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On the orthogonal distance to class subspaces for

high-dimensional data classification

Rui Zhua, Jing-Hao Xuea,∗
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Abstract

The orthogonal distance from an instance to the subspace of a class is a

key metric for pattern classification by the class subspace-based methods.

There is a close relationship between the orthogonal distance and the residual

standard deviation of a test instance from the class subspace. In this paper,

we shall show that an established and widely-used relationship, between the

residual standard deviation and the sum of squares of the residual PC scores,

is not precise, and thus can lead to incorrect results, for the inference of high-

dimensional data which nowadays are common in practice.

Keywords: Classification, high-dimensional data, orthogonal distance,

principal component analysis (PCA), soft independent modelling of class

analogy (SIMCA).

1. Introduction1

In class subspace-based classification methods, a subspace is first learned2

in the training phase for each class separately from its training data. Then in3
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the test phase, these learned class subspaces are utilised to predict the label4

of a new test instance, by comparing the distances from the test instance to5

the class subspaces, in terms of certain distance metrics. For example, in a6

widely-used classifier for spectral data called soft independent modelling of7

class analogy (SIMCA) [28], principal component (PC) subspaces are learned8

for individual classes. Similar to SIMCA, another popular PCA-based clas-9

sification approach has been extensively adopted in process control in engi-10

neering, such as fault detection and diagnosis [20, 16, 15, 25]. Besides classi-11

fication methods, some clustering methods also aim to seek low-dimensional12

subspaces for better clustering results [13, 23, 22].13

In the above two classification approaches, associated with the PC sub-14

spaces, two distance metrics (or statistics) are often adopted to achieve pat-15

tern classification [3, 17, 18, 20, 16, 15, 25, 29]: 1) the orthogonal distance16

(OD), also known as the Q-statistic or the squared prediction error, i.e. the17

squared orthogonal Euclidean distance from a test instance to a PC subspace;18

and 2) the score distance (SD), also known as the Hotelling’s T 2 statistic,19

i.e. the squared Mahalanobis distance from the projection of a test instance20

to the centre of a PC subspace [17]. The distributions of OD and SD have21

also been studied extensively, in order to find a proper acceptance area for22

classification; recent work includes [17], [18], [19], [30] and [21]. Also in23

recent years, a linear combination of these two distances is often used to24

classify a test instance: the test instance is assigned to the class with the25

minimum value of the linear combination [3].26

There is a close relationship between the OD (from a test instance to a27

class subspace) and the residual standard deviation of the test instance to28
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the class subspace. Moreover, Maesschalck et al. [9] show that the residual29

standard deviation based on the residual matrix can be equivalently calcu-30

lated from using the residual PC scores based on the PC score matrix. This31

work has been cited over a hundred times, including methodological develop-32

ments [4, 10, 8], reviews [24, 14] and applications [5, 2, 6, 27, 7]. The recent33

work studying the distributions of OD and SD [17, 18, 19] also adopted the34

formulae in [9] following [10].35

However in this paper, we shall point out that the relationship presented36

in [9], between the residual standard deviation and the sum of squares of the37

residual PC scores, is not precise for the inference of high-dimensional data.38

To distinguish the training and test scenarios, we shall establish the no-39

tation of two ODs, respectively, as follows.40

1. The OD vk,l from the training instance l to the subspace of class k41

that was learned from all training instances. It is closely related to42

the residual standard deviation sk,0 of class k, which will be defined in43

Section 2.1.44

2. The OD vk,new from the new test instance to the subspace of class k.45

It is closely related to the residual standard deviation sk,new of the new46

test instance to class k, which will be defined in Section 2.2.47

In short, the difference between vk,l and vk,new is that vk,l is the OD for the48

training instance while vk,new is the OD for the test instance.49

The contributions of this paper are as follows. First, although Maess-50

chalck et al. [9] establish formulae for sk,0 and sk,new using the residual PC51

scores, we shall show that their formula for sk,new is only precise when the52

training data of class k have more instances than predictor features, i.e. when53
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the number of instances (denoted by nk) is larger than the number of features54

