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The latest techniques from Neural Networks and Support Vector Machines (SVM) are used to investigate 
geometric properties of Complete Intersection Calabi–Yau (CICY) threefolds, a class of manifolds that 
facilitate string model building. An advanced neural network classifier and SVM are employed to (1) learn 
Hodge numbers and report a remarkable improvement over previous efforts, (2) query for favourability, 
and (3) predict discrete symmetries, a highly imbalanced problem to which both Synthetic Minority 
Oversampling Technique (SMOTE) and permutations of the CICY matrix are used to decrease the class 
imbalance and improve performance. In each case study, we employ a genetic algorithm to optimise the 
hyperparameters of the neural network. We demonstrate that our approach provides quick diagnostic 
tools capable of shortlisting quasi-realistic string models based on compactification over smooth CICYs 
and further supports the paradigm that classes of problems in algebraic geometry can be machine 
learned.

© 2018 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

String theory supplies a framework for quantum gravity. Finding 
our universe among the myriad of possible, consistent realisations 
of a four dimensional low-energy limit of string theory constitutes 
the vacuum selection problem. Most of the vacua that populate 
the string landscape are false in that they lead to physics vastly 
different from what we observe in Nature. We have so far been 
unable to construct even one solution that reproduces all of the 
known features of particle physics and cosmology in detail. The 
challenge of identifying suitable string vacua is a problem in big 
data that invites a machine learning approach.

The use of machine learning to study the landscape of vacua 
is a relatively recent development. Several avenues have already 
yielded promising results. These include Neural Networks [1–4], 
Linear Regression [5], Logistic Regression [5,4], Linear Discriminant 
Analysis, k-Nearest Neighbours, Classification and Regression Tree, 
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Naive Bayes [5], Support Vector Machines [5,4], Evolving Neural 
Networks [6], Genetic Algorithms [7], Decision Trees and Random 
Forest [4], Network Theory [8].

Calabi–Yau threefolds occupy a central rôle in the study of the 
string landscape. In particular, Standard Model like theories can 
be engineered from compactification on these geometries. As such, 
Calabi–Yau manifolds have been the subject of extensive study over 
the past three decades. Vast datasets of their properties have been 
constructed, warranting a deep-learning approach [1,2], wherein a 
paradigm of machine learning computational algebraic geometry 
has been advocated. In this paper, we employ feedforward neural 
networks and support vector machines to probe a subclass of these 
manifolds to extract topological quantities. We summarise these 
techniques below.

• Inspired by their biological counterparts, artificial Neural Net-
works constitute a class of machine learning techniques capa-
ble of dealing with both classification and regression problems. 
In practice, they can be thought of as highly complex functions 
acting on an input vector to produce an output vector. There 
are several types of neural networks, but in this work we em-
ploy feedforward neural networks, wherein information moves 
 BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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in the forward direction from the input nodes to the output 
nodes via hidden layers.

• Support Vector Machines (SVMs), in contrast to neural net-
works, take a more geometric approach to machine learning. 
SVMs work by constructing hyperplanes that partition the fea-
ture space and can be adapted to act as both classifiers and 
regressors.

The manifolds of interest to us are the Complete Intersection 
Calabi–Yau threefolds (CICYs), which we review in the following 
section. The CICYs generalise the famous quintic as well as Yau’s 
construction of the Calabi–Yau threefold embedded in P3×P

3 [9]. 
The simplicity of their description makes this class of geometries 
particularly amenable to the tools of machine learning. The choice 
of CICYs is however mainly guided by other considerations. First, 
the CICYs constitute a sizeable collection of Calabi–Yau manifolds 
and are in fact the first such large dataset in algebraic geometry. 
Second, many properties of the CICYs have already been com-
puted over the years, like their Hodge numbers [9,10] and discrete 
isometries [11–14]. The Hodge numbers of their quotients by freely 
acting discrete isometries have also been computed [11,15–18]. In 
addition, the CICYs provide a playground for string model building. 
The construction of stable holomorphic vector [19–23] and monad 
bundles [21] over smooth favourable CICYs has produced several 
quasi-realistic heterotic string derived Standard Models through in-
termediate GUTs. These constitute another large dataset based on 
these manifolds.

