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ABSTRACT 

Design of electro-optic ON-OFF switches based on well-known phase change material Ge2Sb2Te5 (GST) is presented. 

The electro-optic switch is achieved by implementing by co-directional coupling between a 220 nm thick silicon 

nanowire and a silicon waveguide topped with ITO-GST-ITO layers at the 1.55μm wavelength. By introducing the 

electric field via the ITO electrodes, the GST layer can be changed between the amorphous and crystalline states. As the 

modal loss in the crystalline state is much higher than the amorphous state, through a rigorous modal analysis of the 

coupled silicon nanowire and GST waveguide by using the finite element method, the optimal ITO spacing is obtained at 

75nm which is less sensitive to device parameter variations and thus offering better tolerances. The GST thickness is also 

optimized for the phase matching point at 25 nm in order to efficiently transfer power from silicon nanowire to GST 

waveguide to attain the OFF state. Once the device is phase matched in crystalline state, the power in the amorphous 

state will pass with very little interaction with the GST waveguide resulting in an ON state. The Eigenmode Expansion 

Method of Fimmprop is used as a junction analysis approach to calculate the optical power coupling efficiencies to the 

output silicon nanowire. The extinction ratio of the electro-optic switch and insertion loss in ON state at phase matching 

can be obtained as a function of the device length. A compact 1.75 μm long device shows a high extinction ratio of 22 

dB with an insertion loss of only 0.56 dB. 

Keywords: electro-optics; switching; phase change material; GST. 

 

1. INTRODUCTION 

 

The small size active and passive photonic devices are the key components to achieve large scale photonic integrated 

circuits (PICs). Devices based on silicon-on-insulator platform are very promising due to reduced chip footprint and 

power consumption and their compatibility with microelectronic circuits based on CMOS technology. Normally, there 

are two approaches to design Si-based modulating and switching devices, and there are carrier injection and carrier 

depletion. For carrier injection modulators, carriers are injected by forward biasing the junction. This type of the 

modulator is limited in speed by the recombination rate of the carriers, and relatively high power consumption. But it has 

the advantage of that it can allow large changes in the carrier density and therefore a high modulation depth. On the other 

hand, carrier depletion, which modulate carrier density by reverse biasing junction, it is fast and consumes lower power 

as little current flows through the junction. But because of its need to have higher overlap the PN junction and the optical 

field, it leads to devices have large insertion loss and low modulation depth. Moreover, the Si-based modulator with 

carrier injection require control region length often longer than 100 µm. On the other hand, although resonant structures 

such as ring resonator may require a smaller length but provides only a narrow operation bandwidth but with a strong 

wavelength dependence. 

The phase change material, which provide high differential refractive index and loss between the two states can be used 



 

 
 

 

to mitigate some of these problems encountered by carrier based modulators. For example, vanadium dioxide (VO2) is a 

correlated electron material that has an insulator-metal phase transition at 68 ℃. Although VO2 undergoes a large 

refractive index change during its phase transition, the loss in insulator and metal phases is also large and these need to 

be evaluated for their useful applications. Several electro-optic devices based on the phase change material Ge2Sb2Te5, 

commonly known as GST, have been reported have better optical performance than the VO2 [1], [2]. These devices 

utilize high differential refractive index between the amorphous and crystalline states to provide compact electro-optic 

devices. The phase change of the GST can be achieved thermally [3], optically [4], or electrically induced potentially 

with an ultrahigh speed [5]. In addition to that, unlike other electro-optic materials, GST possesses the self-holding 

feature, which means it requires energy only to switch from one state to another, but no continuous supply of energy is 

needed to maintain in a given state. 

In this paper, we consider a novel co-directional coupling between the GST waveguide and the silicon nanowire for 

designing a compact electro-optic ON-OFF switch at the telecommunication wavelength, 1.55 µm. 

 

2. DEVICE DESIGN 

 

Figure 1(a) shows the three-dimensional view of the optical switch. The cross-sectional view of the coupled section is 

shown in Fig. 1(b). The coupled section consists of a silicon Nanowire (wg1) and an ITO-GST-ITO-air waveguide (wg2). 

The required electric field for changing states between crystalline and amorphous can be provided through the two ITO 

electrodes. Here, most commonly used 220 nm thick silicon core is considered, and its width is taken as 550 nm. On top 

of that an ITO layer with thickness, SITO is taken as the separation layers to control the coupling. On top of the ITO 

separating layer is a GST layer with thickness hGST is fabricated and its thickness can be controlled to achieve the phase 

matching. On top of the GST layer is another ITO layer, the thickness hITO is taken to facilitate the application of electric 

field. The refractive indices of Si, SiO2 and ITO are taken as 3.47548, 1.44402 and 1.9595+j0.0023, respectively at the 

operating wavelength of 1.55 μm. For GST, the complex refractive indices, 7.45+j1.49 and 4.6+j0.12 are used for its 

crystalline and amorphous states, respectively [2]. 

 

Fig. 1. (a) Schematic of the optical switch. (b) Cross-sectional view of the coupled section of the optical switch. 

