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Abstract. Explainable Al is not a new field. Since at least the early
exploitation of C.S. Pierce’s abductive reasoning in expert systems of
the 1980s, there were reasoning architectures to support an explanation
function for complex Al systems, including applications in medical di-
agnosis, complex multi-component design, and reasoning about the real
world. So explainability is at least as old as early Al, and a natural conse-
quence of the design of Al systems. While early expert systems consisted
of handcrafted knowledge bases that enabled reasoning over narrowly
well-defined domains (e.g., INTERNIST, MYCIN), such systems had no
learning capabilities and had only primitive uncertainty handling. But
the evolution of formal reasoning architectures to incorporate principled
probabilistic reasoning helped address the capture and use of uncertain
knowledge.

There has been recent and relatively rapid success of AI/machine learn-
ing solutions arises from neural network architectures. A new generation
of neural methods now scale to exploit the practical applicability of sta-
tistical and algebraic learning approaches in arbitrarily high dimensional
spaces. But despite their huge successes, largely in problems which can
be cast as classification problems, their effectiveness is still limited by



their un-debuggability, and their inability to “explain” their decisions in
a human understandable and reconstructable way. So while AlphaGo or
DeepStack can crush the best humans at Go or Poker, neither program
has any internal model of its task; its representations defy interpretation
by humans, there is no mechanism to explain their actions and behaviour,
and furthermore, there is no obvious instructional value ... the high per-
formance systems can not help humans improve.

Even when we understand the underlying mathematical scaffolding of
current machine learning architectures, it is often impossible to get in-
sight into the internal working of the models; we need explicit modeling
and reasoning tools to explain how and why a result was achieved. We
also know that a significant challenge for future Al is contextual adap-
tation, i.e., systems that incrementally help to construct explanatory
models for solving real-world problems. Here it would be beneficial not
to exclude human expertise, but to augment human intelligence with
artificial intelligence.

Keywords: artificial intelligence, machine learning, Explainability, Ex-
plainable AI

1 Introduction

Artificial intelligence (AI) and machine learning (ML) have recently been highly
successful in many practical applications (e.g., speech recognition, face recog-
nition, autonomous driving, recommender systems, image classification, natural
language processing, automated diagnosis, ... ), particularly when components
of those practical problems can be articulated as data classification problems.
Deep learning approaches, including the more sophisticated reinforcement learn-
ing architectures, exceed human performance in many areas [18],[24], [17],[6].

However, an enormous problem is that deep learning methods turn out to be
uninterpretable ”black boxes,” which create serious challenges, including that
of interpreting a predictive result when it may be confirmed as incorrect. For
example, consider Figure 1, which presents an example from the Nature review
by LeCun, Bengio, and Hinton [15]. The figure incorrectly labels an image of a
dog lying on a floor and half hidden under a bed as “A dog sitting on a hardwood
floor.” To be sure, the coverage of their image classification/prediction model is
impressive, as is the learned coupling of language labels. But the reality is that
the dog is not sitting.

The first problem is the naive but popular remedy about how to debug the
predictive classifier to correct the error: augment the original labeled training set
with more carefully crafted inputs to distinguish, say, a sitting from a laying dog
might improve the incorrect output. This may or may not correct the problem,
and doesn’t address the resource challenge of recreating the original learned
model.

The transparency challenge gets much more complex when the output pre-
dictions are not obviously wrong. Consider medical or legal reasoning, where
one typically seeks not just an answer or output (e.g., a diagnostic prediction of



A dog is standing on a hardwood floor.
Fig. 1. Segment of an example from LeCun, Bengio,Hinton, Science [15]

Western Grebe

A Visual Description: This is a large bird with a white neck and a black back in the water.
@ | Description Explanation Definition: The Western Grebe is has a yellow pointy beak, white neck and belly, and black back.
g . . Visual Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow
‘g beak and red eye.
[y Laysan Albatross
© - Description: This is a large flying bird with black wings and a white belly.
['4 w Definition: The Laysan Albatross is a seabird with a hooked yellow beak, black back and white belly.
g Definition Visual Explanation: This is a Laysan Albatross because this bird has a large wingspan, hooked yellow
© beak, and white belly.
§ Laysan Albatross
s E—— o Description: This is a large bird with a white neck and a black back in the water.
Class Relevance Definition: The Laysan Albatross is a seabird with a hooked yellow beak, black back and white belly.
Visual Explanation: This is a Laysan Albatross because this bird has a hooked yellow beak white neck
and black back.