Furthermore, the Hodge numbers of CICYs were recently shown 
to be machine learnable to a reasonable degree of accuracy using a 
primitive neural network of the multi-layer perceptron type [1]. In 
this paper, we consider whether a more powerful machine learn-
ing tool (like a more complex neural network or an SVM) yields 
significantly better results. We wish to learn the extent to which 
such topological properties of CICYs are machine learnable, with 
the foresight that machine learning techniques can become a pow-
erful tool in constructing ever more realistic string models, as well 
as helping understand Calabi–Yau manifolds in their own right. Ex-
panding upon the primitive neural network in [1], and with the 
foresight that large datasets will likely benefit from deep learning, 
we turn to neural networks. We choose to contrast this technique 
with SVMs, which are particularly effective for smaller datasets 
with high dimensional data, such as the dataset of CICY threefolds.

Guided by these considerations, we conduct three case stud-
ies over the class of CICYs. We first apply SVMs and neural net-
works to machine learn the Hodge number h1,1 of CICYs. We then 
attempt to learn whether a CICY is favourably embedded in a 
product of projective spaces, and whether a given CICY admits a 
quotient by a freely acting discrete symmetry.

The paper is structured as follows. In Section 2, we provide a 
brief overview of CICYs and the datasets over them relevant to this 
work. In Section 3, we discuss the metrics for our machine learning 
paradigms. Finally, in Section 4, we present our results.

2. The CICY dataset

A CICY threefold is a Calabi–Yau manifold embedded in a prod-
uct of complex projective spaces, referred to as the ambient space. 
The embedding is given by the zero locus of a set of homogeneous 
polynomials over the combined set of homogeneous coordinates of 
the projective spaces. The deformation class of a CICY is then cap-
tured by a configuration matrix (1), which collects the multi-degrees 
of the polynomials:
X =
P

n1

...

P
nm

⎡
⎢⎢⎢⎣

q1
1 . . . q1

K

...
. . .

...

qm
1 . . . qm

K

⎤
⎥⎥⎥⎦ , qr

a ∈ Z≥0. (1)

In order for the configuration matrix in (1) to describe a CICY 
threefold, we require that 

∑
rnr − K = 3. In addition, the vanish-

ing of the first Chern class is accomplished by demanding that ∑
a qr

a = nr +1, for each r ∈ {1, . . . , m}. There are 7890 CICY config-
uration matrices in the CICY list (available online at [24]). At least 
2590 of these are known to be distinct as classical manifolds.

The Hodge numbers hp,q of a Calabi–Yau manifold are the 
dimensions of its Dolbeault cohomology classes H p,q . A related 
topological quantity is the Euler characteristic χ . We define these 
quantities below:

hp,q = dim H p,q, χ =
3∑

p,q=0

(−1)p+qhp,q, p,q ∈ {0,1,2,3}

(2)

For a smooth and connected Calabi–Yau threefold with holon-
omy group SU (3), the only unspecified Hodge numbers are h1,1

and h2,1. These are topological invariants that capture the di-
mensions of the Kähler and the complex structure moduli spaces, 
respectively. The Hodge numbers of all CICYs are readily acces-
sible [24]. There are 266 distinct Hodge pairs (h1,1, h2,1) of the 
CICYs, with 0 ≤ h1,1 ≤ 19 and 0 ≤ h2,1 ≤ 101. From a model build-
ing perspective, knowledge of the Hodge numbers is imperative to 
the construction of a string derived Standard Model.

