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Abstract

Combining optical coherence tomography with visual field
data to rapidly detect disease progression in glaucoma:
a diagnostic accuracy study

David F Garway-Heath,1* Haogang Zhu,1,2,3 Qian Cheng,3

Katy Morgan,4 Chris Frost,4 David P Crabb,2 Tuan-Anh Ho1

and Yannis Agiomyrgiannakis5
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3School of Computer Science and Engineering, Beihang University, Beijing, China
4Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
5Patient representative

*Corresponding author david.garway-heath@moorfields.nhs.uk

Background: Progressive optic nerve damage in glaucoma results in vision loss, quantifiable with visual
field (VF) testing. VF measurements are, however, highly variable, making identification of worsening vision
(‘progression’) challenging. Glaucomatous optic nerve damage can also be measured with imaging
techniques such as optical coherence tomography (OCT).

Objective: To compare statistical methods that combine VF and OCT data with VF-only methods to
establish whether or not these allow (1) more rapid identification of glaucoma progression and (2) shorter
or smaller clinical trials.

Design: Method ‘hit rate’ (related to sensitivity) was evaluated in subsets of the United Kingdom
Glaucoma Treatment Study (UKGTS) and specificity was evaluated in 72 stable glaucoma patients who had
11 VF and OCT tests within 3 months (the RAPID data set). The reference progression detection method
was based on Guided Progression Analysis™ (GPA) Software (Carl Zeiss Meditec Inc., Dublin, CA, USA).
Index methods were based on previously described approaches [Analysis with Non-Stationary Weibull Error
Regression and Spatial enhancement (ANSWERS), Permutation analyses Of Pointwise Linear Regression
(PoPLR) and structure-guided ANSWERS (sANSWERS)] or newly developed methods based on Permutation
Test (PERM), multivariate hierarchical models with multiple imputation for censored values (MaHMIC) and
multivariate generalised estimating equations with multiple imputation for censored values (MaGIC).

Setting: Ten university and general ophthalmology units (UKGTS) and a single university ophthalmology
unit (RAPID).

Participants: UKGTS participants were newly diagnosed glaucoma patients randomised to intraocular
pressure-lowering drops or placebo. RAPID participants had glaucomatous VF loss, were on treatment and
were clinically stable.

Interventions: 24-2 VF tests with the Humphrey Field Analyzer and optic nerve imaging with time-domain
(TD) Stratus OCT™ (Carl Zeiss Meditec Inc., Dublin, CA, USA).
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Main outcome measures: Criterion hit rate and specificity, time to progression, future VF prediction
error, proportion progressing in UKGTS treatment groups, hazard ratios (HRs) and study sample size.

Results: Criterion specificity was 95% for all tests; the hit rate was 22.2% for GPA, 41.6% for PoPLR,
53.8% for ANSWERS and 61.3% for sANSWERS (all comparisons p ≤ 0.042). Mean survival time (weeks)
was 93.6 for GPA, 82.5 for PoPLR, 72.0 for ANSWERS and 69.1 for sANSWERS. The median prediction
errors (decibels) when the initial trend was used to predict the final VF were 3.8 (5th to 95th percentile
1.7 to 7.6) for PoPLR, 3.0 (5th to 95th percentile 1.5 to 5.7) for ANSWERS and 2.3 (5th to 95th percentile
1.3 to 4.5) for sANSWERS. HRs were 0.57 [95% confidence interval (CI) 0.34 to 0.90; p = 0.016]
for GPA, 0.59 (95% CI 0.42 to 0.83; p = 0.002) for PoPLR, 0.76 (95% CI 0.56 to 1.02; p = 0.065) for
ANSWERS and 0.70 (95% CI 0.53 to 0.93; p = 0.012) for sANSWERS. Sample size estimates were not
reduced using methods including OCT data. PERM hit rates were between 8.3% and 17.4%. Treatment
effects were non-significant in MaHMIC and MaGIC analyses; statistical significance was altered little by
incorporating imaging.

Limitations: TD OCT is less precise than current imaging technology; current OCT technology would likely
perform better. The size of the RAPID data set limited the precision of criterion specificity estimates.

Conclusions: The sANSWERS method combining VF and OCT data had a higher hit rate and identified
progression more quickly than the reference and other VF-only methods, and produced more accurate
estimates of the progression rate, but did not increase treatment effect statistical significance. Similar
studies with current OCT technology need to be undertaken and the statistical methods need refinement.

Trial registration: Current Controlled Trials ISRCTN96423140.

Funding: This project was funded by the National Institute for Health Research (NIHR) Health Technology
Assessment programme and will be published in full in Health Technology Assessment; Vol. 22, No. 4.
See the NIHR Journals Library website for further project information. Data analysed in the study were from
the UKGTS. Funding for the UKGTS was provided through an unrestricted investigator-initiated research
grant from Pfizer Inc. (New York, NY, USA), with supplementary funding from the NIHR Biomedical
Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology,
London, UK. Imaging equipment loans were made by Heidelberg Engineering, Carl Zeiss Meditec and
Optovue (Fremont, CA, USA). Pfizer, Heidelberg Engineering, Carl Zeiss Meditec and Optovue had no input
into the design, conduct, analysis or reporting of any of the UKGTS findings or this work. The sponsor for
both the UKGTS and RAPID data collection was Moorfields Eye Hospital NHS Foundation Trust. David F
Garway-Heath, Tuan-Anh Ho and Haogang Zhu are partly funded by the NIHR Biomedical Research Centre
based at Moorfields Eye Hospital and UCL Institute of Ophthalmology. David F Garway-Heath’s chair at
University College London (UCL) is supported by funding from the International Glaucoma Association.
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Plain English summary

G laucoma is an eye disease in which progressive damage to the optic nerve causes loss of vision in
parts of the eye’s field of vision and may eventually lead to blindness. The loss of vision is measured

with the visual field (VF) test. The measurements are, however, very variable, so that identifying whether or
not an eye continues to lose vision is challenging. The damage to the nerve can also be measured with
imaging techniques, one of which is called optical coherence tomography (OCT), which measures the
thickness of the layer of nerve fibres entering the optic nerve. It is possible that combining measurements
from the VF and OCT results in less variability, making it easier to identify worsening of glaucoma.

In this work we compared statistical methods that combine VF and OCT measurements with the method
used in routine practice (the reference method), which is based only on VF measurements. We aimed
to establish the relative ability of the methods to identify worsening (enlarging or deepening areas of
vision loss) in eyes at risk, while ensuring that most stable eyes were not flagged as worsening. We also
measured the time taken to identify worsening, the accuracy of the rate of worsening measurements and
the ability, in a clinical trial, of methods to distinguish eyes on treatment from
those not on treatment.

We found that a method that combines VF and OCT measurements identified more patients as worsening
than the reference method, and it identified worsening sooner. This method was also more accurate than
methods based only on the VF in measuring the rate of worsening. However, methods combining VF and
OCT measurements were not better at distinguishing eyes on treatment from those not on treatment.

The results suggest that combining measurements would be helpful for detecting worsening sooner in
clinical practice, but not yet for evaluating treatment effects in clinical trials.

Optical coherence tomography technology is rapidly advancing and newer OCT technologies may be
more advantageous.
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Scientific summary

Background

Glaucoma is a chronic progressive eye disease that can cause irreversible vision loss. The optic nerve is
damaged where it enters the eye, resulting in reduced sensitivity to light in regions of the eye’s field of
vision. In clinical care and in clinical trials, light sensitivity is measured with the visual field (VF) test. VF
measurements are, however, variable and the variability increases as damage worsens, making it difficult
to identify glaucoma worsening over time. The damage to the nerve can also be measured with imaging
techniques, such as optical coherence tomography (OCT), which measures the thickness of the retinal
nerve fibre layer (RNFL); the RNFL contains the retinal ganglion cell axons, which leave the eye through
the optic nerve head. OCT RNFL and VF measurements have been shown to correlate over the range of
glaucoma damage. Combining VF and OCT RNFL measurements may reduce variability, making it easier
to identify glaucoma worsening. To establish the validity of combining VF and OCT RNFL measurements,
it should first be demonstrated that treatment slows the rate of RNFL thinning to a similar extent that it
slows the rate of VF loss.

Methods

We aimed to compare statistical methods that combine VF and OCT data with the reference standard
method [Guided Progression Analysis™ (GPA) software (Carl Zeiss Meditec Inc., Dublin, CA, USA) for the
Humphrey Field Analyzer (HFA) instrument™ (Carl Zeiss Meditec Inc., Dublin, CA, USA)], which uses only
VF data, to establish whether or not combining OCT and VF allows (1) more rapid identification of
glaucoma worsening (‘progression’) and (2) shorter or smaller clinical trials. We also aimed to explore new
statistical methods for combining VF and OCT data.

As there is no ‘gold standard’ test for glaucoma progression to provide a ground truth, relative measures
are required. Instead of criterion sensitivity, the ‘hit rate’ (proportion of eyes identified as progressing) in
eyes at risk of worsening was used as an approximation. Criterion specificity was measured in eyes with a
very low probability of worsening (clinically stable patients measured frequently over a space of time too
short for clinically relevant deterioration to take place). Time to progression, when specificity was fixed at
95%, was used as another measure of test sensitivity. Other metrics to establish the utility of combining VF
and OCT data included the accuracy of the estimated rate of progression. Again, as there is no gold
standard measurement, a surrogate outcome was used; the modelled rate of progression over the initial
five visits was used to predict the last VF in the series, assuming a linear rate of change, and the prediction
error was taken as a measure of the model appropriateness. Finally, the ability of the various models to
distinguish the treatment arms in clinical trial data was assessed.

The hit rate, time to progression, prediction accuracy and ability to distinguish treatment status of the
various statistical methods was evaluated in the 320 participants, or subsets of them, from the United
Kingdom Glaucoma Treatment Study (UKGTS) multicentre randomised placebo-controlled clinical trial who
had both VF testing and OCT RNFL imaging. Specificity was evaluated in up to 72 stable glaucoma patients
who had between 4 and 14 VF and OCT tests within a 3-month period (the RAPID stable data set). The
UKGTS was conducted at 10 teaching and general ophthalmology units. The RAPID data set was collected
at a single teaching ophthalmology unit. The UKGTS participants were newly diagnosed patients with
mild-to-moderate glaucoma (mean deviation better than –16 dB in the worse eye) randomised to a drop
therapy to lower intraocular pressure or placebo. RAPID participants were patients with similar glaucoma
severity who were on treatment and who were clinically stable.
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Participants underwent VF testing with the HFA 24-2 test pattern and RNFL imaging with time-domain
Stratus OCT™ (Carl Zeiss Meditec Inc., Dublin, CA, USA) (TD OCT). The reference test for glaucoma
progression was based on the GPA software of the HFA. Index tests were based on previously described
methods [Analysis with Non-Stationary Weibull Error Regression and Spatial enhancement (ANSWERS) and
permutation analyses of pointwise linear regression (PoPLR); ANSWERS was modified so that the rate of
RNFL change could be used as a Bayesian prior for the estimates of the rate of VF change and was termed
‘structure-guided ANSWERS’ (sANSWERS)]. Other index tests were newly developed methods based on
permutation tests, multivariate hierarchical models with multiple imputation for censored values (MaHMIC)
and multivariate generalised estimating equations with multiple imputation for censored values (MaGIC).

The main outcome measures were progression criterion specificity, hit rate, time to incident progression,
future VF sensitivity prediction error, difference in proportions identified as progressing in the UKGTS
treatment groups, hazard ratios (HRs) and study sample size required to measure treatment effects.

Results

The estimated criterion specificity was set at 95% for all tests. The hit rate in the UKGTS cohort for the
various statistical methods was 22.2% for GPA, 41.6% for PoPLR, 53.8% for ANSWERS and 61.3% for
sANSWERS; all pairs of comparison were significantly different at p ≤ 0.042. Mean survival time was
93.6 weeks for GPA, 82.5 weeks for PoPLR, 72.0 weeks for ANSWERS and 69.1 weeks for sANSWERS.
The trend in VF (±OCT RNFL) measurements over the initial 42.4 [standard deviation (SD) 6.2] weeks was
used to predict the VF sensitivity values 49.2 (SD 19.8) weeks later; the median prediction errors were 3.8
(5th to 95th percentile 1.7 to 7.6) dB for PoPLR, 3.0 (5th to 95th percentile 1.5 to 5.7) dB for ANSWERS
and 2.3 (5th to 95th percentile 1.3 to 4.5) dB for sANSWERS. In distinguishing the UKGTS treatment
groups, the HRs were 0.57 [95% confidence interval (CI) 0.34 to 0.90; p = 0.016] for GPA, 0.59 (95% CI
0.42 to 0.83; p = 0.002) for PoPLR, 0.76 (95% CI 0.56 to 1.02; p = 0.065) for ANSWERS and 0.70 (95% CI
0.53 to 0.93; p = 0.012) for sANSWERS. Sample size estimates were not reduced by using methods
including OCT data.

Permutation test analysis of UKGTS data resulted in hit rates between 8.3% and 17.4%; treatment effects
when data were analysed with MaHMIC and MaGIC were non-significant and statistical significance was
altered little by incorporating imaging.

Conclusions

The sANSWERS method combining VF and OCT data had a higher hit rate and identified progression
more quickly than the reference GPA method and other VF-only methods, and produced more accurate
estimates of the rate of progression. However, methods combining VF and OCT data did not improve trial
power to identify a treatment effect. The statistical method providing the greatest difference in time to
progression and most statistically significant difference was the PoPLR technique using VF data alone.
Current OCT imaging technology is already more precise than that evaluated in this work (TD OCT). It is
likely, therefore, that current OCT technology would perform better than TD OCT. The size of the RAPID
data set limited the precision of the estimates for criterion specificity; however, ‘stable’ data sets, in which
many tests are obtained over a short period of time, are challenging to collect. Future work should
evaluate current OCT technology in the context of clinical treatment trials and refine the statistical
methods further.

Trial registration

This trial is registered as ISRCTN96423140.
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Chapter 1 Background

G laucoma is the leading cause of irreversible blindness worldwide1 and remains the second leading
cause of blind registrations in the UK.2 Open-angle glaucoma (OAG) affects > 2% of those aged

> 49 years and at least 5% of those aged > 80 years; its prevalence can be as high as 13% in black adults
aged > 80 years.3 OAG affects approximately 500,000 people in England and Wales.4 At the end of life,
around 6% of those with glaucoma are blind in both eyes as a consequence of the disease and a further
8% are blind as a result of comorbidity.5 The disease prevalence is rising with an ageing population and it
is estimated that glaucoma will affect nearly 80 million people worldwide by 2020.6

The term ‘glaucoma’ represents a family of chronic, progressive optic neuropathies, characterised by
distinctive structural changes to the optic nerve head (ONH) and retinal nerve fibre layer (RNFL) that lead
to loss of visual function. Progression of the disease can vary widely between patients: some may not
experience any substantial sight loss over the course of their lifetime, whereas others may deteriorate very
quickly. The only known modifiable risk factor is the level of intraocular pressure (IOP). Early detection is
important for blindness prevention and regular monitoring for deterioration in vision (‘progression’) is a
fundamental aspect of glaucoma management.

Glaucoma management, by lowering IOP, aims to preserve the patient’s vision. Therefore, tests of vision
are of considerable clinical importance. The principal vision function test in glaucoma management is the
visual field (VF) test (also known as perimetry); this aims to locate damaged areas in a patient’s field of
vision using an automated instrument that systematically measures the eye’s sensitivity to detect dim
spots of light at various locations across the VF (Figure 1). The interpretation of VF test results, however,
poses a major challenge because VF measurements are very variable and the variability becomes greater
as VF sensitivity deteriorates.7–9 Mitigation of the effects of variability, to accurately detect true disease
deterioration, requires frequent VF testing and/or a long period of time.10,11 The requirement for frequent

Reduced peripheral retinal light sensitivity 
as a consequence of glaucomatous 
nerve damage

Central (reading) vision

Physiological blind spot

FIGURE 1 Greyscale representation of the VF. Glaucomatous VF showing loss of retinal light sensitivity in the upper
part of the peripheral VF. The central vision is mediated by the fovea (see Figure 2). The physiological blind spot is
the location of the ONH.
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VF tests over extended periods of time results in delayed identification of vision loss and is a burden to
patients and the NHS.12

The vision loss in glaucoma is a consequence of structural damage to the ONH.13 Nerve cells in the retina
(retinal ganglion cells) transmit light sensitivity information to the brain through fibres that form a layer on
the retinal surface, known as the RNFL. These fibres collect together at the ONH, forming the neural rim of
the ONH (Figure 2). It is these nerve cells and fibres that are damaged in glaucoma.14–16 The optic nerve
and neural rim can be examined with imaging technology to quantify the degree of structural damage;
the association between image-based measurements of neural rim and RNFL loss and VF damage is
well recognised17–21 and the spatial relationship between the structural damage and VF loss has been
established.13,22 Imaging-based quantitative measurements have diagnostic utility23–29 and numerous
publications support the ability of imaging-based measurements to identify glaucoma deterioration.30–40

Progressive structural change has been shown to be useful as a predictor of subsequent VF loss.41,42

The ability of imaging to detect deterioration has been compared with that of VF testing, controlling
for the false-positive rate of the chosen progression criteria.33,34 Strouthidis et al.33 studied trend-based
change over time of ONH neuroretinal rim measurements made with the Heidelberg Retina Tomograph
(Heidelberg Engineering, GmbH, Heidelberg, Germany) and location-wise trend-based change in the VF;
Leung et al.34 compared trend-based analysis of RNFL measurements obtained with time-domain optical
coherence tomography (TD OCT) with a trend analysis of a VF summary measure [the VF index (VFI)].
With the imaging and VF progression criteria matched for specificity, both studies found similar detection
sensitivity for imaging compared with VF testing.

Various imaging technologies have been applied to glaucoma diagnostics and monitoring. OCT has
become most widespread. It is a three-dimensional imaging technology with ultrahigh spatial resolution.
It is similar to ultrasound but typically uses 820- or 1050-nm wavelength light, instead of sound, to image
tissue. A beam of this light is directed into tissue and reflections coming from different layers of the tissue
are received by a detector. The tissue layers are differentiated by variances in reflectivity; device software
identifies borders between areas of differing reflectivity to segment the image into various tissue layers.
The RNFL is more highly reflecting than adjacent layers and is the innermost layer, lying on the retinal
surface. Thickness measurements are made of the segmented retinal layers so that OCT provides
quantitative measurements of both the ONH and the RNFL (Figure 3).

As with VF testing, quantitative measurements of the RNFL by OCT are imprecise. A discernible change in
RNFL thickness can be described by ‘tolerance limits’ for test–retest variability [1.645 ×√2 × test–retest
standard deviation (SD)].43 For a widely used commercial spectral-domain OCT (SD OCT) device, the
Cirrus™ OCT (Carl Zeiss Meditec Inc., Dublin, CA, USA), the tolerance limit for average RNFL thickness
measurement is 3.9 µm. The dynamic range of RNFL thickness measurements varies between commercial
devices; for the Cirrus OCT, a value of 35.5 µm has been reported.44 The number of steps of discernible
change across the dynamic range is therefore about 9. Measurement imprecision is greater for the older
TD OCT technology, with tolerance limits reported of between 6.4 and 8 µm.45

The sources of measurement variability for VF tests include neural noise, variation in cognitive function
(such as fatigue) and in decision criteria, learning effects, distractions in the test environment and the
effect of technician instructions to patients.8,46–50 The sources of measurement variability in OCT imaging
include media opacity and other causes of poor signal strength,51–53 eye movement, scan misalignment
(particularly for TD OCT) and software errors in image segmentation.54,55

When a cohort is followed with VF testing and imaging, agreement on the eyes demonstrating glaucomatous
progression is poor (for the most part, different eyes are identified as progressing by structure and function).33,34

Modelling studies of rates of deterioration and measurement variability have shown that the poor agreement
may be explained by measurement variability that is uncorrelated between the VF and imaging measurement
techniques, which prevents deterioration from being identified in a proportion of eyes.56,57 Because the source
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FIGURE 2 Anatomy of the ONH and RNFL. (a) Schematic of a glaucomatous ONH illustrating a section of nerve
fibre bundles entering the ONH to form the neuroretinal rim. Loss of nerve fibre bundles results in narrowing of
the neuroretinal rim and enlargement of the optic cup in the centre of the ONH. (b) Colour photograph of a
glaucomatous ONH with a narrow inferior neuroretinal rim. (c) Red-free photograph of the RNFL. Loss of nerve
fibre bundles results in dark, wedge-shaped defects leading to the margin of the ONH. The fovea mediates central
(reading) vision.
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of measurement variability is different in VF testing and imaging, the eyes in which deterioration is missed are
different for the two techniques. In addition, as the false-positive rate in these studies33,34 was fixed at a low
value (and matched between techniques), the findings indicate that imaging and VF testing are providing
‘additive’ information. It makes sense, therefore, to use imaging data to compensate for the failure of VF
testing to identify some of the deteriorating eyes. The statistical ‘addition’ of VF and imaging data might
mitigate the variability and thereby increase the signal-to-noise ratio of combined measurements. An improved
signal-to-noise ratio would facilitate the identification of true disease deterioration, enabling more rapid
detection of disease worsening.

At present, regulatory authorities recognise VF test outcomes for clinical trials evaluating therapeutic
interventions for glaucoma, but not yet structural outcomes based on imaging.58,59

The United Kingdom Glaucoma Treatment Study (UKGTS) was designed to enable the evaluation of
ONH and RNFL imaging measurements as potential clinical trial outcomes,60 using imaging devices
available at the initiation of the trial: scanning laser ophthalmoscopy,33,61 scanning laser polarimetry62

and TD OCT.63 There has been much interest in the possibility of replacing VF testing with imaging
outcomes in clinical trials, or of using joint VF and imaging outcomes, based on a perception of more
precise measurements in imaging data. Alternative outcomes, such as structural measurements based on
imaging, need to be correlated with the clinically relevant outcome, in this case VF loss, and capture the
effect of a treatment intervention on that clinically relevant outcome.64,65 The correlation between
structural and VF measurements has been established20,21,41,42 and the potential for scanning laser
ophthalmoscopy measurements of the ONH to capture treatment effects has been demonstrated;66

however, clinical trial data demonstrating that structural outcomes capture treatments effects on the VF
have yet to be published.

FIGURE 3 Optical coherence tomograph scan of the RNFL. (a) En face view of the ONH, position of the scan circle
(green circle) and fovea (blue line extending between the ONH and the fovea); (b) retinal image cross-section
around the ONH (the red lines delimit the RNFL on the retinal surface; glaucomatous thinning is indicated);
(c) classification of the RNFL thickness in sectors around the ONH (the inferotemporal sector is outside normal
limits); and (d) segmented RNFL thickness (black line) in relation to population normal ranges (green 5–95%,
yellow 1% to > 5%, red < 1%) with glaucomatous thinning indicated.
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The potential benefits to patients and the NHS of combining VF and OCT data could be more sensitive
(and therefore more rapid) identification of glaucoma deterioration and more accurate assessment of rates
of deterioration, with consequently improved clinical outcomes, and a reduced frequency of patient visits
and testing. This approach may also enable a reduction in study population size and study duration in
clinical trials, thus allowing a greater number of new treatments to be assessed and brought to patients
more rapidly.
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Chapter 2 Objectives

The primary objective of this work was to establish whether combining VF and OCT data results in
more sensitive identification of glaucoma deterioration and more accurate assessment of rates of

deterioration than using VF data alone. More sensitive and accurate identification of deterioration may
enable a reduction in study population size and/or study duration in clinical trials and so an additional
objective was to compare sample size estimates for clinical trials based on techniques combining VF and
OCT data and techniques using VF data alone.
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Chapter 3 Methods

Study design

Overview
Evaluation of ONH and RNFL imaging measurements as potential clinical trial outcomes was a secondary
objective of the UKGTS.60 The trial protocol for data collection was established before the index and
reference standard tests were performed.

This work draws together a number of different statistical strands to establish statistical tools to analyse
glaucomatous disease deterioration. The main emphasis was to investigate ‘trend’ analyses, which use
several observations taken over a period of time to estimate a rate of change in the outcome over that
time period. A related secondary set of methods that were investigated were ‘event’-based analyses,
in which patients are declared to have experienced an event if they have deteriorated by a certain amount
compared with their baseline measurements. With the reference method (see below), an event is identified
when follow-up measurements differ by a certain amount from the baseline measurements. With the
index methods, the event is based on the ‘trend’ analysis, so that the event is the point in time at which a
trend becomes statistically significant.

Before evaluating methods that combine the VF and OCT measurements, we evaluated some data
attributes required to assess the suitability of the imaging outcome as an alternative or additional outcome
to VF testing. To do this we compared the distribution of individual rates of change in VF mean sensitivity
and OCT mean RNFL thickness between treatment arms of the UKGTS. Potential surrogate outcomes also
need to be shown to capture the effect of a treatment intervention on the clinically relevant outcome.64,65

We therefore assessed the association of the rate of RNFL loss in individual participants with the time
to VF event in a Cox proportional hazards model.

The reference method to identify VF deterioration, for comparison with the index methods, was the
event-based method available in the VF testing instrument [Humphrey Field Analyzer™ (HFA) II-i Guided
Progression Analysis™ (GPA) software (Carl Zeiss Meditec Inc., Dublin, CA, USA)] with the criterion for
deterioration that was applied in the UKGTS.60,67 The GPA method compares each follow-up VF with the
baseline pair of VFs and ‘flags’ deterioration when the follow-up measurement at a VF location has a
sensitivity that is lower than the 5% limit predicted from population test–retest data. Criteria for
deterioration are based on various combinations of the number of flagged location and the number of
consecutive times that the location is flagged.68

Two types of index analysis methods were considered: those that analyse VF measurements alone
(‘VF-only index methods’) and those that analyse both VF and OCT outcomes (‘VF + OCT index methods’).
These methods were compared against the reference method.

Analysis methods were compared as detailed in the following sections.

