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ABSTRACT  55 

 56 

 57 

Purpose: to evaluate the ability of various visual field (VF) analysis methods to discriminate treatment groups in 58 

glaucoma clinical trials and establish the value of optical coherence tomography (OCT) imaging as an additional 59 

outcome. 60 

Methods: VFs and retinal nerve fibre layer thickness (RNFLT) measurements (acquired by time-domain OCT) 61 

from 373 glaucoma patients in the UK Glaucoma Treatment Study (UKGTS) at up to 11 scheduled visits over a 62 

2 year interval formed the cohort to assess the sensitivity of progression analysis methods. Specificity was 63 

assessed in 78 glaucoma patients with up to 11 repeated VF and OCT RNFLT measurements over a 3 month 64 

interval. Growth curve models assessed the difference in VF and RNFLT rate of change between treatment 65 

groups. Incident progression was identified by 3 VF-based methods: Guided Progression Analysis (GPA), 66 

‘ANSWERS’ and ‘PoPLR’, and one based on VFs and RNFLT: ‘sANSWERS’. Sensitivity, specificity and 67 

discrimination between treatment groups was evaluated.  68 

Results: the rate of VF change was significantly faster in the placebo, compared to active treatment, group (-69 

0.29 vs +0.03 dB/year, P<.001); the rate of RNFLT change was not different (-1.7 vs -1.1 dB/year, P=.14). 70 

After 18 months and at 95% specificity, the sensitivity of ANSWERS and PoPLR was similar (35%); 71 

sANSWERS achieved a sensitivity of 70%. GPA, ANSWERS and PoPLR discriminated treatment groups with 72 

similar statistical significance; sANSWERS did not discriminate treatment groups.  73 

Conclusions: although the VF progression-detection method including VF and RNFLT measurements is more 74 

sensitive, it does not improve discrimination between treatment arms. 75 

 76 

 77 

  78 
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INTRODUCTION 79 

There has been considerable interest over the last decade in improving the design of clinical trials for glaucoma 80 

interventions and, in particular, assessing the potential for imaging measurements of optic nerve structure to be 81 

surrogate outcomes for clinical trials. This is motivated by the perception that that visual field (VF) 82 

measurements of optic nerve function are too insensitive or imprecise, or both, to be able to measure treatment 83 

effects in clinical trials over a short duration. 84 

Visual field loss deterioration is a recognised outcome for glaucoma clinical trials,
1
 however, VF measurements 85 

are variable and the variability becomes greater as the VF deteriorates.
2-4

 Mitigation of the effects of variability, 86 

to accurately detect true disease deterioration (‘progression’), requires frequent VF testing and/or a long period 87 

of time.
5,6

 In clinical trials with a VF outcome, variability results in the requirement for large numbers of 88 

patients over long observation periods. Historically, the observation periods for trials with a VF outcome have 89 

been 4 years or longer,
7-10

 with the shortest being 30 months,
11

 until the recently-reported United Kingdom 90 

Glaucoma Treatment Study (UKGTS).
12

 The UKGTS was designed with more frequent VF testing, and with 91 

short between-test intervals at the baseline,18-month and 24-month visits (‘clustering’),
13

 to establish whether 92 

frequent and clustered tests enable shorter observation periods. The primary outcome analysis was for a 93 

difference in time to a VF progression event at the 24-month follow-up time point between latanoprost-treated 94 

and placebo treated participants. A highly statistically significant difference was evident at 24 months (P=.0003) 95 

and the difference was even significant at 12 months (P=.035).  96 

The UKGTS was also designed to enable the evaluation of optic nerve imaging measurements as potential 97 

clinical trial outcomes (VF surrogates), using imaging devices available at the initiation of the trial: scanning 98 

laser ophthalmoscopy,
14,15

 scanning laser polarimetry
16

 and time-domain (TD) optical coherence tomography 99 

(OCT).
17

 For a surrogate, or biomarker, to be suitable as an alternative outcome, it must be strongly associated 100 

with the outcome of greatest relevance to the patient – in the case of glaucoma, this is visual function. The 101 

accepted measure of glaucomatous damage to visual function is standard automated perimetry (SAP), 102 

colloquially, the VF test. Candidates as surrogate outcomes include intraocular pressure (IOP) and 103 

measurements of optic nerve structure derived from ocular imaging. 104 

The effect of therapeutic interventions on the IOP has long been used as an outcome in clinical trials of 105 

glaucoma treatments. However, whilst the association between the level of IOP and rate of glaucoma 106 

deterioration is statistically highly significant, IOP is a poor predictor of deterioration because many other 107 

(‘non-IOP’) factors affect glaucoma susceptibility so that patients deteriorate at all levels of IOP.
18

 Furthermore, 108 

IOP is unsuitable as an outcome of a disease-modifying treatment which has no effect on IOP (so-called 109 

‘neuroprotective’ treatments).  110 

The rationale for the use of imaging outcomes as surrogates for VF loss is more obvious. The loss of vision in 111 

glaucoma is a consequence of damage to, and death of, retinal ganglion cells (RGCs). The quantitative and 112 

spatial relationship between image-based measurements of the neural rim at the ONH and RNFL loss and VF 113 

damage is well-recognised
19-25

 and imaging-based quantitative measurements have diagnostic utility.
26-32

 114 

Numerous publications support the ability of imaging-based measurements to identify glaucoma 115 

deterioration
14,33-42

 and progressive structural change has been shown to be useful as a predictor of subsequent 116 

VF loss.
43,44

 117 

The ability of imaging to detect progression has been compared to that of VF testing, controlling for the false-118 

positive rate of the chosen progression criteria; with criteria matched for specificity, studies have found similar 119 

detection sensitivity for imaging compared to VF testing.
14,36

 However, agreement on the eyes demonstrating 120 

glaucomatous progression was poor (for the most part, different eyes were identified as progressing by structure 121 

and function). Measurement variability prevents deterioration from being identified in a proportion of eyes. 122 

Because the source of measurement variability is different in VF testing and imaging, the eyes in which 123 

deterioration is missed are different for the two techniques. It makes sense, therefore, to make use of imaging 124 

data to compensate for the failure of VF testing to identify some of the deteriorating eyes. 125 

At present, regulatory authorities recognise VF test outcomes for trials evaluating therapeutic interventions for 126 

glaucoma, but not yet structural outcomes based on imaging.
1,45

 Surrogate outcomes, such as structural 127 

measurements based on imaging, need to be strongly correlated with the clinically relevant outcome, in this case 128 

VF loss, and capture the effect of a treatment intervention on that clinically relevant outcome.
46,47

 The 129 

correlation between structural and VF measurements has been established
22,23,43,44

 and the potential for structural 130 

measurements (scanning laser ophthalmoscopy measurements of the ONH) to capture treatment effects has been 131 

demonstrated.
48

 However, no clinical trial data demonstrating that structural outcomes capture treatments effects 132 

on the VF have been published. 133 

Making use of imaging measurements does not necessarily require that the measurements be used directly as a 134 

surrogate outcome, as an alternative to VF deterioration. Instead, the imaging measurements can be combined in 135 

Bayesian statistical models with VF data, to provide a background (prior) probability that the visual function of 136 

an eye might be deteriorating. This allows the additional information on the deterioration status of the eye 137 
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provided from imaging to be utilized, but VF loss remains the primary outcome. Establishing whether a new 138 

model of deterioration better describes the true underlying disease behaviour is not straight-forward, because 139 

there is no external ‘gold standard’ measurement of glaucoma deterioration. An approach to evaluate a model is 140 

to apply it to initial data in a series and use it to predict observed data later in the series;
49-53

 the model with 141 

smaller prediction errors can be assumed to be a better representation of the underlying data than the model with 142 

greater prediction errors. Russell demonstrated that the prediction of future visual function states, based on 143 

linear regression of observed VF series, improved when the analysis included the rate of neural rim loss, 144 

measured with the scanning laser ophthalmoscope, as a Bayesian prior.
54

 Applying a different statistical 145 

approach, Medeiros also used a Bayesian method to jointly model structural and functional progression and 146 

found that prediction accuracy was greater when structural data were included.
51

 Other methods to combine 147 

imaging and VF data are emerging in the literature.
55-57

 148 

Validation of any approach to identify glaucoma deterioration is challenging because, as mentioned, there is no 149 