If the entire second cohomology class of the CICY descends 
from that of the ambient space A = P

n1×. . .×P
nm , then we iden-

tify the CICY as favourable. There are 4874 favourable CICYs [24]. 
As an aside, we note that it was shown recently that all but 
48 CICY configuration matrices can be brought to a favourable 
form through ineffective splittings [25]. The remaining can be seen 
to be favourably embedded in a product of del Pezzo surfaces. 
The favourable CICY list is also available online [26], although in 
this paper we will not be concerned with this new list of CICY 
configuration matrices. The favourable CICYs have been especially 
amenable to the construction of stable holomorphic vector and 
monad bundles, leading to several quasi-realistic heterotic string 
models.

Discrete symmetries are one of the key components of string 
model building. The breaking of the GUT group to the Standard 
Model gauge group proceeds via discrete Wilson lines, and as such 
requires a non-simply connected compactification space. Prior to 
the classification efforts [11,12], almost all known Calabi–Yau man-
ifolds were simply connected. The classification resulted in identi-
fying all CICYs that admit a quotient by a freely acting symmetry, 
totalling 195 in number, 2.5% of the total, creating a highly unbal-
anced dataset. 31 distinct symmetry groups were found, the largest 
being of order 32. Counting inequivalent projective representations 
of the various groups acting on the CICYs, a total of 1695 CICY 
quotients were obtained [24].

A CICY quotient might admit further discrete symmetries that 
survive the breaking of the string gauge group to the Standard 
Model gauge group. These in particular are phenomenologically in-
teresting since they may address questions related to the stability 
of the proton via R-symmetries and the structure of the mixing 
matrices via non-Abelian discrete symmetries. A classification of 
the remnant symmetries of the 1695 CICY quotients found that 
381 of them had nontrivial remnant symmetry groups [13], leading 
to a more balanced dataset based on symmetry. We will however 
focus on the first symmetry dataset available at [24] purely on the 
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grounds that the size of the dataset is itself much larger than the 
latter dataset.

3. Benchmarking models

In order to benchmark and compare the performance of each 
machine learning approach we adapt in this work, we use cross 
validation and a range of other statistical measures. Cross vali-
dation means we take our entire data set and split it into train-
ing and validation sets. The training set is used to train models 
whereas the validation set remains entirely unseen by the machine 
learning algorithm. Accuracy measures computed on the training 
set thus give an indication of the model’s performance in recalling 
what it has learned. More importantly, accuracy measures com-
puted against the validation set give an indication of the models 
performance as a predictor.

For regression problems we make use of both root mean square 
error (RMS) and the coefficient of determination (R2) to assess per-
formance:

RMS :=
(

1

N

N∑
i=1

(ypred
i − yi)

2)

)1/2

,

R2 := 1 −
∑

i(yi − ypred
i )2∑

i(yi − ȳ)2
,

(3)

where yi and ypred
i stand for actual and predicted values, with i

taking values in 1 to N , and ȳ stands for the average of all yi . 
A rudimentary binary accuracy is also computed by rounding the 
predicted value and counting the results in agreement with the 
data. As this accuracy is a binary success or failure, we can use 
this measure to calculate a Wilson confidence interval. Define

ω± := p + z2

2n

1 + z2

n

± z

1 + z2

n

(
p(1 − p)

n
+ z2

4n2

)1/2

, (4)

where p is the probability of a successful prediction, n the number 
of entries in the dataset, and z the probit of the normal distribution 
(e.g., for a 99% confidence interval, z = 2.575829). The upper and 
the lower bounds of this interval are denoted by WUB and WLB 
respectively.