(denoted by p). In other words, we shall show that, when the training data55

of class k are high-dimensional (i.e. nk ≤ p, also called “large p, small n” in56

the statistical literature), the calculation of sk,new in [9] is not precise.57

Second, because of the above results, we shall point out that, for high-58

dimensional data, although the OD vk,l can be accurately calculated by fol-59

lowing the (precise) formula of the residual standard deviation sk,0 in [9],60

the OD vk,new cannot be accurately calculated by following the (imprecise)61

formulae of the residual standard deviation sk,new in [9]. Consequently, in-62

ference results of the studies that calculated the ODs for high-dimensional63

data using the formulae in [9] can be imprecise.64

Because nowadays high-dimensional data are commonly present in pattern-65

recognition tasks, it is of great interest to practitioners to point out the im-66

precise calculation of the ODs for high-dimensional data if we follow the67

formulae in [9], as well as to suggest that the formulae in [28] should be68

adopted in this “large p, small n” paradigm.69

2. The calculations of OD in [9]70

The following calculations are all for class k. The subscripts p, q and r71

denote the number of columns in matrices U , D, V and T ; for example, V p72

indicates that there are p columns in matrix V p of class k.73

2.1. The training phase of class k74

Suppose X ∈ Rnk×p is the training set of class k, in which there are nk75

training instances (or say training samples) and each instance is represented76

by a p-dimensional data vector. To build the PC subspace of class k, we77
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apply the reduced singular value decomposition (SVD) to the column-centred78

training set X(c):79

X(c) = U qDq(V q)
T , (1)

where U q ∈ Rnk×q and V q ∈ Rp×q are the two matrices containing left and80

right singular vectors as columns, respectively, and Dq ∈ Rq×q is a diagonal81

matrix with singular values {λ1 ≥ λ2 ≥ · · · ≥ λq ≥ 0}. The parameter82

q ≤ min(p, nk − 1) is the rank of X(c).83

In PCA, the rows of T q = U qDq ∈ Rnk×q are known as PC scores and84

the columns of V q are known as PCs. Suppose the first r (r ≤ q) PCs are85

selected to build the PC subspace for class k, then86

X(c) = T r(V r)
T +E , (2)

where T r ∈ Rnk×r; V r ∈ Rp×r; and E ∈ Rnk×p is the training residual matrix87

of class k.88

In [9], the residual standard deviation of class k is expressed in two forms:89

sk,0 =

√√√√ 1

DoFk,0

nk∑
l=1

p∑
j=1

(elj)2 =

√√√√ 1

DoFk,0

nk∑
l=1

q∑
i=r+1

(tli)2 (3)

where DoFk,0 = (q − r)(nk − r − 1), elj is the (l, j)-entry of residual matrix90

E representing the residual of the lth instance for the jth variable, and tli is91

the (l, i)-entry of score matrix T q representing the score of the lth instance92

for the ith PC.93

The OD from the lth training instance to the subspace of class k, vk,l, is94
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originally defined as
∑p

j=1(elj)
2. Thus

∑nk

l=1 v
k,l is proportional to (sk,0)2,95

nk∑
l=1

vk,l = (sk,0)2(q − r)(nk − r − 1). (4)

In [9], it follows from (3) that
∑nk

l=1 v
k,l can be calculated as96

nk∑
l=1

vk,l =

nk∑
l=1

q∑
i=r+1

(tli)
2 . (5)

2.2. The test phase for class k97

In the test (prediction) phase, to decide whether a new instance xnew
98

belongs to class k or not, xnew is first centred by using the means of the99

variables of the training dataX of class k, and the result is denoted by xk,new
(c) .100

Then projecting xk,new
(c) to the PC subspace of class k with the selected r PCs,101

we can obtain102

xk,new
(c) = tk,newr (V r)

T + ek,new , (6)

where tk,newr ∈ R1×r and ek,new ∈ R1×p are two vectors of the PC score and103

the residual, respectively, of the new instance when it is fitted to the subspace104

of class k.105

In [9], the residual standard deviation of the new instance is also expressed106

in two forms:107

sk,new =

√√√√ 1

DoFk,new

p∑
j=1

(ek,newj )2 =

√√√√ 1

DoFk,new

q∑
i=r+1

(tk,newi )2, (7)

where DoFk,new = (q − r), ek,newj and tk,newi denote the jth element of the108
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residual vector ek,new and the ith element of the PC score vector tk,newr ,109

respectively.110

The OD from the new instance to the subspace of class k, vk,new, is111

originally defined as
∑p

j=1(e
k,new
j )2. Thus vk,new is proportional to (sk,new)2,112

vk,new = (sk,new)2(q − r). (8)

In [9], it follows from (7) that vk,new can be written as113

vk,new =

q∑
i=r+1

(tk,newi )2 . (9)

To determine the class of xnew, the residual standard deviation sk,new114

of xnew is compared to the residual standard deviation sk,0 of the training115

instances of class k [9]. The F -test statistic used in [9] to determine whether116

the two residual variances are significantly different is expressed as117

F k,new =
(sk,new)2

(sk,0)2
=

∑q
i=r+1(t

k,new
i )2 (nk − r − 1)∑nk

l=1

∑q
i=r+1(tli)