‘Hit rate’ and specificity
There is no ‘gold standard’ reference for glaucoma deterioration and so the sensitivity (true-positive rate)
of a method cannot be calculated directly. The approach adopted in this work was to evaluate criterion
specificity (true-negative frequency) in a ‘stable’ data set of glaucomatous subjects and to select a criterion
for deterioration providing a type 1 error (false-positive frequency) of 5% (assuming that none of the stable
subjects was actually deteriorating). Criteria to identify deterioration were then applied to the UKGTS data
set.67 For a constant type 1 error, the ‘hit rate’ is a monotonically increasing function of the sensitivity and,
under a certain assumption, methods with a higher hit rate have a higher sensitivity. The assumption is that
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the specificity of the methods is the same, or that the specificity of each method is different by the same
amount, in the stable and UKGTS cohorts. If the specificity changes differentially for the methods evaluated,
then the comparison of hit rate will not be a surrogate for sensitivity (as the type 1 errors will no longer be
comparable). However, in the absence of a gold standard test, assessment of hit rate is a pragmatic
alternative to comparing method sensitivities. Therefore, the method with the criterion identifying most trial
patients as deteriorating was assumed to be the most sensitive technique. The stable data set consisted of
treated glaucoma patients tested on 10 occasions within a 3-month period. The assumption was that no
measurable deterioration occurs in such a short period of time in treated patients.

Prediction accuracy
Similarly, as there is no gold standard reference for glaucoma deterioration, a surrogate method to
evaluate the accuracy of the determination of the rate of deterioration was used. Accuracy was assessed
by using the rate of deterioration to predict future VF states from initial measurements and comparing the
prediction with the observed measurement. In individual UKGTS participants, initial tests were used to
predict a VF test result towards the end of the trial. This analysis assumes that VF deterioration is linear.
This assumption has been shown to be reasonable in manifest glaucoma, at least over observation periods
of a few years.69,70 The method with the lowest prediction error was presumed to be the most accurate for
measuring the rate of deterioration.

Discrimination between trial treatment arms
Analysis methods that best capture glaucoma deterioration should discriminate well between clinical trial
treatment arms if one treatment slows the rate of deterioration compared with the other. The treatment
effect may be measured either by comparing the average rate of change in the outcome measure in each
group or by comparing the time-to-progression events in each group. Both approaches were adopted.

Review of models to identify visual field deterioration and incorporate imaging outcomes
Testing of the VF, using instruments such as the HFA, has been used as both a diagnostic tool and an
outcome measure in randomised clinical trials (RCTs) in glaucoma for many years. Bosworth et al.71

reviewed current VF testing practice. There has been much research into the characteristics of VF
measurements from the 24-2 pattern acquired with the Swedish interactive thresholding algorithm (SITA)
of the HFA.72 Many papers have described the large variability in VF measurements and the increasing
variability as sensitivity declines.7–9 Gardiner et al.73 found that sensitivity values below a cut-off value of
between 15 and 19 dB are particularly unreliable and that values at these levels of sensitivity agree poorly
with estimates obtained from ‘frequency of seeing’ curves. Gardiner et al.73 also discussed the concept that
sensitivity values may not be truly defined at such low levels, as the retinal ganglion cells remaining cannot
be stimulated sufficiently to produce a 50% response rate to stimuli, regardless of the intensity of the
presentation. Gardiner et al.74 found that the proportion of eyes identified as deteriorating was not
decreased by truncating sensitivities at 10 dB (i.e. setting all sensitivities below 10 dB equal to 10 dB) in the
two cohorts studied. Furthermore, in one of the cohorts, no reduction in the proportion deteriorating
was observed when truncating at 15 dB; in the other, only a small reduction was observed.

In addressing the increased variability in sensitivity estimates with declining sensitivity, Ibáñez and Simó75

used geostatistical methods to model the spatiotemporal characteristics of VF data taken from healthy
eyes. They noted the relationship between variability, mean sensitivity and distance from the centre of the
VF and considered the use of a Box–Cox transformation to adjust for the heteroskedasticity of the data.

Bryan et al.76 compared pointwise simple linear regression (SLR) with exponential regression, censored
regression and median-based regression to describe VF deterioration. They found that all models
performed similarly, with SLR performing slightly better in terms of prediction errors and model fit, but that
all models gave large prediction errors. However, the authors noted a need for more complex models that
explore the spatiotemporal relationships of VF data to improve predictions further. For the main part of
their paper, Bryan et al.76 considered censored regression models (also known as Tobit models) with
censoring at 0 dB, which is the limit of the VF machine’s dynamic range. In the discussion section, the
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authors briefly mention also considering censoring at 10 dB, but that SLR still performed better in terms of
model fit and prediction errors. The authors acknowledged the difficulties of using prediction errors as a
metric to compare models given the high level of variability in VF measurements, particularly at low
dB values.

Bryan et al.77 explored the use of mixed-effects models in a Bayesian framework in the context of analysis
of glaucoma data. In their model they included levels for person, eye and hemi-field within eye. In such a
model, the VF locations are assumed to have an exchangeable correlation structure within the hemi-field.
The authors also included a ‘global visit effect’ in their model (to account for visit-by-visit differences in
performance) and allowed the log of the SD in their model to vary linearly with the sensitivity. Bryan et al.77

used a two-stage Bayesian Monte Carlo procedure to obtain estimates from such a model. They found
that by taking into account the global visit effect and including the relationship between variability and
sensitivity, the model fit improved, as well as future VF prediction accuracy.

Acknowledging the heteroskedastic nature of VF variability, O’Leary et al.78 considered the use of
permutation methods. They used SLR to obtain a p-value at each VF location. They then used a
generalisation of Fisher’s method to combine the p-values into a summary statistic, which they permuted.
With this method, which they named permutation analyses of pointwise linear regression (PoPLR), they
obtained a superior ‘hit rate’, with specificity held at 5%, to the previously described pointwise linear
regression.79 A particular advantage of this method over the GPA facility in the HFA is that the statistical
significance of the slope of change is estimated from the patient’s own data rather than from
population statistics.

Zhu et al.80 proposed an approach to identify deterioration that formally modelled the variability
characteristics at each level of VF sensitivity; this was termed ‘Analysis with Non-Stationary Weibull
Error Regression and Spatial enhancement’ (ANSWERS). The methodology was developed from a data set
that included 12 VF tests on each of 30 subjects.81 To develop their methodology, Zhu et al.80 formed the
1980 (30 × 12 × 11/2) pairs of VFs and treated these as independent representations of within-subject
variability. However, these pairs were not truly independent as they came from only 30 subjects; it is
not clear to what extent this non-independence may impact on the validity of the method, but the
sensitivity-determined variability characteristics of the model were consistent with previous publications.7,8

The ‘hit rate’ and prediction accuracy of ANSWERS was compared with the SLR of a VF summary measure
[mean deviation (MD)] and with PoPLR. The hit rate was significantly better than the SLR of the MD and
PoPLR, especially in short time series. The prediction accuracy of ANSWERS was also better than that of
PoPLR, particularly in shorter series; 75% of VF series were better predicted by ANSWERS than by PoPLR
and the average prediction error of ANSWERS was 15% lower than that of PoPLR.82

Medeiros et al.83 proposed a Bayesian framework to integrate event-based (GPA) and trend-based
(SLR of VFI) analyses. The results from the event-based analysis were incorporated into the prior for the
trend-based analysis. Although this approach identified more subjects as deteriorating than the GPA alone,
at the same level of estimated specificity, the approach appears to use the same data twice, which may
lead to incorrect estimates of variability when making inferences.

Recognising the potential of structural measures to support VF testing, several groups have proposed
methods to combine VF and imaging data for glaucoma diagnosis and disease staging84–86 that are
reported to perform better than the separate structure or function tests. Medeiros et al.87 applied their
approach to identify glaucoma deterioration. The analysis is effectively SLR on combined summary
measures of glaucoma damage and does not address the heteroskedasticity in the VF data. Analysis of the
combined data provided a better hit rate than the VF and structure data alone, for the same level of
specificity. This relatively simple methodology could be more statistically efficient than more complex
approaches; however, it is probably more appropriate to exploit the multivariate nature of the repeated
measures of the imaging outcome together with the data from all locations in the VF.
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Two further studies by Medeiros et al.62,88 used a Bayesian approach to combine structural and functional
information. In the first study,62 a Bayesian hierarchical model was used to integrate information from
the longitudinal VF (VFI) and structure (RNFL thickness estimated with the scanning laser polarimeter)
measurements to classify individual eyes as progressing or not. The output was compared with SLR of the
component VF and structural data; more eyes were identified as deteriorating with the Bayesian approach.
‘Specificity’ was estimated from healthy eyes. In the second study,88 a Bayesian joint regression model was
used to integrate structural (rim area measurements from a scanning laser tomograph) and functional
(VF MD) information. Compared with SLR on either the structural or the functional components alone,
the deterioration slopes were less variable and prediction accuracy was better. Both approaches use a
summary VF outcome measure (VFI or MD) and neither formally addresses heteroskedasticity in the data.
Furthermore, the use of healthy eyes to evaluate criterion specificity is not appropriate because the range
of sensitivity values and associated variability differs.

Russell et al.89 proposed a Bayesian framework in which the rate of neural rim change measured by
scanning laser tomography formed the prior for SLR of a VF summary measure (mean sensitivity). The
Bayesian approach incorporating the structural data resulted in significantly better predictions of future VF
mean sensitivity than SLR of mean sensitivity alone. As with other published methods, this approach used a
summary VF outcome measure and did not addresses heteroskedasticity in the VF data. However, this, and
the other approaches, demonstrate the potential benefit of including structure outcomes in the analysis of
serial VF data to identify deterioration.

Developing analysis approaches for the visual field and imaging outcomes
In this project we made use of a variety of techniques that are used in mainstream medical statistics in
many disease areas, as well as building on some methods that have also been used in a glaucoma setting;
these are detailed in Chapter 6 (see Index methods: newly developed). For example, we considered a
variety of transformations, including those from the two-parameter Box–Cox family of transformations,90

to investigate whether or not one could be found under which the transformed VF values would follow
an approximate normal distribution. Ibáñez and Simó75 considered the use of Box–Cox transformations
and transformations more generally have been used in a wide variety of settings to allow normality
assumptions to be made.

We considered the use of censored regression models (also known as Tobit models) in this project,
using a cut-off value of 15 dB. This relates to work by Bryan et al.,76 among others, who considered
regression models that assume censoring below 0 dB. We considered a higher cut-off value, as described
in Chapter 6 (see Censored regression), which has the dual advantage of allowing normality and
homoskedasticity assumptions to be made and avoids the need to account for zero weighting caused
by the truncation at 0 dB. The recent study by Gardiner et al.74 considered ‘censoring’ at a cut-off value
above 0 dB, although in their work they simply truncated at the cut-off value and replaced all values below
the cut-off value with the cut-off value, instead of using a censored regression model as proposed.

Another method we have made use of is the permutation test. These tests are commonly used in many
areas of statistics to compute p-values when comparing levels of a particular outcome variable between
two groups when there are concerns over the assumptions made by a test such as a t-test.91 Such
permutation tests have been utilised for the analysis of serial VF data to identify deterioration.78

Multiple imputation, and specifically the use of chained equations,92 is frequently used to handle missing
data in a principled way in many disease areas. A similar approach to the model that we propose in
Chapter 6 (see Multiple imputation) has been previously used to analyse longitudinal dietary data.93

Linear mixed-effects models (also known as hierarchical models or mixed models) are commonly used in
other disease areas to analyse longitudinal and/or hierarchical data.94 They have also been applied to
glaucoma data by Bryan et al.77 in a Bayesian framework. The specific use of a Kronecker product to
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specify the residual error structure is described by O’Brien et al.95 Generalised estimating equations (GEEs)
are also a standard methodology that is frequently used in other disease areas.94

We also make use of the known spatial relationship between regions of the VF and RNFL sectors around
the ONH.22

Setting

The data analysis methods were applied to two data sets, RCT data from the UKGTS and test–retest data
from the RAPID trial. The methods applied to the UKGTS data were used to determine method ‘hit rate’
(approximating sensitivity); method specificity was determined from the RAPID data set.

The UKGTS design, participant characteristics and main outcomes are described in detail elsewhere.60,67,96

The UKGTS was a multicentre RCT conducted at 10 centres across the UK. Centres were district general
hospitals, teaching hospitals and tertiary referral centres. Consecutive participants consenting for the study
were recruited between 1 December 2006 and 16 March 2010.

The RAPID data set was acquired from patients attending the glaucoma clinics at Moorfields Eye Hospital
NHS Foundation Trust, which functions as a district general and teaching hospital and a tertiary referral
centre; VF testing and imaging was undertaken in the National Institute for Health Research (NIHR)
Clinical Research Facility.

While the RAPID data set was being collected, statistical methods were evaluated in a second test–retest data
set, termed here the ‘Halifax’ data set.81 This data set was acquired from patients attending the glaucoma
clinics at Dalhousie University Department of Ophthalmology and Visual Sciences in Halifax, NS, Canada.

Participants and data sources

United Kingdom Glaucoma Treatment Study
The UKGTS was a RCT that compared the effects of latanoprost, a topical treatment to lower IOP,
with those of placebo on survival from VF deterioration. In total, 516 patients with newly diagnosed OAG
were enrolled, with 777 eyes eligible for entry into the study; details of the eligibility criteria and baseline
characteristics have been published elsewhere.60,96 The study was undertaken in accordance with good
clinical practice guidelines97 and adhered to the Declaration of Helsinki.98 The trial was approved by the
Moorfields and Whittington Research Ethics Committee on 1 June 2006 (reference 09/H0721/56). All
patients provided written informed consent before the screening investigations were carried out. An
independent Data and Safety Monitoring Committee (DSMC) was appointed by the Trial Steering
Committee. The trial manager monitored adverse events, which were reported immediately to the
operational DSMC at Moorfields Eye Hospital. Serious adverse events were reported to the Medicines
and Healthcare products Regulatory Agency. The trial is registered as ISRCTN96423140.

The principal baseline characteristics of the participants are presented in Table 1.

Participants were followed up every 2–3 months after eye drop therapy was initiated, for up to 11 scheduled
visits (see Appendix 1). Participants attended for additional visits if VF deterioration was identified according
to certain preset criteria, at which VF testing and imaging were repeated. The baseline visit was the first visit,
6 weeks after randomised therapy (drops) was started. Visual function was monitored by VF testing (see Data
types, Visual field measurements) and ONH structure was monitored with the Heidelberg Retina Tomograph
at all study sites and with TD Stratus OCT™ (Carl Zeiss Meditec Inc., Dublin, CA, USA) (software version 5.0;
see Data types, Optical coherence tomography measurements) and GDxECC Nerve Fiber Analyzer (Carl Zeiss
Meditec Inc., Dublin, CA, USA) at study sites with those devices. The sample size in the UKGTS was
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determined for a two-sided error at a significance level (α) of 0.05 to detect the difference between 24%
and 11% incident deterioration over a 24-month follow-up at 90% power and assuming a 25% attrition
rate. The subset of UKGTS participants with both VF testing and OCT imaging was used in this work.

The primary outcome for the trial was glaucomatous VF progression (deterioration) within 24 months.
Details of the method for determining progression in the VFs (see Chapter 3, Visual field measurements)
have been published previously.60,67 If tentative deterioration was identified, participants returned for
confirmation tests within 1 month. At this confirmation visit, two VF tests were performed; if the
deterioration was confirmed, then participants were considered to have progressed. Participants who were
deemed to have progressed left the trial and treatment was adjusted as appropriate. Participants leaving
the trial were invited to an ‘exit visit’ before treatment adjustment. Participants found to not be
progressing at the confirmation visit were returned to the standard visit schedule.

The primary outcome was analysed as survival in a Cox model, which found an adjusted treatment hazard
ratio (HR) of 0.44 [95% confidence interval (CI) 0.28 to 0.69, p < 0.001]. Details of the covariates used in
the outcome model have been published previously.67

RAPID study
Eighty-two glaucoma patients under standard treatment were recruited to a test–retest study. Seventy-
seven (148 eyes) of the patients recruited attended for up to 10 visits within a 3-month period, totalling
1256 patient-eye visits. This data set was taken to represent a ‘stable glaucoma’ cohort; assumptions made
include that, over such a short length of time, no clinically meaningful changes in the VF or RNFL structure
would occur and that the variability in characteristics of the VF and RNFL measurements are similar to
those seen in clinical practice over longer periods of time.

The study was undertaken in accordance with good clinical practice guidelines97 and adhered to the
Declaration of Helsinki.98 The study was approved by the North of Scotland National Research Ethics

TABLE 1 Principal baseline characteristics of participants in the UKGTS

Characteristic

Placebo (n= 258 participants, 393 eyes) Latanoprost (n= 258 participants, 384 eyes)

Median 5th to 95th percentile Median 5th to 95th percentile

Age (years) 66.5 47.5 to 80.7 66.2 44.8 to 79.9

IOP (mmHg) 19.0 12.0 to 28.0 19.0 12.5 to 28.7

SAP MD (dB) –2.62 –9.89 to 0.00 –2.66 –9.95 to 0.00

Visual acuity (Snellen) 6/6 6/5 to 6/9 6/6 6/5 to 6/9

Refractive error (D) 0.00 –6.9 to 2.8 –0.1 –6.1 to 2.6

Number % Number %

Sex (female) 125 48 118 46

Ethnic origin

White 230 89 235 91

Black 17 7 10 4

Indian subcontinent 7 3 9 3

Other/unknown 4 2 4 2

SAP, standard automated perimetry.
Notes
Age, sex and ethnic origin are subject variables; IOP, SAP MD, visual acuity and refractive error are eye variables. Data are
provided for eligible eyes.
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Service committee on 27 September 2013 (reference 13/NS/0132) and NHS Permissions for Research was
granted by the Joint Research Office at University College London Hospitals NHS Foundation Trust on
3 December 2013. All patients provided written informed consent before the screening investigations were
carried out.

Recruitment criteria were based on those for the UKGTS.60 Patients were required to have reproducible
VF loss with corresponding damage to the ONH and no other condition that could lead to VF loss, be
aged > 18 years and have a visual acuity of ≥ 6/12, a refractive error within ±8 dioptres and an IOP of
≤ 30 mmHg. The VF MD had to be better than –16 dB in the worse eye and better than –12 dB in the
better eye. VF loss was defined as a reduction in sensitivity at two or more contiguous locations with
p < 0.01 loss or more, three or more contiguous locations with p < 0.05 loss or more, or a 10-dB
difference across the nasal horizontal midline at two or more adjacent locations in the total deviation plot.

Participants attended approximately once a week for 10 visits, with VF testing and OCT imaging carried
out twice at the first visit and once at each subsequent visit. The mean time between visits was 8.2 days
(range 3–63 days). VF testing was undertaken with the HFA, as detailed below, and OCT imaging was
carried out using TD Stratus OCT and Spectralis® SD OCT (Heidelberg Engineering, Heidelberg, Germany);
we present the TD OCT results in this report because this was the form of OCT imaging used in
the UKGTS.

Halifax study
Initial statistical modelling was undertaken while the RAPID study was still in the data collection phase.
Therefore, we made use of a similar test–retest data set.81 This consisted of 30 glaucoma patients who took
12 VF tests over a 3-month period, approximately once a week, in the Department of Ophthalmology,
Dalhousie University, Halifax, NS, Canada. In accordance with the Declaration of Helsinki,98 the institutional
research ethics board approved the protocol and all patients gave written informed consent.

Data types

Visual field measurements
In a VF test, a patient fixates with the eye to be tested (one at a time) on a central (‘fixation’) point and is
then presented with flashes of light of varying intensity at locations at various distances (eccentricity) from
the fixation point. The patient is provided with a button and instructed to click this when he or she can
see a flash of light. In the standard 24-2 VF pattern, 54 locations in a regular grid 6° apart are tested and a
sensitivity level is recorded for each. The locations above and below the physiological blind spot (see Figure 1)
are discarded so that 52 locations are analysed. At a sensitive retinal location a dim flash can be seen and at
a location with poor sensitivity only bright flashes can be seen. The unit of sensitivity measurement (decibel)
is 10 times the log of the reciprocal of the dimmest intensity seen, so that a sensitive location has a high
decibel value. A sensitivity of < 0 dB implies that the patient has been unable to see the brightest light
that the machine can produce. Thus, the measurements are bounded at 0 dB. They are also heteroskedastic
(the variability associated with the measurement depends on the mean level of the measurement), so that
the variability of the VF sensitivities increases as sight deteriorates (at low decibel values).

All VF tests were performed with the HFA II (or II-i) and the SITA standard 24-2 program. A reliable VF was
one with a false-positive rate of < 15% and < 20% fixation losses (for fixation losses of > 20%, reliability
was based on the subjective judgement of the technician supervising the test and the clinician reading the
test, including an assessment of the eye tracker trace). Unreliable tests were repeated, either on the same
day (with a break of at least 30 minutes) or on a subsequent occasion.

The reference standard analysis for VF deterioration was that used for the outcome of the UKGTS and
was undertaken with the HFA II-i GPA software (version 5.1.1). The criterion for tentative deterioration
(progression) was three locations worse than baseline in two consecutive VFs (three half-shaded or
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full-shaded locations). Definite deterioration was identified if the same criterion of three half-shaded or
full-shaded locations was satisfied in the next two VF tests.60,67

Optical coherence tomography measurements
During OCT image acquisition, a patient sits in front of the image device, which is aligned to the patient’s
pupil. The patient views a fixation light and the instrument scans the retina, acquiring reflectivity
measurements around a circle centred on the ONH. OCT imaging was performed with the TD Stratus OCT.
Images were acquired through dilated pupils with the fast RNFL thickness (3.4) scanning protocol and
using the landmark function. With this scanning protocol, three images are acquired in quick succession.
The OCT instrument software averages the measurements from these three images. A signal strength of
≥ 7 was required; images were retaken if necessary to acquire adequate-quality images. Images of lower
quality, or those with a software alert, were not included in the analyses.

Retinal nerve fibre layer measurements are provided as means (average RNFL around the ONH) and in
clock-hour sectors.

Structure/function mapping
There is an established anatomical correspondence between regions of the VF and sectors of the ONH
(Figure 4).22 In some analyses we make use of this mapping, so that either regions of the VF or individual
VF locations are associated with corresponding RNFL measurements.

FIGURE 4 Relationship between VF regions and RNFL sectors around the ONH. The optics of the eye result in
inversion of the VF compared with the anatomy. The VF test locations are shown in ‘retinal view’ (the VF has been
inverted, so that inferior locations are shown at the top of the image, to allow direct correspondence between the
anatomy and the VF). The RNFL sectors are numbered as follows: (1) superior 30° sector corresponding to the inferior
VF, (2) superotemporal 30° sector corresponding to the inferior arcuate VF region, (3) nasal 120° sector corresponding
to the temporal VF, (4) temporal 120° sector corresponding to the central VF, (5) inferior 30° sector corresponding to
the superior VF and (6) inferotemporal 30° sector corresponding to the superior arcuate VF region.
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Main outcome measures

The following outcomes were assessed:

1. the difference between UKGTS treatment arms in the

i. distribution of individual rates of VF sensitivity change
ii. distribution of individual rates of OCT mean RNFL change

2. the association of the rate of RNFL change with time to VF progression
3. the ‘hit rate’ and specificity of the reference method
4. the ‘hit rate’ and specificity of the index methods
5. the accuracy of the prediction of future VF states
6. the discrimination between treatment arms

i. based on the rate of VF change (new index method)
ii. based on the time to event (comparing the reference and index methods)

7. sample size calculations for the reference and index methods.

Interventions

The analyses were performed on existing clinical trial data comparing treatment and placebo arms.67

The treatment arm was given IOP-lowering drops intended to slow the rate of VF sensitivity deterioration.
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Chapter 4 Statistical methodology

Existing reference and index data analysis methods (or modifications of them), and the methods for
assessing them, are described in Methods of evaluation of reference and previously described index

methods and new approaches developed in this work are described in Index methods: newly developed.
The existing reference and index data analysis and the new approaches used slightly differing subsets of
the UKGTS and RAPID data; details of the data used in Methods of evaluation of reference and previously
described index methods are provided in Visual field and imaging outcomes in the United Kingdom
Glaucoma Treatment Study; details of the data used in Index methods: newly developed are provided in
that section.

Progression detection in clinical practice and clinical trials

Event-based methods to identify progression are suitable for both clinical practice and clinical trials,
whereas methods evaluating the behaviour of groups of patients are suitable only for clinical trials.

In the latter setting there are often hundreds of patients, with a proportion on the investigational
treatment and the remainder (‘control group’) on a placebo or alternative treatment. In the context of
glaucoma, the aim would be to detect whether the investigational treatment is preventing the patients in
the active group from deteriorating as quickly as patients in the control group. This aim can be achieved by
defining a binary progression event that can be analysed alongside the time until that event (for those
with an event) or the time until the end of follow-up (for those without an event) in a survival analysis.
Alternatively, a multilevel modelling approach can be used, in which average slopes over time are
estimated separately in the investigational and control groups by using a time-by-treatment interaction.
The treatment effect of interest would then be the difference between those slopes.

Until now, imaging outcomes collected during the course of RCTs of glaucoma have been analysed as
secondary outcomes. However, if imaging and VF outcomes could be analysed together, then this may
allow treatment effects to be detected more accurately and after a shorter length of time. This could allow
smaller and shorter RCTs to be conducted.

The methodological approach for the clinical trials setting requires models that appropriately specify the
complex covariance structure of the repeated measures available (between subject, within subject between
occasion and within subject within occasion, such as the covariance between different VF locations).

The clinical practice setting is very different. The data available are often limited to only a handful of
visits for a single patient. To manage his or her treatment effectively, it is important to monitor him or
her to identify any deterioration in his or her condition. Because the data are much more limited, the
approaches here are simpler, but nonetheless must take appropriate account of the characteristics of VF
data (particularly the non-normality and heteroskedasticity of such data). Given these characteristics,
non-parametric approaches, such as permutation tests, are particularly attractive.