‘gold standard’ arbiter of the ‘truth’. Various methods have been used in the past to compare different 150 

approaches, all of which make certain assumptions. A general method is to match the false positive frequency 151 

for criteria so that technologies/approaches being compared have similar criterion specificity; it is then assumed 152 

that the technology with the higher ‘hit’ frequency (identified deterioration) is the more sensitive. An indicator 153 

of a test criterion false positive frequency is the number of eyes with stable glaucoma which are flagged as 154 

deteriorating. Defining ‘stable glaucoma’ with a progression criterion becomes a circular argument, so typically 155 

patient cohorts are selected which are at low risk for progression and tested sequentially over a sufficiently short 156 

period of time that measureable change would not occur.
58,59

 The main assumption with this approach is that the 157 

variability characteristics for the tests are the same over the short period as they would be over typical clinical 158 

time scales.  159 

The variability in VF measurements is well known and often regarded as a consequence of the subjective, 160 

psychophysical nature of the test. On the other hand, imaging devices are regarded as acquiring measurements 161 

objectively, with an expectation that measurement variability would be low. There is, however, appreciable 162 

imprecision in structural measurements. A discernible change in RNFL thickness can be described by ‘tolerance 163 

limits’ for test retest variability (1.645 x √2 x test retest standard deviation).
60

 For a widely-used commercial 164 

spectral-domain OCT, the Cirrus OCT, the tolerance limit for average RNFL thickness measurement is 3.9μm. 165 

The dynamic range of RNFL thickness measurements varies between commercial devices; for the Cirrus OCT, a 166 

value of 35.5μm has been reported.
61

 The number of steps of discernible change across the dynamic range is, 167 

therefore, about 9. Measurement imprecision is greater for TD OCT, with tolerance limits reported of between 168 

6.4 to 8μm.
62

 It is, therefore, by no means clear that imaging provides a more precise estimate of glaucoma 169 

deterioration than VF testing. A recent study showed that deterioration may be identified by either VF testing or 170 

OCT imaging across the spectrum of glaucoma severity, but estimated that deterioration is more likely to be 171 

identified with spectral-domain OCT imaging of the RNFL than VF testing in the earlier stages of glaucoma (up 172 

to around a VF mean deviation [MD] of -10dB) and is more likely with VF testing in the later stages of 173 

glaucoma.
42

 174 

The purpose of this study was to evaluate various statistical methods to identify VF deterioration and to 175 

establish whether progression models which include TD OCT measurements of the RNFL are more sensitive in 176 

identifying deterioration and enable better discrimination between treatment arms of a clinical trial. 177 

The analyses were undertaken in the UKGTS data sets.
12

 178 

Specifically, in evaluating the TD OCT data, we ask the following questions:  179 

1. Does the rate of RNFL loss differ in the two treatment arms of the UKGTS?  180 

2. Is the rate of RNFL loss a significant predictor of VF loss in the UKGTS? 181 

3. Does a composite RNFL/VF outcome provide: 182 

a. more sensitive identification of progression? 183 

b. more accurate predictions of future VF loss? 184 

c. better discrimination between the treatment arms of the trial? 185 

The main hypothesis being tested is whether a composite RNFL/VF outcome provides better discrimination 186 

between the treatment arms of a clinical trial of IOP-lowering medication. For reference, we provide sample size 187 

calculations for various clinical trial scenarios based of the analysis providing the best separation between 188 

treatment groups. 189 

  190 
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METHODS 191 

 192 

DATA SOURCES 193 

Two data sources were employed. One was a data set from the UKGTS placebo-controlled clinical trial,
12

 in 194 

which with VF and OCT imaging data were acquired over an observation period of up to 2 years; OCT imaging 195 

was undertaken on participants from seven of the 10 study sites. This is termed the ‘UKGTS data set’. The 196 

second data set was a test retest data set of glaucoma patients attending a single study site with up to 11VFs and 197 

OCT images acquired within a 3-month interval. This is termed the ‘RAPID data set’. 198 

 199 

UKGTS data set 200 

The UKGTS design, participant characteristics and main outcomes are described in detail elsewhere.
12,63,64

 The 201 

UKGTS was a multicentre randomized controlled trial conducted at ten centres across the UK. Centres were 202 

district general hospitals, teaching hospitals and tertiary referral centres. The UKGTS was an RCT that 203 

compared the effects of latanoprost, a topical treatment to lower IOP, with placebo on survival from VF 204 

deterioration. 516 patients with newly diagnosed open-angle glaucoma were enrolled, with 777 eyes eligible for 205 

entry into the study. 206 

Patients were followed up every 2-3 months after eye drop therapy was initiated, for up to 11 scheduled visits 207 

(Table 1). Participants attended for additional visits, at which VF testing and imaging were repeated, if tentative 208 

VF deterioration was identified according to certain pre-set criteria. Visual function was monitored by VF 209 

testing (detailed below) and ONH structured was monitored with the Heidelberg retina tomograph at all study 210 

locations and with the Stratus OCT (detailed below) and GDxECC Nerve Fiber Analyzer at locations with those 211 

devices. The subset of UKGTS participants with both VF testing and OCT imaging was used in this work. 212 

The primary outcome for the trial was glaucomatous VF deterioration (progression) within 24 months. Details 213 

of the method for determining progression in the VFs has been published.
12,63

. Progression analysis was 214 

performed in the Humphrey Field Analyzer II-i Guided Progression Analysis (GPA) software. The criterion for 215 

tentative progression was three locations worse than baseline in two consecutive VFs (3 half-shaded locations 216 

[up to two of which could be fully-shaded]). If tentative deterioration was identified, participants returned for 217 

confirmation tests within 1 month. At this confirmation visit, 2 VF tests were performed; if the same criterion of 218 

three half-shaded (or full-shaded) locations was satisfied in these confirmation tests, then the patient was 219 

considered to have progressed. Patients deemed to have progressed left the trial and treatment was adjusted as 220 

deemed appropriate by the treating clinician. Patients leaving the trial were invited to an ‘exit visit’ before 221 

treatment adjustment. If a patient was found to not be progressing at the confirmation visit, then (s)he returned 222 

to the standard visit schedule (Table 1). 223 

The study was undertaken in accordance with good clinical practice guidelines and adhered to the Declaration of 224 

Helsinki. The trial was approved by the Moorfields and Whittington Research Ethics Committee on June 1, 225 

2006 (reference 09/H0721/56). All patients provided written informed consent before screening investigations. 226 

An independent Data and Safety Monitoring Committee (DSMC) was appointed by the trial steering committee. 227 

The trial manager monitored adverse events, which were reported immediately to the operational DSMC at 228 

Moorfields Eye Hospital. Serious adverse events were reported to the Medicines and Healthcare Products 229 

Regulatory Agency. This trial registration number is ISRCTN96423140. 230 

 231 

RAPID data set 232 

The Rapid data set was acquired from volunteer patients attending the glaucoma clinics at Moorfields Eye 233 

Hospital NHS Foundation Trust, which functions as a district general and teaching hospital and a tertiary 234 

referral centre; VF testing and imaging was undertaken in the National Institute for Health Research Clinical 235 

Research Facility. 236 

The study ‘Assessing the effectiveness of imaging technology to rapidly detect disease progression in glaucoma: 237 

‘stable data’ collection’ was undertaken in accordance with good clinical practice guidelines and adhered to the 238 

Declaration of Helsinki. The trial was approved by the North of Scotland National Research Ethics Service 239 

committee on September 27, 2013 (reference 13/NS/0132) and NHS Permissions for Research was granted by 240 

the Joint Research Office at University College Hospitals NHS Foundation Trust on December 3, 2013. All 241 

patients provided written informed consent before screening investigations. 242 

The recruitment criteria for the ‘Stable Glaucoma’ Cohort were similar to those of the UKGTS clinical trial and 243 

the number of repeat tests approximated the number acquired during the UKGTS. 244 

Inclusion Criteria: 245 

 Open angle glaucoma (OAG; including primary OAG, normal tension glaucoma and pseudoexfoliation 246 

glaucoma) in either eye according to the definition for entry to the UKGTS. 
63

 247 
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 Age over 18 years 248 

 Snellen visual acuity equal to or better than 6/12 249 

 Able to give informed consent and attend at the required frequency for the duration of the study. 250 