2
. (10)

3. Discussion of vk,l and vk,new
118

The calculations for vk,0 and vk,new in [9] use formulae (5) and (9), respec-119

tively. We shall show that, while formula (5) is correct for both the cases of120

nk > p and nk ≤ p, formula (9) is only valid when nk > p.121

3.1. vk,l122

The OD vk,l is originally defined on the basis of the residual matrix E.123

The calculation of vk,l in (5), which was defined in [9], is on the basis of the124

7



PC score matrix T r. This is due to the relationship that125

nk∑
l=1

p∑
j=1

(elj)
2 =

nk∑
l=1

q∑
i=r+1

(tli)
2 . (11)

This relationship is true for both the cases of nk > p and nk ≤ p, as we shall126

show in the following two subsections, respectively.127

3.1.1. nk > p128

When nk > p, we have q = p (assume that no feature is a linear com-129

bination of others), and thus V q ∈ Rp×p is a square matrix. It follows that130

V q(V q)
T = (V q)

TV q = Ip.131

Let xl
(c) ∈ R1×p denote the l-th training instance in class k, i.e. the l-th

row of X(c). For every xl
(c) (l = 1, . . . , nk), we have xl

(c) = xl
(c)V q(V q)

T and

p∑
j=1

(elj)
2 = ||xl

(c) − xl
(c)V r(V r)

T ||22

= ||xl
(c)V q(V q)

T − xl
(c)V r(V r)

T ||22

= ||tlq(V q)
T − tlr(V r)

T ||22

=

q∑
i=r+1

(tli)
2 , (12)

where || · ||2 denotes the Euclidean norm of a vector, and tlq and tlr are the132

lth row of T q and T r, respectively. Therefore (11) and thus (5) are correct133

when nk > p.134
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3.1.2. nk ≤ p135

When nk ≤ p, we have q = rank(X(c)) ≤ nk−1 < p, and thus V q ∈ Rp×q
136

is not square. It follows that (V q)
TV q = Iq but V q(V q)

T 6= Ip.137

Suppose we apply the full SVD to X(c):138

X(c) = Unk
D̂p(V p)

T , (13)

where Unk
∈ Rnk×nk and V p ∈ Rp×p denote the two matrices containing nk139

left and p right singular vectors as columns, respectively, and D̂p ∈ Rnk×p
140

is a matrix with singular values {λ1 ≥ λ2 ≥ · · · ≥ λnk−1 ≥ λnk
= 0} on the141

main diagonal.142

To make the explanation more clear, we expand D̂p ∈ Rnk×p to a square143

matrix Dp ∈ Rp×p by adding zeros because the singular values associated144

with the last (p − q) PCs are zeros when nk ≤ p. Matrix Unk
∈ Rnk×nk is145

also expanded to U p ∈ Rnk×p using (p−nk) unit-length column vectors that146

are randomly calculated to be orthogonal to the previous column vectors.147

Thus we have148

X(c) = Unk
D̂p(V p)

T = U pDp(V p)
T , (14)

where U p ∈ Rnk×p and V p ∈ Rp×p denote the matrices containing p left and149

p right singular vectors, respectively, and Dp ∈ Rp×p is a diagonal matrix150

with singular values {λ1 ≥ λ2 ≥ · · · ≥ λq ≥ λq+1 = · · · = λp = 0}. Since151

V p ∈ Rp×p is square, we have V p(V p)
T = (V p)

TV p = Ip.152

Let T p = U pDp ∈ Rnk×p denote the PC scores. Let tli denote the (l, i)-153

entry of score matrix T p representing the score of the lth instance for the ith154

PC.155
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Let ml denote the residual from using the first q PCs to reconstruct xl
(c):

ml = xl
(c) − xl

(c)V q(V q)
T . We calculate the sum of squares of the residuals

in ml for the l-th instance:

||ml||22 = ||xl
(c) − xl

(c)V q(V q)
T ||22

= ||xl
(c)V p(V p)

T − xl
(c)V q(V q)

T ||22

= ||tlp(V p)
T − tlq(V q)

T ||22 . (15)

The sum of ||ml||22 for all nk training instances is156

nk∑
l=1

||ml||22 =

nk∑
l=1

p∑
i=q+1

(tli)
2 =

p∑
i=q+1

(λi)
2 . (16)

The second equation in (16) can be shown as follows. X(c) = U pDp(V p)
T ⇒157

(U p)
TX(c)V p = Dp ⇒ (U p)