Visual field and imaging outcomes in the United Kingdom Glaucoma
Treatment Study

Data
A subset of 528 eyes of 361 UKGTS participants had OCT imaging of adequate quality acquired during the
follow-up, 178 participants in the placebo group and 183 participants in the latanoprost group. The
principal characteristics of these participants (Table 2) were very similar to those of the complete UKGTS
cohort (see Table 1).
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Figure 5 shows the process for identifying subjects with VF and OCT image data of adequate quality.
Confirmation and exit visits were included in the analyses provided that they occurred within 2 years of the
baseline visit.

Data for the analyses in the following two sections came from the 284 UKGTS participants (141 in the
latanoprost arm and 143 in the placebo arm; see Figure 5) with adequate-quality VF and OCT data, with
> 6 months of follow-up, who underwent five or more visits and with data for both VFs and OCT at the
baseline visit.

Rate of change of visual field mean sensitivity and mean retinal nerve fibre layer thickness
The rate of change of VF mean sensitivity (mean of the 52 locations) and mean RNFL thickness were
calculated by SLR and the individual rates of change were compared between treatment arms using a
Mann–Whitney two-tailed test.

Association of retinal nerve fibre layer thickness change with time to visual field progression
To identify whether the rate of change in OCT RNFL thickness was associated with VF progression
(reference analysis), a Cox proportional hazards model was fitted to the data for factors potentially
associated with survival failure (treatment allocation, age, baseline IOP, baseline VF MD and occurrence of
a disc haemorrhage in either eye during follow-up)99 and the slope of change in OCT RNFL thickness.
Calculations were performed using MedCalc Statistical Software version 17.1 [MedCalc Software bvba,
Ostend, Belgium; see www.medcalc.org (accessed 7 November 2017)].

TABLE 2 Principal baseline characteristics of the subset of the UKGTS cohort with OCT images

Characteristics

Placebo (n= 178 participants, 264 eyes) Latanoprost (n= 183 participants, 264 eyes)

Median 5th to 95th percentile Median 5th to 95th percentile

Age (years) 66.3 47.3 to 81.1 65.7 44.7 to 79.6

IOP (mmHg) 19.0 12.0 to 28.0 19.0 12.5 to 27.0

SAP MD (dB) –2.73 –10.60 to –0.17 –2.57 –10.98 to –0.02

RNFL thickness (µm) 75.3 48.2 to 106.6 77.2 56.1 to 101.3

Visual acuity (Snellen) 6/6 6/5 to 6/9 6/6 6/5 to 6/12

Refractive error (dioptre) 0.00 –6.85 to 3.13 –0.13 –6.13 to 2.29

Number % Number %

Sex (female) 86 48 79 43

Ethnic origin

White 153 86 165 90

Black 15 8 8 4

Indian subcontinent 4 2 8 4

Other/unknown 6 3 2 1

SAP, standard automated perimetry.
Notes
Age, sex and ethnic origin are subject variables; IOP, SAP MD and RNFL thickness are eye variables. Data are provided for
eligible eyes.
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Methods of evaluation of reference and previously described index
methods

This section describes the methods of evaluation of the reference and previously described index methods
to identify VF progression and the modifications made to them to allow the inclusion of OCT RNFL
measurements.

The reference method is the GPA detailed in Chapter 3 (see Visual field measurements). The index
methods explored in this section were (1) ANSWERS,80,82 (2) PoPLR78 and (3) a modification of ANSWERS to
incorporate the RNFL tickness slope as a prior (structure-guided ANSWERS or sANSWERS).

Patients
(n = 373)

66,945 OCT images

Patients allocated to
latanoprost

(n = 189)

Patients allocated to
placebo
(n = 184)

Fo
llo

w
-u

p

Did not attend any 
post-baseline study visits

(n = 6)

Patients
(n = 183)

34,365 OCT images

Patients
(n = 178)

32,196 OCT images

Excluded
• Signal strength less than seven
   or image warning message,
   n = 154, 8313 OCT images
• Ineligible worse eyes, n = 1,
   6 eyes, 402 OCT images
• Outside clinical range, n = 1, 
   one OCT image
• Less than 6 months follow-up or
   < 5 time points, n = 18

Patients with ≥ 5 time points
(n = 165)
Excluded
• OCT data not available at first
   visit but available in following
   visits, n = 24

Patients
(n = 141) 16,462 OCT images

Excluded
• Signal strength less than seven
   or image warning message,
   n = 151, 8240 OCT images
• Ineligible worse eyes, n = 2,
   7 eyes, 609 OCT images
• Outside clinical range, n = 3, 
   41 OCT images
• Less than 6 months follow-up or
   < 5 time points, n = 23

Patients with ≥ 5 time points
(n = 155)
Excluded
• OCT data not available at first
   visit but available in following
   visits, n = 12

Patients
(n = 143) 15,717 OCT images

Did not attend any 
post-baseline study visits

(n = 6)

A
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FIGURE 5 Flow chart illustrating the process for identifying patients with both VF and OCT data of adequate quality.
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Data

United Kingdom Glaucoma Treatment Study
Data used in the analyses described in this section are detailed in Visual field and imaging outcomes in the
United Kingdom Glaucoma Treatment Study, Data.

RAPID study
Seventy patients with VFs matching the eligibility criteria for the UKGTS had a data series that was
sufficiently long (six VFs) to apply the reference (GPA) analysis for deterioration. The mean (SD) number of
test results for each participant was 11 (0.7).

The principal characteristics of the RAPID participants at baseline are presented in Table 3. The data are
similar to those for the UKGTS participants (see Table 2); RAPID participants have slightly more advanced
glaucoma (VF MD –4.17 vs. –2.65 dB) and lower IOP (14.0 vs. 19.0 mmHg) and there was a lower
proportion of white participants in the RAPID study (67% vs. 88%).

Reference analysis
Progression was defined according to the reference GPA (detailed in Chapter 3, Visual field measurements).
Progression-free VF survival for the treatment and placebo arms was assessed using Kaplan–Meier survival
analysis in two subsets: the 284 UKGTS participants in Visual field and imaging outcomes in the United
Kingdom Glaucoma Treatment Study and the 320 participants in Index analyses. Calculations were
performed with MedCalc Statistical Software version 17.1.

TABLE 3 Principal baseline characteristics of the RAPID study cohort

Characteristics

RAPID cohort (n= 70 participants, 114 eyes)

Median 5th to 95th percentile

Age (years) 70.3 50.0 to 85.6

IOP (mmHg) 14.0 8.0 to 21.0

SAP MD (dB) –4.17 –14.22 to 0.88

RNFL thickness (µ) 69.0 45.1 to 95.6

Visual acuity (Snellen) 6/6 6/4 to 6/12

Refractive error (dioptres) –0.13 –7.48 to 2.95

Number %

Sex (female) 42 58

Ethnic origin

White 48 67

Black 16 22

Indian subcontinent 4 6

Other/unknown 4 6

SAP, standard automated perimetry.
Notes
Age, sex and ethnic origin are subject variables; IOP, SAP MD and RNFL thickness are eye variables. Data are provided for
eligible eyes with six or more VFs.
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The specificity of the reference analysis was evaluated in the RAPID study participants; the first two VFs
formed the baseline and each subsequent VF test was compared with the baseline pair. The RAPID data
were not permuted for this analysis because this is not possible using the HFA II-i GPA software. Estimates
of criterion specificity took into account the manner in which tests for progression are applied in clinical
practice and in clinical trials. Tests for progression are applied each time a patient has a new VF or OCT
test and so there is an opportunity for false-positive identification of progression. Therefore, in every
generated series, the ‘progression test’ is applied at each time point and a series is flagged as progressing
if the progression criterion is met at any time point.

Index analyses

ANSWERS
This method is a linear regression technique applied to each VF location that formally takes into account the
increasing variability of VF sensitivity estimates as sensitivity declines. It also takes into account the spatial
correlation between sensitivity values at each location within a VF. Application of SLR makes the assumption
that the residuals from the regression are normally distributed. In reality, there is heteroskedasticity, with
more dispersed residuals as sensitivity declines. ANSWERS models this heteroskedasticity with a mixture of
Weibull distributions. Spatial correlation of measurements is also included in the model using a Bayesian
framework. We have previously shown that this technique is more sensitive at identifying VF progression and
provides more accurate predictions of future VF states than SLR of VF MD over time and PoPLR.82

Permutation analyses of pointwise linear regression
Permutation analyses of pointwise linear regression is a non-parametric approach based on randomly
permuting the observed VF series to identify whether or not negative change identified in the observed
(unpermuted) series is significant, based on the distribution of change identified in the permuted series.
The slope of VF sensitivity change is determined by SLR and the statistical significance (p-value) from each
location across the VF is combined into a statistic S by using the truncated product method. The statistical
significance of S in the observed series is calculated by comparing it with a null distribution of S, derived
from permuted sequences of the series.

Structure-guided ANSWERS
Structure-guided ANSWERS is a modification of ANSWERS in which there is a two-layered hierarchical
Bayesian model (Bayesian belief network); the prior distribution of the VF progression rate at each VF
location is set by the slopes and variance of the rate of change of RNFL thickness measurements (Figure 6).
This is similar to the approach described previously to incorporate scanning laser ophthalmoscope rim area
measurement slopes into VF progression analysis.89

As the spatial correspondence of peripapillary circle sectors and VF locations is known,22 each VF location
was mapped to one of 12 peripapillary RNFL sector measurements (see Figure 4); the slope and variance of
RNFL thickness over time formed the Bayesian prior for the VF slope.

S

t Fwf

ws Σf_s

Σf_iΣspace

FIGURE 6 Structure of sANSWERS: the structure measure S and function measure F are dependent when the
function progression parameter wf is not conditioned on, but become independent only when wf is observed
(conditioned). F, function measure; wf, the prior distribution of the slopes and intercepts of VF progression rate;
∑f_s, The prior distribution of the slopes of the VF progression rate; ∑f_i, The prior distribution of the intercepts of
the VF progression rate; ws, The distribution of the rate of change of RNFL thickness measurements; ∑space, The
spatial correlation between each location and all other locations in the visual field; S, structure measure.
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Assessment

‘Hit rate’ compared with specificity
The specificity of index method criteria to identify deterioration was evaluated in the RAPID test–retest data
set and the ‘hit rate’ (a surrogate for criterion ‘sensitivity’ that includes true change and the false-positive
change allowed by the criterion specificity) was determined from the UKGTS data set (introduced in
Chapter 3, ‘Hit rate’ and specificity) in the 320 participants who had five or more time points with both VF
tests and OCT images available (see Figure 5).

In the RAPID data, the modelling assumed that the number of tests performed at each visit and the
interval between visits were the same as specified in the UKGTS schedule of visits (see Appendix 1). The
RAPID data series included series lengths of between 10 and 14 tests. The 18- and 22-month time points
required 12 and 14 tests, respectively, to have equivalence to UKGTS analyses. Therefore, for modelled
observation periods of ≥ 18 months (see Chapter 5, ‘Hit rate’ compared with specificity), the RAPID data
for a subject were randomly resampled if necessary to make up the number of tests required for analyses
at 18 and 22 months. Criterion specificity was determined for follow-up periods of up to 7, 13, 18 and
22 months and included multiple testing in time (the criterion for progression is applied to every VF test in
sequence), as is the case when applying a progression criterion in a trial or in clinical practice. To evaluate
test criterion specificity for ANSWERS, PoPLR and sANSWERS, 100 permutations of the RAPID data series
(10–14 tests) were performed for each eye across time points. When data were permuted, the VF tests and
OCT images for the same day were tied (permuted together); when there was no OCT image associated
with a VF test, the VF was permuted alone.

Prediction of future visual field state
The purpose of this analysis was to evaluate how well the analysis methods model the true rate of VF loss
(introduced in Chapter 3, Prediction accuracy). As there is no gold standard for the true rate, a surrogate
indicator was investigated. This surrogate is the accuracy of predicting the final VF (sensitivity at each
location) in a series based on the initial five visits in the series and the rate of loss estimated by the
analysis method.

This analysis was performed on 372 eyes of 257 participants in the data set with both VF tests and
OCT images. A trend line was fitted to the tests for the first five visits using the index methods and was
projected to the time point of the last VF test in the series. The per-subject prediction error for a method is
the average absolute difference between the measured sensitivity and the predicted sensitivity across the
52 non-blind-spot locations in the last VF. The absolute difference is the square root of the squared error.

Survival analyses
Each data analysis method, with the progression criterion giving 95% specificity in the RAPID data set,
was applied to the UKGTS subset of 320 subjects to establish time to progression in the two treatment
arms. As for the analysis of the reference method, treatment arms were compared using a Kaplan–Meier
survival analysis. The HRs and event rates were used in sample size calculations to establish the number of
participants required for each of the analysis methods to distinguish treatment effects. Calculations were
performed using MedCalc Statistical Software version 17.1.

Index methods: newly developed

This section describes the development and application of new methods: Permutation Test (newly
developed methods) (PERM), multivariate hierarchical models with multiple imputation for censored values
(MaHMIC) and multivariate generalised estimating equations with multiple imputation for censored
values (MaGIC).
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Data

United Kingdom Glaucoma Treatment Study
A subsample of 361 participants with 528 UKGTS-eligible eyes was used in this modelling. In total,
2960 patient-eye visits with both VF and OCT tests meeting the quality criteria were retained in the
subsample [false positive < 15% for VF: 31 (0.4%) VF tests excluded, nine (0.2%) patient-eye visits
excluded; signal strength ≥ 7 for OCT, 10,633 (21.3%) OCT scans excluded, 632 (13.4%) patient-eye
visits excluded]. Of the 361 participants, 167 contributed data from two eyes to the data set and 194
contributed data from only one eye. The mean number of visits per eye was 5.6 (range 1–11) and the
mean time between visits was 97.4 (range 35–602) days.

Only paired VF and OCT data were used because we wanted our assessment of the benefit of adding
imaging data to VF data not to be diluted by the presence of missing data at the visit level. In addition,
on occasions when more than five OCT scan triplets were taken, only the first five were included in the
data set. Confirmation visits were discarded as they were scheduled based on suspected deterioration in
visual function and so could bias the results; if one treatment was more effective than the other it could
result in there being more confirmation visits, and hence more data, in one arm than in the other in a
way that would not necessarily be the case were another methodological approach to be used. Exit visits
(see Chapter 3, United Kingdom Glaucoma Treatment Study) were also discarded as they were not used to
determine the primary outcome in the UKGTS.

All participants in this subset with four or more visits were used for PERM. Participants with three or fewer
visits were not included. As explained in Permutation Test, this is because permutations of only three
objects cannot produce statistical significance at the 5% level. In total, 386 eyes from 270 participants
were included in the PERM analyses.

RAPID study
All patients in the RAPID data set with four or more visits were analysed, with the same scan quality
criteria as for the UKGTS data. In total, 135 eyes from 72 participants were included in this analysis.
Sixty-three of the 72 participants contributed data from two eyes to the data set and nine contributed data
from only one eye. The mean number of visits per eye was 9.1 (range 4–10) and the mean time between
visits was 8.1 (range 3–50) days.

Methods and assessment

Visual field test and transformations
As can be seen in Figures 7 and 8, which display data from the Halifax study,81 VF measures are highly
non-normal. They are truncated at zero and are heteroskedastic, with greater variation as vision deteriorates
(i.e. as VF values decrease). Figure 9 illustrates the complex spatial correlation structure of VF measures.
Mixed-effects models, also known as hierarchical models, are commonly used in other disease areas to analyse
multivariate, hierarchical data and can handle complex correlation structures such as those observed in VF
data. However, they are easiest to implement when outcomes approximately follow a normal distribution.
We therefore explored a variety of transformations, including those from the two-parameter Box–Cox family
of transformations, to investigate whether one could be found under which the transformed values would
follow an approximate normal distribution.90 Examples of the transformations that we considered can be
found in Figures 10–13. None of the transformations that we considered appeared to stabilise the variance
sufficiently for the transformed values to be reliably modelled under a normality assumption.

Censored regression
An alternative to the transformations is to evaluate the normality of the test–retest distributions over part
of the sensitivity range. To do this we utilised a variation of a quantile–quantile plot in which values are
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FIGURE 7 Visual field sensitivity values at each test location from 30 glaucoma patients from the Halifax study. There is one plot for each of the 54 VF test locations tested in
a 24-2 pattern (two of the locations are adjacent to the physiological blind spot). Each line on the location-specific plots represents the trajectory of a single patient across
12 repeated visits. Differential light sensitivity (DLS) measured in decibels is plotted against visit number.
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FIGURE 8 Plots of within-person variance vs. within-person mean at each VF location for the 30 patients from the Halifax study.
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plotted against the values that would be expected under a normal distribution given their rank. Such a
standard quantile–quantile plot would generally be used for a variable with independent values, for
example with each value obtained from a different person. However, in this setting we have multiple
values obtained over time, and from several locations across the eye, for each person. Each person and
location has values distributed around their own mean level. To avoid the complexity of multiple locations
we plotted each separately. To account for every person having their own mean we used the following
variation of a quantile–quantile plot:

l For each location separately, a censored regression model was fitted to the 12 repeat measurements
for the 30 subjects. This model allowed a different mean for each subject, with values of < 15
considered as censored and a common within-subject variance. As a separate model was fitted for
each location, the variance was free to vary between different spatial locations across the eye.

l 12 values were drawn for each patient from a normal distribution centred on the patient’s mean and
using the common variance from the censored regression model.

l These were ordered according to their size.
l The previous two steps were repeated 500 times.
l An average was taken across each of these repeats to obtain an accurate estimate of the expected

value for each rank.
l The average, or expected, value for each rank was plotted against the actual value.

If the values are in fact normally distributed, or close to normally distributed, then they would be expected
to fall close to the line of equality. As can be seen in Figure 14, the VF data appear to be reasonably well
described by a mixture of normal distributions above 15 dB, although at a few locations there is some
minor departure from normality in the tail of the distribution. Such departures were appreciably more
marked using a cut-off value of 10 dB (Figure 15) and not completely eliminated using a cut-off value of

– 0.6 to 0.4
0.4 – 0.6
0.6 – 0.8
0.8 – 1
1

FIGURE 9 Correlations between mean light sensitivity values across all VF test locations. This figure shows
the correlations between test locations (the mean of the 12 repeat VF measurements at each location) in the
30 patients from the Halifax study. Each plot represents one VF location, which is highlighted in dark blue. The
other pixels represent the strength of the correlations with other locations, with darker colours indicating larger
correlations. The lightest green shading represents correlations of between –0.6 and 0.4, the mid-green shading
indicates correlations between 0.4 and 0.6, the dark green shading indicated correlation between 0.6 and 0.8 and
the darkest green represents correlations between 0.8 and 1.
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FIGURE 10 Plots of trajectories over time for log(45 – DLS)-transformed Halifax study data. Log(45 – DLS) are plotted against visit number.
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FIGURE 11 Plots of within-person variance vs. within-person mean for log(45 – DLS) using transformed Halifax study data.
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FIGURE 12 Plots of trajectories over time for Halifax study data with a two-parameter Box–Cox transformation: [(35 – DLS)0.56 – 1]/0.56. The transformed data are plotted
against visit number.
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FIGURE 13 Plots of within-person variance vs. within-person mean for Halifax study data with a two-parameter Box–Cox transformation: [(35 –DLS)0.56 – 1]/0.56.
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FIGURE 14 Joint quantile–quantile plots with a cut-off value of 15 dB for the Halifax study data set.
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20 dB (Figure 16), providing some justification for our choice of a 15-dB cut-off value. In addition, using a
higher cut-off value such as 20 dB results in a higher proportion of censored observations and might lead
to a loss of important information.

Permutation Test
Permutation tests are commonly used in statistics to compute p-values when comparing levels of a
particular outcome variable between two groups when there are concerns over the assumptions made by
a test such as a t-test.91 Some measure of difference between the groups, such as the difference in the
means or the difference in the medians or a test statistic such as that from a t-test, is first computed.
The variable defining group membership is then permuted many times and the measure of difference
recomputed for each permutation. The p-value is simply the proportion of the permutations that give a
measure of difference as large as or larger than that observed in the actual data. If the number of objects
to be permuted is small, all permutations can be performed; if the number of objects to be permuted is
not small then a random sample of all possible permutations of the grouping variable is taken.

Permutation tests can also be used to compute p-values from linear regression models and there is general
agreement concerning an appropriate method of permutation for exact tests of hypotheses in SLR (though
not for multiple regression).100 In SLR one simply permutes the ordering of the predictor variable (here, visit
number or calendar time), so, for example, with four time points there are 24 permutations (4 × 3 × 2) and
with five time points there are 120 permutations (5 × 4 × 3 × 2).

In our multivariate setting, in which patients have multiple measures at each time point, entire visits are
permuted together. For example, if visits 2 and 3 are to be permuted, then both VF and OCT measurements
at visit 2 are swapped with those at visit 3.

O’Leary et al.78 used SLR to obtain a p-value at each VF location, which they combined into a summary
statistic and then permuted. By contrast, in our method, we are using censored regression rather than SLR
and we are permuting slopes or test statistics rather than a summary statistic derived from the p-values.

Multiple imputation
As discussed, the VF measurements are highly non-normal but an assumption of normality and constant
variance above 15 dB does not appear to be unreasonable. We would therefore have liked to fit a
multivariate hierarchical censored regression. However, this is computationally intractable. As an alternative
approach we used a first stage of multiply imputing for any values that are censored (< 15 dB). Using the
imputed data, which will be approximately normally distributed, we then used a multivariate hierarchical
model without censoring.

There were too many outcome measures (52 VF locations plus imaging outcomes for each eye at each
visit) to impute all outcomes together in a joint model. Therefore, a chained equations approach was
used.92 This method uses a set of univariate models, one for each outcome to be imputed, and cycles
through them many times before taking imputed values. Theoretically, this cycling process should allow
the Monte Carlo process to converge and hence not to depend on the starting values for the process.
The initial convergence period is referred to as the burn-in and the number of iterations spent on this
stage can be chosen by the analyst.

In this setting, each univariate model for the VF outcomes will include a small number of neighbouring VF
points and neighbours in time (e.g. the value at the same VF location at the visit before and the visit after the
one to be imputed). The chained equations therefore iterate through time and across spatial locations. A
similar chained equations approach has been used to impute for missing values in longitudinal dietary data.93

Note that in this setting we have a mixture of censored observations, defined as those that lie below
15 dB, and missing visits (because of using a subsample of the UKGTS data set or because a patient left
the trial, e.g. as a result of progression or of dropping out of the study). We proposed to impute both
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FIGURE 15 Joint quantile–quantile plots using a cut-off value of 10 dB for the Halifax study data set.
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FIGURE 16 Joint quantile–quantile plots using a cut-off value of 20 dB for the Halifax test-retest data set.
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types of ‘missing’ data. In the imputed data sets, therefore, all patients have data (imputed or otherwise)
for 11 visits. Imputed values for censored observations all lie below 15 dB, whereas observations from
missing visits are not restricted in this way.

The number of censored observations by visit number is given in Table 4. These numbers are pooled across
VF location, but the amount of censoring varies substantially according to the location. For example, at the
top left VF location there were 54 (13.1%) censored observations at the first visit, whereas for a location
just to the bottom right of the fovea there was only one censored observation at this visit.

Kronecker model
Linear mixed-effects models (also known as hierarchical models or mixed models) are commonly used in
other disease areas to analyse longitudinal and/or hierarchical data.94 They can account for complex
correlation structures such as those observed in the VF data. However, such models are most easily fitted if
the data are approximately normally distributed. Such an assumption does not seem unreasonable for the
imaging outcome, but the VF data are far from being normally distributed. As described earlier, we tried a
variety of transformations but did not find one that was sufficient to reliably model the transformed VF
data under normality assumptions. Therefore, we proceeded to the censoring approach described in
Censored regression and to use the multiple imputation process outlined in Multiple imputation. Once we
obtained some imputed data sets, we modelled the now approximately normally distributed VF values in a
mixed-effects model jointly with the imaging outcome. This model includes random intercepts and slopes
for person and eye.

Instead of assuming an independent residual error structure, we used a Kronecker product to model the
residual correlations. Using the Kronecker product offers a parsimonious way to model the remaining
spatial and temporal correlations in a separable way.95

Based on initial investigations using the Halifax data set, we chose to model the temporal correlations
under an exchangeability assumption. For the spatial correlations, we used a model of exponential decay
with correlations decreasing as the distance between the VF locations increased and also as the angle at
which the nerve fibres running through the location enter the ONH increases.22 In addition, the locations
in separate hemi-fields of the VF were assumed to not be correlated. Such a model for the correlation
structure between VF locations was proposed in the paper on ANSWERS by Zhu et al.80 No correlation is

TABLE 4 Number and percentage of censored observations and missing eye visits by visit number in the UKGTS

Visit number Number (%) of missing eye visits
Number (%) of censored VF observations
across 52 locations for non-missing visits

1 117 (22.2) 1416 (6.6)

2 147 (27.8) 1241 (6.3)

3 167 (31.6) 1176 (6.3)

4 192 (36.4) 1117 (6.4)

5 229 (43.4) 932 (6.0)

6 247 (46.8) 941 (6.4)

7 285 (54.0) 857 (6.8)

8 340 (64.4) 516 (5.3)

9 364 (68.9) 369 (4.3)

10 382 (72.3) 320 (4.2)

11 378 (71.6) 442 (5.7)
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modelled in the spatial matrix between the VF outcomes and imaging outcome, but correlations between
these measures are induced through the person and eye random effects.

Two sets of the following fixed effects were included in the model, one set each for the VF and imaging
outcomes: a constant term, a slope over time and a time-by-treatment interaction. The per-protocol visit
time in years since starting treatment was used as the timescale for this model. We defined this scale as in
Table 5.

Using the per-protocol visit time was a pragmatic decision based on computation time, as the Kronecker
model is computationally much quicker to run on balanced data, in which every person has visits at the
same time point.