 251 

Exclusion criteria: 252 

 Visual field loss worse than -16 dB or paracentral points with sensitivity < 10dB in both the upper and 253 

lower hemifields in either eye  254 

 IOP > 30mmHg  in either eye 255 

 Unable to perform reliable visual field testing (false positive rate > 15%)  256 

 Poor quality OCT (quality score < 15 for FD-OCT and < 7 for SD-OCT) 257 

 Refractive error outside the range - 8 to +8 diopters 258 

 Previous intraocular surgery (other than uncomplicated cataract extraction with posterior chamber lens 259 

implantation or uncomplicated Trabeculectomy) 260 

 Cataract extraction with posterior chamber lens implantation within the last year 261 

 Diabetic retinopathy  262 

 263 

Study schedule: participants attended approximately once a week and underwent VF testing and TD OCT 264 

imaging as outlined below. Two sets of tests from each device were acquired at the first visit and one from each 265 

at subsequent visits to give a total of 11 tests for each device, in total. In addition to the VF tests and TD OCT 266 

imaging, participants were also imaged with the Spectralis OCT (Heidelberg Engineering, Heidelberg, 267 

Germany) and the DRI OCT-1 Atlantis (Topcon, Japan). 268 

The sample size for the ‘specificity’ data set was determined as a pragmatic solution to balance precision of 269 

estimates and feasibility. A sample of 80 subjects was deemed sufficient to approximate between individual 270 

differences in test-retest variability. 271 

 272 

PARTICIPANT DEMOGRAPHICS 273 

Table 2 gives the principal demographic data for the subset of UKGTS participants with OCT images.
63

 The 274 

participant characteristics in the subset of UKGTS patients with OCT images are very similar to those of the full 275 

UKGTS data set. 276 

The principal demographic data for participants in the RAPID test retest study are given in Table 3. The data are 277 

similar; RAPID participants have slightly more advanced glaucoma (VF MD -4.17 compared to -2.65 dB) and 278 

lower IOP (14.0 compared to 19.0 mmHg); there was a lower proportion of white participants in the RAPID 279 

study (67% compared to 88%). 280 

 281 

 282 

Visual field testing 283 

SAP visual fields were tested with the Swedish interactive threshold algorithm (SITA) standard 24-2 program 284 

(Humphrey Field Analyzer, HFA; Carl Zeiss Meditec, Dublin CA). Reliable VF tests were included (<15% false 285 

positives and <20% fixation losses). Unreliable tests were repeated on the same day (with a break of at least 30 286 

minutes). All patients had undergone a minimum of two visual field tests before the study started. At the first 287 

visit, patients underwent 2 VF tests and the mean of these was used as the baseline in the GPA analysis; if the 288 

GPA software rejected a baseline VF on the basis of ‘learning’, the next VF in the series was used as a baseline. 289 

VFs rejected by the GPA software were not included in the analyses by other methods. 290 

A glaucomatous VF defect, for study inclusion, was defined as a reproducible (in at least 2 consecutive reliable 291 

VFs) reduction in sensitivity at two or more contiguous points with P<.01 loss or greater, or three or more 292 

contiguous points with P<.05 loss or greater, or a 10-dB difference across the nasal horizontal midline at two or 293 

more adjacent points in the total deviation plot. A reliable VF is one with <15% false positives.  294 

 295 

Optical Coherence Tomography imaging 296 

OCT imaging was performed through dilated pupils with the Stratus OCT (software version 5.0; Carl Zeiss 297 

Meditec) using the ‘landmark’ function. Each patient underwent RNFL scanning with the fast RNFL (3.4mm; 298 

256 A-scans) protocol. The average RNFLT was used for this analysis. 299 

 300 

 301 

DATA ANALYSIS METHODS 302 
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Growth curve models 303 

The aim of this analysis is to identify whether the rate of progression (slope), based on MD or mean RNFLT 304 

values over time, is different between the latanoprost and placebo groups. 305 

Subject selection: This analysis considered the subset of UKGTS participants who had OCT imaging available. 306 

If both eyes had glaucoma at baseline (eligible for inclusion in the main UKGTS study), the eye with worse 307 

baseline VF MD was selected for analysis, as determined by the UKGTS statistical analysis plan. Data were 308 

included provided the tests met predetermined quality criteria (VF <15% false positive responses or 309 

measurements outside the range +4 to -30dB; OCT quality score ≥7, absence of an image warning message or 310 

measurements outside the range 20 to 135 microns RNFLT). Figure 1 details the selection flow chart for the 311 

analysis. The OCT data set comprises 284 participants; 3 of these did not qualify for the VF analysis, so that the 312 

VF data set comprised 281 participants. 313 

A growth curve model is a type of multilevel random slope model where the predictor of interest is a 314 

measurement of time. When data are longitudinal and measurements are repeated within patients, time is used as 315 

an explanatory variable to describe the rate of change in the outcome. Longitudinal models were used in 316 

UKGTS to compare whether the rates of change in a particular outcome differ by intervention group. Thus 317 

interaction terms were used to estimate whether the rates are significantly different. Details of the model are 318 

given in the appendix. 319 

 320 

In addition to the growth curve models, the raw rates of change were plotted to allow assessment of the 321 

distribution of rates of measurement change of the two treatment groups. A crude analysis comparing the VF 322 

MD and OCT RNFLT slope for each participant across treatments groups was made (Mann-Whitney test for 323 

independent samples); this does not take account of the variance in the individual slope estimates. 324 

 325 

Association of RNFLT change with VF survival 326 

Progression-free survival was assessed with a Kaplan-Meier survival analysis to illustrate the frequency of 327 

progression and the difference between treatment groups. The progression criterion applied was the GPA 328 

criterion used in the UKGTS outcome report; the participants analysed are the sub-set with OCT images. To 329 

identify whether the rate of OCT RNFLT change was associated with VF progression, a Cox proportional 330 

hazards model was fitted to the data with factors potentially associated with survival failure (treatment 331 

allocation, age, baseline IOP, baseline VF MD and the slope of RNFLT change). Calculations were performed 332 

with MedCalc Statistical Software version 17.1 (MedCalc Software bvba, Ostend, Belgium; 333 

https://www.medcalc.org; 2017) 334 

 335 

Evaluation of 3 statistical models 336 

 337 

Progression detection sensitivity 338 

The purpose in this section was to evaluate the relative sensitivity of three methods for identifying progression. 339 

These methods were:  analysis with non-stationary Weibull error regression and Spatial Enhancement 340 

(ANSWERS),
53,65

 permutation analyses of pointwise linear regression (PoPLR)
66

 and a modification of 341 

ANSWERS to incorporate the RNFLT slope as a prior: structure-guided ANSWERS (sANSWERS). 342 

Subject selection: in this section, 445 eyes of 353 UKGTS participants with at least three follow-up visits and 343 

available OCT images, irrespective of image quality, were included. 107 eyes of 70 RAPID participants with 10 344 

or more VF tests and OCT images were included. 345 

ANSWERS: this method is a linear regression technique which formally takes into account the increasing 346 

variability of VF sensitivity estimates as sensitivity declines. It also takes into account the spatial correlation 347 

between sensitivity values at each location within a VF. Application of ordinary least squares linear regression 348 

(OLSLR) makes the assumption that the residuals from the regression are normally distributed. In reality, there 349 

is heteroscedasticity, with more dispersed residuals as sensitivity declines. ANSWERS models this 350 

heteroscedasticity with a mixture of Weibull distributions. Spatial correlation of measurements is also included 351 

into the model using a Bayesian framework. We have previously shown that this technique is more sensitive in 352 

identifying VF progression, and provides more accurate predictions of future VF states, than OLSLR of MD 353 

over time and PoPLR.
53

  354 

PoPLR: this is a non-parametric approach based on randomly permuting the observed VF series to identify 355 

whether negative change identified in the observed (un-permuted) series is significant, based on the distribution 356 

of change identified in the permuted series. The slope of VF sensitivity change is determined by OLSLR and the 357 

statistical significance (P value) from each location across the VF is combined into a statistic ‘S’ by using the 358 
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Truncated Product Method. The statistical significance of S in the observed series is calculated by comparing it 359 

with a null distribution of S, derived from permuted sequences of the series. 360 

sANSWERS: this method is a modification of ANSWERS in which there is a 2-layered hierarchical Bayesian 361 

model; the prior distribution of the VF progression rate at each VF location is set by the slopes and variance of 362 

the rate of change in the RNFLT; this is similar to the approach described previously to incorporate scanning 363 

laser ophthalmoscope rim area measurement slopes into VF progression analysis.
54