TT p = Dp. For the ith singular value λi in Dp,158

we have (λi)
2 = (uT

i ti)
2 = tTi uiu

T
i ti = tTi ti =

∑nk

l=1(tli)
2, where ui and ti are159

the ith columns of U p and T p, respectively.160

Since the last (p− q) singular values are zeros,
∑nk

l=1 ||ml||22 = 0. Because161

each term in the sum
∑nk

l=1 ||ml||22 is nonnegative, ||ml||22 = 0 for all l (l =162

1, . . . , nk). Thus we have xl
(c) = xl

(c)V q(V q)
T , which means that the first q163

PCs can perfectly reconstruct the training instances in class k. Using the164

same proof as in (12), we can show that (11) and thus (5) are also true for165

nk ≤ p.166

Therefore, vk,l can be correctly calculated by using (5) for both the cases167

of nk > p and nk ≤ p.168
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3.2. vk,new169

The OD vk,new is originally defined in terms of the residual vector ek,new [28],170

while following [9] vk,new is formulated in (9) by using the PC score tk,newr of171

the new sample. We shall show that the formula (9) is valid when nk > p172

but not valid when nk ≤ p, in the following two subsections, respectively.173

3.2.1. nk > p174

When nk > p, we have q = p, and thus V q ∈ Rp×p is a square matrix. As175

before, V q(V q)
T = (V q)

TV q = Ip. Since xk,new
(c) = xk,new

(c) V q(V q)
T , we have176

p∑
j=1

(ek,newj )2 =

q∑
i=r+1

(tk,newi )2 . (17)

Using a proof similar to (12) by replacing xl
(c) with xk,new

(c) , we can readily177

show that (17) and thus (9) are correct for nk > p.178

3.2.2. nk ≤ p179

When nk ≤ p, we have q = rank(X(c)) < p, and thus V q ∈ Rp×q is not180

square. Again, it follows that (V q)
TV q = Iq but V q(V q)

T 6= Ip.181

Letmk,new denote the residual from using the q PC vectors to reconstruct

xk,new
(c) : mk,new = xk,new

(c) − xk,new
(c) V q(V q)

T . We calculate the sum of squares

11



of the residuals in mk,new:

||mk,new||22 = ||xk,new
(c) − xk,new

(c) V q(V q)
T ||22

= ||xk,new
(c) V p(V p)

T − xk,new
(c) V q(V q)

T ||22

= ||tk,newp (V p)
T − tk,newq (V q)

T ||22

=

p∑
i=q+1

(tk,newi )2 , (18)

where || · ||2 denotes the Euclidean norm of a vector.182

However, unlike the case for the training data,
∑p

i=q+1(t
k,new
i )2 is not183

necessarily equal to zero for a p-dimensional test instance. Thus xk,new
(c) 6=184

xk,new
(c) V q(V q)

T , which means that the new test instance cannot be perfectly185

reconstructed by the first q PC vectors.186

Hence, if we rewrite

xk,new
(c) = xk,new

(c) V q(V q)
T +mk,new

= xk,new
(c) V r(V r)

T + (xk,new
(c) V q(V q)

T − xk,new
(c) V r(V r)

T ) +mk,new ,

(19)

we have

ek,new = (xk,new
(c) V q(V q)

T − xk,new
(c) V r(V r)

T ) +mk,new

= (tk,newq (V q)
T − tk,newr (V r)

T ) + (tk,newp (V p)
T − tk,newq (V q)

T )

= tk,newp (V p)
T − tk,newr (V r)

T (20)

12



and

p∑
j=1

(ek,newj )2 = ||ek,new||22

= ||tk,newp (V p)
T − tk,newr (V r)

T ||22

=

p∑
i=r+1

(tk,newi )2

=

q∑
i=r+1

(tk,newi )2 +

p∑
i=q+1

(tk,newi )2 . (21)

Comparing (21) with (17), we can find an additional term
∑p

i=q+1(t
k,new
i )2 in187

(21), and this term may not be zero. It follows that (17) and thus (9) are188

not valid when nk ≤ p.189

When nk ≤ p,
∑p

i=q+1(t
k,new
i )2 is hard to estimate because the last (p−q)190

PCs are randomly calculated by satisfying the orthogonal condition. Never-191

theless, it can be harmful to the classification of the new instance of high-192

dimensional “large p, small n” data, if we use (9) to calculate vk,new which193

omits
∑p

i=q+1(t
k,new
i )2, because the decision making for classification is based194

on vk,new.195

4. Experiments196

In the following experiments, take SIMCA as an example: we compare197

the SIMCA with the OD defined originally in [28] (denoted by SIMCA) and198

the SIMCA with the OD calculated by following [9] (denoted by SIMCA-D),199

evaluating them on both simulated and real datasets. We aim to show that200

the additional term
∑p

i=q+1(t
k,new
i )2 can be important for classifying high-201
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dimensional data. To simplify the experiment settings, we discuss the effect202