Note that when using such a timescale in an individually randomised trial setting, under which there will
be no systematic differences between treatment groups at the point of randomisation (assuming
randomisation has been implemented appropriately), it is not efficient to include a main effect for
treatment in a mixed-effects model.101

The algebraic form of the Kronecker model is:

yi jkl = αVF Ivf + αImIIm + βVFtl IVF + βImtl IIm + γVFtrtitl IVF + γ Imtrtitl IIm + p0i + p1i tl + e0i j + e1i j tl + εi jkl, (1)

where i = person, j = eye, k = VF location or imaging, k = 1. . . , 53, that is, 52 VF locations and one imaging
outcome, l = visit number, IVF,Ilm are indicators for VF locations or imaging respectively, ti is the time of visit
l, trti is the treatment group for person i and α, β, γ are fixed effects – a constant, a slope over time and a
time-by-treatment interaction respectively – with one of each for VF and imaging. In a clinical trials setting
the parameters of interest are γVF and γlm, along with their joint test of significance, as these represent the
difference in slope between the treated group and the placebo group. p0i, p1i are random intercepts and
slopes for person and e0i, e1i are random intercepts and slopes for eye. They are distributed as:

p0i

p1i

� �
∼N

0
0

� �
,

σ2
p0 σp01

σp01 σ2
p1

� �� �
, (2)

TABLE 5 Per-protocol visit time for each visit number

Visit Per-protocol visit time in months Per-protocol visit time in years (per-protocol time in months/12)

1 1.5 0.125

2 3.5 0.292

3 5.5 0.458

4 8.5 0.708

5 11.5 0.958

6 14.5 1.208

7 17.5 1.458

8 19.5 1.625

9 21.5 1.792

10 23.5 1.958

11 25.5 2.125
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and

e0i j

e1i j

� �
∼N

0
0

� �
,

σ2
e0 σe01

σe01 σ2
e1

� �� �
. (3)

The residual error ϵijkl is distributed as:

εi jkl∼N½0,Σ �, (4)

where Σ = τ⊗λ takes a Kronecker product structure, with:

τ =
1 σ ll′ ⋯
σ ll′ 1 ⋯
⋮ ⋮ ⋱

0
@

1
A (5)

an exchangeable covariance matrix for time (with a variance of 1 to avoid overparameterisation), and λ is
the covariance matrix for VF locations and imaging:

λ =

σ2
VF σ2

VF e
−(dD12 +aA12) ⋯ 0

σ2
VFe

−(dD12 +aA12) σ2
VF ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ σ2

Im

0
BBB@

1
CCCA, (6)

where σ2
VF is the variance for VF locations, σ2

Im is the variance for imaging, σ2
VFe

−(dDkk′ +aAkk′ ) is the correlation
between locations k and k′, with the correlation depending on a matrix containing the distances between
the VF locations D and a matrix containing the difference between the angle of entry into the ONH for the
VF locations A (as previously determined22). Distances between locations in different hemi-fields were set
to be very large in the matrix D, such that the correlations between hemi-fields were effectively zero.

Although there is no explicit correlation between the VF locations and the imaging outcome in the matrix
λ, a correlation between the outcomes is induced by the random effects for person and eye. The variances
and covariances implied by this model are given in Appendix 2.

For comparison, we also consider a model with VF measurements only (no imaging outcomes).
The algebraic form of this model is:

yi jkl = αVF Ivf + βVFtl IVF + γVFtrtitl IVF + p0i + p1i tl + e0i j + e1i j tl + ϵi jkl, (7)

with k now running from 1 to 52 and the covariance matrix λ becoming:

λ =
σ2
VF σ2

VF e
−(dD12 +aA12) ⋯

σ2
VF e

−(dD12 +aA12) σ2
VF ⋯

⋮ ⋮ ⋱

0
B@

1
CA. (8)

As it is not possible to implement such a model in standard statistical software packages, we wrote a
function in R (version 3.3.0, The R Foundation for Statistical Computing, Vienna, Austria) to calculate the
log-likelihood for the model. We then used the ‘optim’ function in R to maximise the log-likelihood.
The optim function was used repeatedly, each time starting from the last set of parameter estimates from
the previous optim call, until the log-likelihood increased by < 0.1 compared with the previous optim
call. If the optim function failed, for example if a region of parameter space was reached in which the
log-likelihood could not be calculated, the optim function was used again using the same fixed effects
but returning to the starting values for the variance parameters. Once the final parameter estimates at the
maximum log-likelihood were reached, the standard errors (SEs) for the fixed effects were obtained by
finding the numerical derivatives at that point. Only SEs for the fixed effects were calculated, as inversion
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of the variance–covariance matrix for all parameters was found to fail often in simulations. Inverting the
smaller variance–covariance matrix for just the fixed effects was more stable.

The Kronecker model was applied to each of the imputed data sets in turn and the parameter estimates
from each were combined using Rubin’s rules.102

Generalised estimating equations
Linear mixed models make strong distributional assumptions and theoretically these assumptions need to
hold for inferences to be valid.94 An alternative approach requiring fewer assumptions utilises GEEs.103 In
this approach a repeated-measures model with an assumed (usually simple) ‘working’ correlation structure
is fitted to the data for estimation of parameters. To correct for the fact that the assumed correlation
structure is likely to be incorrect, robust SEs are used to construct CIs and to perform hypothesis tests.104,105

The mean model for the GEEs used in this study takes the same form as the fixed effects of the Kronecker
models outlined in the previous section:

E½yi jkl� = αVF Ivf + αImIIm + βVFtl IVF + βImtl IIm + γVF trtitl IVF + γImtrtitl IIm. (9)

This mean model is used with an exchangeable working correlation matrix at the level of person. Robust
SEs are used.

For comparison, we also considered a GEE applied to the VF data only. This has a mean model of the form:

E½yi jkl� = αVF Ivf + βVFtl IVF + γVF trtitl IVF . (10)

Again, an exchangeable working correlation matrix and robust SEs are used.
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Chapter 5 Results

Rates of visual field and retinal nerve fibre layer thickness change

The analysis was applied to the 284 subjects with both VF and OCT measurements available at baseline
and with ≥ 6 months of follow-up (see Figure 5).

Visual field
The distribution of the rate of VF mean sensitivity change is shown in Figure 17. The rate of loss was taken
from the eye with the worse baseline MD or the eye demonstrating incident VF loss. It can be seen clearly
in the histogram that the placebo group has faster rates of deterioration than the latanoprost group (data
shifted to the left). The mean (SD) rates of change were –0.36 (2.20) dB per year in the placebo group and
–0.02 (0.96) dB per year in the latanoprost group. The d’Agostino–Pearson test for normal distribution of
individual rates of change rejected normality (p < 0.0001). The median rate of change was –0.21 (5th to
95th percentile –2.84 to +1.40) dB per year in the placebo group and +0.12 (5th to 95th percentile –1.95
to +1.39) dB per year in the latanoprost group. A Mann–Whitney two-tailed test (independent samples)
identified that the distribution of slopes was significantly different (p = 0.0034).

Retinal nerve fibre layer thickness
The distribution of rate of RNFL thickness change is shown in Figure 18. The rate of loss was taken from
the eye with the worse baseline MD or the eye demonstrating incident VF loss. Similarly to the VF data, the
placebo group had faster rates of deterioration than the latanoprost group (data shifted to the left).
The d’Agostino–Pearson test for normal distribution rejected normality (p = 0.0026). The median rate of
change was –1.56 (5th to 95th percentile –9.17 to +6.16) µm per year in the placebo group and –1.05
(5th to 95th percentile –8.05 to +3.89) µm per year in the latanoprost group. The difference in distribution
of slopes was not statistically significant (Mann–Whitney two-tailed test, p = 0.18).
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FIGURE 17 Distribution of the rate of VF mean sensitivity (MS) change in decibels per year for the subset of UKGTS
participants with OCT images (placebo, n= 143 participants; latanoprost, n= 141 participants).
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Association of the rate of retinal nerve fibre layer thickness change with
visual field progression

A Cox proportional hazards model was fitted to the time to VF progression data for the 284 UKGTS
participants with OCT RNFL thickness change data, OCT images at baseline and ≥ 6 months of follow-up.
The significance of the association of various factors with time to incident progression (survival) is given in
Table 6. Treatment allocation, the occurrence of a disc haemorrhage during follow-up (either eye) and the
rate of OCT RNFL change were significantly associated with survival (p = 0.042–0.007) and baseline
(pretreatment) IOP and baseline (visit 1) VF MD approached statistical significance (p between 0.077 and
0.085); the overall model fit was significant (p = 0.0007). The median rate of RNFL thickness change was
–2.26 (5th to 95th percentile –9.82 to +5.17) µm per year in eyes with incident VF loss and –1.15 (5th to
95th percentile –7.20 to +5.10) µm per year in eyes without incident VF loss; the difference was
statistically significant (Mann–Whitney test, p = 0.019).
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FIGURE 18 Distribution of the rate of OCT RNFL thickness change for the subset of UKGTS participants with OCT
images (placebo, n= 143 participants; latanoprost, n = 141 participants).

TABLE 6 Cox proportional hazards model for time to incident VF progression

Covariate b SE Wald p Exp(b) 95% CI of Exp(b)

Age 0.018 0.014 1.748 0.186 1.018 0.991 to 1.045

Allocation –0.770 0.287 7.226 0.007 0.463 0.264 to 0.812

Baseline IOP 0.050 0.029 2.972 0.085 1.051 0.993 to 1.113

Baseline VF MD 0.086 0.048 3.123 0.077 1.089 0.991 to 1.198

OCT RNFL slope –0.086 0.041 4.430 0.035 0.917 0.846 to 0.994

Disc haemorrhage 0.576 0.283 4.143 0.042 1.779 1.022 to 3.099

Note
b= regression coefficient, Wald statistic = (b/SE)2, p= p-value associated with the Wald statistic and Exp(b) = the HR.
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Reference method: Guided Progression Analysis

The reference method was time to VF progression based on the GPA criterion applied in the UKGTS. The
progression criterion was applied sequentially to each VF test during follow-up of the 284 subjects with
both VF and OCT measurements available at baseline and with ≥ 6 months of follow-up (see Figure 5).
Survival was determined at the patient level, with the first UKGTS-eligible eye showing progression
classifying the patient as ‘progressed’. Figure 19 illustrates the survival curves.

The log-rank test comparison of the survival curves was statistically significant (p = 0.0036); the HR was
0.45 (95% CI 0.27 to 0.76).

Criterion specificity was evaluated in the RAPID data set. Survival was determined at the patient level,
with the first eye (with VF loss eligible for the UKGTS) showing progression classifying the patient as
‘progressed’. Four of 70 participants in the RAPID data set demonstrated progression according to the
reference (GPA) criterion. Therefore, the false-positive estimate for the VF series (when this criterion is
applied to each VF test in the series) in the RAPID data was 4/70 = 5.7% (95% CI 1.6% to 14.6%;
specificity 94.3%, 95% CI 85.4% to 98.4%).

Evaluation of the ANSWERS, PoPLR and sANSWERS index methods

‘Hit rate’ compared with specificity
Figure 20 illustrates the proportion of eyes of the 320 UKGTS participants with five or more time points
with both VF tests and OCT images available that were identified as progressing (the ‘hit rate’, equivalent
to the true positives plus the false positives) plotted against the false-positive frequency (proportion of eyes
of RAPID subjects identified as deteriorating) as the criterion for flagging an eye as deteriorating is varied.
This is a larger subset than other analyses because baseline OCT images were not required (see Figure 5).
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FIGURE 19 Survival analysis for the 284 UKGTS participants with VFs and OCT images available at baseline and with
≥ 6 months of follow-up.
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FIGURE 20 The proportion of participants in the UKGTS identified as progressing (hit rate) plotted against the
false-positive frequency as the criterion for progression is varied. The ‘hit rate’ is the proportion of eyes of UKGTS
participants identified as deteriorating at criterion false-positive rates between 0% and 15%. Analyses are shown
for the ANSWERS, PoPLR and sANSWERS models. Data are shown for series intervals (baseline to final observation)
of up to (a) 7 months (404 eyes), (b) 13 months (378 eyes), (c) 18 months (286 eyes) and (d) 22 months (230 eyes).
The shorter series are subsets of the longer series so that an eye identified as ‘progressed’ earlier in the series is
carried forward as ‘progressed’ in the later series. Data are shown for 404 eyes of 320 participants.
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At a 5% false-positive frequency and after 22 months’ observation, the hit rate for the ANSWERS and
PoPLR methods was similar, at around 20%. For comparison, the hit rate with the GPA criterion applied in
the UKGTS in this subset of eyes with OCT data was 87/394 eligible eyes (22%). The hit rate for the
sANSWERS method was considerably greater, at > 40%, suggesting that, for the same false-positive
frequency, sANSWERS is much more sensitive at identifying a progressing eye. A similar pattern was seen
for shorter follow-up durations, but with the ANSWERS method showing greater sensitivity than the PoPLR
method for short follow-up durations.

Prediction of future visual field state
The sensitivity at each location in the last VF in a UKGTS participant’s series was predicted by projecting
the trend for sensitivity change observed over the first five visits to the time of the last VF. The period over
which the initial trend line was fitted was a mean (SD) of 42.4 (6.2) weeks and the mean (SD) interval from
the initial period to the predicted VF was 49.2 (19.8) weeks.

The mean prediction errors (average error across the 52 locations in the VF) across subjects were not normally
distributed (D’Agostino–Pearson test, p < 0.0001). The median mean prediction error across subjects was
3.8 (5th to 95th centile 1.7 to 7.6) dB for SLR, 3.0 (5th to 95th centile 1.5 to 5.7) dB for ANSWERS and
2.3 (5th to 95th centile 1.3 to 4.5) dB for sANSWERS. The difference between methods was evaluated with
the Wilcoxon signed-rank test; all pairs of comparisons were significantly different at the p < 0.0001 level.

Survival analyses
The following survival analyses were conducted on data from the 320 subjects who had five or more time
points with both VF tests and OCT images available (see Figure 5) (in contrast to Reference method:
Guided Progression Analysis, which describes the analysis of patients with only OCT data at the baseline
visit). Survival was determined at the patient level, with the first UKGTS-eligible eye showing progression
classifying the patient as ‘progressed’.

Guided Progression Analysis (reference test)
The survival analysis employing the GPA progression criterion applied in the UKGTS is shown in Figure 21.
The number of participants with incident progression was 42 (27.1%) in the placebo group, 29 (17.6%)
in the latanoprost group and 71 (22.2%, 95% CI 17.8% to 27.2%) overall. The overall mean survival time
was 93.6 weeks (95% CI 91.3 to 96.0 weeks). The HR was 0.566 (95% CI 0.354 to 0.903) and the
log-rank test to compare the survival curves was significant at p = 0.016.

ANSWERS
The survival analysis employing the ANSWERS survival criterion giving a 5% false-positive rate when
applied sequentially to each VF in a participant’s VF series in the RAPID data set is shown in Figure 22.
The number of participants with incident progression was 90 (58.0%) in the placebo group, 82 (49.7%)
in the latanoprost group and 172 (53.8%, 95% CI 48.1% to 59.3%) overall. The proportion identified as
progressing was statistically significantly greater than that identified with the GPA criterion (McNemar test,
p < 0.0001). The overall mean survival time was 72.0 weeks (95% CI 68.6 to 75.5 weeks). The HR was
0.758 (95% CI 0.561 to 1.023) and the log-rank test to compare the survival curves was borderline
statistically significant at p = 0.065.

Permutation analyses of pointwise linear regression
The survival analysis employing the PoPLR survival criterion, giving a 5% false-positive rate when applied
sequentially to each VF in a participant’s VF series in the RAPID data set, is shown in Figure 23. The number
of participants with incident progression was 76 (49.0%) in the placebo group, 57 (34.6%) in the latanoprost
group and 133 (41.6%, 95% CI 36.1% to 47.2%) overall. The proportion identified as progressing was
statistically significantly greater than that identified with the GPA criterion (McNemar test, p < 0.0001), but
statistically significantly less than that identified with the ANSWERS criterion (McNemar test, p < 0.0001).
The overall mean survival time was 82.5 weeks (95% CI 79.5 to 85.5 weeks). The HR was 0.590 (95% CI
0.419 to 0.831) and the log-rank test to compare the survival curves was significant at p = 0.002.
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Structure-guided ANSWERS
The survival analysis employing the sANSWERS survival criterion, giving a 5% false-positive rate when
applied sequentially to each VF in a participant’s VF series in the RAPID data set, is shown in Figure 24.
The number of participants with incident progression was 103 (66.5%) in the placebo group, 93 (56.4%)
in the latanoprost group and 196 (61.3%, 95% CI 55.7% to 66.6%) overall. The proportion identified as
progressing was statistically significantly greater than that identified with the GPA and PoPLR criteria
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FIGURE 21 Kaplan–Meier survival curves for the subset of UKGTS participants with OCT images applying the GPA
criterion for progression.

0
0

10

20

30

40

50

Su
rv

iv
al

 p
ro

b
ab

ili
ty

 (
%

)

60

70

80

90

100

10 20 30 40 50 60
Time (weeks)

70 80 90 100 110

155

165

Number at risk
Group: placebo

Group: latanoprost
155

165

155

165

132

148

108

122

85

107

71

92

58

78

45

64

35

57

24

41

0

0

Allocation
        Placebo
        Latanoprost

FIGURE 22 Kaplan–Meier survival curves for the subset of UKGTS participants with OCT images applying the
ANSWERS criterion for progression.

RESULTS

NIHR Journals Library www.journalslibrary.nihr.ac.uk

46



(McNemar test, p < 0.0001) and statistically significantly greater than that identified with the ANSWERS
criterion (McNemar test, p = 0.042). The overall mean survival time was 69.1 weeks (95% CI 65.7 to
72.4 weeks). The HR was 0.704 (95% CI 0.531 to 0.933) and the log-rank test to compare the survival
curves was significant at p = 0.012.
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FIGURE 23 Kaplan–Meier survival curves for the subset of UKGTS participants with OCT images applying the PoPLR
criterion for progression.
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FIGURE 24 Kaplan–Meier survival curves for the subset of UKGTS participants with OCT images applying the
sANSWERS criterion for progression.
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Post hoc survival analyses
Application of the progression criterion for ANSWERS and sANSWERS resulted in the identification of
53.8% and 61.3%, respectively, of UKGTS participants as progressing, substantially more than the 22.2%
identified as progressing with the reference standard GPA criterion. The HRs resulting from application
of the ANSWERS and sANSWERS criteria (0.758 and 0.704, respectively) suggested a smaller treatment
effect than the HR resulting from application of the GPA criterion (0.566). A possible explanation for this
finding is that the treatment is more effective in more rapidly progressing eyes. To test this hypothesis, in
a post hoc analysis, to label an eye as progressing, an additional ‘rate of change’ in MD criterion was
added to the requirement for a negative slope, with statistical significance sufficient for 95% specificity.
For sANSWERS, a rate of change cut-off value at approximately the 50th centile of significantly progressing
participants was selected; the rate of change in MD at this cut-off value was –0.35 dB per year. Residual life
expectancy at diagnosis for glaucoma patients is a median of about 16 years.106 For a patient presenting
with relatively early VF loss in the better eye of MD –4 dB, –0.35 dB per year would result in a MD of nearly
–10 dB; this change in MD would alter the probability of failing the vision requirements for driving from
about 24% to about 70%.107 An MD change of –0.35 dB per year is therefore clinically meaningful.

The rates of change estimated by sANSWERS were more accurate than those estimated by SLR or
ANSWERS (see Prediction of future visual field state). Therefore, for comparison with sANSWERS,
we selected a rate of change criterion for ANSWERS that identified the same number of subjects as
progressing as the sANSWERS criterion; this was a MD change of –1.05 dB per year. Survival analyses for
ANSWERS and sANSWERS with the additional rate criterion were calculated.

ANSWERS
The survival analysis employing the ANSWERS survival criterion including the rate of change is shown in
Figure 25. The number of participants with incident progression was 60 (38.7%) in the placebo group,
44 (26.7%) in the latanoprost group and 104 (32.5%, 95% CI 27.5% to 38.0%) overall. The proportion
identified as progressing was statistically significantly greater than that identified with the GPA criterion
(McNemar test, p < 0.005). The overall mean survival time was 85.0 weeks (95% CI 81.2 to 88.1 weeks).
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FIGURE 25 Kaplan–Meier survival curves for the subset of UKGTS participants with OCT images applying the
criterion for progression for ANSWERS including a MD rate of progression of > –1.05 dB per year.
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The HR was 0.593 (95% CI 0.403 to 0.873) and the log-rank test to compare the survival curves was
borderline statistically significant at p = 0.0075.

Structure-guided ANSWERS
The survival analysis employing the sANSWERS survival criterion including the rate of change is shown in
Figure 26. The number of participants with incident progression was 63 (40.7%) in the placebo group,
41 (24.9%) in the latanoprost group and 104 (32.5%, 95% CI 27.5% to 38.0%) overall. The proportion
identified as progressing was statistically significantly greater than that identified with the GPA criterion
(McNemar test, p < 0.005). The overall mean survival time was 83.7 weeks (95% CI 80.3 to 87.0 weeks).
The HR was 0.573 (95% CI 0.390 to 0.843) and the log-rank test to compare the survival curves was
borderline statistically significant at p = 0.0047.

Sample size calculations
The purpose of the sample size calculations was to estimate, for each analysis method and the HR
estimated for the analysis method (see Survival analyses), the sample size required for a clinical trial of a
treatment with the same effect size as latanoprost in the UKGTS and for an observation period of
18 months per participant. A second set of sample size calculations was carried out to assess a HR of
0.6, based on the GPA [see Guided Progression Analysis (reference test)] and PoPLR (section 7.4.3.3)
criteria and the ANSWERS and sANSWERS post hoc criteria (see Post hoc survival analyses).

The sample size calculations were based on the survival curves in the preceding section. The number of
events required was determined from the observed HR for each method and a HR of 0.60, a type 1 error
of 5%, a type 2 error of 10% and equal allocation between treatment groups. In the UKGTS, progression
(deterioration) events were observed from 4.5 months onwards (once sufficient data had been collected
to enable application of the GPA criterion).The sample size was estimated for an 18-month (4.5 plus
13.5 month) trial from the number of events required, the observed event rate in the placebo group
for each method and the censoring rate observed in the UKGTS. Event rates were calculated over the
13.5-month interval, after the initial 4.5 months, for an 18-month trial. The loss to follow-up (censoring)
rate was about 10% per year in the UKGTS.
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FIGURE 26 Kaplan–Meier survival curves for the subset of UKGTS participants with OCT images applying the
criterion for progression for sANSWERS including a MD rate of progression of > –0.35 dB per year.
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The sample size calculations were made with an online calculator.108,109

Sample size calculations for the observed hazard ratio

Guided Progression Analysis (reference test)

l HR = 0.566, event rate = 20% per year, loss to follow-up = 10% per year.
l Number of events required = 130.
l Sample size = 427 per arm = 854 total.

ANSWERS

l HR = 0.758, event rate = 40% per year, loss to follow-up = 10% per year.
l Number of events required = 547.
l Sample size = 884 per arm = 1768 total.

Permutation analyses of pointwise linear regression

l HR = 0.590, event rate = 38% per year, loss to follow-up = 10% per year.
l Number of events required = 151.
l Sample size = 279 per arm = 558 total.

Structure-guided ANSWERS

l HR = 0.704, event rate = 48% per year, loss to follow-up = 10% per year.
l Number of events required = 341.
l Sample size = 489 per arm = 978 total.

Sample size calculations for a hazard ratio of 0.6

Guided Progression Analysis (reference test)

l HR = 0.60, event rate = 20% per year, loss to follow-up = 10% per year.
l Number of events required = 161.
l Sample size = 519 per arm = 1038 total.

ANSWERS

l HR = 0.60, event rate = 32% per year, loss to follow-up = 10% per year.
l Number of events required = 161.
l Sample size = 342 per arm = 684 total.

Permutation analyses of pointwise linear regression

l HR = 0.60, event rate = 38% per year, loss to follow-up = 10% per year.
l Number of events required = 161.
l Sample size = 296 per arm = 592 total.

Structure-guided ANSWERS

l HR = 0.60, event rate = 36% per year, loss to follow-up = 10% per year.
l Number of events required = 161.
l Sample size = 309 per arm = 618 total.

RESULTS
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Evaluation of newly developed methods

Analyses
The analysis methods applied were as follows:

l PERM:

¢ with the timescale as either visit number or time since baseline
¢ using individual VF location sensitivity or VF region mean sensitivity
¢ when more than one VF test was taken at a visit, taking either the mean values or the values in the

initial test at the visit

l MaHMIC
l MaGIC.

All analyses were performed using Stata® software (version 14; StataCorp LP, College Station, TX, USA)
or R.

Permutation test
Participants with three or fewer visits were not included in the permutation analyses as there are only six
permutations of three objects and this is not sufficient to produce significance at the 5% level (there is a
lack of power – even if the original ordering of the visits is such that the slope is the most extreme that it
could be, the one-sided p-value would still be only 1/6 = 0.167). With four visits, if the observed data
give a test statistic that is more extreme than those from all other permutations, the one-sided p-value
is 1/24 = 0.042, which is just statistically significant using a conventional cut-off value of 5% (although not
if corrections for multiple testing are carried out). For four visits, all 23 permutations plus the original
ordering of visits were used; for five visits, all 119 permutations plus the original were used; for six visits,
all 719 permutations plus the original were used; and, for seven or more visits, 719 permutations were
selected at random for use in the PERM in addition to the original ordering of visits.

Visual field sensitivity at each location (or region mean) and the average RNFL thickness from OCT were
regressed against time (visit number or time from baseline) using interval-censored regression with VF
sensitivities censored at 15 dB (note that imaging outcomes were not censored). Locations with one or
fewer uncensored observations were not included in the regression model; the rationale for this is that
these locations contain very little information on whether the patient is progressing or not, but will add
uncertainty to the model estimates. When more than one VF test was taken at the same visit, either the
mean value at each location was used (see RAPID data set, Permutation with visit number as the timescale
and Permutation with time since baseline as the timescale, and United Kingdom Glaucoma Treatment
Study, Permutation with visit number as the timescale and Permutation with time since baseline as the
timescale) or only the first VF of the visit was used (see RAPID data set, Permutations using one visual field
per visit, and United Kingdom Glaucoma Treatment Study, Permutations using one visual field per visit).

