical to the pattern predicted by

the ‘Reward’ model. We concluded that the transformation of reward in a trial by trial manner

did not introduce any new mechanism to learning beyond the one already implemented by the

‘Reward’ model.

(PDF)

S8 Fig. Value-Differences optimality analysis in experiment 2. We followed the same opti-

mality analysis as in S3 Fig with the reward distributions from experiment 2, and varied the

acceptability threshold (blue to yellow lines). We found that the models varied dramatically in

the relative values they assigned the options. Again, a greedy decision maker would therefore

be able to accumulate similar amount of rewards using each model. However, a noisy decision

maker (modeled using softmax) may be more likely to choose the low mean reward option in

some conditions, according to the models’ predictions.

(PDF)

S9 Fig. Models fit to choices in experiment 2. (A) Trial-by-Trial frequency of choosing the

good option across participants (grey line) and models estimations of probability of choosing

the good option (coloured lines), averaged across participants (shaded areas represent SEM).

(B) Models’ estimations were averaged between trials 10–25 in each block. The average choices

made by participants is displayed in grey. Most models were able to capture the pattern of the

participants’ choice behaviour. overall best fitting model, across all trials, was the ‘Reward T’.

(PDF)

S10 Fig. Relations between estimated parameters in different models in experiment 2. We

compared the individual parameters estimated for each of our drift (and best performing)

models. The Reward-T and SSAT-T models’ parameters for learning rates and threshold were

almost identical for all our participants. Reward model gave the best fit to decisions, while the

SSAT-T model gave the best fit to confidence reports. This indicates that these models may use
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a shared mechanism for decisions, but the SSAT-T model uses the reward variance informa-

tion to generate confidence reports. Parameters estimations were not as similar for the

SSAT-T and the Utility-T.

(PDF)

S11 Fig. Model predictions for confidence reports in experiment 2. (A) Trial-by-Trial confi-

dence reports (grey line) and model predictions during each experimental condition are dis-

played, averaged across participants (shaded areas represent SEM). (B) Models’ predictions for

confidence reports when choosing the good option (Top Row) and when choosing the bad

option (bottom row). Predictions were averaged between trials 10–25 in each block. The aver-

age reports made by participants is displayed in grey. All models predicted higher confidence

when choosing the good option than when choosing the bad option. Error bars represent

SEM.

(PDF)
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