For classifiers, we have addressed two distinct types of prob-
lems in this paper, namely balanced and imbalanced problems. 
Balanced problems are where the number of elements in the true 
and false classes are comparable in size. Imbalanced problems, or 
the so called needle in a haystack, are the opposite case. It is impor-
tant to make this distinction, since models trained on imbalanced 
problems can easily achieve a high accuracy, but accuracy would 
be a meaningless metric in this context. For example, consider 
the case where only ∼ 0.1% of the data is classified as true. In 
minimising its cost function on training, a neural network could 
naively train a model which just predicts false for any input. Such 
a model would achieve a 99.9% accuracy, but it is useless in finding 
the special few cases that we are interested in. A different measure 
is needed in these cases. For classifiers, the possible outcomes are 
summarised by the confusion matrix of Table 1, whose elements we 
use to define several performance metrics:

TPR := tp

tp + f n
, FPR := f p

f p + tn
, (5)

Accuracy := tp + tn

tp + tn + f p + f n
, Precision := tp

tp + f p
,

Table 1
Confusion matrix.

Actual

True False

Predicted True True Positive (tp) False Positive ( f p)
Classification False False Negative ( f n) True Negative (tn)

where, TPR (FPR) stand for True (False) Positive Rate, the for-
mer also known as recall. For balanced problems, accuracy is 
the go-to performance metric, along with its associated Wilson 
confidence interval. However, for imbalanced problems, we use 
F -values and AUC. We define,

F := 2
1

Recall + 1
Precision

, (6)

while AUC is the area under the receiver operating characteristic
(ROC) curve that plots TPR against FPR. F -values vary from 0 to 1, 
whereas AUC ranges from 0.5 to 1. We will discuss these in greater 
detail in Section 4.3.2.

4. Case studies

We conduct three case studies over the CICY threefolds. Given 
a CICY threefold X , we explicitly try to learn the topological quan-
tity h1,1(X), the Hodge number that captures the dimension of the 
Kähler structure moduli space of X . We then attempt a (balanced) 
binary query, asking whether a given manifold is favourable. Fi-
nally, we attempt an (imbalanced) binary query about whether a 
CICY threefold X, admits a quotient X/G by a freely acting dis-
crete isometry group G . In all the case studies that follow, neu-
ral networks were implemented using the Keras Python package 
with TensorFlow backend. SVMs were implemented by using the 
quadratic programming Python package Cvxopt to solve the SVM 
optimisation problem.

4.1. Machine learning Hodge numbers

As noted in Section 2, the only independent Hodge numbers of 
a Calabi–Yau threefold are h1,1 and h2,1. We attempt to machine 
learn these. For a given configuration matrix (1) describing a CICY, 
the Euler characteristic χ = 2(h1,1 − h2,1) can be computed from 
a simple combinatorial formula [27]. Thus, it is sufficient to learn 
only one of the Hodge numbers. We choose to learn h1,1 since it 
takes values in a smaller range of integers than h2,1.

4.1.1. Architectures
To determine the Hodge numbers we use regression machine 

learning techniques to predict a continuous output with the CICY 
configuration matrix (1) as the input. The optimal SVM hyper-
parameters were found by hand to be a Gaussian kernel with 
σ = 2.74, C = 10, and ε = 0.01. Optimal neural network hyper-
parameters were found with a genetic algorithm, leading to an 
overall architecture of five hidden layers with 876, 461, 437, 929, 
and 404 neurons, respectively. The algorithm also found that a 
ReLU (rectified linear unit) activation layer and dropout layer of 
dropout 0.2072 between each neuron layer give optimal results.

A neural network classifier was also used. To achieve this, 
rather than using one output layer as is the case for a binary clas-
sifier or regressor, we use an output layer with 20 neurons (since 
h1,1 ∈ (0, 19)) with each neuron mapping to 0/1, the location of 
the 1 corresponding to a unique h1,1 value. Note this is effectively 
adding extra information to the input as we are explicitly fixing 
the range of allowed h1,1 s. For a large enough training data size 
this is not an issue, as we could extract this information from the 
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Fig. 1. Hodge learning curves generated by averaging over 100 different random 
cross validation splits using a cluster. The accuracy quoted for the 20 channel 
(since h1,1 ∈ [0, 19]) neural network classifier is for complete agreement across all 
20 channels.

training data (choose the output to be the largest h1,1 from the 
training data — for a large enough sample it is likely to contain 
h1,1 = 19). Moreover, for a small training data size, if only h1,1 val-
ues less than a given number are present in the data, the model 
will not be able to learn these h1,1 values anyway — this would 
happen with a continuous output regression model as well.