 

There are several possible approaches to design the optical switches. The optical switch can be comprised of either a 

Mach-Zender interferometer with two branches or a directional coupler incorporating two adjacent waveguides. 

Furthermore, the directional couplers can also made from three or four parallel waveguides and such designs have been 

investigated and explored [6]. The modal loss of the GST layers is a big issue for the optical waveguides design. For the 

modal analysis, we have used the finite element method (FEM) of the Photon Design software. Initially, the 20 nm 

thickness GST is selected for simulations. In amorphous state, the coupled waveguide shows an effective index (neff) of 

the fundamental quasi-TE (Hy
11

) mode is 2.4856+j0.004. For the crystalline state, this effective index value changed to 

2.5736+j0.2287. Although the difference between the real parts of two effective indices is 0.088 which is suitable for the 

MZI structure switching geometry design, and can obtain a compact device length for the arm only 8.8 µm. But the 

difference between the imaginary parts of the two effective indices which is 0.225 and it will leads to a big modal loss 



 

 
 

 

difference ∆α = 4.343(4π*∆neff/ λ), calculated as 7.91 dB/μm. This modal loss in the waveguide will cause incomplete 

mode cancellation and thus a poor MZI switching. Hence, here we consider an alternative and innovative co-directional 

coupling design between the GST waveguide and the silicon nanowire for the switch.  

As the loss for the crystalline state is much higher than the amorphous state, the phase matching in this state is necessary 

in order to efficiently transfer power from silicon nanowire to GST waveguide to attain the OFF state. If the device is not 

phase matched in its amorphous state, then the power will guide through the silicon nanowire with very little interaction 

with the GST waveguide on the top resulting in an ON state. Hence, design objective here is to achieve phase matching 

the GST waveguide in the crystalline state with the silicon nanowire.  

 

 

Fig. 2. Real part of effective indices of the even and odd supermodes of the coupled section in crystalline state for two different SITO. 

 

First, the effective index (neff) of the fundamental quasi-TE (Hy
11

) mode of the wg1 is calculated as 2.4472 and then the 

thickness of GST (hGST) is varied in wg2 in order to identify the value of hGST for achieving phase matching for a weak 

coupling. Around this value of hGST, we calculated the neff of the supermodes of the composite coupled structure for two 

ITO spacing (SITO) of 75 nm and 150 nm. The real parts of neff of the two supermodes as a function of hGST is shown in 

Fig. 2 for two different separations, SITO. 

From the figure, when the SITO is selected at 150 nm, it shows that the Re(neff) of the even supermode shown by an 

orange line, keeps stable around 2.4 when the hGST increases from 23 nm to 24.5 nm, and after that it continuously 

increase to a high value 2.7. On the other hand, the Re(neff) of the odd supermode shown by a purple line, initially 

increase slightly from 2.25 to a stable level around 2.4 when the hGST increases from 23 nm to 24.5 nm then remains 

constant. It can be noted that the difference between the effective indices (real part) of the two supermodes is minimum 

at hGST=24.5 nm.  

For the SITO=75 nm, the Re(neff) of the even supermode shown by a light green line remains constant around 2.55 when 

the hGST increase to 25.6 nm, after that it increase smoothly to a higher value 2.7. Meanwhile, the Re(neff) of the odd 

supermode, shown by a dark green line climbs gradually from 1.9 to 2.1 when the hGST increase from 23 to 28 nm. It also 

can be observed that, there is a minimum separation point at hGST=25.6 nm, when the Re(neff) lines of even and odd 

supermode have smallest difference. It can be evaluated that smaller SITO can provided larger Re(neff) difference between 

the even and odd supermodes, also appears at the bigger hGST for the minimum separation point. 

Next, we have calculated the coupling length using Lc=λ/ (2*real (neff1-neff2)), where λ is the operating wavelength, neff1 

and neff2 are the effective indices of the two supermodes of the coupled structure. Figure 3 shows the variation of the 

coupling length with the hGST, for 75 and 150 nm ITO spacing respectively. When the SITO is selected to 150 nm, it can 

be noted that the coupling length increase rapidly to a sharp peak value at hGST=24.5 nm, then it decrease exponentially 

to around 2 μm with the hGST increase to 28 nm. For the SITO=75 nm, when the hGST increase from 23 to 28 nm, its 

coupling length increase slightly from 1.1 μm to its peak value of around 1.6 μm at hGST=25.6 nm, then it reduce 

gradually to 1.3 μm with the higher hGST. It also can be observed that from Fig. 3 that for a smaller value of SITO, the 

coupling length is small, so overall system will be compact and additionally this will also be less sensitive to device 

parameters and hence offers better fabrication tolerance. Therefore, the SITO=75 nm is selected for future optimization. 



 

 
 

 

 

Fig. 3. Coupling length of the coupled section as a function of hGST. 

 

Next, we plotted the mode loss (dB/µm) in the crystalline state as a function of hGST in Fig. 4. For the even supermode, it 

shows that when the hGST increase from 23 to 28 cm, the modal loss also increase rapidly from 12.5dB/μm to 27.7dB/μm. 