Fig. 2. The goal is to generate explanations that are both image relevant and class
relevant. In contrast, descriptions are image relevant, but not necessarily class relevant,
and definitions are class relevant but not necessarily image relevant.

prostate cancer would require some kind of explanation or structuring of evidence
used to support such a prediction). In short, false positives can be disastrous.

Briefly, the representational and computational challenge is about how to
construct more explicit models of what is learned, in order to support explicit
computation that produces a model-based explanation of a predicted output.

However, this is one of the historical challenges of Al: what are appropriate
representations of knowledge that demonstrate some veracity with the domain
being captured? What reasoning mechanisms offer the basis for conveying a
computed inference in terms of that model?

The reality of practical applications of AT and ML in sensitive areas (such as
the medical domain) reveals an inability of deep learned systems to communicate
effectively with their users. So emerges the urgent need to make results and
machine decisions transparent, understandable and explainable [10], [9], [11]. The
big advantage of such systems would include not only explainability, but deeper
understanding and replicability [8]. Most of all, this would increase acceptance
and trust, which is mandatory in safety-critical systems [12], and desirable in
many applications (e.g., in medical robotics [19], Ambient Assisted Living [23],
Enterprise decision making [4], etc.). First steps have been taken towards making
these systems understandable to their users, by providing textual and visual
explanations [13], [22] (see Figures 2 and 3).
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Fig. 3. A joint classification and explanation model [7]. Visual features are extracted
using a fine-grained classifier before sentence generation; unlike other sentence genera-
tion models, condition sentence generation on the predicted class label. A discriminative
loss function encourages generated sentences to include class specific attributes.

2 Current State-of-the-Art

Explaining decisions is an integral part of human communication, understanding,
and learning, and humans naturally provide both deictic (pointing) and textual
modalities in a typical explanation. The challenge is to build deep learning mod-
els that are also able to explain their decisions with similar fluency in both visual
and textual modalities (see Figure 2). Previous machine learning methods for
explanation were able to provide a text-only explanation conditioned on an im-
age in context of a task, or were able to visualize active intermediate units in
a deep network performing a task, but were unable to provide explanatory text
grounded in an image.

Existing approaches for deep visual recognition are generally opaque and
do not output any justification text; contemporary vision-language models can
describe image content but fail to take into account class-discriminative image
aspects which justify visual predictions.

Hendriks et al. [7] propose a new model (see Figure 3) that focuses on the
discriminating properties of the visible object, jointly predicts a class label, and
explains why the predicted label is appropriate for the image. The idea relies on a
loss function based on sampling and reinforcement learning, which learns to gen-
erate sentences that realize a global sentence property, such as class specificity.
This produces a fine-grained bird species classification dataset, and shows that
an ability to generate explanations which are not only consistent with an image
but also more discriminative than descriptions produced by existing captioning
methods.

Although, deep models that are both effective and explainable are desirable
in many settings, prior explainable models have been unimodal, offering either
image-based visualization of attention weights or text-based generation of post-
hoc justifications. Park et al. [21] propose a multimodal approach to explanation,
and argue that the two modalities provide complementary explanatory strengths.

Two new datasets are created to define and evaluate this task, and use a
model which can provide joint textual rationale generation and attention visu-



The activity is Q: Is this a zoo?
A: Mowing Lawn

A: Yes

A: Mowing Lawn
" |

... because he is kneeling ... because he is pushing a
in the grass next to a lawn  lawn mower over a grassy ... because the zebras are ... because there are
mower. lawn. standing in a green field. animals in an enclosure.

Q: Is the water calm?
A: Yes

The activity is
A: Road Biking

... because he is riding a ... because he is wearing a
bicycle down a mountain cycling uniform and riding
path in a mountainous area. a bicycle down the road.