The genetic algorithm is used to find the optimal classifier ar-
chitecture. Surprisingly, it finds that adding several convolution 
layers led to the best performance. This is unexpected as convo-
lution layers look for features which are translationally or rota-
tionally invariant (for example, in number recognition they may 
learn to detect rounded edges and associate this with a zero). Our 
CICY configurations matrices do not exhibit these symmetries, and 
this is the only result in the paper where convolution layers lead 
to better results rather than worse. The optimal architecture was 
found to be be four convolution layers with 57, 56, 55, and 43 fea-
ture maps, respectively, all with a kernel size of 3×3. These layers 
were followed by two hidden fully connected layers and the output 
layer, the hidden layers containing 169 and 491 neurons. ReLU ac-
tivations and a dropout of 0.5 were included between every layer, 
with the last layer using a sigmoid activation. Training with a lap-
top computer’s1 CPU took less than 10 minutes and execution on 
the validation set after training takes seconds.

4.1.2. Outcomes
Our results are summarised in Figs. 1 and 2 and in Table 2. 

Clearly, the validation accuracy improves as the training set in-
creases in size. The histograms in Fig. 2 show that the model 
slightly overpredicts at larger values of h1,1.

We contrast our findings with the preliminary results of a pre-
vious case study by one of the authors [1,2] in which a Mathemat-
ica implemented neural network of the multi-layer perceptron type 
was used to machine learn h1,1. In this work, a training data size 
of 0.63 (5000) was used, and a test accuracy of 77% was obtained. 
Note this accuracy is against the entire dataset after seeing only 
the training set, whereas we compute validation accuracies against 
only the unseen portion after training. In [1] there were a total 
of 1808 errors, so assuming the training set was perfectly learned 
(reasonable as training accuracy can be arbitrarily high with over-
fitting), this translates to a validation accuracy of 0.37. For the 
same sized cross validation split, we obtain a validation accuracy 
of 0.81 ± 0.01, a significant enhancement. Moreover, it should be 

1 Laptop specs: Lenovo Y50, i7-4700HQ, 2.4 GHz quad core; 16 GB RAM.
emphasized that whereas [1,2] did a binary classification of large 
vs. small Hodge numbers, here the actual Hodge number h1,1 is 
learned, which is a much more sophisticated task.

4.2. Machine learning favourable embeddings

Following from the discussion in Section 2, we now study the 
binary query: given a CICY threefold configuration matrix (1), can 
we deduce if the CICY is favourably embedded in the product of 
projective spaces? Already we could attempt to predict if a con-
figuration is favourable with the results of Section 4.1 by predict-
ing h1,1 explicitly and comparing it to the number of components 
of A. However, we rephrase the problem as a binary query, taking 
the CICY configuration matrix as the input and return 0 or 1 as the 
output.

An optimal SVM architecture was found by hand to use a Gaus-
sian kernel with σ = 3 and C = 0. Neural network architecture was 
also found by hand, as a simple one hidden layer neural network 
with 985 neurons, ReLU activation, dropout of 0.46, and sigmoid 
activation at the output layer gave best results.

Results are summarised in Fig. 3 and Table 3. Remarkably, af-
ter seeing only 5% of the training data (400 entries), the models 
are capable of extrapolating to the full dataset with an accuracy 
∼ 80%. This analysis took less than a minute on a laptop computer. 
Since computing the Hodge numbers directly was a time consum-
ing and nontrivial problem [27], this is a prime example of how 
applying machine learning could shortlist different configurations 
for further study in the hypothetical situation of an incomplete 
dataset.