The regression model included both individual means and slopes over time for each VF location and for the
imaging outcome. The model also allowed heterogeneity of the residual variance according to measurement
type (separate variances were estimated for the VF and OCT measurements). The regression model was
applied to the original ordering of the visits and to each of the (up to 719) permutations described above.

After each model was run, the following parameters were stored:

l Simple average of the slopes from the individual slopes from the VF locations. Note that this is the
average of 52 slopes for people with no locations that have one or fewer uncensored observations
(i.e. two or more values of ≥ 15 dB at that location). For people with locations that have one or fewer
uncensored values, the average will be taken across fewer than 52 slopes.
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l Chi-squared test statistic for the simple average of the VF slopes.
l Slope of the imaging outcome.
l Chi-squared test statistic for the imaging outcome slope.
l Chi-squared test statistic for a joint test of all of the individual VF slopes.
l Chi-squared test statistic for a joint test of all of the individual VF slopes and the imaging outcome

slope. This test statistic is used in two different ways:

¢ requiring the mean VF slope to be negative
¢ requiring both the mean VF slope and the imaging slope to be negative.

l Chi-squared test statistic for a joint test of the simple average of the VF slopes and the imaging slope.
This test statistic is used in two different ways:

¢ requiring the mean VF slope to be negative
¢ requiring both the mean VF slope and the imaging slope to be negative.

l Mean slopes within the six sectors defined in the structure/function map (see Figure 4).22

PERM was then applied to each of these parameters in turn to give a p-value. Progressing eyes were then
defined in the following way:

l For the simple average of VF slopes, the imaging slope and the test statistics for both, a one-sided
p-value at the 5% significance level was used so that all progressors have a negative slope over time.
A one-sided test was used, as clinically a decision to intensify treatment will be made on the basis of
deteriorating VF and imaging values, not improvement.

l For the other test statistics, a two-sided p-value was used as it is not clear from a chi-squared test
statistic which tail the statistic belongs to. However, to declare progression a negative mean VF slope or
both a negative mean VF slope and a negative imaging slope was required. The significance level was
set such that a type 1 error of close to 5% was achieved in the RAPID data.

l The mean from each sector was permuted separately and then progressing eyes were defined as those
with at least one sector-specific p-value below a critical value. A Bonferroni correction was used to
account for multiple testing (described in Mean slopes within visual field sector). Given that such a
correction is likely to be overly conservative, other corrections were also considered.

In computing hit rates and specificities using data that accumulate over time, there are two possible
approaches. One is to compute the hit rate and specificity at a single visit, using data from that visit and
earlier ones to assess trends. The second is to compute the hit rate and specificity cumulatively so that they
represent the probability of a positive result at the current and previous visits combined.

There are advantages and disadvantages of both approaches. Using the former approach it is possible to
constrain the specificity to take a particular value (such as 95%) at each visit, whereas using the latter
approach the specificity will inevitably increase with an increasing number of visits. The latter approach
might be preferable if one was considering a particular trial design in which every patient has a fixed
maximum number of (say) six visits, whereas the former is arguably preferable for continuous monitoring
when there is no upper limit to the number of visits. In this section we have opted for the former approach
because we are focusing on the context of a single patient being seen repeatedly in clinical practice.

RAPID data set
In the following sections we consider whether the number of eyes identified as progressing is consistent
with a false-positive error (type 1 error) of 5%. This is equivalent to considering whether the specificity,
or true negative rate, is consistent with 95%.

RESULTS

NIHR Journals Library www.journalslibrary.nihr.ac.uk

52



Permutation with visit number as the timescale

Visual field sensitivity at each location
In this analysis the VF sensitivity at each location and the average RNFL thickness from OCT were
regressed against visit number (numbering all visits in the data set from 1 up to a maximum of 10)
using interval-censored regression.

The results for the nine different tests are presented in Table 7. All PERM variants resulted in approximately
5% (range 4.4–5.9%) of the 135 eyes from the RAPID data set with four or more visits being identified as
progressing. None of the tests resulted in a 95% CI that did not cover 5%. However, the number of eyes
in this data set, although large for a test–retest data set, is still relatively small for determining the type 1
error with any great precision, as demonstrated by the wide CIs.

TABLE 7 Number of eyes in the RAPID data set identified as progressing using nine variations of PERM with VF and
imaging outcomes regressed against visit number

Parameter to be
permuted

Number of
progressing
eyes; %
progressing
eyes (95% CI)

Mean (range)
VF slope in
progressing
eyes (dB/visit)

Mean (range)
imaging slope
in progressing
eyes (µm/visit)

Mean (range)
VF slope in
non-progressing
eyes (dB/visit)

Mean (range)
imaging slope in
non-progressing
eyes (µm/visit)

Mean of VF slopesa 7; 5.2
(2.1 to 10.4)

–0.46
(–1.85 to –0.10)

–0.18
(–0.49 to 0.88)

0.06
(–0.29 to 1.88)

0.02
(–8.26 to 2.04)

Test statistic for mean of VF
slopesa

6; 4.4
(1.6 to 9.4)

–0.53
(–1.85 to –0.14)

–0.17
(–0.49 to 0.88)

0.06
(–0.29 to 1.88)

0.02
(–8.26 to 2.04)

Imaging slopea 7; 5.2
(2.1 to 10.4)

0.09
(0.01 to 0.19)

–1.68
(–8.26 to –0.45)

0.03
(–1.85 to 1.88)

0.10
(–2.16 to 2.04)

Test statistic for imaging
slopea

7; 5.2
(2.1 to 10.4)

0.09
(0.01 to 0.19)

–1.68
(–8.26 to –0.45)

0.03
(–1.85 to 1.88)

0.10
(–2.16 to 2.04)

Test statistic for joint test of
all VF slopesb

8; 5.9
(2.6 to 11.3)

–0.41
(–1.85 to –0.05)

–0.06
(–0.49 to 0.88)

0.06
(–0.29 to 1.88)

0.01
(–8.26 to 2.04)

Test statistic for joint test of
all VF and imaging slopes
(mean VF slope < 0)b

7; 5.2
(2.1 to 10.4)

–0.46
(–1.85 to –0.05)

–0.09
(–0.49 to 0.88)

0.06
(–0.29 to 1.88)

0.01
(–8.26 to 2.04)

Test statistic for joint test of
all VF and imaging slopes
(mean VF and imaging
slopes < 0)c

8; 5.9
(2.6 to 11.3)

–0.35
(–1.85 to –0.01)

–0.37
(–0.49 to –0.22)

0.06
(–0.55 to 1.88)

0.03
(–8.26 to 2.04)

Test statistic for joint test of
mean VF and imaging slopes
(mean VF slope < 0)b

6; 4.4
(1.6 to 9.4)

–0.53
(–1.85 to –0.14)

–0.17
(–0.49 to 0.88)

0.06
(–0.29 to 1.88)

0.02
(–8.26 to 2.04)

Test statistic for joint test of
mean VF and imaging slopes
(mean VF and imaging
slopes < 0)d

7; 5.2
(2.1 to 10.4)

–0.42
(–1.85 to –0.10)

–0.35
(–0.49 to –0.22)

0.06
(–0.55 to 1.88)

0.03
(–8.26 to 2.04)

a One-sided test requiring a p-value of< 0.05 and a negative slope.
b Two-sided test requiring a p-value of< 0.1 and a negative mean VF slope.
c Two-sided test requiring a p-value of< 0.2 and both the mean VF and the imaging slope to be negative.
d Two-sided test requiring a p-value of< 0.15 and both the mean VF and the imaging slope to be negative.
Notes
VF values were censored at 15 dB. CIs for the percentage of progressing eyes are exact binomial 95% CIs. When multiple
VF tests were carried out at the same visit, the mean value at each location was used. CIs for the percentage of progressing
eyes are exact binomial 95% CIs.
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The critical p-values for the permutation of the joint tests were set at 0.1 (for the joint test of the
location-specific VF slopes and the joint test of the mean VF slope and imaging slope when requiring
only a negative mean VF slope), 0.15 (for the joint test of the mean VF slope and imaging slope when
requiring both a negative mean VF slope and a negative imaging slope) and 0.2 (for the joint test of the
location-specific VF slopes and the imaging slope). These values were chosen as they give a type 1 error of
approximately 5% in the RAPID (‘stable glaucoma’) cohort.

Confidence intervals for the percentage of progressing eyes were calculated without taking clustering of
eyes within people into account. Ignoring this clustering results in CIs that are too narrow but, as we are
using this technique to assess whether the specificity is consistent with 5%, this results in a conservative
approach, assuming a positive correlation between eyes within the same person. The approach is
conservative because CIs calculated ignoring the clustering will, in expectation, be narrower than if the
clustering was taken into account, so if the narrower CI still covers a type 1 error of 5% then it would also
be covered by a CI that was adjusted for clustering. We therefore chose not to adjust for clustering as
doing so would necessitate the use of normal approximations instead of the exact binomial CI and this is
likely to be inappropriate given the small sample size.

Mean slopes within visual field sector
In this analysis we used the mean slope within the VF regions described previously (see Figure 4),22 with
the mean slope being the average of the location-specific slopes each obtained from regressions of VF
sensitivity against visit number.

The numbers of eyes progressing in RAPID subjects, considering each region-specific mean separately,
are presented in Table 8.

Considering all of the VF region means together, and requiring at least one of the region means to be
progressing to declare an eye as progressing, results in 26 eyes being flagged as progressing. This equates
to 19.3% (95% CI 12.6% to 25.9%) of the sample, indicating that ignoring the multiple testing results in
an unacceptably high type 1 error rate. We therefore implemented a Bonferroni correction, under which
the p-value required to declare progression is reduced by a factor equal to the number of tests carried out.
In this case, as we are testing six different sectors, the p-value is required to be < 0.05/6 = 0.0083. Using
this correction, requiring at least one sector to be progressing identifies six eyes as progressing, which
equates to a percentage of 4.4% (95% CI 1.6% to 9.4%), which is not inconsistent with a type 1 error
of 5%.

A Bonferroni correction may be too conservative in this setting given that the sector means will be
correlated and hence the tests will not be independent. If instead a critical p-value of 0.05/5 is used,
eight eyes (5.9%, 95% CI 2.6% to 11.3%) are identified as progressing, which is still consistent with a
5% type 1 error rate. Using a still less-conservative cut-off value of 0.05/4 also identifies eight eyes as

TABLE 8 Numbers of progressing eyes identified in the RAPID data set by permuting the VF region mean

Region Number of VF locations in region Number of progressing eyes

1 8 7

2 13 8

3 4 5

4 6 7

5 10 10

6 12 4

One-sided test requiring a p-value of < 0.05 to declare progression.

RESULTS
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progressing. Using 0.05/3 as the critical p-value identifies 11 eyes as progressing. This corresponds to
8.1% (95% CI 4.1% to 14.1%) of eyes, which again is still just consistent with a 5% false-positive rate.

Permutation with time since baseline as the timescale
Instead of using visit number, in this analysis PERM variants were based on regressions on time since first visit.

The results from the PERM variants, presented in Table 9, are very similar to those obtained from
regressions on visit number. A few more eyes were identified as progressing by some tests but all
percentages of progressing eyes were still consistent with a type 1 error of 5% (range 4.4–6.7%).

Permutations using one visual field only per visit
Previous analyses have used the average of all VF tests from a particular visit. However, in clinical practice
usually only one VF test is carried out per visit. We therefore repeated the analyses using the first VF test
only for any given visit. OCT is relatively easy to perform, taking much less time to complete a scan, and so
we continued using the average of all of the OCT repeat tests for a visit.

TABLE 9 Number of eyes in the RAPID data set identified as progressing by nine variations of PERM with VF and
imaging outcomes regressed against time since first visit

Parameter to be
permuted

Number of
progressing
eyes; %
progressing
eyes (95% CI)

Mean (range)
VF slope in
progressing
eyes (dB/year)

Mean (range)
imaging slope
in progressing
eyes (µm/year)

Mean (range)
VF slope in
non-progressing
eyes (dB/year)

Mean (range)
imaging slope in
non-progressing
eyes (µm/year)

Mean of VF slopesa 8; 5.9
(2.6 to 11.3)

–13.7
(–42.4 to –5.4)

–7.7
(–21.4 to 19.3)

2.8
(–11.8 to 68.1)

–1.5
(–433.6 to 61.9)

Test statistic for mean of
VF slopesa

9; 6.7
(3.1 to 12.3)

–13.1
(–42.4 to –5.4)

–8.1
(–21.4 to 19.3)

2.9
(–11.8 to 68.1)

–1.5
(–433.6 to 61.9)

Imaging slopea 8; 5.9
(2.6 to 11.3)

5.5
(1.4 to 10.3)

–75.3
(–433.6 to –13.9)

1.6
(–42.4 to 68.1)

2.7
(–111.1 to 61.9)

Test statistic for imaging
slopea

8; 5.9
(2.6 to 11.3)

5.5
(1.4 to 10.3)

–75.3
(–433.6 to –13.9)

1.6
(–42.4 to 68.1)

2.7
(–111.1 to 61.9)

Test statistic for joint test
of all VF slopesb

8; 5.9
(2.6 to 11.3)

–13.2
(–42.4 to –2.6)

–4.6
(–21.4 to 19.3)

2.8
(–11.8 to 68.1)

–1.7
(–433.6 to 61.9)

Test statistic for joint test
of all VF and imaging
slopes (mean VF slope < 0)b

7; 5.2
(2.1 to 10.4)

–14.4
(–42.4 to –2.6)

–3.9
(–21.4 to 19.3)

2.7
(–11.8 to 68.1)

–1.8
(–433.6 to 61.9)

Test statistic for joint test
of all VF and imaging
slopes (mean VF and
imaging slopes < 0)c

7; 5.2
(2.1 to 10.4)

–11.8
(–42.4 to –2.0)

–15.1
(–21.4 to –9.1)

2.6
(–14.6 to 68.1)

–1.2
(–433.6 to 61.9)

Test statistic for joint test
of mean VF and imaging
slopes (mean VF slope < 0)b

6; 4.4
(1.6 to 9.4)

–16.3
(–42.4 to –6.2)

–5.7
(–21.4 to 19.3)

2.7
(–11.8 to 68.1)

–1.7
(–433.6 to 61.9)

Test statistic for joint test
of mean VF and imaging
slopes (mean VF and
imaging slopes < 0)d

7; 5.2
(2.1 to 10.4)

–12.8
(–42.4 to –5.4)

–14.1
(–21.4 to –11.2)

2.6
(–14.6 to 68.1)

–1.2
(–433.6 to 61.9)

a One-sided test requiring a p-value of< 0.05 and a negative slope.
b Two-sided test requiring a p-value of< 0.1 and a negative mean VF slope.
c Two-sided test requiring a p-value of< 0.2 and both the mean VF and the imaging slope to be negative.
d Two-sided test requiring a p-value of< 0.15 and both the mean VF and the imaging slope to be negative.
Notes
VF values were censored at 15 dB. When multiple VF tests were carried out at the same visit, the mean value at each
location was used. CIs for the percentage of progressing eyes are exact binomial 95% CIs.

DOI: 10.3310/hta22040 HEALTH TECHNOLOGY ASSESSMENT 2018 VOL. 22 NO. 4

© Queen’s Printer and Controller of HMSO 2018. This work was produced by Garway-Heath et al. under the terms of a commissioning contract issued by the Secretary of State
for Health. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals
provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be
addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science
Park, Southampton SO16 7NS, UK.

55



The results, presented in Table 10, again show a very similar pattern to that seen in the previous analyses,
with the number of eyes identified as progressing consistent with a type 1 error of 5% (range 4.4–7.4%).

United Kingdom Glaucoma Treatment Study data set

Permutation with visit number as the time scale

Visual field sensitivity at each location
Permuting the mean of the VF slopes from each location resulted in 32 out of 386 eyes being identified as
progressing (Table 11). Permutation of the test statistic for the mean of VF slopes gave very similar results,
with 34 eyes flagged as progressing. Of the 32 progressing eyes identified by the permutation of the mean
of VF slopes, 31 were also identified as progressing by the chi-squared test statistic for the mean VF slope.
The hit rate varied between 8.3% and 17.1% across the different permutation methods.

TABLE 10 Number of eyes in the RAPID data set identified as progressing by nine variations of PERM with VF and
imaging outcomes for first test per visit regressed against visit number

Parameter to be
permuted

Number of
progressing
eyes; %
progressing
eyes (95% CI)

Mean (range)
VF slope in
progressing
eyes (dB/visit)

Mean (range)
imaging slope
in progressing
eyes (µm/visit)

Mean (range)
VF slope in
non-progressing
eyes (dB/visit)

Mean (range)
imaging slope in
non-progressing
eyes (µm/visit)

Mean of VF slopesa 6; 4.4
(1.6 to 9.4)

–0.52
(–1.86 to –0.13)

–0.2
(–0.5 to 0.9)

0.05
(–0.29 to 1.19)

0.02
(–8.3 to 2.0)

Test statistic for mean of
VF slopesa

7; 5.2
(2.1 to 10.4)

–0.48
(–1.86 to –0.13)

–0.2
(–0.5 to 0.9)

0.05
(–0.29 to 1.19)

0.02
(–8.3 to 2.0)

Imaging slopea 7; 5.2
(2.1 to 10.4)

0.07
(–0.14 to 0.22)

–1.7
(–8.3 to –0.4)

0.02
(–1.86 to 1.19)

0.1
(–2.2 to 2.0)

Test statistic for imaging
slopea

7; 5.2
(2.1 to 10.4)

0.07
(–0.14 to 0.22)

–1.7
(–8.3 to –0.4)

0.02
(–1.86 to 1.19)

0.1
(–2.2 to 2.0)

Test statistic for joint test
of all VF slopesb

7; 5.2
(2.1 to 10.4)

–0.43
(–1.86 to –0.01)

–0.1
(–0.5 to 0.9)

0.05
(–0.29 to 1.19)

0.01
(–8.3 to 2.0)

Test statistic for joint test
of all VF and imaging
slopes (mean VF slope < 0)b

8; 5.9
(2.6 to 11.3)

–0.39
(–1.86 to –0.01)

–0.18
(–0.67 to 0.88)

0.05
(–0.29 to 1.19)

0.02
(–8.26 to 2.04)

Test statistic for joint test
of all VF and imaging
slopes (mean VF and
imaging slopes < 0)c

10; 7.4
(3.6 to 13.2)

–0.28
(–1.86 to –0.00)

–0.41
(–0.67 to –0.22)

0.05
(–0.50 to 1.19)

0.04
(–8.26 to 2.04)

Test statistic for joint test
of mean VF and imaging
slopes (mean VF slope < 0)b

6; 4.4
(1.6 to 9.4)

–0.52
(–1.86 to –0.13)

–0.17
(–0.49 to 0.88)

0.05
(–0.29 to 1.19)

0.02
(–8.26 to 2.04)

Test statistic for joint test
of mean VF and imaging
slopes (mean VF and
imaging slopes < 0)d

9; 6.7
(3.1 to 12.3)

–0.35
(–1.86 to –0.10)

–0.38
(–0.67 to –0.22)

0.05
(–0.50 to 1.19)

0.03
(–8.26 to 2.04)

a One-sided test requiring a p-value of < 0.05 and a negative slope.
b Two-sided test requiring a p-value of< 0.1 and a negative mean VF slope.
c Two-sided test requiring a p-value of< 0.2 and both the mean VF and the imaging slope to be negative.
d Two-sided test requiring a p-value of< 0.15 and both the mean VF and the imaging slope to be negative.
Notes
VF values were censored at 15 dB. When multiple VF tests were carried out at the same visit, the first VF test only was used.
CIs for the percentage of progressing eyes are exact binomial 95% CIs.
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Sixty-six eyes (17.1%, 95% CI 13.5% to 21.2%) were identified as progressing by permuting the imaging
slope or its test statistic. Both PERM variants gave identical results. There was little overlap between the
eyes identified as progressing by permuting the mean VF slope and the eyes identified as progressing by
using the imaging slope: only eight eyes were flagged as progressing by both tests.

Permuting the joint test statistic for all location-specific VF slopes flagged slightly more eyes as progressing
than using the mean VF slope: 39 compared with 32. Of these, 27 eyes were identified as progressing by
both tests.

Using the joint test statistic for all VF and imaging slopes identified a few more eyes, with 42 identified
as progressing when requiring only the mean VF slope to be negative and a p-value of < 0.1 and 45
identified as progressing when requiring that both the mean VF and the imaging slopes are negative and
that the p-value is < 0.2.

TABLE 11 Number of eyes in the UKGTS data set identified as progressing by nine variations of PERM with VF and
imaging outcomes regressed against visit number

Parameter to be
permuted

Number of
progressing
eyes; %
progressing
eyes (95% CI)

Mean (range)
VF slope in
progressing
eyes (dB/visit)

Mean (range)
imaging slope
in progressing
eyes (µm/visit)

Mean (range)
VF slope in
non-progressing
eyes (dB/visit)

Mean (range)
imaging slope in
non-progressing
eyes (µm/visit)

Mean of VF slopesa 32; 8.3
(5.7 to 11.5)

–0.38
(–0.82 to –0.13)

–0.50
(–2.95 to 4.15)

0.02
(–3.03 to 1.10)

–0.36
(–5.19 to 3.80)

Test statistic for mean of
VF slopesa

34; 8.8
(6.2 to 12.1)

–0.36
(–0.82 to –0.13)

–0.58
(–2.95 to 4.15)

0.02
(–3.03 to 1.10)

–0.35
(–5.19 to 3.80)

Imaging slopea 66; 17.1
(13.5 to 21.2)

–0.02
(–0.67 to 0.68)

–1.38
(–5.13 to –0.44)

–0.01
(–3.03 to 1.10)

–0.16
(–5.19 to 4.15)

Test statistic for imaging
slopea

66; 17.1
(13.5 to 21.2)

–0.02
(–0.67 to 0.68)

–1.38
(–5.13 to –0.44)

–0.01
(–3.03 to 1.10)

–0.16
(–5.19 to 4.15)

Test statistic for joint test
of all VF slopesb

39; 10.1
(7.3 to 13.6)

–0.31
(–0.82 to –0.02)

–0.52
(–2.95 to 4.15)

0.03
(–3.03 to 1.10)

–0.35
(–5.19 to 3.80)

Test statistic for joint test
of all VF and imaging
slopes (mean VF slope < 0)b

42; 10.9
(8.0 to 14.4)

–0.28
(–0.75 to –0.02)

–0.53
(–2.75 to 4.15)

0.02
(–3.03 to 1.10)

–0.35
(–5.19 to 3.80)

Test statistic for joint test
of all VF and imaging
slopes (mean VF and
imaging slopes < 0)c

45; 11.7
(8.6 to 15.3)

–0.26
(–0.82 to –0.01)

–1.04
(–2.95 to –0.02)

0.02
(–3.03 to 1.10)

–0.28
(–5.19 to 4.15)

Test statistic for joint test
of mean VF and imaging
slopes (mean VF slope < 0)b

39; 10.1
(7.3 to 13.6)

–0.31
(–0.75 to –0.03)

–0.66
(–2.75 to 4.15)

0.02
(–3.03 to 1.10)

–0.34
(–5.19 to 3.80)

Test statistic for joint test
of mean VF and imaging
slopes (mean VF and
imaging slopes < 0)d

38; 9.8
(7.1 to 13.3)

–0.27
(–0.75 to –0.03)

–0.99
(–2.75 to –0.02)

0.02
(–3.03 to 1.10)

–0.30
(–5.19 to 4.15)

a One-sided test requiring a p-value of< 0.05 and a negative slope.
b Two-sided test requiring a p-value of< 0.1 and a negative mean VF slope.
c Two-sided test requiring a p-value of< 0.2 and both the mean VF and the imaging slope to be negative.
d Two-sided test requiring a p-value of< 0.15 and both the mean VF and the imaging slope to be negative.
Notes
VF values were censored at 15 dB. When multiple VF tests were carried out at the same visit, the mean value at each
location was used. CIs for the percentage of progressing eyes are exact binomial 95% CIs.
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Permuting the joint test statistic for the mean VF and imaging slopes also identified slightly more
progressing eyes than using the mean VF slope alone: 39 eyes were identified when requiring only the
mean VF slope to be negative and a p-value of < 0.1 and 38 eyes were identified when requiring that both
the mean VF and the imaging slopes are negative and that the p-value is < 0.15.

As expected, there was a large overlap between the eyes identified as progressing by use of the joint test
statistic for all VF slopes and the imaging slope and the joint test statistic for the mean VF slope and
imaging slope: 36 eyes were flagged by both tests.

For the non-progressing eye in Table 11 with a mean VF slope of –3.03 dB per visit, there are only four
visits available in this data set. PERM is therefore based on only 24 permutations and in fact the
permutation p-value is 0.08, suggesting that progression might be identified at the next visit.

In Table 11 we report the exact binomial CIs for the percentage of progressing eyes. As discussed earlier,
when assessing specificity, ignoring clustering of eyes within patients results in a conservative approach.
However, when investigating the hit rate in UKGTS participants, this is no longer true. Ignoring clustering
will lead to narrower CIs, assuming a positive correlation between eyes within the same patient, which is
anti-conservative. However, it is not possible to adjust for clustering when using an exact CI. It is possible
to adjust for clustering when using a normal approximation for the CI, however. For permutation of the
mean VF slope this gives a 95% CI of 5.2% to 11.4%, compared with 5.5% to 11.1% for the exact CI.
Alternatively, a 95% CI could be calculated using a normal approximation on the logistic scale and then
back-transformed to provide a CI for the proportion. Using this approach gives a 95% CI of 5.7% to
11.9%. All three approaches give very similar results and so we provide only the exact CIs for the other
tests presented in the tables.