 As the spatial 364 

correspondence of peripapillary circle sectors and VF locations is known,
25

 each VF location was mapped to one 365 

of 12 peripapillary RNFL sector measurements; the slope and variance of RNFLT over time formed the 366 

Bayesian prior for the VF slope. 367 

 368 

The specificity of various criteria to ‘call’ progression was evaluated in the RAPID test retest data set and the 369 

‘hit’ rate (a surrogate for criterion ‘sensitivity’ which includes true change and the false positive change allowed 370 

by the criterion specificity) was determined from the UKGTS data set for each criterion evaluated. 371 

Criterion specificity was determined for the seven, 13, 18 and 22 month time point. When data were permuted, 372 

the VF tests and OCT images for the same day were tied (permuted together); when there was no OCT image 373 

associated with a VF test, the VF was permuted alone. 100 permutations were performed for each eye and each 374 

time point. The test schedule of the UKGTS was mimicked (Table 1), so that 2 VF tests and equivalent OCT 375 

RNFLT measurements were taken at visits 1, 2, 7, and 8 and the time interval between tests was assumed to be 376 

as for the UKGTS schedule. In this analysis, the RAPID data series comprise series lengths between 10 and 14 377 

tests. The 18 and 22 month time points require 12 and 14 tests, respectively. Where fewer than these numbers 378 

were available in a RAPID series, the available data were taken and the series randomly re-sampled to make up 379 

the required series length. 380 

 381 

a) Prediction of future VF state 382 

The purpose in this section was to evaluate how well the three analysis methods (detailed above) model the true 383 

rate of VF loss. As there is no ‘gold standard’ for the true rate, a surrogate indicator was investigated. This 384 

surrogate is the accuracy for predicting the final VF (sensitivity at each location) in a series based on the initial 5 385 

visits in the series and the rate of loss estimated by the analysis method. 386 

This analysis was performed on 445 eyes in the dataset with sufficiently long follow-up and both VF tests and 387 

OCT images (irrespective of image quality). A trend line fitted to the tests in the first 5 visits by OLSLR (as in 388 

PoPLR) and with the ANSWERS and sANSWERS techniques. The per-subject error for a method is the average 389 

absolute difference between the measured sensitivity and the predicted sensitivity across the 52 non-blind spot 390 

locations in the VF. The absolute difference is the square root of the squared error. 391 

 392 

Survival analyses 393 

The purpose of this section is to evaluate the 3 methods (detailed above) for their ability to distinguish the 394 

treatment arms of the UKGTS in the subset of participants with OCT images (irrespective of image quality). 395 

The criterion selected for each method was that which gives a 5% false positive rate when applied at any 396 

particular time point in the series. The GPA criterion applied in the UKGTS is presented for comparison. 397 

This analysis was performed on 353 UKGTS participant with OCT data, with the first eye showing progression 398 

labelling the participant has having progressed (failed); this mirrors the clinical trial scenario where the unit of 399 

analysis is the participant. The Hazard Ratio (HR) and associated P value are given as a measure of treatment 400 

group separation. Calculations were performed with MedCalc Statistical Software version 17.1 (MedCalc 401 

Software bvba, Ostend, Belgium; https://www.medcalc.org; 2017) 402 

The criterion 5% false positive rate for the 3 methods does not control for the serial application of the criterion 403 

over time (at each test the participant performs), so that the false positive rate for the test series is likely higher 404 

(lower specificity). To offset this higher false positive rate, the combination of two criteria, ANSWERS AND 405 

PoPLR, was evaluated. 406 

The agreement between methods in identifying progression in the UKGTS participants with OCT data was also 407 

assessed. 408 

 409 

Sample size calculations 410 

The purpose of this section was to estimate the required sample size for various clinical trial scenarios for 411 

observation periods of 12 and 18 months per participant and equal allocation of participants between study arms. 412 

The trial scenarios were comparing: 413 

1. placebo with an intervention with an effect size of that observed for latanoprost in the UKGTS 414 
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2. an intervention half as effective as latanoprost with an intervention with an effect size equivalent to 415 

latanoprost 416 

3. an intervention 75% as effective as latanoprost with an intervention with an effect size equivalent to 417 

latanoprost 418 

4. an intervention with an effect size equivalent to latanoprost with a combination treatment with an effect 419 

size equivalent to 2*latanoprost (latanoprost plus latanoprost) 420 

5. an intervention with an effect size equivalent to latanoprost with a combination treatment with an effect 421 

size equivalent to 1.5*latanoprost (latanoprost plus ½ latanoprost) 422 

 423 

The sample size calculations were based on survival curves of UKGTS data and the ‘ANSWERS AND PoPLR’ 424 

criterion for VF deterioration. The hazard ratio (HR) for the Latanoprost group compared to the Placebo group 425 

was 0.472; a HR of 0.500 was taken for the calculations. In the UKGTS data, progression (deterioration) events 426 

were observed from 10 weeks onwards (one sufficient data had been collected for analysis), so the event rate 427 

was calculated over the 10 to 78 week (18 month) = 68 week interval (Figure 4). The event rate for the Placebo 428 

group was approximately 52% over 68 weeks = 0.76%/week; for the Latanoprost group, the rate was 429 

approximately 28% over 68 weeks = 0.41%/week. For each scenario, the calculations were made for the 42 and 430 

68 week periods over which deterioration events could be identified and then the initial 10-week data collection 431 

period was added back to give the total observation period. 432 

The observed attrition rate (loss to follow-up) over the 68 week period was approximately 0.5% per week. In 433 

addition, approximately 10% of UKGTS participants were lost to follow-up before the 10 week time point. 434 

These attrition rates were assumed for the sample size calculations. 435 

Samples sizes were estimated for definitively-powered studies (Type I error rate of 0.05 and Type II error rate of 436 

0.10) and pilot studies (Type I error rate of 0.10 and Type II error rate of 0.20) for various study scenarios. 437 

The sample size calculations were made with an on-line calculator.
67,68

 438 

 439 

 440 

  441 
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RESULTS 442 

 443 

GROWTH CURVE MODEL 444 

Visual field analysis 445 

There was a significant interaction between rate of change and intervention, so that latanoprost-treated eyes had 446 

a more positive rate of VF MD change than the placebo-treated eyes (P=.001;Tables 4 and 5). 447 

The distribution of rates of change is shown in Figure 5. It can be seen clearly in the histogram that the placebo 448 

group has faster rates of deterioration than the latanoprost group (data shifted to the left). The d'Agostino-449 

Pearson test for Normal distribution rejected normality (P<.0001). A Mann-Whitney two-tailed test 450 

(independent samples) identified that the distribution of slopes was significantly different P=.0015. 451 

 452 

OCT analysis 453 

There was no difference in average RNFLT at baseline between intervention groups. Overall, average RNFLT 454 

changes at a rate of -1.39 (-1.79 to -0.99) microns per year (data not shown); there was there a significant 455 

interaction showing that this rate of change was statistically significant (Table 6). There was, however, no 456 

significant difference in the rate of RNFLT change between the placebo- and latanoprost-treated groups. Table 7 457 

give the average slope values for each group, -1.7 microns/year for the placebo group and -1.1 microns/year in 458 

the latanoprost group (P=.14). 459 

The distribution of rates of change is shown in Figure 6. Similarly to the VF data, the placebo group has faster 460 

rates of deterioration than the latanoprost group (data shifted to the left). The d'Agostino-Pearson test 461 

for Normal distribution rejected normality (P=.0026). A Mann-Whitney two-tailed test (independent samples) 462 

identified that the distribution of slopes approached statistical significance P=.0799. 463 

 464 

 465 

ASSOCIATION OF RNFLT CHANGE WITH VF SURVIVAL 466 

The VF progression-free survival is presented in Figure 7 for the participants in the UKGTS with Oct data. 467 

The significance of the association of various factors with progression-free survival is given in Table 8. Only 468 

treatment allocation was significantly associated with survival (P=.0094), however, baseline (pre-treatment) 469 