4.3. Machine learning discrete symmetries

The symmetry data resulting from the classifications [11,12]
presents various properties that we can try to machine learn. An 
ideal machine learning model would be able to replicate the classi-
fication algorithm, giving us a list of every symmetry group which 
is a quotient for a given manifold. However, this is a highly im-
balanced problem, as only a tiny fraction of the 7890 CICYs would 
admit a specific symmetry group. Thus, we first try a more basic 
question, given a CICY configuration, can we predict if the CICY ad-
mits any freely acting group. This is still most definitely a needle 
in a haystack problem as only 2.5% of the data belongs to the true 
class. In an effort to overcome this large class imbalance, we gen-
erate new synthetic data belonging to the positive class. We try 
two separate methods to achieve this — sampling techniques and
permutations of the CICY matrix.

Sampling techniques preprocess the data to reduce the class 
imbalance. For example, downsampling drops entries randomly 
from the false class, increasing the fraction of true entries at the 
cost of lost information. Upsampling clones entries from the true 
class to achieve the same effect. This is effectively the same as as-
sociating a larger penalty (cost) to misclassifying entries in the mi-
nority class. Here, we use Synthetic Minority Oversampling Tech-
nique (SMOTE) [28] to boost performance.

4.3.1. SMOTE
SMOTE is similar to upsampling as it increases the entries in 

the minority class as opposed to downsampling. However, rather 
than purely cloning entries, new synthetic entries are created from 
the coordinates of entries in the feature space. Thus the technique 
is ignorant to the actual input data and generalises to any ma-
chine learning problem. We refer to different amounts of SMOTE 
by a integer multiple of 100. In this notation, SMOTE 100 refers to 
doubling the minority class (100% increase), SMOTE 200 refers to 
tripling the minority class and so on:
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Fig. 2. The frequencies of h1,1 (validation sets of size 20% and 80% respectively of the total data), for the neural network classifier (top row) and regressor (middle row) and 
the SVM regressor (bottom row).
Table 2
Summary of the highest validation accuracy achieved for predicting the Hodge num-
bers. WLB (WUB) stands for Wilson Upper (Lower) Bound. The dashes are because 
the NN classifier returns a binary 0/1 but RMS and R2 are defined for continuous 
outputs. We also include 99% Wilson confidence interval evaluated with a valida-
tion size of 0.25 the total data (1972). Errors were obtained by averaging over 100
different random cross validation splits using a cluster.

Accuracy RMS R2 WLB WUB

SVM Reg 0.70 ± 0.02 0.53± 0.06 0.78 ± 0.08 0.642 0.697
NN Reg 0.78 ± 0.02 0.46 ± 0.05 0.72 ± 0.06 0.742 0.791
NN Class 0.88 ± 0.02 – – 0.847 0.886

SMOTE algorithm

1. For each entry in the minority class xi , calculate its k nearest 
neighbours yk in the feature space (i.e., reshape the 12 × 15, 
zero padded CICY configuration matrix into a vector xi , and 
find the nearest neighbours in the resulting 180 dimensional 
vector space).
2. Calculate the difference vectors xi − yk and rescale these by a 
random number nk ∈ (0, 1).

3. Pick at random one point xi + nk(xi − yk) and keep this as a 
new synthetic point.

4. Repeat the above steps N/100 times for each entry, where N
is the amount of SMOTE desired.

4.3.2. SMOTE threshold, ROC, and F -values
The results obtained here all trivially obtained validation ac-

curacies ∼ 99%. As noted in Section 3, this is meaningless and 
instead we should use AUC and F -values as our metrics. How-
ever, after processing the data with a sampling technique and 
training the model, we would only obtain one point (FPR, TPR) 
to plot on a ROC curve. Thus, to generate the full ROC curve, we 
vary the output threshold of the model to sweep through the 
entire range of values. Fig. 4 shows the profile of a good ROC 
curve.
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Fig. 3. Learning curves for testing favourability of a CICY.