The pairwise comparison of the progressing eyes identified by the joint test statistic for all VF slopes
(fifth row of Table 11; 39 eyes) and those flagged by the joint test statistic for all VF slopes and the
imaging slope requiring both the mean VF slope and the imaging slope to be negative (seventh row of
Table 11; 45 eyes) is provided in Table 12. McNemar’s exact binomial test of the agreement between
these approaches gives a two-sided p-value of 0.33. McNemar’s exact binomial test conditions on the
total number of discordant pairs (eyes detected as progressing by one method but not by the other) and
compares the number of discordant pairs of both types (detected by method 1 but missed by method 2
and vice versa). Under the null hypothesis the distribution of the number of discordant pairs of one type
conditional on the total number of such pairs follows a binomial distribution with an expectation of 0.5;
hence, an exact binomial test can be used to give a p-value. Note that as the exact CI is very similar to
the CI adjusting for clustering (see above), we used the exact binomial test here without adjustment
for clustering.

TABLE 12 Pairwise comparison of progressing eyes identified in the UKGTS data set by the joint test statistic for all
VF slopes and the joint test statistic for all VF slopes and the imaging slope

Number of non-progressing
eyes classified by the joint
test statistic for all VF slopes
and the imaging slope

Number of progressing eyes
classified by the joint test
statistic for all VF slopes
and the imaging slope Total

Number of non-progressing eyes classified
by the mean VF slope test statistic

331 16 347

Number of progressing eyes classified by
the mean VF slope test statistic

10 29 39

Total 341 45 386

The pairwise comparison of the progressing eyes identified by the joint test statistic for all VF slopes (fifth row of Table 11;
39 eyes) and those flagged by the joint test statistic for all VF slopes and the imaging slope requiring both the mean VF
slope and the imaging slope to be negative (seventh row of Table 11; 45 eyes).

RESULTS
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A pairwise comparison of the progressing eyes identified by the imaging slope (third row of Table 11; 66 eyes)
and those identified by the joint test statistic for all VF slopes and the imaging slope requiring both the mean
VF slope and the imaging slope to be negative (seventh row of Table 11; 45 eyes) is provided in Table 13.
McNemar’s exact binomial test of the agreement between these approaches gave a two-sided p-value of 0.02.

Table 14 shows the number of progressing eyes identified by the nine variants of PERM by treatment
group in the UKGTS. Although most of the tests involving VF data do identify a statistically significant
effect of latanoprost, permutation of the imaging slope alone or its test statistic does not. For the same

TABLE 13 Pairwise comparison of progressing eyes identified in the UKGTS data set by the imaging slope and the
joint test statistic for all VF slopes and the imaging slope

Number of non-progressing
eyes classified by the joint
test statistic for all VF slopes
and the imaging slope

Number of progressing eyes
classified by the joint test
statistic for all VF slopes
and the imaging slope Total

Number of non-progressing eyes classified
by the imaging slope

295 25 320

Number of progressing eyes classified by
the imaging slope

46 20 66

Total 341 45 386

A pairwise comparison of the progressing eyes identified by the imaging slope (third row of Table 11; 66 eyes) and those
identified by the joint test statistic for all VF slopes and the imaging slope requiring both the mean VF slope and the
imaging slope to be negative (seventh row of Table 11; 45 eyes).

TABLE 14 Number of progressing eyes by treatment group in the UKGTS data set identified by nine variants
of PERM

Parameter to be permuted

Number of progressing
eyes in the placebo
group (n= 189)

Number of progressing
eyes in the latanoprost
group (n= 197)

p-value for the
difference in
proportions between
treatment groups

Mean of VF slopesa 22 10 0.03

Test statistic for mean of VF slopesa 23 11 0.03

Imaging slopea 36 30 0.35

Test statistic for imaging slopea 36 30 0.35

Test statistic for joint test of all VF
slopesb

27 12 0.01

Test statistic for joint test of all VF and
imaging slopes (mean VF slope < 0)b

29 13 0.008

Test statistic for joint test of all VF and
imaging slopes (mean VF and imaging
slopes < 0)c

31 14 0.007

Test statistic for joint test of mean VF
and imaging slopes (mean VF slope
< 0)b

23 16 0.24

Test statistic for joint test of mean VF
and imaging slopes (mean VF and
imaging slopes < 0)d

27 11 0.006

a One-sided test requiring a p-value of< 0.05 and a negative slope.
b Two-sided test requiring a p-value of< 0.1 and a negative mean VF slope.
c Two-sided test requiring a p-value of< 0.2 and both the mean VF and the imaging slope to be negative.
d Two-sided test requiring a p-value of< 0.15 and both the mean VF and the imaging slope to be negative.
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reasons as for using McNemar’s exact binomial test earlier, we used Fisher’s exact test to compare the
proportions, without adjusting for clustering of eyes within person.

In total, 109 eyes were identified as progressing on at least one of the PERM variants. The distribution of
number of visits per eye for these 109 progressing eyes is shown in Table 15.

Mean visual field sector sensitivity
In this analysis we used the mean VF sensitivity within the VF regions previously described (see Figure 4),22

regressed against visit number.

The number of eyes identified as progressing for each VF region considered separately is displayed in Table 16.

Considering all of the VF region means together and using a Bonferroni correction identified 27 eyes as
progressing, which equates to a percentage of 7.0% (95% CI 4.7% to 10.0%). Using a less conservative
correction, with a critical p-value of 0.05/5, identified 36 progressing eyes (9.3%, 95% CI 6.6% to
12.7%). Relaxing the multiple testing correction even further to a p-value of < 0.05/4 identified 38
progressing eyes (9.8%, 95% CI 7.1% to 13.3%), whereas using a p-value of < 0.05/3 identified 41 eyes
as progressing (10.6%, 95% CI 7.7% to 14.1%).

Fourteen of the 27 progressing eyes identified by the VF region mean approach were also identified by the
permutation of the mean VF slope. The overlap with permutation of the imaging slope was much lower,
with only seven progressing eyes identified by both approaches. Sixteen eyes were identified as progressing
by both the region mean approach and the test statistic for a joint test of all location-specific VF slopes.

TABLE 15 Distribution of the number of visits per eye for the 109 eyes identified as progressing on at least one of
the variations of PERM

Number of visits per eye Number of progressing eyes Number of non-progressing eyes

4 9 47

5 15 52

6 18 46

7 17 34

8 18 38

9 13 31

10 12 20

11 7 9

TABLE 16 Numbers of progressing eyes identified in the UKGTS data set by permuting the VF region mean

Region Number of VF locations in region Number of progressing eyes

1 8 27

2 13 33

3 4 23

4 6 24

5 10 21

6 12 32

One-sided test requiring a p-value of < 0.05 to declare progression.

RESULTS
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Permutation with time since baseline as the timescale
The results presented in Table 17 show a very similar pattern to those obtained from regressions on visit
number, with slightly more eyes identified for permutations involving VF slopes. For example, 49 eyes were
identified as progressing from the joint test statistic for all VF slopes and the imaging slope and requiring
both the mean VF slope and the imaging slope to be negative compared with 45 when using regression
on visit number. Across the different methods, hit rates varied from 9.1% to 17.1%.

Thirty-three of the 35 progressing eyes identified by permuting the mean VF slope were also identified by
using the test statistic for the mean VF slope. Use of the imaging slope and its test statistic now give very
slightly different results, although the overlap between the progressing eyes is very large, with 65 eyes
identified by both tests.

In total, 111 eyes were identified as progressing by one or more of the PERM variants.

TABLE 17 Number of eyes in the UKGTS data set identified as progressing by nine variations of PERM with VF and
imaging outcomes regressed against time since first visit

Parameter to be
permuted

Number of
progressing
eyes; %
progressing
eyes (95% CI)

Mean (range)
VF slope in
progressing
eyes (dB/year)

Mean (range)
imaging slope
in progressing
eyes (µm/year)

Mean (range)
VF slope in
non-progressing
eyes (dB/year)

Mean (range)
imaging slope in
non-progressing
eyes (µm/year)

Mean of VF slopesa 35; 9.1
(6.4 to 12.4)

–1.4
(–4.2 to –0.5)

–2.4
(–13.1 to 10.3)

0.03
(–17.6 to 3.8)

–1.2
(–31.9 to 21.4)

Test statistic for mean of
VF slopesa

35; 9.1
(6.4 to 12.4)

–1.4
(–4.2 to –0.6)

–2.6
(–13.1 to 10.3)

0.04
(–17.6 to 3.8)

–1.2
(–31.9 to 21.4)

Imaging slopea 65; 16.8
(13.2 to 21.0)

–0.2
(–2.9 to 2.1)

–5.5
(–17.3 to –1.6)

–0.1
(–17.6 to 3.8)

–0.5
(–31.9 to 21.4)

Test statistic for imaging
slopea

66; 17.1
(13.5 to 21.2)

–0.2
(–2.9 to 2.1)

–5.5
(–17.3 to –1.6)

–0.1
(–17.6 to 3.8)

–0.5
(–31.9 to 21.4)

Test statistic for joint test
of all VF slopesb

41; 10.6
(7.7 to 14.1)

–1.7
(–17.6 to –0.1)

–1.6
(–13.1 to 10.8)

0.1
(–9.4 to 3.8)

–1.3
(–31.9 to 21.4)

Test statistic for joint test
of all VF and imaging
slopes (mean VF slope < 0)b

44; 11.4
(8.4 to 15.0)

–1.6
(–17.6 to –0.1)

–2.4
(–13.1 to 10.8)

0.1
(–9.4 to 3.8)

–1.2
(–31.9 to 21.4)

Test statistic for joint test
of all VF and imaging
slopes (mean VF and
imaging slopes < 0)c

49; 12.7
(9.5 to 16.4)

–1.1
(–4.2 to –0.0)

–4.5
(–13.7 to –0.1)

0.05
(–17.6 to 3.8)

–0.9
(–31.9 to 21.4)

Test statistic for joint test
of mean VF and imaging
slopes (mean VF slope < 0)b

47; 12.2
(9.1 to 15.9)

–1.6
(–17.6 to –0.1)

–3.0
(–13.1 to 10.8)

0.1
(–9.4 to 3.8)

–1.1
(–31.9 to 21.4)

Test statistic for joint test
of mean VF and imaging
slopes (mean VF and
imaging slopes < 0)d

44; 11.4
(8.4 to 15.0)

–1.1
(–4.2 to –0.1)

–4.5
(–13.1 to –0.2)

0.04
(–17.6 to 3.8)

–0.9
(–31.9 to 21.4)

a One-sided test requiring a p-value of< 0.05 and a negative slope.
b Two-sided test requiring a p-value of< 0.1 and a negative mean VF slope.
c Two-sided test requiring a p-value of< 0.2 and both the mean VF and the imaging slope to be negative.
d Two-sided test requiring a p-value of< 0.15 and both the mean VF and the imaging slope to be negative.
Notes
VF values were censored at 15 dB. When multiple VF tests were carried out at the same visit, the mean value at each
location was used. CIs for the percentage of progressing eyes are exact binomial 95% CIs.
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Permutations using one visual field only per visit
The above analyses used the average of all VF tests on a particular date, if more than one test was carried
out. However, in clinical practice usually only one VF test is carried out per visit. We therefore repeated the
analyses using the first VF test only at any given visit. OCT is relatively easy to perform, taking much less
time to complete a scan, and so we continued using an average of all OCT repeat tests for a visit. This also
allowed a more direct comparison with the RAPID data set, in which multiple VF repeat tests were
generally not available at later visits.

The results in Table 18 show a very similar pattern to the previous results, with hit rates varying between
9.6% and 17.4%. Slightly more eyes were identified as progressing when the permuted parameter
involved the VF slopes. Overall, 118 eyes were identified as progressing according to one or more of the
PERM variants.

TABLE 18 Number of eyes in the UKGTS data set identified as progressing by nine variations of PERM with VF and
imaging outcomes regressed against visit number

Parameter to be
permuted

Number of
progressing
eyes; %
progressing
eyes (95% CI)

Mean (range)
VF slope in
progressing
eyes (dB/visit)

Mean (range)
imaging slope
in progressing
eyes (µm/visit)

Mean (range)
VF slope in
non-progressing
eyes (dB/visit)

Mean (range)
imaging slope in
non-progressing
eyes (µm/visit)

Mean of VF slopesa 42; 10.9
(8.0 to 14.4)

–0.41
(–1.1 to –0.14)

–0.57
(–2.95 to 1.38)

0.03
(–2.90 to 0.99)

–0.35
(–5.19 to 4.15)

Test statistic for mean of
VF slopesa

37; 9.6
(6.8 to 13.0)

–0.40
(–1.11 to –0.14)

–0.67
(–2.95 to 1.38)

0.02
(–2.90 to 0.99)

–0.34
(–5.19 to 4.15)

Imaging slopea 67; 17.4
(13.7 to 21.5)

–0.02
(–0.46 to 0.58)

–1.41
(–5.13 to –0.44)

–0.02
(–2.90 to 0.99)

–0.15
(–5.19 to 4.15)

Test statistic for imaging
slopea

67; 17.4
(13.7 to 21.5)

–0.02
(–0.46 to 0.58)

–1.41
(–5.13 to –0.44)

–0.02
(–2.90 to 0.99)

–0.15
(–5.19 to 4.15)

Test statistic for joint test
of all VF slopesb

47; 12.2
(9.1 to 15.9)

–0.31
(–1.11 to –0.03)

–0.51
(–2.95 to 4.15)

0.02
(–2.90 to 0.99)

–0.35
(–5.19 to 3.80)

Test statistic for joint test
of all VF and imaging
slopes (mean VF slope < 0)b

50; 13.0
(9.8 to 16.7)

–0.29
(–0.76 to –0.00)

–0.55
(–2.75 to 4.15)

0.02
(–2.90 to 0.99)

–0.34
(–5.19 to 3.80)

Test statistic for joint test
of all VF and imaging
slopes (mean VF and
imaging slopes < 0)c

57; 14.8
(11.4 to 18.7)

–0.26
(–1.11 to –0.00)

–0.95
(–2.95 to –0.02)

0.03
(–2.90 to 0.99)

–0.27
(–5.19 to 4.15)

Test statistic for joint test
of mean VF and imaging
slopes (mean VF slope < 0)b

42; 10.9
(8.0 to 14.4)

–0.33
(–0.76 to –0.00)

–0.80
(–2.75 to 4.15)

0.02
(–2.90 to 0.99)

–0.32
(–5.19 to 3.80)

Test statistic for joint test
of mean VF and imaging
slopes (mean VF and
imaging slopes < 0)d

44; 11.4
(8.4 to 15.0)

–0.31
(–0.76 to –0.00)

–0.95
(–2.75 to –0.02)

0.02
(–2.90 to 0.99)

–0.29
(–5.19 to 4.15)

a One-sided test requiring a p-value of < 0.05 and a negative slope.
b Two-sided test requiring a p-value of< 0.1 and a negative mean VF slope.
c Two-sided test requiring a p-value of< 0.2 and both the mean VF and the imaging slope to be negative.
d Two-sided test requiring a p-value of< 0.15 and both the mean VF and the imaging slope to be negative.
Notes
VF values were censored at 15 dB. When multiple VF tests were carried out at the same visit, the first VF scan only was
used. CIs for the percentage of progressing eyes are exact binomial 95% CIs.
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Time to identified progression
The 100 UKGTS eyes that were identified as progressing using at least one of the PERM variants and for
which there were data from at least five visits were used to explore when progression would first be
identified in clinical practice. For each eye the PERM variants were applied to the first four visits. For eyes
with more than five visits, the PERM variants were also applied to the first five visits and then the first six
visits, etc., up to the maximum number of visits available for that eye. The first visit at which progression
was identified was recorded, with the results tabulated in Table 19.

The mean first visit with identified progression in those eyes with six visits was less than one visit before
the maximum number of visits. For those eyes with nine visits, the mean first visit with identified
progression was closer to two visits before the maximum number of visits. However, the number of eyes
progressing in any one category of PERM and the number of visits per eye were small, and so there was
little power to determine trends.

TABLE 19 Mean visit number at which progression was first identified by one or more of the variations of PERM,
stratified by the total number of visits per eye

Number of
visits per eye

Number
of eyes PERM

Number of eyes
progressing at
the final visit

Mean (range)
first visit with
identified
progression

5 15 Mean VF slope 5 4.4 (4–5)

Test statistic for mean VF slope 4 4.5 (4–5)

Imaging slope 6 4.7 (4–5)

Test statistic for imaging slope 6 4.7 (4–5)

Test statistic for all VF slopes 8 4.8 (4–5)

Test statistic for all VF and imaging slopes
(mean VF slope < 0)

8 4.8 (4–5)

Test statistic for all VF and imaging slopes
(mean VF and imaging slopes < 0)

9 4.7 (4–5)

Test statistic for mean VF and imaging slopes
(mean VF slope < 0)

7 4.7 (4–5)

Test statistic for mean VF and imaging slopes
(mean VF and imaging slopes < 0)

6 4.7 (4–5)

6 18 Mean VF slope 10 5.4 (4–6)

Test statistic for mean VF slope 9 5.3 (4–6)

Imaging slope 10 5.5 (4–6)

Test statistic for imaging slope 10 5.5 (4–6)

Test statistic for all VF slopes 7 5.3 (4–6)

Test statistic for all VF and imaging slopes
(mean VF slope < 0)

9 5.1 (4–6)

Test statistic for all VF and imaging slopes
(mean VF and imaging slopes < 0)

12 5.5 (4–6)

Test statistic for mean VF and imaging slopes
(mean VF slope < 0)

10 5.2 (4–6)

Test statistic for mean VF and imaging slopes
(mean VF and imaging slopes < 0)

10 5.5 (4–6)

continued
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TABLE 19 Mean visit number at which progression was first identified by one or more of the variations of PERM,
stratified by the total number of visits per eye (continued )

Number of
visits per eye

Number
of eyes PERM

Number of eyes
progressing at
the final visit

Mean (range)
first visit with
identified
progression

7 17 Mean VF slope 4 6.8 (6–7)

Test statistic for mean VF slope 5 6.8 (6–7)

Imaging slope 12 5.9 (4–7)

Test statistic for imaging slope 12 5.9 (4–7)

Test statistic for all VF slopes 5 6.6 (6–7)

Test statistic for all VF and imaging slopes
(mean VF slope < 0)

6 6.5 (6–7)

Test statistic for all VF and imaging slopes
(mean VF and imaging slopes < 0)

6 6 (5–7)

Test statistic for mean VF and imaging slopes
(mean VF slope < 0)

6 6 (5–7)

Test statistic for mean VF and imaging slopes
(mean VF and imaging slopes < 0)

7 5.7 (5–7)

8 18 Mean VF slope 5 6.6 (4–8)

Test statistic for mean VF slope 6 6.7 (5–8)

Imaging slope 12 6.2 (4–8)

Test statistic for imaging slope 12 6.2 (4–8)

Test statistic for all VF slopes 7 6.6 (6–8)

Test statistic for all VF and imaging slopes
(mean VF slope < 0)

7 6.3 (4–8)

Test statistic for all VF and imaging slopes
(mean VF and imaging slopes < 0)

6 6.8 (4–8)

Test statistic for mean VF and imaging slopes
(mean VF slope < 0)

7 6.7 (4–8)

Test statistic for mean VF and imaging slopes
(mean VF and imaging slopes < 0)

6 6.7 (4–8)

9 13 Mean VF slope 4 7.8 (7–9)

Test statistic for mean VF slope 5 7.6 (6–9)

Imaging slope 9 5.3 (4–7)

Test statistic for imaging slope 9 5.3 (4–7)

Test statistic for all VF slopes 4 7.8 (6–9)

Test statistic for all VF and imaging slopes
(mean VF slope < 0)

6 8.7 (7–9)

Test statistic for all VF and imaging slopes
(mean VF and imaging slopes < 0)

7 7.4 (4–9)

Test statistic for mean VF and imaging slopes
(mean VF slope < 0)

7 7.7 (6–9)

Test statistic for mean VF and imaging slopes
(mean VF and imaging slopes < 0)

7 7.1 (6–9)

RESULTS
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Multiple imputation

Simulations
When developing the multiple imputation model used to impute the censored and missing values in the VF
data, we ran a range of small simulation studies. In this section we present some of the results, based on
simulated data from six time points and nine locations arranged in a 3 × 3 grid as follows:

1 2 3
4 5 6
7 8 9

The data were simulated using the following approach:

l A person mean, pi, with i indexing person, was drawn from a 25−3χ2
1 distribution.

l Four person-specific area effects were then drawn, one each for locations 1, 2, 4 and 5 (ai1), 2, 3, 5 and 6
(ai2), 4, 5, 7 and 8 (ai3) and 5, 6, 8 and 9 (ai4), from a normal distribution with a mean of 0 and a SD of 4.

TABLE 19 Mean visit number at which progression was first identified by one or more of the variations of PERM,
stratified by the total number of visits per eye (continued )

Number of
visits per eye

Number
of eyes PERM

Number of eyes
progressing at
the final visit

Mean (range)
first visit with
identified
progression

10 12 Mean VF slope 5 9.2 (7–10)

Test statistic for mean VF slope 5 8.6 (6–10)

Imaging slope 8 7.6 (4–10)

Test statistic for imaging slope 8 7.6 (4–10)

Test statistic for all VF slopes 6 8.7 (6–10)

Test statistic for all VF and imaging slopes
(mean VF slope < 0)

6 8.7 (6–10)

Test statistic for all VF and imaging slopes
(mean VF and imaging slopes < 0)

8 8.3 (6–10)

Test statistic for mean VF and imaging slopes
(mean VF slope < 0)

4 8 (6–9)

Test statistic for mean VF and imaging slopes
(mean VF and imaging slopes < 0)

5 8.4 (6–10)

11 7 Mean VF slope 2 8.5 (6–11)

Test statistic for mean VF slope 2 8.5 (6–11)

Imaging slope 6 7 (4–11)

Test statistic for imaging slope 6 7 (4–11)

Test statistic for all VF slopes 2 9 (7–11)

Test statistic for all VF and imaging slopes
(mean VF slope < 0)

2 9 (7–11)

Test statistic for all VF and imaging slopes
(mean VF and imaging slopes < 0)

2 8.5 (7–10)

Test statistic for mean VF and imaging slopes
(mean VF slope < 0)

2 8.5 (7–10)

Test statistic for mean VF and imaging slopes
(mean VF and imaging slopes < 0)

2 8 (6–10)
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l A person-specific location effect, lij, was then drawn from N(0,σloc) where σloc = 1 for locations 1, 3, 7
and 9, σloc = 0.5 for locations 2, 4, 6 and 8 and σloc = 0.1 for location 5. σloc was varied in this way to
allow for the greater variation at some locations because of having multiple area means.

l The person, area and location means were then combined, along with a fixed time effect if the
simulation scenario required one, and with a random error term:

y1i = pi + (2−0:5t) + ai1 + li1 + N(0, 1), (11)

y2i = pi + (2−0:5t) + ai1 + ai2 + li2 + N(0, 1), (12)

y3i = pi + (2−0:5t) + ai2 + li3 + N(0, 1), (13)

y4i = pi + (2−0:5t) + ai1 + ai3 + li4 + N(0, 1), (14)

y5i = pi + (2−0:5t) + ai1 + ai2 + ai3 + li5 + N(0, 1), (15)

y6i = pi + (2−0:5t) + ai2 + ai4 + li6 + N(0, 1), (16)

y7i = pi + (2−0:5t) + ai3 + li7 + N(0, 1), (17)

y8i = pi + (2−0:5t) + ai3 + ai4 + li8 + N(0, 1), (18)

y9i = pi + (2−0:5t) + ai4 + li9 + N(0, 1). (19)

Any observations below 15 dB were then imputed using chained equations and generating 10 imputations
for each simulated data set. The imputed data from location y1 and y5 were analysed using a mixed-effects
model with a fixed effect for time and a random intercept for person and using restricted maximum
likelihood. The results from the different imputations were combined using Rubin’s rules.102

The results of applying a multiple imputation model that uses all other spatial predictors and the nearest
time neighbours as predictors for nine locations, six time points, 300 people, a true effect over time of
–0.5 dB per unit time and 100 simulated data sets are provided in Table 20. The averages of the slopes
over time obtained from the mixed-effects model applied to the imputed data are provided, along with the
SD of the slopes across the 100 estimates. In addition, the same model was applied to the true underlying
values and the slope estimates are also summarised in Table 20.

There was some slight suggestion of bias towards the null in the slope estimates for y1, but this was very
small and was not seen in the estimates for y5. Increasing the burn-in period from five up to 20 did not
appear to alter the estimates substantially.

We also ran simulations using a variety of other models. One of the other main findings was that not
including any time predictors leads to substantial bias. This might be caused by the failure of the multiple
imputation process to converge – when checking the chain convergence over 100 iterations of the burn-in
period it was found that this model did not converge.

RESULTS
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Multiple imputation models applied to United Kingdom Glaucoma Treatment
Study data
Based on the results of the simulation study, we started by applying a multiple imputation model with
three spatial neighbours at the same time point, within the same VF region,22 and the nearest time
neighbours at the same location as predictors in the model. Instead of adding an extra level of hierarchy
into an already complex mixed-effects model, which may have led to problems with convergence in the
mixed-effects model, we chose to average across repeated measures recorded at the same visit. However,
we found that using such a method resulted in lack of convergence for the multiple imputation process.
This behaviour can be seen in the chain plots in Figure 27. This figure shows the burn-in chains for the
imputed variables at the first time point for the first 100 iterations, with one plot for each VF location.
To produce such a plot, the mean and SD of the imputed values for each variable are calculated after each
iteration during the burn-in period. If the multiple imputation process were converging, then one would
expect an initial move away from any effect of the starting values and for the chains to then not exhibit a
trend as the number of iterations increases. However, there are clear trends observable at some locations
in Figure 27, with means tending to decrease over time and SDs correspondingly increasing.

To improve the convergence of these chains, we therefore moved to using models in which a single VF
repeat is used, instead of the average across VF repeats. An example of the improved convergence for
such a model is shown in Figure 28. This model also uses three spatial neighbours at the same time point
and the nearest time neighbours at the same location as predictors. One possible explanation of the
improved convergence behaviour in the model using a single VF scan is that it makes full use of the spatial
correlations to predict the imputed values. In contrast, by averaging across VF repeats, some of that local
correlation structure is being lost or ‘smoothed out’.