IOP, baseline (visit 1) VF MD and the rate of OCT RNFLT change approached statistical significance (P 470 

between .07 and .08). 471 

 472 

 473 

EVALUATION OF 3 STATISTICAL MODELS 474 

a) Progression detection sensitivity 475 

Figure 8 illustrates the ‘hit rate’ (true positives plus false positives with the 5% criterion in the UKGTS data set) 476 

plotted against the false positive rate (subjects identified as deteriorating in the ‘stable’ test retest data set) as the 477 

criterion for flagging an eye as deteriorating is varied.  478 

At the 5% false positive rate and after 22 months observation, the hit rate for the ANSWERS and PoPLR 479 

methods was very similar, at about 38%. For comparison, the hit rate with the GPA criterion applied in the 480 

UKGTS in this subset of eyes with OCT data was 87/394 eligible eyes (22%). The hit rate for sANSWERS was 481 

considerably greater at about 72%, suggesting that, for the same false positive, sANSWERS is much more 482 

sensitive at identifying a progressing eye. A similar pattern is seen for shorter follow-up durations, but with 483 

ANSWERS showing greater sensitivity than PoPLR for short follow-up durations. 484 

 485 

b) Prediction of future VF state 486 

The period over which the initial trend line was fitted was a mean (standard deviation) 43.7 (6.6) weeks and the 487 

interval from the initial period to the predicted VF was 54.0 (19.7) weeks. The median (5
th

 to 95
th

 centile) 488 

prediction error across subjects was 3.9 (1.9 to 8.2) dB for OLSLR, 3.1 (1.6 to 6.0) dB for ANSWERS and 2.5 489 

(1.4 to 4.9) dB for sANSWERS. The difference between methods was evaluated with the Wilcoxon signed-rank 490 

test; all pairs of comparisons were significantly different at the P<.0001 level. 491 

 492 

 493 

SURVIVAL ANALYSES 494 

The following analyses apply to 353 UKGTS participants with OCT data, with the participant the unit of 495 

analysis (either eye, if eligible, showing progression). 496 
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a) GPA analysis 497 

For reference, the survival analysis according to the GPA survival criterion applied in the UKGTS is 498 

shown in Figure 7. The HR is 0.543 (95% CI 0.312 – 0.838); Logrank test to compare the survival 499 

curves was significant at P=.006 500 

Four of 70 participants in the RAPID data set demonstrated progression by this criterion. Therefore, the 501 

false positive estimate for the VF series (when this criterion is applied to each VF test in the series) in 502 

the RAPID data was = 4/70 = 5.7% (95% CI 1.6% - 14.6%) 503 

 504 

b) ANSWERS 505 

The survival analysis according to the ANSWERS criterion is shown in Figure 9. 506 

The HR is 0.602 (95% CI 0.441 – 0.821); Logrank test to compare the survival curves was significant 507 

at P=.0012  508 

 509 

c) PoPLR 510 

The survival analysis according to the PoPLR criterion is shown in Figure 10. 511 

The HR is 0.590 (95% CI 0.435 to 0.800); Logrank test to compare the survival curves was significant 512 

at P=.0006  513 

 514 

d) sANSWERS 515 

The survival analysis according to the PoPLR criterion is shown in Figure 11. 516 

The HR is 0.834 (95% CI 0.655 – 1.066); Logrank test to compare the survival curves was not 517 

significant (P=.13) 518 

  519 

e) Combined ‘ANSWERS AND PoPLR’ 520 

The survival analysis according to the ‘ANSWERS AND PoPLR’ criterion is shown in Figure 12. 521 

The HR is 0.472 (95% CI 0.333 – 0.668); Logrank test to compare the survival curves was significant 522 

at P<.0001 523 

 524 

f) The agreement between the GPA, ANSWERS and PoPLR criteria in identifying progression is shown 525 

in Figure 13. The agreement was ‘fair’ to ‘moderate’, with the following weighted Kappa values: GPA 526 

vs ANSWERS 0.34 (95% CI 0.25 to 0.42), GPA vs PoPLR 0.34 (95% CI 0.25 to 0.42) and ANSWERS 527 

vs PoPLR 0.58 (95% CI 0.50 to 0.67). 528 

 529 

 530 

SAMPLE SIZE CALCULATIONS 531 

Sample size calculations have been calculated for studies of 12 and 18 months per participant and for a 532 

definitive study (Type I error rate of 0.05, Type II error rate of 0.10) and a pilot study (Type I error rate of 0.10, 533 

Type II error rate of 0.20). The numbers given are for the total sample (both arms). 534 

 535 

1.  Sample size for a placebo-controlled study, with an effect size of that observed for latanoprost in the 536 

UKGTS (Table 9); assumed HR 0.50 and event rate in Placebo group of 0.76%/week (0.395 events/year). 537 

 538 

2. Sample size comparing an intervention half as effective as latanoprost (group 0) with an intervention 539 

with an effect size equivalent to latanoprost (Table 10); assumed HR 0.50 and event rate in group 0 of 540 

0.58%/week (0.304 events/year). 541 

 542 

3. Sample size comparing an intervention 75% as effective as latanoprost (group 0) with an intervention 543 

with an effect size equivalent to latanoprost (Table 11); assumed HR 0.75 and event rate in group 0 of 544 

0.50%/week (0.259 events/year). 545 

 546 

4. Sample size comparing an intervention with an effect size equivalent to latanoprost (group 0) with a 547 

combination treatment with an effect size equivalent to 2*latanoprost (latanoprost plus latanoprost) (Table 12); 548 

assumed HR 0.50 and event rate in group 0 of 0.41%/week (0.213 events/year). 549 

 550 

5. Sample size comparing an intervention with an effect size equivalent to latanoprost (group 0) with a 551 

combination treatment with an effect size equivalent to 1.5*latanoprost (latanoprost plus ½ latanoprost) (Table 552 

13); assumed HR 0.75 and event rate in group 0 of 0.41%/week (0.213 events/year). 553 

 554 
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 555 

 556 

 557 

 558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 

 571 

  572 
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DISCUSSION 573 

The results of this study show that, whereas the rate of RNFLT loss was faster in the placebo-treated eyes, the 574 

difference from the latanoprost-treated eyes did not reach statistical significance. However, the association of 575 

the rate of RNFLT change with incident VF loss approached significance and adding the rate of RNFLT change 576 

as a Bayesian prior in a model of VF progression made the model considerably more sensitive at identifying 577 

progression (for the same false positive rate) and more accurate in modelling the rate of progression. Despite 578 

this, adding the OCT structural data to the vision function data from VF testing did not provide greater 579 

separation between the treatment groups in the UKGTS. 580 

Identifying the best model for analysing times series of repeated data is challenging. We chose growth curve 581 

models as the most suitable. This analysis identified a highly statistically significant difference (P=.001) 582 

between treatment groups based on the rate of VF MD change, but did not identify a difference (P=.14) between 583 

treatment groups based on the rate of OCT RNFLT change. It is obvious that the signal compared to the ‘noise’ 584 

(variability) is lower in the OCT data than in the VF. The growth curve models assume a Normal distribution of 585 

the rate of change data. Figures 5 and 6 show that the data are not normally distributed. There are likely two 586 

underlying distributions – the noise, which may be approximately normally distributed and the signal (true rates 587 

of change) which may have a distribution approximating a Weibull probability density function (κ=0.5, λ=1; 588 

Figure 14), with many subjects changing slowly and fewer changing more rapidly. The effect of treatment on 589 

these slopes of change may be greatest on those changing the fastest, so that a parametric approach fails to 590 

identify that signal. A Mann-Whitney test identified that the distribution of RNFLT slopes approached statistical 591 

significance (P=.08), however, this analysis does not take account of the variance in the measurements giving 592 

rise to the slope estimates. It may be that non-parametric multilevel models may better detect the signal in the 593 

data.{Rights, 2016 #2331} That said, the principal problem is that the signal-to-noise ratio in the TD OCT data 594 

is low relative to that of the VF data. The variability characteristics of measurements from spectral-domain (SD) 595 

OCT images are much better, with the variability of SD OCT RNFLT measurements being about half that of TD 596 

OCT.
69

  597 

The Cox proportional hazards analysis, with OCT RNFLT as a predictor variable, demonstrated that the rate of 598 