Because of the power confinement in the GST layer of the waveguide in the even supermode increases from 8.35% to 

19.71%, which also leads to a larger absorption loss of the waveguide. On the other hand, the modal loss of the odd 

supermode will decrease from a higher value of 20.2 dB/μm as the GST layer thickness is increased. It also can be 

explained by noting that the power confinement in the GST layer is reduced from 10.2% to 5.86%, which leads to the 

absorption loss the waveguide decrease to a lower value at 10.1dB/μm. It can be noted that around hGST=24.8nm, both 

the even and odd supermodes will have the similar modal loss values which are 17.5dB/μm. 

 

        

Fig. 4. Loss values of the supermodes in the crystalline state as a function of hGST for SITO=75 nm. 

 

The phase matching exists at hGST=25.6 nm in crystalline state for SITO=75 nm. For these parameters, the corresponding 

Hy field profiles of the Hy
11

 even and odd supermodes are shown in Fig. 5. It can be overserved that in the left figure, the 

Hy
11

 even supermode field profile in the GST waveguide and Si nanowire, both have the same sign. On the other hand, 

the Hy
11

 odd supermode field profile in the GST waveguide and Si nanowire have opposite signs. Next, the Hy 

component of the Hy
11

 even and odd supermodes along the vertical directions are plotted in Fig. 6. It can be noted that, 

the Hy
11

 even supermode have much larger field intensity in the GST waveguide than in the Si nanowire, also the 

maximum value can be achieved at the interface between the GST and top ITO layers. For the Hy
11

 odd supermode, it 

clearly shows that the Hy field in the GST waveguide have positive sign but negative sign the Si nanowire. Also the Hy 

field in the Si nanowire have larger field intensity than the GST waveguide, and the maximum Hy field values can be 

seen in the bottom Si nanowire. 



 

 
 

 

 

Fig. 5. Hy field profiles of the Hy
11 even and odd supermodes in crystalline state for SITO=75 nm and hGST=25.6 nm. 

 

 

Fig. 6. Hy component of the Hy
11 even and odd supermodes in crystalline state along the vertical directions (μm). 

 

Around hGST=25.6 nm, which is the value of GST thickness for which both wg1 and wg2 are phase matched in crystalline 

state, however, its amorphous state supports only one mode. Hence, changing hGST from 23 to 28 nm, in amorphous state, 

resulted in only a slight variation in the real (neff), from 2.494 to 2.509, and mode loss values, increased from 0.17 to 0.22 

dB/µm, which is very low in this case. 

 

 

Fig. 7. Power excitation coefficient in crystalline state as a function of hGST for SITO=75 nm. 

 

To calculate the optical power coupling to output nanowire, we have used Eigenmode Expansion Method (EEM) of 

Fimmprop module of Photon Design [7]. The excitation coefficients of the supermodes, in crystalline state, at the first 



 

 
 

 

interfaces are shown in Fig.7. When the hGST is 23 nm, it can be seen that the even supermode have a relatively higher 

transmission at 70%, but the odd supermode only can obtain the 30% transmission coefficient. With the increase of the 

hGST, this coefficient of the even supermode will reduce considerably to a lower value 35%. While the transmission 

coefficient of the odd supermode will increase to higher value 65% at this two waveguides junction when the thicker 

GST layer will be selected at 28 nm. 

At hGST=25.6 nm, which is the phase matching thickness of GST layer, the excitation coefficients curves cross each 

other. It can be seen that both even and odd supermodes will have similar excitation coefficients which is close to 50% 

each, when hGST is euqal to 25.6 nm, as the two waveguides are phase matched in its crystalline state. 

 

 

Fig. 8. Insertion loss in ON state and extinction coefficient of the device. 

 

The associated insertion loss for the ON state and the extinction coefficient of the device are plotted in Fig. 8. By 

calculating the transmission coefficient Tam after the coupled section at the output silicon nanowire, the Insertion loss in 

the amorphous state for the ON state can be obtained. It shows that with the longer length of the coupling section, the 

insertions loss also increase from 0.24 to 0.7 dB but still at a relatively lower level. 

The extinction ratio ER is defined as the ratio of the two optical power levels when the device in the ON or OFF states. 

Through numerical simulations of the transmission coefficient, both in amorphous and crystalline state at the output 

silicon nanowire, the ER can be calculated. From the Fig. 7, it can be seen that when the length of coupling section 

increase from 0.1 to 2.5 μm, the extinction ratio also increase monotonically to a higher level to 35 dB. 

 

3. CONCLUSION 

 

We have carried out rigorous modal analyses of an electro-optic switch based on coupling between the silicon nanowire 

with top ITO layer and the phase change material GST waveguide by using the FEM. We have also investigated the 

power coupling efficiencies to the output silicon nanowire by using a junction analysis approach. We obtained extinction 

ratio of the device and insertion loss in ON state at phase matching as a function of length of the device. For a device 

length of 1.75 µm, a high extinction ratio equals to 22 dB and an insertion loss of only 0.56 dB was achieved. 
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