In addition, we also considered a model that uses a three-stage approach to imputing the data. The data
that are imputed in this data set are a mixture of values that are censored (i.e. that lie below 15 dB) and
values that are missing (i.e. visits that do not appear in the data set, e.g. because a patient had left the
study or did not attend the visit or because the visit did not have both a VF and an OCT measurement).
In the first model discussed, we imputed both the censored and the missing data in the same process. In the
three-stage approach, we first imputed the censored values only using a constant model (i.e. no predictors
were used). This step is performed to obtain some values that are approximately normally distributed before
moving on to the second stage, which is to impute the missing visit values using the imputed values from
the first stage. SLR models are used for this second step, with three spatial neighbours in the same sector
and the nearest time neighbours as predictors. In the third stage, all values that are < 15 dB were imputed
using censored regressions, again with three spatial neighbours in the same sector and the nearest time
neighbours as predictors.

TABLE 20 Simulated results for nine locations, six time points and 300 people using a multiple imputation model
that includes all other spatial locations at the same time point and the nearest time neighbours at the same
location as predictors

VF location

Length of
burn-in period
(iterations)

Mean (SD) of
slopes over time
after imputation

(Mean of slope
variances)0.5

Mean (SD) of
slopes over time
before imputation

(Mean of slope
variances)0.5

y1 5 –0.489 (0.014) 0.018 –0.499 (0.013) 0.014

10 –0.488 (0.015) 0.018 –0.498 (0.014) 0.014

20 –0.490 (0.016) 0.018 –0.500 (0.016) 0.014

y5 5 –0.501 (0.020) 0.026 –0.501 (0.012) 0.014

10 –0.505 (0.019) 0.026 –0.501 (0.012) 0.014

20 –0.504 (0.022) 0.026 –0.501 (0.015) 0.014

The results are pooled across 100 simulated data sets.
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FIGURE 27 Chains for the means (a) and SDs (b) of the imputed VF variables at time point 1, using the average across VF repeats. (continued )
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FIGURE 27 Chains for the means (a) and SDs (b) of the imputed VF variables at time point 1, using the average across VF repeats.

D
O
I:10.3310/hta22040

H
EA

LTH
TECH

N
O
LO

G
Y
A
SSESSM

EN
T
2018

VO
L.22

N
O
.4

©
Q
ueen

’s
Printer

and
C
ontroller

of
H
M
SO

2018.
This

w
ork

w
as

produced
by

G
arw

ay-H
eath

et
al.

under
the

term
s
of

a
com

m
issioning

contract
issued

by
the

Secretary
of

State
for

H
ealth.

This
issue

m
ay

be
freely

reproduced
for

the
purposes

of
private

research
and

study
and

extracts
(or

indeed,
the

fullreport)
m
ay

be
included

in
professionaljournals

provided
that

suitable
acknow

ledgem
ent

is
m
ade

and
the

reproduction
is
not

associated
w
ith

any
form

of
advertising.

A
pplications

for
com

m
ercialreproduction

should
be

addressed
to:

N
IH
R
Journals

Library,
N
ationalInstitute

for
H
ealth

Research,
Evaluation,

Trials
and

Studies
C
oordinating

C
entre,

A
lpha

H
ouse,

U
niversity

of
Southam

pton
Science

Park,
Southam

pton
SO

16
7N

S,
U
K
.

69



M
ea

n

Iteration number

(a)

18
18

.5
19

19
.5

20

0 20 40 60 80 100

19
.5

20
20

.5
21

0 20 40 60 80 100

18
18

.5
19

19
.5

20

0 20 40 60 80 100

17
17

.5
18

18
.5

19

0 20 40 60 80 100

20
.5

21
21

.5
22

0 20 40 60 80 100

23
23

.5
24

24
.5

0 20 40 60 80 100

22
.5

23
23

.5
24

0 20 40 60 80 100

21
.5

22
22

.5
23

0 20 40 60 80 100

24
24

.5
25

25
.5

0 20 40 60 80 100

22
22

.5
23

23
.5

0 20 40 60 80 100

16
16

.5
17

17
.5

18

0 20 40 60 80 100

23
.2

23
.4

23
.6

23
.8

24
24

.2

0 20 40 60 80 100

25
.2

25
.4

25
.6

25
.8

26
26

.2

0 20 40 60 80 100

24
.5

25
25

.5
26

0 20 40 60 80 100

23
.8

24
24

.2
24

.4
24

.6
24

.8

0 20 40 60 80 100

24
24

.2
24

.4
24

.6
24

.8
25

0 20 40 60 80 100

25
25

.5
26

26
.5

0 20 40 60 80 100

23
.5

24
24

.5
25

0 20 40 60 80 100

13
.5

14
14

.5
15

15
.5

0 20 40 60 80 100

18
.5

19
19

.5
20

0 20 40 60 80 100

23
23

.2
23

.4
23

.6
23

.8
24

0 20 40 60 80 100

25
25

.5
26

26
.5

0 20 40 60 80 100

26
26

.5
27

27
.5

28

0 20 40 60 80 100

27
27

.5
28

28
.5

29

0 20 40 60 80 100

25
.5

26
26

.5
27

27
.5

0 20 40 60 80 100

25
25

.5
26

26
.5

27

0 20 40 60 80 100

16
18

0 20 40 60 80 100

19
.5

20
20

.5
21

21
.5

0 20 40 60 80 100

24
24

.5
25

25
.5

0 20 40 60 80 100

27
27

.5
28

0 20 40 60 80 100

29
.5

30
30

.5
31

0 20 40 60 80 100

30
30

.5
31

31
.5

0 20 40 60 80 100

28
28

.5
29

29
.5

0 20 40 60 80 100

24
.5

25
25

.5
26

26
.5

0 20 40 60 80 100

19
.5

20
20

.5
21

21
.5

0 20 40 60 80 100

24
.5

25
25

.5

0 20 40 60 80 100

25
.5

26
26

.5
27

27
.5

0 20 40 60 80 100

27
27

.5
28

28
.5

0 20 40 60 80 100

26
.5

27
27

.5
28

0 20 40 60 80 100

25
.5

26
26

.5
27

27
.5

0 20 40 60 80 100

25
.5

26
26

.5
27

0 20 40 60 80 100

24
24

.5
25

25
.5

26
26

.5

0 20 40 60 80 100

22
.5

23
23

.5
24

24
.5

0 20 40 60 80 100

24
.5

25
25

.5
26

0 20 40 60 80 100

24
.5

25
25

.5
26

0 20 40 60 80 100

24
.5

25
25

.5
26

26
.5

0 20 40 60 80 100

26
26

.5
27

27
.5

0 20 40 60 80 100

25
25

.5
26

26
.5

27

0 20 40 60 80 100

21
21

.5
22

22
.5

23

0 20 40 60 80 100

22
.5

23
23

.5
24

0 20 40 60 80 100

23
23

.5
24

24
.5

0 20 40 60 80 100

23
.5

24
24

.5
25

0 20 40 60 80 100

FIGURE 28 Chains for the means (a) and SDs (b) of the imputed VF variables at time point 1, using a single VF repeat. (continued )
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FIGURE 28 Chains for the means (a) and SDs (b) of the imputed VF variables at time point 1, using a single VF repeat.
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We used a burn-in period of 50 iterations for the first multiple imputation model and a burn-in of
20 iterations for the third stage of the second model. Ten imputations for each model were produced.
Burn-in chains for the imputed data sets at time point 1 are provided in Figures 29 and 30.

Kronecker hierarchical models
The Kronecker hierarchical models, which form part of the MaHMIC method, were performed in R software.

Simulations
As for the development of the multiple imputation model, we ran small simulation studies to assist with
the development of the Kronecker models. An example of the results obtained from a relatively simple
Kronecker model and 100 simulated data sets is provided in Table 21.

Simulated data for 300 people (i) at nine locations (k) and six time points (l) were generated from the
following model:

yikl = 25 + 2 × trti × tl−3 × tl + p0i + p1i t + τikl, (20)

where tl denotes the visit number, trti is an indicator for treatment group, the random person effects and
residual errors are distributed as follows:

pi = (p0i, p1i)∼MVN½0,Σp�, (21)

with:

Σp =
1 0:3
0:3 1

� �
, (22)

and τikl = N½0, αik⊗ϕil�, where αik has a compound symmetrical structure with variance 25 and covariance
20 and ϕik has a compound symmetrical structure with a variance of 1 and a covariance of 0.5.

The results for the fixed-effect parameters obtained from the Kronecker model agree well with the values
used to simulate the data.

Standard deviations of variance parameters and the mean of the model variances are taken on the log(SD)
scale. For correlations they are taken on the Fisher transform scale (person correlation) or the logit scale
(Kronecker product correlations).

MaHMIC model applied to United Kingdom Glaucoma Treatment Study visual field and
imaging data
The results for the fixed effects from the model outlined in Chapter 4 (see Index methods: newly
developed, Kronecker model) are provided in Table 22 for the first set of 10 imputations described in
Chapter 4 (see Index methods: newly developed, Multiple imputation). These imputations are from the
one-stage imputation model that uses the nearest time neighbour and three spatial neighbours in the
same sector as predictors in the model. The results from the individual imputations were combined using
Rubin’s rules.102

The slope over time for the imaging outcome was estimated as negative and was statistically significant at
the 5% level. However, the slope over time for the VF outcomes was not statistically significant and the
point estimate was actually positive. This could be because of learning effects (patients can become
more adept at taking the VF test over time), but it could also be because of an inability of the multiple
imputation process to account for the selectively missing data. In the original UKGTS, patients were
monitored for progression on the basis of their VF values and patients with confirmed progression were
removed from the study. Subsequent data are therefore not observed. In a cohort with positive and
negative slopes, removing subjects with negative slopes over time will cause a shift to a more positive
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FIGURE 29 Chains for the means (a) and SDs (b) over a burn-in of 50 iterations for the 10 imputations produced by the first model that uses a single VF repeat, three spatial
neighbours within a sector and the nearest time neighbours as predictors. (continued )
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FIGURE 29 Chains for the means (a) and SDs (b) over a burn-in of 50 iterations for the 10 imputations produced by the first model that uses a single VF repeat, three spatial
neighbours within a sector and the nearest time neighbours as predictors.
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FIGURE 30 Chains for the means (a) and SDs (b) over a burn-in of 20 iterations for the 10 imputations produced by the second model that uses a single VF repeat and a
three-stage approach. The burn-in chains are for the third stage. (continued )
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FIGURE 30 Chains for the means (a) and SDs (b) over a burn-in of 20 iterations for the 10 imputations produced by the second model that uses a single VF repeat and a
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average for the slopes over time. In a missing at random (MAR) setting, in which all information needed to
predict the missing values is present in the observed data set, and with a correctly specified model, it
would be possible to adjust for this artefactual positive slope. However, in this setting, with the restricted
data set, it is possible that there is a missing not at random (MNAR) scenario. Alternatively, a MAR
mechanism may be involved but the proposed multiple imputation model is not using all of the
relevant information.

Neither of the time-by-treatment interactions is statistically significant, although both are in the direction of
benefit for the trial drug, latanoprost. The VF time-by-treatment interaction also has a lower confidence
limit that is not far from zero. The joint test of the time-by-treatment interactions for VF and imaging is not
statistically significant (p = 0.24).

The results for the second set of 10 imputations are provided in Table 23. These imputations are from the
multiple imputation described in Chapter 4 (see Index methods: newly developed, Multiple imputation),
a three-stage approach that first imputes the censored observations from a constant model, then imputes
the missing visits using regression models with the nearest time neighbour and three spatial locations
within the same sector and finally re-imputes all censored observations using the same predictors.

Using these imputations, the slope over time for VF is again positive. In this case the effect appears more
extreme, with a statistically significant positive slope. Again, both time-by-treatment interactions
directionally favour the latanoprost group, but neither is statistically significant. In these imputations
neither treatment effect is close to being statistically significant. The joint test of the time-by-treatment
interactions for VF and imaging is again not statistically significant (p = 0.54).

TABLE 21 Results of application of the Kronecker model to 100 simulated data sets with nine locations, six time
points and 300 people

Parameter Mean (SD) (Mean of model variances)^0.5a True value

Intercept 24.99 (0.27) 0.26 25

Treatment-by-time interaction 2.01 (0.14) 0.14 2

Time –3.02 (0.10) 0.10 –3

a Three out of 100 SE calculations failed.

TABLE 22 Results from the MaHMIC model applied to the first set of 10 imputations combined by Rubin’s rules
(VF and imaging data)

Parameter Estimate (95% CI)
p-value for the null hypothesis
that parameter is zero

Constant for VF (dB) 26.1 (25.8 to 26.4)

Slope over time for VF in placebo group (dB/year) 0.08 (–0.06 to 0.22) 0.24

Time-by-treatment interaction for VF (dB/year) 0.13 (–0.02 to 0.29) 0.10

Constant for imaging (µm) 77.2 (76.5 to 77.9)

Slope over time for imaging in placebo group (µm/year) –1.36 (–1.94 to –0.78) < 0.001

Time-by-treatment interaction for imaging (µm/year) 0.21 (–0.33 to 0.76) 0.44

Imputations created from a model with the nearest time neighbour and three spatial neighbours within the same sector
as predictors.
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MaHMIC model applied to United Kingdom Glaucoma Treatment Study visual field
data only
In this section we provide the results for the MaHMIC model applied to data sets containing only the VF
data, without the addition of imaging data. The model for VF data only is outlined in Chapter 4 (see Index
methods: newly developed, Kronecker model).

The results for the first set of imputations are provided in Table 24 and for the second set of imputations
are provided in Table 25. Both sets of results have been combined using Rubin’s rules.

The results obtained from the VF-only models are very similar to those obtained from the joint VF and
imaging models.

TABLE 23 Results from the MaHMIC model applied to the second set of 10 imputations combined by Rubin’s rules
(VF and imaging data)

Parameter Estimate (95% CI)
p-value for the null hypothesis
that parameter is zero

Constant for VF (dB) 26.1 (25.8 to 26.3)

Slope over time for VF in placebo group (dB/year) 0.23 (0.07 to 0.39) 0.005

Time-by-treatment interaction for VF (dB/year) 0.07 (–0.10 to 0.23) 0.44

Constant for imaging (µm) 77.2 (76.5 to 77.9)

Slope over time for imaging in placebo group (µm/year) –1.41 (–2.07 to –0.76) < 0.001

Time-by-treatment interaction for imaging (µm/year) 0.29 (–0.30 to 0.87) 0.34

Imputations created from a three-stage model.

TABLE 24 Results from the MaHMIC model applied to the first set of 10 imputations combined by Rubin’s rules
(VF data only)

Parameter Estimate (95% CI)
p-value for the null hypothesis
that parameter is zero

Constant for VF (dB) 26.1 (25.8 to 26.4)

Slope over time for VF in placebo group (dB/year) 0.08 (–0.06 to 0.23) 0.26

Time-by-treatment interaction for VF (dB/year) 0.13 (–0.03 to 0.30) 0.11

Imputations created from a model with the nearest time neighbour and three spatial neighbours within the same sector
as predictors.

TABLE 25 Results from the MaHMIC model applied to the second set of 10 imputations combined by Rubin’s rules
(VF data only)

Parameter Estimate (95% CI)
p-value for the null hypothesis
that parameter is zero

Constant for VF (dB) 26.0 (25.7 to 26.3)

Slope over time for VF in placebo group (dB/year) 0.24 (0.07 to 0.41) 0.006

Time-by-treatment interaction for VF (dB/year) 0.06 (–0.11 to 0.23) 0.47

Imputations created from a three-stage model.
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MaGIC model applied to United Kingdom Glaucoma Treatment Study visual field and
imaging data
In this section we provide the results for the MaGIC model, described in Chapter 4 (see Index methods:
newly developed, Generalised estimating equations), applied to the imputed data sets using Stata software.
As for the MaHMIC models, the results from each imputation were combined using Rubin’s rules. The results
from the first and second sets of imputations are provided in Tables 26 and 27 respectively.

The parameter estimates obtained from the MaGIC models were quite similar to those obtained from the
MaHMIC models, although the CIs were generally slightly wider. There was a slight discrepancy in the
imaging time-by-treatment interaction estimates, with the MaGIC model giving small negative estimates
and the MaHMIC model producing positive estimates. However, given the wide CIs for the MaGIC
estimates, these estimates are still broadly in agreement. In both models, the imaging time-by-treatment
interaction was not statistically significant. Similarly, the VF time-by-treatment interaction estimated in the
second set of imputations differed in sign to that estimated by the MaHMIC model, although in both
models this term was not statistically significant.

As for the MaHMIC models, the joint test of the time-by-treatment interaction for VF and imaging was not
statistically significant in either set of imputations (p = 0.76 for the first set of imputations and p = 0.88 for
second set of imputations).

TABLE 26 Results from the MaGIC model applied to the first set of 10 imputations combined by Rubin’s rules
(VF and imaging data)

Parameter Estimate (95% CI)
p-value for the null hypothesis
that parameter is zero

Constant for VF (dB) 26.3 (26.0 to 26.6)

Slope over time for VF in placebo group (dB/year) 0.09 (–0.06 to 0.24) 0.25

Time-by-treatment interaction for VF (dB/year) 0.07 (–0.12 to 0.26) 0.47

Constant for imaging (µm) 77.2 (75.6 to 78.8)

Slope over time for imaging in placebo group (µm/year) –1.19 (–2.31 to –0.07) 0.04

Time-by-treatment interaction for imaging (µm/year) –0.09 (–2.08 to 1.91) 0.93

Imputations created from a model with the nearest time neighbour and three spatial neighbours within the same sector
as predictors.

TABLE 27 Results from the MaGIC model applied to the second set of 10 imputations combined by Rubin’s rules
(VF and imaging data)

Parameter Estimate (95% CI)
p-value for the null hypothesis
that parameter is zero

Constant for VF (dB) 26.3 (26.0 to 26.6)

Slope over time for VF in placebo group (dB/year) 0.27 (0.08 to 0.45) 0.004

Time-by-treatment interaction for VF (dB/year) –0.05 (–0.28 to 0.18) 0.65

Constant for imaging (µm) 77.2 (75.6 to 78.8)

Slope over time for imaging in placebo group (µm/year) –1.18 (–2.32 to –0.04) 0.04

Time-by-treatment interaction for imaging (µm/year) –0.14 (–2.14 to 1.85) 0.89

Imputations created from a three-stage model.
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We also applied the first imputation model to the two treatment groups separately and combined the
imputed data sets for analysis (as opposed to applying the imputation model to both treatment groups
combined). When analysing the imputations from the two treatment groups with the MaGIC model,
substantively similar results to those presented in Table 26 were obtained.

MaGIC model applied to United Kingdom Glaucoma Treatment Study visual field
data only
In this section we present the results of the MaGIC model applied to data sets containing only the VF data,
without the addition of imaging data. The model for VF data only is outlined in Chapter 4 (see Index
methods: newly developed, Generalised estimating equations). The results are presented in Tables 28 and
29 for the two sets of imputations respectively.

As for the joint model, these results broadly agreed with the estimates produced by the MaHMIC models.
The VF-only model also provided similar results to the joint VF and imaging models.

TABLE 28 Results from the MaGIC model applied to the first set of 10 imputations combined by Rubin’s rules
(VF data only)

Parameter Estimate (95% CI)
p-value for the null hypothesis
that parameter is zero

Constant for VF (dB) 26.3 (26.0 to 26.6)

Slope over time for VF in placebo group (dB/year) 0.09 (–0.06 to 0.24) 0.23

Time-by-treatment interaction for VF (dB/year) 0.06 (–0.12 to 0.25) 0.51

Imputations created from a model with the nearest time neighbour and three spatial neighbours within the same sector
as predictors.

TABLE 29 Results from the MaGIC model applied to the second set of 10 imputations combined by Rubin’s rules
(VF data only)

Parameter Estimate (95% CI)
p-value for the null hypothesis
that parameter is zero

Constant for VF (dB) 26.3 (26.0 to 26.6)

Slope over time for VF in placebo group (dB/year) 0.27 (0.09 to 0.45) 0.003

Time-by-treatment interaction for VF (dB/year) –0.06 (–0.29 to 0.16) 0.58

Imputations created from a three-stage model.
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Chapter 6 Discussion

In clinical trials with a vision function outcome, VF variability results in the requirement for large numbers of
patients observed over long intervals. This causes a delay in bringing new beneficial treatments to patients,

and trials become more costly with a consequence that potentially beneficial treatments may not be
evaluated. It has been established for decades that imaging measurements of structural damage to the ONH
are associated with VF loss in glaucoma. Imaging measurements are often considered more precise than VF
measurements, making them attractive as potential surrogate outcomes for clinical trials and clinical practice.
However, for imaging measurements to be established as appropriate alternative or supplementary outcomes
for VF testing, the measurements need to capture the treatment effect of an intervention on the outcome of
interest (the VF test). Furthermore, analyses that include imaging outcomes also need to be more sensitive,
more accurate and/or distinguish treatment arms in a clinical trial better than analyses based on the VF alone.

The results of this work provide some evidence that imaging measurements do capture the treatment
effect of latanoprost on the VF. Although the rate of TD OCT-measured RNFL loss was faster in the
placebo-treated eyes than in the latanoprost-treated eyes, the difference did not reach statistical
significance (see Chapter 5, Rates of visual field and retinal nerve fibre layer thickness change). However,
the rate of RNFL thickness change was statistically significantly faster in eyes with incident VF loss and the
rate of RNFL thickness change was a statistically significant predictor of incident VF loss (see Chapter 5,
Association of the rate of retinal nerve fibre layer thickness change with visual field progression),
establishing that VF progression is more likely in eyes with faster rates of RNFL loss. Furthermore, adding
the rate of RNFL change as a Bayesian prior in a model of VF progression (sANSWERS) improved the
progression detection hit rate of the model considerably, for the same false-positive rate (see Chapter 5,
Evaluation of ANSWERS, PoPLR and sANSWERS index methods, ‘Hit rate’ compared with specificity), and
was more accurate in modelling the rate of progression (see Chapter 5, Evaluation of ANSWERS, PoPLR
and sANSWERS index methods, Prediction of future visual field state) than analysis methods using VF
data alone. However, although faster OCT RNFL thinning was associated with incident VF deterioration,
the OCT data explained little of the incident VF deterioration. Possible explanations for this are that the
structural data behave differently under treatment from the VF data and/or the measurement imprecision
in the OCT data obscures the underlying association. Despite inclusion of OCT RNFL change as a Bayesian
prior in the analysis of VF change resulting in more identified progression and more accurate estimates of
rates of progression, adding the imaging data to the vision function data from VF testing did not provide a
greater separation between the treatment groups in the UKGTS (see Chapter 5, Evaluation of ANSWERS,
PoPLR and sANSWERS index methods, Survival analyses).

Methods to combine imaging and VF data are emerging in the literature.62,85,86,89,110 However, currently,
glaucoma is identified and monitored in the clinic using either imaging (structural) or VF change, with
integration of information gained from either being carried out subjectively by the clinician.32,33,36,111

The results of the work presented here add weight to the evidence on the benefit of combining imaging
and VF data quantitatively.

Imaging outcomes in the United Kingdom Glaucoma Treatment Study

From Figures 17 and 18, it is obvious that the signal compared with the ‘noise’ (variability) is lower in the
OCT data than in the VF data. A Mann–Whitney test identified that the distribution of RNFL slopes was
not statistically significantly different in the placebo and latanoprost treatment arms (p = 0.18); however,
this analysis does not take account of all measurements, only the ‘summary’ individual slope estimates.
It may be that non-parametric multilevel models may better detect the signal in the data.112 That said, the
principal problem is that the signal-to-noise ratio in the TD OCT data is low relative to that in the VF data.
The variability characteristics of measurements from SD OCT images are much better, with the variability of
SD OCT RNFL measurements being about half that of the TD OCT measurements.113
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The Cox proportional hazards analysis, with the OCT RNFL rate of change as a predictor variable,
demonstrated that the rate of RNFL thickness change was a significant predictor of incident VF loss
(p = 0.035). Thus, the data in this study are in support of the treatment effect on RNFL measurements
being in the same direction as the treatment effect on VF measurements and the imaging outcomes being
associated with VF loss. However, the signal-to-noise ratio of the TD OCT measurements is insufficient
for these measurements to have much utility in improving study power; SD OCT, because of its better
signal-to-noise characteristics, may be more useful.

Evaluation of the reference and ANSWERS, PoPLR and sANSWERS
index tests

With the criterion false-positive rate held at about 5%, the ANSWERS analysis technique was more
sensitive than the PoPLR technique, especially over shorter follow-up intervals (see Chapter 5, Evaluation of
ANSWERS, PoPLR and sANSWERS index methods, ‘Hit rate’ compared with specificity). When the RNFL
rate of change is included as a Bayesian prior in the ANSWERS technique (sANSWERS), the sensitivity to
identify progression increases markedly, especially for the ‘longer’ follow-up intervals (up to 22 months).
The benefit of adding imaging data is also seen when the accuracy of the estimated rate of progression is
considered. When evaluated by projecting the estimated rate of progression at each VF location to predict
future VF states, the prediction error for sANSWERS was significantly smaller than that for ANSWERS
(without the structural prior) and the PoPLR technique. This implies that the RNFL data contain information
relevant to VF loss.