RNFLT changed approached significance as a predictor of incident VF loss (P=.0722). Thus, the data in this 599 

study support that the treatment effect on RNFLT measurements is in the same direction as that on VF 600 

measurements and that the structural outcomes are associated with the VF loss, but the signal-to-noise ratio of 601 

the TD OCT measurements is insufficient for the measurements to have much utility in the context of study 602 

power. SD OCT, because of its better signal-to-noise characteristics, may be more useful. 603 

When the RNFLT rate of change is included as a Bayesian prior in the ANSWERS technique (structure-guided 604 

ANSWERS; sANSWERS), the accuracy of modelling the rate of VF loss, as estimated by the prediction of 605 

future VF loss, is improved over that of ANSWERS without the structural prior and the PoPLR technique. This 606 

implies that the RNFLT data contain information relevant to VF loss. Furthermore, when the false-positive rate 607 

was equated between techniques, sANSWERS had considerably greater sensitivity to identify progression than 608 

ANSWERS and PoPLR. 609 

The optimal outcome measure for a clinical trial should distinguish the treatment groups (the HR should indicate 610 

a large difference) and the proportion of participants with an outcome should be high, so the number of 611 

participants required for the trial is low and/or the duration of observation is short. However, the proportion of 612 

participants with an outcome should not be so high that the identification of a difference between treatments 613 

groups is precluded. The GPA criterion applied in the UKGTS was designed to have greater sensitivity in the 614 

24-2 VF than the conventional GPA criterion (three locations different from baseline at the 5% level on three 615 

consecutive occasions), which was designed for the 30-2 VF tests used in the Early Manifest Glaucoma Trial 616 

(EMGT)
70

; the 30-2 test has 40% more test locations than the 24-2, so the opportunity to detect progression is 617 

greater for a 30-2 VF. The false-positive rate of the UKGTS criterion in the RAPID data set was 5.7% (95% CI 618 

1.6% - 14.6%). The compares with an estimated false-positive rate of 2.6% over the course of 10 follow-up 619 

visits for the EMGT GPA criterion in the 24-2 VF.
59

 The UKGTS GPA criterion distinguished between the 620 

treatment groups well (the HR in the subset of UKGTS participants with OCT images was 0.543 (95% CI 0.312 621 

– 0.838), P=.006). The ANSWERS and PoPLR techniques distinguished similarly well, but with a greater 622 

number of events (Figure 13), which is a positive attribute. The false-positive rate for the ANSWERS, PoPLR 623 

and sANSWERS was set at 5% for each application. In clinical practice, as well as in clinical trials, such 624 

progression analyses are applied at each visit. Thus, the serial application of the analysis is likely to inflate the 625 

false-positive rate. The approach taken in this work to mitigate this effect was to evaluate a criterion for 626 

progression that required change by both ANSWERS and PoPLR. This resulted in very good separation 627 

between treatment groups (HR 0.472 (95% CI 0.333 – 0.668); P<.0001) and a moderately high proportion of 628 

participants with progression. 629 
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The sANSWERS technique, as shown by the estimate of sensitivity at a 5% false-positive rate, is considerably 630 

more sensitive than the other techniques. The consequence of this in the survival analysis is that so many 631 

participants are identified as progressing that the opportunity to distinguish the treatment groups is reduced. 632 

The sample size estimates show that a placebo-controlled trial of an intervention as effective as latanoprost can 633 

be undertaken with an observation period of only 12 months and as few participants as 502. However, sample 634 

sizes need to be much larger for studies comparing the impact of the addition of a treatment to latanoprost. For 635 

example, identifying the treatment benefit of an intervention half as effective as latanoprost when added to 636 

latanoprost requires 3029 participants observed over a period of 18 months. 637 

The sample size estimates are conservative, including both an initial drop-out rate of 10% and an additional rate 638 

of 25% per year over the duration of follow-up. These figures are based on the UKGTS, which had an especially 639 

onerous follow-up regime with many investigations and questionnaires at initial visits, as well as frequent visits. 640 

Although the frequency of visits would need to be maintained in future trials, the burden of tests could be 641 

reduced, with an anticipated beneficial impact on the loss to follow-up rate. 642 

Naturally, these sample size estimates relate to cohorts similar to the UKGTS cohort; that is newly-diagnosed 643 

subjects with early glaucoma and relatively low IOP. Including newly-diagnosed patients has advantages and 644 

disadvantages. An important advantage is that such patients have not had any previous disease-modifying 645 

treatment, so the placebo arm fairly reflects the natural history of untreated glaucoma and the treatment arm 646 

provides information on the disease modifying effect of a single intervention. However, even though the 647 

UKGTS protocol included steps to minimize the inclusion of subjects still learning the VF test,
63

 the mean MD 648 

slope in the treatment arm was slightly positive (0.03 dB/year), despite approximately 20% of latanoprost-649 

treated subjects being identified as having VF deterioration in the first year (by the ‘ANSWERS AND PoPLR’ 650 

criterion). This net slight improvement in VF MD suggests either that treatment induces visual field 651 

improvement in a proportion of patients or that VF learning effects are causing progressively more positive MD 652 

measurements over time. The former hypothesis was tested recently in the EMGT data and found not to be the 653 

case.
71

 If the latter hypothesis is the case, then the measured rates of VF likely underestimate the true rate of 654 

glaucoma-related VF loss. Thus the -0.29dB/year average rate of MD loss in the placebo-treated arm may be an 655 

under-estimate. Although the average IOP in the UKGTS cohort, at approximately 20mmHg,
12

 was less than 656 

1mmHg lower than the average IOP in the EMGT, the rate of MD loss in the untreated arm was half that in the 657 

EMGT (-0.29 dB/year in the UKGTS and -0.6 dB/year in the EMGT,
7
 later revised to -1.03 dB/year for a longer 658 

observation period
72

). The rate of VF loss was measured over a longer period in the EMGT, so the impact of VF 659 

learning (if occurring mostly over the initial part of the observation period) may be less than that on the UKGTS 660 

data. 661 

Quigley evaluated samples sizes for trials in glaucoma based on assumed rates of MD deterioration.
73

 The rates 662 

considered for the (treated) control group were all more than 50% greater than the observed mean rate in 663 

untreated patients in the UKGTS. Thus, the calculations may be over-optimistic, although the caveats stated 664 

above apply. Also, Quigley’s model assessed the mean and standard deviations of rates of change, whereas it is 665 

known that rate-of-change VF data are not normally distributed.
72

 His sample size estimate for a treatment 666 

reducing the rate of progression by 50% over that of a treated control group was 294 (323 adding a 10% initial 667 

loss to follow-up), although Type I and II error rates weren’t stated and the duration of observation was not 668 

defined. In the placebo group of the UKGTS, the mean rate of MD change was -0.29 dB/year (median -0.15 669 

dB/year), with a standard deviation of 1.94 dB/year. An observation period longer than the 2 years in the 670 

UKGTS would be required to reduce the standard deviation of the rate of change to the 1.04 dB/year assumed 671 

by Quigley. Our sample size estimate for the same scenario (50% reduction in the rate of progression over that 672 

of a treated control group), based on UKGTS trial data, for an observation period of 18 months, was 601 673 

participants (including the 10% initial loss to follow up). 674 

Because the IOP level was not a recruitment criterion, the UKGTS cohort is probably fairly representative of an 675 

unselected clinical glaucoma population and the results of the trial can, therefore, be generalized to patients in 676 

the clinic. A caveat is that no data were obtained on the IOP and degree of VF loss of subjects declining to 677 

participate in the UKGTS. If there had been a tendency for individuals with higher IOP and greater degrees of 678 

VF loss to decline participation, then the UKGTS cohort may have ‘milder’ disease than the unselected clinical 679 

glaucoma population. Study power is strongly influenced by the event rate (in this case, VF deterioration) and, 680 

therefore, study power may be increased (and the required sample size and observation duration may be 681 

reduced) by enriching the study population with patients more likely to achieve a deterioration event. This can 682 

be done by selecting patients on the basis of risk factors for deterioration, such as higher IOP or the presence of 683 

optic disc haemorrhages. Whereas doing this may reduce the required sample size or observation duration, there 684 

are potential disadvantages. The outcome of such studies can only be generalized to similar patients and there is 685 

a risk that a treatment effect may be incorrectly estimated if the treatment is more, or less, effective in the trial 686 

cohort compared to the target clinic population. Disc haemorrhages, for example, are well known to be a risk 687 

factor for glaucoma deterioration,
74,75

 and, although IOP-lowering may be beneficial in these eyes,
76

 the 688 
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incidence of disc haemorrhages does not seem to be affected by IOP-lowering treatment.
77