Table 3
Summary of the best validation accuracy observed and 99% Wilson confidence 
boundaries. WLB (WUB) stands for Wilson Upper (Lower) Bound. Errors were ob-
tained by averaging over 100 random cross validation splits using a cluster.

Accuracy WLB WUB

SVM Class 0.933 ± 0.013 0.867 0.893
NN Class 0.905 ± 0.017 0.886 0.911

Fig. 4. Typical ROC curves. The points above the diagonal represent classification 
results which are better than random.

4.3.3. Permutations
From the definition of the CICY configuration matrix (1), we note 

that row and column permutations of this matrix will represent 
the same CICY. Thus we can reduce the class imbalance by simply 
including these permutations in the training data set. In this pa-
per we use the same scheme for different amounts of PERM as we 
do for SMOTE, that is, PERM 100 doubles the entries in the mi-
nority class, thus one new permuted matrix is generated for each 
entry belonging to the positive class. PERM 200 creates two new 
permuted matrices for each entry in the positive class. Whether a 
row or column permutation is used is decided randomly.

4.3.4. Outcomes
Optimal SVM hyperparameters were found by hand to be a 

Gaussian kernel with σ = 7.5, C = 0. A genetic algorithm found 
the optimal neural network architecture to be three hidden lay-
ers with 287, 503, and 886 neurons, with ReLU activations and a 
dropout of 0.4914 in between each layer.

SMOTE results are summarised in Table 4 and Fig. 5. As we 
sweep the output threshold, we sweep through the extremes of 
Table 4
Metrics for predicting freely acting symmetries. Errors were obtained by averaging 
over 100 random cross validation splits using a cluster.

SMOTE SVM AUC SVM max F NN AUC NN max F

0 0.77 ± 0.03 0.26 ± 0.03 0.60 ± 0.05 0.10 ± 0.03
100 0.75 ± 0.03 0.24 ± 0.02 0.59 ± 0.04 0.10 ± 0.05
200 0.74 ± 0.03 0.24 ± 0.03 0.71 ± 0.05 0.22 ± 0.03
300 0.73 ± 0.04 0.23 ± 0.03 0.80 ± 0.03 0.25 ± 0.03
400 0.73 ± 0.03 0.23 ± 0.03 0.80 ± 0.03 0.26 ± 0.03
500 0.72 ± 0.04 0.23 ± 0.03 0.81 ± 0.03 0.26 ± 0.03

classifying everything as true or false, giving the ROC curve its 
characteristic shape. This also explains the shapes of the F -value 
graphs. For everything classified false, tp, f p → 0, implying the 
F -value blows up, hence the diverging errors on the right side of 
the F -curves. For everything classified true, f p � tp (as we only 
go up to SMOTE 500 with 195 true entries and use 80% of the 
training data, this approximation holds). Using a Taylor expansion 
F ≈ 2tp/ f p = 2 × 195/7890 = 0.049. This is observed on the left 
side of the F -curves. In the intermediate stage of sweeping, there 
will be an optimal ratio of true and false positives, leading to a 
maximum of the F -value. We found that SMOTE did not affect the 
performance of the SVM. Both F -value and ROC curves for vari-
ous SMOTE values are all identical within one standard deviation. 
As the cost variable for the SVM C = 0 (ensuring training leads 
to a global minimum), this suggests that the synthetic entries are 
having no effect on the generated hypersurface. The distribution 
of points in feature space is likely too strongly limiting the pos-
sible regions synthetic points can be generated. However, SMOTE 
did lead to a slight performance boost with the neural network. 
We see that SMOTEs larger than 300 lead to diminishing returns, 
and again the results were quite poor, with the largest F -value 
obtained being only 0.26. To put this into perspective, the opti-
mal confusion matrix values in one run for this particular model 
(NN, SMOTE 500) were tp = 30, tn = 1127, f p = 417, f n = 10. In-
deed, this model could be used to shortlist 447 out of the 1584
for further study, but 417 of them are falsely predicted to have a 
symmetry and worse still this model misses a quarter of the actual 
CICYs with a symmetry.