The optimal outcome measure for a clinical trial should distinguish the treatment groups (the HR
should indicate a large difference) and be sensitive to change in clinical status, so that the proportion of
participants with an outcome is high. These attributes reduce the number of participants required for a
trial and/or the duration of observation required. The GPA criterion applied in the UKGTS was designed to
have greater sensitivity in the 24-2 VF test than the conventional GPA criterion (three locations different
from baseline at the 5% level on three consecutive occasions). The latter was designed for the 30-2 VF test
used in the Early Manifest Glaucoma Trial (EMGT).114 The 30-2 VF test has 40% more test locations than
the 24-2 VF test and so the opportunity to detect progression is greater for a 30-2 VF test than a 24-2 VF
test. The number of locations tested in the VF (24-2 vs. 30-2 test) influences both the sensitivity and the
false-positive frequency. The false-positive frequency is also affected by the number of times that the
criterion is applied over a test series. In clinical trials and clinical practice, the criterion is applied every time
the patient undergoes a new test. Thus, over time, the false-positive frequency increases. The false-positive
frequency for the EMGT GPA criterion has been estimated as 11% in the 30-2 VF test over the course of
an average 25 (range 14–36) VF tests115 and as 2.6% in the 24-2 VF test over the course of 12 VF tests.81

This compares with an estimated false-positive frequency of 5.7% (95% CI 1.6% to 14.6%) over the
course of 11 VF tests for the UKGTS GPA criterion in the 24-2 VF test in the RAPID data set.

The UKGTS GPA criterion distinguished well between the treatment groups. The HR in the subset of 284
UKGTS participants with baseline OCT images and ≥ 6 months’ follow-up was 0.45 (95% CI 0.27 to 0.76;
p = 0.0036). In the larger subset of 320 UKGTS participants with any OCT images, the HR was 0.57
(95% CI 0.35 to 0.90; p = 0.016) and in the full data set of 461 UKGTS participants with follow-up data
the HR was 0.44 (95% CI 0.28 to 0.69).67 The difference in the point estimate of the HR in the various
subsets illustrates the sensitivity of the HR to variations in the samples tested.

The PoPLR technique distinguished between the treatment groups similarly well in the subset of 320
UKGTS participants, with a HR of 0.59 (95% CI 0.42 to 0.83; p = 0.002) and with a greater number of
events than the GPA criterion (see Figure 23). This is a positive attribute, adding power to a trial. In this
subset the ANSWERS technique did less well, producing a HR of 0.76 (95% CI 0.56 to 1.03; p = 0.065),
but with a greater number of events still. The sANSWERS technique, incorporating the imaging data, did
better, with a HR of 0.71 (95% CI 0.53 to 0.93) and had the highest number of events. The criterion for
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progression in these analyses had been adjusted to give a false-positive frequency of about 5% over the
course of 11 VF tests in the RAPID data set.

The sANSWERS technique, as shown by the estimate of sensitivity at a 5% false-positive rate (see Figure 20),
was considerably more sensitive than the other techniques. However, the difference between treatment
groups was less than in the other analyses. One possible explanation is that the greater sensitivity of the test
allowed detection of very small amounts of progression that may be less related to the level of IOP and
therefore less amenable to modulation with treatment. The post hoc analysis in Chapter 5, adding a rate
of deterioration criterion, supports the hypothesis that treatment was more effective in eyes that were
progressing more quickly. Having a ‘rate of change’ criterion also makes sense for clinical practice in that
very slow rates of progression are unlikely to result in symptomatic VF loss over a patient’s lifetime. However,
there is no single rate of change that is clinically meaningful for all patients. A relatively slow rate of change
in a young patient with advanced VF loss at baseline may impact on vision-related quality of life, whereas a
relatively fast rate in an elderly patient with early VF damage at baseline may have no consequence on
vision-related quality of life. Another explanation for the limited impact on the sample size calculation of
adding OCT imaging data is that the progressive structural changes may not respond to treatment in an
identical way to the visual function changes.

Newly developed methods: permutation tests, MaHMIC and MAGIC

In this work we have considered two approaches to the simultaneous analysis of longitudinal VF and
imaging data, one approach geared to the analysis of data from RCTs and the other geared to the analysis
of data from a single patient in a clinical practice setting. The methods were assessed using a subset of
data from the UKGTS. It should be recognised that the data analysed, and therefore the results produced,
are not directly comparable to those reported in the main outcome paper.67 One reason for this is that we
wanted to explore the potential of adding an imaging variable to VF data and, to assess this, we included
data only from visits when both VF and imaging data were collected. This meant including only follow-up
visits when both VF and OCT measures were available.

Given the non-normality and heteroskedastic nature of VF data and the fact that the data are multivariate
with a complex covariance structure, realistic models for the clinical setting would have to include more
parameters than could be reliably estimated using the data available from a single subject. Our approach
of using a censored normal regression model for the repeated measures at each location coupled with
permutation tests to assess trends over time deals with the non-normality and heteroskedasticity and
avoids the need to model the covariance structure. As such, it is an attractive option for modelling data
from a single subject.

A number of outcomes could be considered for PERM in the clinic setting. These could be parameters
estimated from the model (such as the imaging outcome slope or the mean of the VF slopes) or test
statistics derived from these parameter estimates. Test statistics are an attractive option when the aim
is to simultaneously assess changes in multiple parameters. These test statistics are derived assuming
independence across locations, but p-values calculated from these are valid because they are calculated
using permutations.

For simple outcomes, such as a slope or a mean slope or a test statistic with a single degree of freedom,
it is natural to use a one-sided p-value of 0.05 as a cut-off value. This is equivalent to using a two-sided
p-value of 0.1, coupled with observed deterioration. By definition, this will be associated with a specificity
of 95%. Analysis of the RAPID data supported this, with 95% CIs for the specificity always spanning 95%
for this type of outcome. Choosing a p-value cut-off value for a one-sided test for an outcome that is a
joint test statistic is not so straightforward. Our approach required a directional estimate of deterioration
(as opposed to an improvement) for both imaging and/or mean VF parameters, as well as the p-value
being below a cut-off value. The additional requirement of deterioration means that choosing a cut-off
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value of p = 0.1 (two-sided) will result in a specificity of > 95%. Accordingly, in this situation we used the
RAPID data to help choose a p-value cut-off value higher than 0.1 that gave a specificity close to 95%;
a limitation of this approach is that the size of the RAPID data set precludes accurate estimation
of specificity.

The relatively small size of the RAPID data set also affected our assessment of the potential of outcome
measures utilising rates of change in VF regions. It is clear that ignoring the multiplicity problem introduced
by simultaneous consideration of multiple outcomes (the six VF regions) gives specificities that are
statistically significantly lower than 95%. Using a Bonferroni correction gave a specificity that was
consistent with 95%, but in theory a Bonferroni correction should be too stringent. Even though the
RAPID data set is more than twice the size of the largest similar published data set,81 had the data set
been larger, empirical cut-off values could have been estimated more precisely.

Subject to the caveats over cut-off values mentioned above, PERM based on the imaging parameter alone
had the highest hit rate, with 66 eyes being identified as progressing in the UKGTS, which was statistically
significantly higher (p < 0.05) than the value obtained from the mean of the VF slopes at each location or the
best of the test statistics based on the combination of VF and imaging parameters. However, the number of
participants identified as progressing using this approach was similar in the two arms of the trial (36 vs. 30).

A number of different outcomes combining the imaging and VF data were considered, with the best of
these giving rise to a hit rate that was not statistically significantly better than that from the best of the
outcomes utilising the VF measures alone when using regressions on visit number. When using visit date or
one VF per visit only, the best combination of imaging and VF parameters also gave a hit rate that was
not statistically significantly better than the best VF-only measure. The difference between the numbers of
participants identified as progressing in the two arms of the UKGTS was most statistically significant using
this outcome, although gains over the best VF-only measure were small. A number of the combined
outcomes gave very similar hit rates and, given the relatively small numbers identified as progressing,
it is not possible to draw definitive conclusions about which approach is best. Likewise, for all outcomes,
analysis assuming equally spaced visits and analysis using actual visit times gave very similar results.
We would anticipate that use of the actual visit times should be more efficient if rates of decline are
linear, but in practice, at least with the data here, gains seem small.

For the clinical trials setting, to take account of the imprecision in VF measures below 15 dB, we explored
the use of censored regression models, utilising a multiple imputation model to fit these. These censored
models assume that when a measurement is < 15 dB then there is a true underlying measure but that the
observed measurement is a poor guide to its actual value. In addition to censoring, our models allow for
spatial and temporal correlations through the use of a mixed-effects model with a Kronecker product error
structure. We also used a GEE approach to estimate effects, relaxing assumptions about the covariance
structure within subjects.

When applying the multiple imputation process to the VF data, we experienced some problems with
convergence, possibly because of the loss of information from the spatial correlations caused by averaging
across repeated VF tests at the same visit; when using a single VF repeat, the convergence properties
appeared to be better.

In this setting, the proposed multiple imputation models may not be able to completely correct for any
selection effects of progressing patients leaving the UKGTS. The lack of data from patients who are
progressing can lead to an appearance of VF outcomes improving over time when considering only available
visit data. If the missingness mechanism were MAR, we would expect an appropriate model to be able to
correct for this effect. However, as the subset analysed in this study did not contain all of the information
according to which participants were judged to have progressed (as we analysed a restricted data set
compared with the full UKGTS data set) it is possible that the missing data scenario is MNAR in this case,
which would explain why the upwards trend in VF measures has not been eliminated. Alternatively, the
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missing data mechanism could be MAR but our models may be missing important predictors of missingness.
Further work could include investigating other potential multiple imputation models using different
combinations of predictors, including more locations within the VF to impute and including variables such as
age and imaging outcomes. An alternative explanation for the observed positive slopes over time is that
there are learning effects – patients becoming more proficient at taking the VF tests over time.

Despite not completely correcting for the potentially artefactual positive VF slope, the time-by-treatment
interactions for VF estimated by the models usually favoured latanoprost over placebo; however,
this was not statistically significant. The VF-only and VF plus imaging joint models appeared to give
similar results.

The results obtained from the MaHMIC and MaGIC models appeared to be consistent with each other,
with parameter estimates usually agreeing quite closely. The imaging time-by-treatment interaction
obtained from the MaGIC models was in favour of placebo but the CIs were wide. The lack of statistical
significance for the imaging time-by-treatment interaction is consistent with the results from the PERM
variants, in which the number of eyes identified as progressing in both treatment arms was similar.

We restricted our data set to visits at which we could identify the availability of both outcome measures,
which will have reduced the power of the models that we used. There may therefore be insufficient
power to distinguish between the different models in terms of their performance. However, in future work
different correlation structures in the Kronecker hierarchical model could be examined, which may lead to
an improvement in the size of the SEs.

It was our intention to assess the ability of our methodology to predict future measurements in a series
over time, as specified in the protocol. Accuracy of prediction was to have been compared using a sum of
squares approach to give a prediction error, weighted to account for the heteroskedastic nature of VF
measurements. Our decision to treat VF measurements below 15 dB as being censored renders this
problematic, however. The models used to carry out the PERM and MaHMIC methods could be used to
predict future measurements [those from the MaHMIC models being best linear unbiased predictions
(BLUPs)], but in both cases the prediction will include a probability that the next measurement will be
censored, making it impossible to compare observed and predicted results using a simple sum of squares
approach. A direct comparison of the predicted and observed values, ignoring whether they lie above or
below 15 dB, would be inappropriate, as the censored regression approaches are modelling the
measurement error-free latent VF values that are postulated to underlie the observed values.

Future work could include examination of the use of other cut-off values. However, reducing the censoring
point from 15 dB to 10 dB might be problematic given the observed non-normality. Increasing the cut-off
value to, say, 20 dB would increase the number of data that need to be imputed, which may lead to
convergence problems in the multiple imputation model.

Sample size estimates

The sample size estimates show that a placebo-controlled trial of an intervention as effective as latanoprost can
be undertaken with an observation period of only 18 months and as few participants as 558 (applying the
PoPLR criterion). In fact, a smaller sample size is probably required because the GPA criterion applied to the
sample of 320 UKGTS participants identified a smaller difference between treatment groups than when
applied to the smaller subset of 284 participants analysed in this study and the total sample reported originally.

Naturally, these sample size estimates relate to cohorts that are similar to the UKGTS cohort, that is, newly
diagnosed subjects with early glaucoma and a relatively low IOP. Including newly diagnosed patients has
advantages and disadvantages. An important advantage is that such patients have not received any previous
disease-modifying treatment, so the placebo arm fairly reflects the natural history of untreated glaucoma
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and the treatment arm provides information on the disease-modifying effect of a single intervention.
However, even though the UKGTS protocol included steps to minimise the inclusion of subjects still learning
the VF test,60 the median MD slope in the treatment arm was slightly positive (0.12 dB per year), despite
approximately 15% of latanoprost-treated subjects being identified as having VF deterioration. This net slight
improvement in VF MD suggests either that treatment induces VF improvement in a proportion of patients or
that VF learning effects are causing progressively more positive MD measurements over time. The former
hypothesis was tested recently in the EMGT data and found not to be the case.116 If the latter hypothesis is
true, then the measured rates of VF loss likely underestimate the true rate of glaucoma-related VF loss. Thus,
the –0.21dB per year median rate of MD loss in the placebo-treated arm may be an underestimate. Although
the average IOP in the UKGTS cohort, at approximately 20 mmHg,67 was < 1 mmHg lower than the average
IOP in the EMGT cohort, the rate of MD loss in the untreated arm was half that in the untreated arm in the
EMGT cohort (median –0.21 dB per year in this UKGTS subset and median –0.48 dB per year in the EMGT
cohort,117 later revised to –0.40 dB per year over a longer observation period118). The rate of VF loss was
measured over a longer period in the EMGT cohort so the impact of VF learning (if occurring mostly over the
initial part of the observation period) may be less than in the UKGTS data.

Quigley119 evaluated samples sizes for trials in glaucoma based on assumed rates of MD deterioration.
The rates considered for the (treated) control group were all > 50% greater than the observed mean rate
in untreated patients in the UKGTS. Thus, the sample size calculations may be overoptimistic, although
the caveats stated above apply. In addition, Quigley’s model assessed the mean and SDs of rates of
change, whereas it is known that rate-of-change VF data are not normally distributed.118 His sample size
estimate for a treatment reducing the rate of progression by 50% over that of a treated control group was
294 (323 adding a 10% initial loss to follow-up), although type 1 and 2 error rates were not stated and
the duration of observation was not defined. This is a much smaller sample size estimate than that
estimated for a placebo-controlled trial in this work, in which the number of events should be greater
because the reference arm is untreated (compared with a treated reference arm in Quigley’s calculation).

Because the IOP level was not a recruitment criterion, the UKGTS cohort is probably fairly representative of
an unselected clinical glaucoma population and the results of the trial can, therefore, be generalised to
patients in the clinic. A caveat is that no data were obtained on the IOP and degree of VF loss of subjects
declining to participate in the UKGTS. If there had been a tendency for individuals with a higher IOP and
greater degrees of VF loss to decline participation, then the UKGTS cohort may have ‘milder’ disease than
the unselected clinical glaucoma population. Study power is strongly influenced by the event rate (in this
case, VF deterioration) and therefore study power may be increased (and the required sample size and
observation duration may be reduced) by enriching the study population with patients more likely to
achieve a deterioration event. This can be achieved by selecting patients on the basis of risk factors for
deterioration, such as higher IOP or the presence of optic disc haemorrhages. Although doing this may
reduce the required sample size or observation duration, there are potential disadvantages. The outcomes
of such studies can be generalised only to similar patients and there is a risk that a treatment effect may
be incorrectly estimated if the treatment is more, or less, effective in the trial cohort than in the target
clinic population. Disc haemorrhages, for example, are well known to be a risk factor for glaucoma
deterioration99,120 and, although IOP lowering may be beneficial in these eyes,121 the incidence of disc
haemorrhages does not seem to be affected by IOP-lowering treatment.122 If disc haemorrhages represent,
at least in part, a non-IOP-related risk, then enriching a population with patients with a history of disc
haemorrhages in a study assessing the effect of IOP lowering may not increase study power and may,
in fact, have the opposite effect.

Limitations and further work

A limitation of these data is the imaging technology that was available at the time that the data were
obtained. At the time that the UKGTS was designed and run, the most sophisticated ocular imaging
technique available was TD OCT. Imaging technology has been developing rapidly and SD OCT has
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significantly better resolution and measurement precision than TD OCT. The finding of little benefit to trial
power of adding TD OCT RNFL measurements to VF measurements may relate to the low signal-to-noise
ratio of the TD OCT RNFL measurements compared with the VF measurements. Future trials assessing the
potential of SD OCT are warranted.

The ANSWERS, PoPLR and sANSWERS progression criteria were adjusted to account for the impact of
multiple testing in time on the false-positive rate. The PoPLR criteria distinguished the treatment groups well
and better than the ANSWERS and sANSWERS criteria, both of which, being more sensitive, identified more
UKGTS participants as progressing. Further work will explore how adjusting the criterion for significant
change affects criterion on the separation between treatment groups and the proportion of subjects
identified as progressing. An additional ‘rate of change’ threshold criterion may also be beneficial.

Approaches in this work aimed to reduce the heteroskedasticity in the data so that statistical methods
requiring a normal distribution could be applied. Further work will explore non-parametric approaches to the
analysis of repeated measures over time.112 Permutation approaches, which do not require normal data
distribution, proved helpful. Although the correlation between imaging measures of structural damage to the
ONH and VF measures is established and imaging measures are sensitive to progressive damage in glaucoma,
imaging outcomes are not yet recognised by regulatory authorities.58 The finding in the permutation analysis,
that the imaging outcome was more sensitive than VF measurements but did not distinguish the treatment
arms in the trial, may suggest that imaging measures an aspect of disease deterioration that is less responsive
to treatment than the VF outcome or that has a different time course. The signal-to-noise ratio in these data
is too poor to draw many conclusions and therefore further evidence is needed that imaging outcomes
capture the effect of treatment on the VF outcome. The data in this work provide some support that they
do. Other approaches, such as the joint modelling of incident VF loss with the rate of change in structural
measurements, as suggested by Medeiros et al.,66 and multivariate non-linear mixed-effect methods, with
credible intervals for progression in individual patients, may be helpful to provide additional evidence, and
non-parametric approaches need to be explored in detail.123,124

A limitation that is hard to address when evaluating alternative progression criteria in real-world trial data
is that the data are censored as a consequence of the progression criterion that were applied in the trial –
once a participant is identified as progressing, he or she exits the study and the data series is curtailed. If
an alternative progression criterion fails to identify progression in a censored series, it is not possible to
know whether that criterion may have identified progression in that participant had the data not been
censored. The only way around this problem is to build virtual models of progressing patients; such models
would need to capture all aspects of VF and imaging variability.

The estimates of specificity for the ANSWERS, PoPLR and sANSWERS analysis methods were made in
70 RAPID study participants so they are fairly imprecise, particularly so for the GPA criterion for which
permutation of the data was not possible. Permuting the VF series from these 70 participants may increase
the precision. It is presently not possible to permute VF data and analyse GPA progression with the GPA
software, so new software applications need to be developed to enable this. Additionally, given the
practical difficulties in obtaining many repeat tests in a short period of time in a large number of patients,
virtual models of stable patients would be particularly helpful; as mentioned, such models would need to
capture all aspects of VF and imaging variability.

The newly developed analysis methods were tested on a data set that included only paired VF/imaging
data and only one VF at each visit (if more than one VF was available, either the first VF or an average was
used); additional trial visits to confirm possible VF progression were also excluded. Therefore, a comparison
of the number of eyes identified as progressing by the PERM variants with the number identified as
progressing in the UKGTS could not be made as the trial definition of progression used visits that were not
included in our data set. Progression in the UKGTS therefore used more information than was available in
the subset of data used for the newly developed analysis methods.
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Chapter 7 Conclusions/recommendations

The rate of RNFL change was significantly faster in eyes with incident VF loss and the rate of RNFL change
was a significant predictor of the VF outcome (see Table 6). When TD OCT RNFL data were included as

prior information in the ANSWERS analysis (sANSWERS), the analysis was much more sensitive at identifying
progression (for the same false-positive rate) than the same analysis without the imaging prior (see Figure 20).
Furthermore, the accuracy of the estimated rate of VF change in the sANSWERS analysis was greater than
that in the analyses using methods without imaging outcome data (see Chapter 5, Evaluation of ANSWERS,
PoPLR and sANSWERS index methods, Prediction of future visual field state). However, the sANSWERS
analysis did not distinguish between treatment groups as well as the VF-alone analyses and therefore did not
reduce the estimated sample sizes or the observation periods for future trials.

For the PERM methods, we computed hit rates and specificities that related to the use of tests at a specific
visit, including data from that visit and all previous visits to assess trends up to that time point. Specificities
obtained by applying the PERM methods to the RAPID data were all consistent with 95%. Hit rates were
between 8.3% and 17.4% when using the PERM methods to analyse UKGTS data. Analysing VF and imaging
data with the PERM methods did not significantly increase the hit rate compared with using VF data alone.
Although applying PERM methods to imaging data identified only a larger number of progressing eyes, a
comparison of the proportion progressing in the two arms of the UKGTS did not result in a statistically
significant treatment difference. Using MaHMIC and MaGIC, treatment effects were non-significant and their
statistical significance was little altered by incorporating imaging. This may be because multiple imputation is
not able to account sufficiently for the complex missing data mechanism in this setting, in which progressors
are removed from the data set over time.

Although there was no evidence that the imaging technology assessed in this work, as well as the analysis
methods applied, would result in more rapid or smaller clinical trials, there was evidence that imaging
outcomes are associated with VF loss and that, when combined with VF data, they enable faster, more
sensitive detection of progression and more accurate estimates of the rate of VF loss. Therefore, imaging
has a place in clinical practice. Validated software tools are required to enable clinicians to combine
imaging and VF data and interpret the outcomes. Once such tools are available, studies should be
undertaken to evaluate patient experience and the clinical effectiveness and cost-effectiveness of including
imaging outcomes with VF testing in managing patients with glaucoma.

It is recommended that current or future generations of imaging technology are included in future clinical
trials to evaluate whether their greater resolution and measurement precision improves the potential of
imaging to reduce trial duration and sample sizes.

Recommendations for future research

l Further refine statistical methods to combine imaging and VF data.
l Evaluation of current or future generations of imaging technology in clinical trials to establish the

extent to which imaging outcomes capture treatment effects on the VF.
l Evaluation of patient experience and the clinical effectiveness and cost-effectiveness of including

imaging outcomes with VF testing in managing patients with glaucoma.
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Chapter 8 Public and patient involvement

The research was motivated by patients’ views on the frequency of VF testing for the follow-up of their
condition, explored as part of the NIHR HSR grant, ‘Frequency of visual field testing when monitoring

patients newly diagnosed with glaucoma’.12 Patient focus groups indicated that, although patients do not
like VF testing, they accept it as a critical part of their care. This research explored the ‘diagnostic gain’
from including imaging data. Indirectly, the results may inform the extent to which VF testing frequency
may be reduced while still monitoring glaucoma effectively. The information may improve the glaucoma
care process, especially as research suggests that imaging tests are generally preferred by patients to
VF tests.

Co-applicant Dr Agiomyrgiannakis is a glaucoma patient. He attended investigator meetings and provided
invaluable input on how best to communicate the research and the statistical approaches implemented
to patients.
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Appendix 1 Schedule of examinations in the
United Kingdom Glaucoma Treatment Study
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Examination

Number of tests/images at each visit

Visit 1
(month 0)

Visit 2
(month 2)

Visit 3
(month 4)

Visit 4
(month 7)

Visit 5
(month 10)

Visit 6
(month 13)

Visit 7
(month 16)

Visit 8
(month 18)

Visit 9
(month 20)

Visit 10
(month 22)

Visit 11
(month 24)

VFs 2 2 1 1 1 1 2 2 1 1 2

HRT 3 2 1 1 1 1 2 3 1 1 1

Optic disc
photography

1 1 1 1 1 1 1 1 1 1 1

GDxVCC 3 2 1 1 1 1 2 3 1 1 1

OCT 5 3 3 3 3 3 3 5 3 3 5

GDxVCC, GDx variable cornea compensation; HRT, Heidelberg retina tomography.
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Appendix 2 Variances and covariances implied by
the Kronecker model

The notation used in this appendix is defined in Chapter 4 (see Index methods: newly developed,
Methods and assessment, Kronecker model).

Variance of a visual field location

Var(yVF
i jkl) = σ2

p0 + 2tlσp01 + t2l σ
2
p1 + σ2

e0 + 2tlσe01 + t2l σ
2
e1 + σ2

VF . (23)

Variance of an imaging outcome

Var(yIm
i jkl) = σ2

p0 + 2tlσp01 + t2l σ
2
p1 + σ2

e0 + 2tlσe01 + t2l σ
2
e1 + σ2

Im. (24)

Covariance of the same visual field location at different times tl and tl′

Cov(yVF
i jkl, y

VF
i jkl′) = σ2

p0 + (tl + tl′)σp01 + tltl′σ2
p1 + σ2

e0 + (tl + tl′)σe01 + tltl′σ2
e1 + σ2

VFσ ll′. (25)

Covariance of imaging outcomes at different times tl and tl′

Cov(yIm
i jkl, y

Im
i jkl′) = σ2

p0 + (tl + tl′)σp01 + tltl′σ2
p1 + σ2

e0 + (tl + tl′)σe01 + tltl′σ2
e1 + σ2

lmσ ll′. (26)

Covariance between two visual field locations, k and k′, at the same time

Cov(yVF
i jkl, y

VF
i jk′ l) = σ2

p0 + 2tlσp01 + t2l σ
2
p1 + σ2

e0 + 2tlσe01 + t2l σ
2
e1 + σ2

VFe
−(dDkk′+aAkk′ ). (27)

Covariance between two visual field locations at different times

Cov(yVF
i jkl, y

VF
i jk′l′) = σ2

p0 + (tl + tl′)σp01 + tltl′σ
2
p1 + σ2

e0 + (tl + tl′)σe01 + tltl′σ
2
e1 + σ2

VFe
−(dDkk′+aAkk′)σ ll′. (28)

Covariance between imaging and a visual field location at the same time

Cov(yVF
i jkl, y

Im
i jk0 l) = σ2

p0 + 2tlσp01 + t2l σ
2
p1 + σ2

e0 + 2tlσe01 + t2l σ
2
e1. (29)

Covariance between imaging and a visual field location at
different times

Cov(yVF
i jkl, y

Im
i jk0 l0 ) = σ2

p0 + (tl + tl′ )σp01 + tltl′σ
2
p1 + σ2

e0 + (tl + tl′ )σe01 + tltl′σ
2
e1. (30)
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