 If disc haemorrhages 689 

represent, at least in part, a non-IOP related risk, then enriching a population with patients with a history of disc 690 

haemorrhages in a study assessing the effect of IOP-lowering may not increase study power and may, in fact, 691 

have the opposite effect. 692 

LIMITATIONS AND FURTHER WORK 693 

The major limitation in these data is the imaging technology that was available at the time. The finding of little 694 

benefit to trial power may relate to the low signal-to-noise ratio of the TD OCT RNFLT measurements. Future 695 

trials assessing the potential of SD OCT are warranted. 696 

The ANSWERS, PoPLR and sANSWERS progression criteria were not adjusted to account for the impact of  697 

multiple testing in time on the false-positive rate. Further work will explore the adjusting of the significance 698 

criterion on the separation between treatment groups and the proportion of subjects identified as progression. An 699 

additional ‘rate of change’ threshold criterion may also be beneficial. 700 

In searching for the appropriate statistical techniques to evaluate the difference in repeated measures over time, 701 

non-parametric approaches may be helpful.{Rights, 2016 #2331} The joint modelling of incident VF loss with 702 

the rate of change in structural measurements, as suggested by Medeiros,
48

 may be helpful and non-parametric 703 

approached need to be explored.
78,79

 704 

A limitation that is hard to address when evaluating alternative progression criteria in real-world trial data is that 705 

the data are censored as a consequence of the progression criterion that were applied in the trial – once a 706 

participant is identified as progressing (s)he exits the study and the data series is curtailed. If an alternative 707 

progression criterion fails to identify progression in a censored series, it is not possible to know whether that 708 

criterion may have identified progression in that participant had the data not been censored. The only way 709 

around this problem is to build virtual models of progressing patients. 710 

The estimate of specificity for the UKGTS GPA criterion was made in 70 RAPID study participants, so the 711 

estimate is fairly imprecise. Permuting the VF series from these 70 participants may increase the precision. 712 

However, it is presently not possible to permute VF data and analyse GPA progression with the GPA software.  713 

 714 

  715 
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APPENDIX 716 

The equation for a longitudinal model allowing for the interaction between rate of change and intervention 717 

group is shown below: 718 

 719 

𝑦𝑖𝑗 =  𝛽0 +  𝛽1𝑡𝑖𝑗 + 𝛽2𝑟𝑎𝑛𝑑𝑗 + 𝛽3𝑡𝑖𝑗𝑟𝑎𝑛𝑑𝑗 + 𝑢0𝑗 +  𝑢1𝑗𝑡𝑖𝑗 +  𝜀𝑖𝑗 

 720 

i = occasion of repeated measure (level 1 indicator) 721 

j = participant (level 2 indicator) 722 

𝑦𝑖𝑗 = Response of outcome at occasion i for participant j 723 

𝑡𝑖𝑗 = time of occasion i for participant j 724 

𝑟𝑎𝑛𝑑𝑗  = Randomisation group for participant j 725 

𝛽0 = Overall intercept, expected value of y when 𝑡𝑖𝑗 =0 and rand=0 726 

𝛽1 = Average regression coefficient of time for patients in the placebo group (rand=0) 727 

𝛽2 = Treatment effect/difference between treatments when 𝑡𝑖𝑗 =0 728 

𝛽3 = Interaction coefficient between time and intervention group 729 

𝑢0𝑗 = Individual-specific (between participants) random effect of the intercept (allows each patient to have their 730 

own intercept) 731 

𝑢1𝑗 = Individual-specific (between participants) random effect of the time coefficient (random slope: allows 732 

each patient to have their own slope) 733 

𝜀𝑖𝑗 = occasion-specific (within participant) residual 734 

 735 

In Stata, the VF model specified was: 736 

xtmixed md i.rand##c.ytime || studyno: ytime, cov(uns) 737 

md = mean deviation; rand = randomised treatment (reference group = placebo); ytime = continuous time in 738 

years between visual field measurements 739 

The OCT model specified was: 740 

xtmixed mean_avg_thickness i.rand##c.ytime || studyno: ytime, cov(uns) 741 

mean_avg_thickness = average RNFL thickness from repeats within visit; rand = randomised treatment 742 

(reference group = placebo); ytime = continuous time in years between OCT measurements; 743 

 744 

VF measurements were repeated at several visits (1, 2, 7, 8 and 11); the intended purpose was to obtain a more 745 

precise estimate of the slope. This resulted in a 3-level structure of the data; tests at level 1, nested within visits 746 

at level 2, nested within participants at level 3 (Figure 2a). 747 

In a longitudinal model, the measurement occasion and therefore its indicator (e.g. time) form level 1 units, 748 

however, available VF data indicated only the day of follow-up visit (level 2) rather than the exact time of each 749 

test, so that the time of the two measurements could not be distinguished at level 1. Therefore, we estimated the 750 

time tests were taken, based on knowledge of the study protocol (on average there was likely to be 2.5 hours 751 

between VF tests that were taken on the same day). We used the variable VF_id to order these repeat visual field 752 

tests within a visit and added 2.5 hours of time between visual field tests. Thus the data could now be 753 

restructured to 2-levels (Figure 2b).  754 

OCT scans were taken at repeated follow-up visits. Within each visit, typically 3 scans were taken (5 at baseline 755 

and last visit), with three repeat instances within scans (fast RNFL protocol). Leading to a 4-level structure; 756 

instances at level 1, nested within scans at level 2, nested within visits at level 3, nested within participants at 757 

level 4 (Figure 3a). The three repeat instances within scans were averaged to provide a single scan result 758 

(mimicking the OCT software output). The time of each scan was recorded in the data, so we were able to 759 

restructure the data into two levels (Figure 3b) according to actual scan time. 760 

 761 
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Table 1: Schedule of visual field testing and imaging; number of tests/images at each visit (HRT: Heidelberg retina 

tomography, VCC: variable cornea compensation, OCT: optical coherence tomography) 

 

 

 

 

  

 Visit 

1 

Mont

h0 

Visit 

2 

Mont

h2 

Visit 

3 

Mont

h4 

Visit 

4 

Mont

h7 

Visit 5 

Month 

10 

Visit 

6 

Mont

h13 

Visit 

7 

Mont

h16 

Visit 8 

Month 

18 

Visit 

9 

Mont

h20 

Visit 

10 

Month 

22 

Visit 

11 

Month 

24 

Visual Fields 2 2 1 1 1 1 2 2 1 1 2 

HRT 3 2 1 1 1 1 2 3 1 1 1 

Optic disc 

photography 

1 1 1 1 1 1 1 1 1 1 1 

GDxVCC 3 2 1 1 1 1 2 3 1 1 1 

OCT 5 3 3 3 3 3 3 5 3 3 5 
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Placebo  

(n = 178 participants; 264 eyes) 

Latanoprost  

(n = 183 participants; 264 eyes) 

 Median 5
th

 to 95
th

 percentile Median 5
th

 to 95
th

 percentile 

Age (years) 66.3 47.3 – 81.1 65.7 44.7 – 79.6 

IOP (mmHg) 19.0 12.0 – 28.0 19.0 12.5 – 27.0 

SAP MD (dB) -2.73 -10.60 – -0.17 -2.57 -10.98 – -0.02 

RNFL thickness (μ) 75.3 48.2 – 106.6 77.2 56.1 – 101.3 

Visual acuity (Snellen) 6/6 6/5 – 6/9 6/6 6/5 – 6/12 

Refractive error (D) 0.00 -6.85 – 3.13 -0.13 -6.13 – 2.29 

 Number % Number % 

Sex (female) 86 48 79 43 

Ethnic origin     

     White 153 86 165 90 

     Black 15 8 8 4 

     Indian subcontinent 4 2 8 4 

     Other/unknown 6 3 2 1 

 

Table 2. Principal baseline characteristics for the subset of the UK Glaucoma Treatment Study cohort with OCT 

images 

Age, sex and ethnic origin are subject variables; IOP and SAP MD and RNFL thickness are eye variables. Data are 

provided for eligible eyes. 