PERM results are summarized in Table 5 and Fig. 6. Note these 
results are not averaged over several runs and are thus noisy. We 
see that for 80% of the training data used (the same training size as 
used for SMOTE runs) that the F -values are of the order 0.3–0.4. 
This is a slight improvement over SMOTE, but we note from the 
PERM 100, 000 results in Table 5 there is a limit to the improve-
ment permutations can give.

Identifying the existence and the form of freely acting discrete 
symmetries on a Calabi–Yau geometry is a difficult mathematical 
problem. It is therefore unsurprising that the machine learning 
algorithms also struggle when confronted with the challenge of 
finding a rare feature in the dataset.

5. Discussion

In this study, continuing with the paradigm in and improving 
upon the results of [1,2], we utilise neural networks and Sup-
port Vector Machines (SVMs) to machine learn various geometric 
properties of CICY threefolds. We note that the SVM performed 
fractionally better than the neural network at predicting favoura-
bility of a CICY threefold. This could perhaps be attributed to the 
fact that SVMs are natural binary classifiers. Moreover, the simple 
architecture of the neural network needed for classifying favoura-
bility implies that the classifying function (or correspondingly, the 
hypersurface for the SVM) must be relatively simple. Since the 
training algorithm for SVMs assure a global minimum, we expect 
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Fig. 5. ROC and F -curves generated for both SVM and neural network for several SMOTE values by sweeping thresholds and averaging over 100 different random cross 
validation splits. Here we present results after the models have been trained on 80% of the training data. Shading represents possible values to within one standard deviation 
of measurements.
Table 5
F -values obtained for different amounts of PERMS for one run. Dashes correspond 
to experiments which couldn’t be run due to memory errors.

30% Training Data 80% Training Data

PERM NN F-Value SVM F-Value NN F-Value SVM F-Value
100000 0.2857 – 0.3453 –
10000 0.3034 0.2989 0.3488 –
2000 0.2831 0.3306 0.3956 0.3585
1800 0.2820 0.3120 0.4096 0.3486
1600 0.2837 0.3093 0.3409 0.3333
1400 0.2881 0.3018 0.4103 0.3364
1200 0.2857 0.3164 0.3944 0.3636
800 0.2919 0.3067 0.3750 0.3093
600 0.2953 0.2754 0.3951 0.2887
500 0.2619 0.2676 0.4110 0.2727
400 0.2702 0.2970 0.4500 0.3218
300 0.2181 0.2672 0.3607 0.2558
200 0.2331 0.2759 0.2597 0.2954

the SVM to perform better for such architectures. The neural net-
work however, was better at predicting Hodge numbers than the 
SVM. Here the neural network architecture is far from trivial, and 
its success over SVMs is likely due to its greater flexibility with 
non-linear data. To benchmark the performance of each model 
we use cross validation and take a variety of statistical measures 
where appropriate, including accuracy, Wilson confidence interval, 
F -values, and the area under the receiving operator characteristic 
(ROC) curve (AUC). Errors were obtained by averaging over a large 
sample of cross validation splits and taking standard deviations. 
Models are optimised by maximising the appropriate statistical 
measure. This is achieved either by varying the model by hand or 
Fig. 6. Plot of permutation F -values up to PERM 2000.

by implementing a genetic algorithm. Remarkable accuracies can 
be achieved, even when, for instance, trying to predict the exact 
values of Hodge numbers.

This work serves as a proof of concept for exploring the ge-
ometric features of Calabi–Yau manifolds using machine learning 
beyond binary classifiers and feedforward neural networks. In fu-
ture work, we intend to apply the same techniques to study the 
Kreuzer–Skarke [29] list of half a billion reflexive polytopes and 
the toric Calabi–Yau threefolds obtained from this dataset [30]. 
Work in progress extends the investigations in this paper to the 
CICY fourfolds [31] and cohomology of bundles over CICY three-
folds.
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