... because there are waves ... because there are no
and foam. waves and you can see the
reflection of the sun.

Fig. 4. Left: ACT-X qualitative results: For each image the PJ-X model provides an
answer and a justification, and points to the evidence for that justification. Right:
VQA-X qualitative results: For each image the PJ-X model provides an answer and a
justification, and points to the evidence for that justification.

alization (see Figure 4). These datasets define visual and textual justifications
of a classification decision for activity recognition tasks (ACT-X) and for visual
question answering tasks (VQA-X). They quantitatively show that training with
the textual explanations not only yields better textual justification models, but
also better localizes the evidence that supports the decision.

Qualitative cases also show both where visual explanation is more insightful
than textual explanation, and vice versa, supporting the hypothesis that mul-
timodal explanation models offer significant benefits over unimodal approaches.
This model identifies visual evidence important for understanding each human
activity. For example to classify “mowing lawn” in the top row of Figure 4 the
model focuses both on the person, who is on the grass, as well as the lawn mower.
This model can also differentiate between similar activities based on the context,
e.g.“mountain biking” or “road biking.”

Similarly, when asked “Is this a zoo?” the explanation model is able to discuss
what the concept of “zoo” represents, i.e., “animals in an enclosure.” When
determining whether the water is calm, which requires attention to specific image
regions, the textual justification discusses foam on the waves.

Visually, this attention model is able to point to important visual evidence.
For example in the top row of Figure 2, for the question “Is this a zoo?” the
visual explanation focuses on the field in one case, and on the fence in another.



There are also other approaches to explanation that formulate heuristics for
creating what have been called “Deep Visual Explanation” [1]. For example, in
the application to debugging image classification learned models, we can create a
heat map filter to explain where in an image a classification decision was made.
There are an arbitrary number of methods to identify differences in learned
variable distributions to create such maps; one such is to compute a Kullback-
Leibler (KL) divergence gradient, experiments with which are described in [2],
and illustrated in (see Figure 5). In that figure, the divergence for each input
image and the standard VGG image classification predictor is rendered as a heat
map, to provide a visual explanation of which portion of an image was used in
the classification.

Input Explaination Input Explaination

Fig. 5. Explaining the decisions made by the VGG-16 (park bench, street sign, racket,
cockatoo, traffic light and chihuahua), our approach highlights the most discriminative
region in the image.

3 Conclusion and Future Outlook

We may think of an explanation in general as a filter on facts in a context [3]. An
effective explanation helps the explainer cross a cognitive valley, allowing them to
update their understanding and beliefs [4]. Al is becoming an increasingly ubiq-
uitous co-pilot for human decision making. So Al learning systems will require
explicit attention to the construction of problem domain models and companion
reasoning mechanisms which support general explainability.

Figure 6 provides one example of how we might bridge the gaps between
digital inference and human understanding. Deep Tensor [16] is a deep neural
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Fig. 6. Explainable AT with Deep Tensor and a knowledge graph



network that is especially suited to datasets with meaningful graph-like proper-
ties. The domains of biology, chemistry, medicine, and drug design offer many
such datasets where the interactions between various entities (mutations, genes,
drugs, disease) can be encoded using graphs. Let’s consider a Deep Tensor net-
work that learns to identify biological interaction paths that lead to disease. As
part of this process, the network identifies inference factors that significantly
influenced the final classification result. These influence factors are then used
to filter a knowledge graph constructed from publicly available medical research
corpora. In addition, the resulting interaction paths are further constrained by
known logical constraints of the domain, biology in this case. As a result, the
classification result is presented (explained) to the human user as an annotated
interaction path, with annotations on each edge linking to specific medical texts
that provide supporting evidence.

Explanation in Al systems is considered to be critical across all areas where
machine learning is used. There are examples which combine multiple archi-
tectures, e.g., combining logic-based system with classic stochastic systems to
derive human-understandable semantic explanations [14]. Another example is in
the case of transfer learning [20], where learning complex behaviours from small
volumes of data is also in strong needs of explanation of efficient, robust and
scalable transferability [5].
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