D = diopters; dB = decibel; mmHg = millimetres of mercury; IOP = baseline (pre-treatment) intraocular pressure; 

MD = baseline (visit 1) mean deviation; SAP = standard automated perimetry 
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 (n = 72 participants; 114 eyes) 

 Median 5
th

 to 95
th

 percentile 

Age (years) 70.3 50.0 – 85.6 

IOP (mmHg) 14 8.0 – 21.0 

SAP MD (dB) -4.17 -14.22 – 0.88 

RNFL thickness (μ) 69.0 45.1 – 95.6 

Visual acuity (Snellen) 6/6 6/4 – 6/12 

Refractive error (D) -0.13 -7.48 – 2.95 

 Number % 

Sex (female) 42 58 

Ethnic origin   

     White 48 67 

     Black 16 22 

     Indian subcontinent 4 6 

     Other/unknown 4 6 

 

Table 3. Principal baseline characteristics for the ‘RAPID’ test retest cohort 

Age, sex and ethnic origin are subject variables; IOP and SAP MD and RNFL thickness are eye variables. Data are 

provided for eligible eyes. 

D = diopters; dB = decibel; mmHg = millimetres of mercury; IOP = intraocular pressure; MD = mean deviation; 

SAP = standard automated perimetry  
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Parameter Estimate 95% confidence interval p-value 

Constant -4.33 (-4.87 to -3.8) <0.001 

time -0.34 (-0.5 to -0.18) <0.001 

latanoprost 0.61 (-0.16 to 1.37) 0.12 

time x latanoprost 0.38 (0.16 to 0.61) 0.001 

    

 

  

intercept variance 10.39 (8.77 to 12.31)   

time variance 0.54 (0.41 to 0.72)   

intercept-time covariance 0.59 (0.22 to 0.95)   

Within individual variance 1.33 (1.26 to 1.39)   

 

Table 4: Estimates of rate of change in visual field mean deviation allowing interaction with intervention groups, for 

patients eligible for the OCT analysis 

 

 

 

Parameter Estimate 95% confidence interval 

Placebo intercept -4.33 (-4.87 to -3.8) 

Placebo slope -0.34 (-0.5 to -0.18) 

Latanoprost intercept -3.73 (-4.27 to -3.19) 

Latanoprost slope 0.05 (-0.11 to 0.2) 

 

Table 5: Visual field mean deviation intercept and slope by intervention 
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Parameter Estimate 95% confidence interval p- value 

Constant 75.19 (72.8 to 77.58) <0.001 

time -1.70 (-2.27 to -1.12) <0.001 

latanoprost 1.58 (-1.81 to 4.97) 0.36 

time x latanoprost 0.60 (-0.2 to 1.4) 0.14 

    

 

  

intercept variance 210.00 (177.83 to 247.99)   

time variance 8.18 (6.41 to 10.43)   

intercept-time covariance 2.38 (-3.43 to 8.2)   

Within individual variance 16.89 (16.32 to 17.49)   

 

Table 6: Estimates of rate of change in average retinal nerve fiber layer thickness allowing interaction with 

intervention groups  

 

 

 

Parameter Estimate 95% confidence interval 

Placebo intercept 75.19 (72.8 to 77.58) 

Placebo slope -1.7 (-2.27 to -1.12) 

Intervention intercept 76.77 (74.36 to 79.17) 

intervention slope -1.1 (-1.65 to -0.54) 

  
 Table 7: Retinal nerve fiber layer thickness intercept and slope by intervention  

 

 

Covariate b SE Wald P Exp(b) 95% CI of Exp(b) 

Age 0.01885 0.01357 1.9309 0.1647 1.0190 0.9923 to 1.0465 

Allocation -0.7446 0.2865 6.7547 0.0094 0.4749 0.2709 to 0.8327 

IOP 0.05189 0.02872 3.2655 0.0708 1.0533 0.9956 to 1.1142 

mean_MD 0.08614 0.04930 3.0533 0.0806 1.0900 0.9896 to 1.2005 

OCT_RNFL_slope -0.07104 0.03952 3.2315 0.0722 0.9314 0.8620 to 1.0064 

 

Table 8: Cox proportional hazards model for progression-free survival  
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Observation period Definitive trial Pilot study 

18 months 353 207 

12 months 502 294 

Table 9. Sample size calculation for a placebo-controlled study, with an effect size of that observed for latanoprost 

in the UK Glaucoma Treatment Study (includes 10% initial loss to follow-up and additional participant attrition of 

0.5% per week) 

 

 

Observation period Definitive trial Pilot study 

18 months 440 257 

12 months 633 371 

Table 10. Sample size calculation for a study comparing an intervention half as effective as latanoprost with an 

intervention with an effect size equivalent to latanoprost (includes 10% initial loss to follow-up and additional 

participant attrition of 0.5% per week) 

 

 

Observation period Definitive trial Pilot study 

18 months 2552 1502 

12 months 3689 2171 

Table 11. Sample size calculation for a study comparing an intervention 75% as effective as latanoprost (group 0) 

with an intervention with an effect size equivalent to latanoprost (includes 10% initial loss to follow-up and 

additional participant attrition of 0.5% per week) 

 

 

Observation period Definitive trial Pilot study 

18 months 601 352 

12 months 878 515 

Table 12. Sample size calculation for a study comparing an intervention with an effect size equivalent to latanoprost 

with a combination treatment with an effect size equivalent to 2*latanoprost (includes 10% initial loss to follow-up 

and additional participant attrition of 0.5% per week) 

 

 

Observation period Definitive trial Pilot study 

18 months 3029 1783 

12 months 4417 2599 

Table 13. Sample size calculation for a study comparing an intervention with an effect size equivalent to latanoprost 

with a combination treatment with a combination treatment with an effect size equivalent to 1.5*latanoprost 

(includes 10% initial loss to follow-up and additional participant attrition of 0.5% per week) 
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FIGURES AND LEGENDS 

 

Figure 1: Flow chart for subject and test data selection. Each OCT scan is comprised of 3 peripapillary sweeps; for 

the purpose of this analysis, each sweep is counted as an image. 

 

Figure 2: Visual field data structure for the growth curve models 

 

Figure 3: OCT data structure for the growth curve models 

 

Figure 5: Distribution of the rates of visual field mean deviation change for the subset of UK Glaucoma Treatment 

Study participants with OCT images (placebo, 143 participants; latanoprost, 141 participants) 

 

Figure 6: Distribution of the rates of optical coherence tomography retinal nerve fiber layer thickness change for the 

subset of UK Glaucoma Treatment Study participants with OCT images (placebo, 143 participants; latanoprost, 141 

participants) 

 

Figure 7: Kaplan-Meier survival curves for the subset of UK Glaucoma Treatment Study participants with OCT 

images applying the Guided Progression Analysis criterion for progression.  

 

Figure 8: The ‘hit rate’ is the proportion of UK Glaucoma Treatment Study participants identified as deteriorating at 

criterion false positive rates between 0 and 15%. Analyses are shown for ANSWERS, PoPLR and sANSWERS 

models. Data are show for series intervals (baseline to final observation) of up to 7, 13, 18 and 22 months. The 

shorter series are a subset of the longer series, so that an eye identified as ‘progressed’ earlier in the series is carried 

forward as ‘progressed’ in the later series. Data are shown for 445 eyes of 353 participants. 

 

Figure 9: Kaplan-Meier survival curves for the subset of UK Glaucoma Treatment Study participants with OCT 

images applying the ANSWERS criterion for progression. 

 

Figure 10: Kaplan-Meier survival curves for the subset of UK Glaucoma Treatment Study participants with OCT 

images applying the PoPLR criterion for progression. 

 

Figure 11: Kaplan-Meier survival curves for the subset of UK Glaucoma Treatment Study participants with OCT 

images applying the structure-guided ANSWERS (sANSWERS) criterion for progression. 

 

Figure 12: Kaplan-Meier survival curves for the subset of UK Glaucoma Treatment Study participants with OCT 

images applying the ‘ANSWERS AND PoPLR’ criterion for progression. 

 

Figure 13: Venn diagram illustrating the agreement for UK Glaucoma Treatment Study participants identified as 

progressing by Guided Progression Analysis, ANSWERS and PoPLR criteria for progression. The numbers 

represent the number of participants in each category. 

 

Figure 14: illustration of a Weibull probability density function (κ=0.5, λ=1)  
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Figure 1 
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