of
∑p

i=q+1(t
k,new
i )2 on two-class classification in the experiments. The effect203

of
∑p

i=q+1(t
k,new
i )2 on multi-class classification can be readily extended.204

4.1. Classification rule205

New test instances can be classified by following the classification rule of206

the robust SIMCA (RSIMCA) [3], which is a linear combination of the OD207

and the SD of a new test instance (Here our notations of OD and SD are208

both for squared distances). That is, a new test instance is classified to the209

class with the minimum value of210

γ
ODk

ckOD

+ (1− γ)
SDk

ckSD
, (22)

where ODk = vk,new; SDk = (tk,newr )TΛ−1
r t

k,new
r , in which Λr is the diagonal211

matrix of the r largest eigenvalues for the PC subspace; ckSD = χ2
r;0.975; and212

ckOD = (µ̂ + σ̂z0.975)
3, in which µ̂ and σ̂ are the mean and the standard213

deviation of the square roots of vk,l.214

Since ODk is the only term that is different between SIMCA and SIMCA-215

D, the value of the second term in (22) does not affect the difference between216

SIMCA and SIMCA-D. We force the value of the second term in (22) to zero217

by setting γ = 1, to simplify the experiments.218

4.2. Validation criterion219

We use the overall misclassification percentage (MP) as the validation220

criterion following the experiments in [3]. We use the one-assignment-rule221

suggested in [3], i.e. a test sample is assigned to one of the known classes222
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with the smallest F -value, to simplify the calculation of the MP and obtain223

unambiguous final results. The MP is defined as224

MP =
K∑
k=1

nt
k/N

t , (23)

where nt
k denotes the the number of wrongly assigned test samples in class225

k and N t denotes the total number of test samples.226

4.3. Datasets227

4.3.1. Simulated datasets228

Simulated datasets are generated by following the experiments in [18].229

Assume that a sample vector x is the sum of two independent normal random230

components:231

x = δ + ε , (24)

where232

δ ∼ N(µ,Σ) and ε ∼ N(0, σ2I) . (25)

Based on the above assumption, the samples of the two classes are drawn233

from N(µ1,Σ1 + σ2
1I) and N(µ2,Σ2 + σ2

2I), respectively.234

Two sets of parameters, simulation A and simulation B, are devised to235

show the following two situations, respectively: 1)
∑p

i=q+1(t
k,new
i )2 is not236

important for classification; and 2)
∑p

i=q+1(t
k,new
i )2 may be important for237

classification. The details of the two simulation settings are summarised in238

Table 1.239

For each simulation setting, we generate 20 datasets with different nk/p240

ratios to explore the difference between SIMCA and SIMCA-D with respect241
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Table 1: Simulation settings. Notation: K, number of classes; D, number of datasets; nk,
number of samples in each class

Simulation A Simulation B
µ1 0p 0p

µ2 (10,0T
p−1)

T (10,0T
p−1)

T

Σ1 = Σ2

 5000 0.1 0.1 ··· 0.1
0.1 0.1 0.1 ··· 0.1
0.1 0.1 0.1 ··· 0.1
...

...
...

...
...

0.1 0.1 0.1 ··· 0.1


p×p

 0.1 0.1 0.1 ··· 0.1
0.1 5000 0.1 ··· 0.1
0.1 0.1 0.1 ··· 0.1
...

...
...

...
...

0.1 0.1 0.1 ··· 0.1


p×p

σ2
1 = σ2

2 0.1 0.1
K 2 2
D 20 20
nk 50 50

to p. In each dataset, 50 samples are generated for each class, from which 25242

samples are selected as the training set and the rest as the test set, i.e. n1243

and n2 are fixed to 25 for all the datasets. The 20 nk/p ratios are 1.5, 1, 0.7,244

0.5, 0.3, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.009, 0.008,245

0.007, 0.006 and 0.005; and the corresponding p’s are 17, 25, 36, 50, 83, 250,246

278, 313, 417, 500, 625, 833, 1250, 2500, 2778, 3125, 3571, 4167 and 5000.247

Among these settings, nk/p = 1.5 (i.e. p = 17) indicates a low-dimensional248

dataset while other ratios indicate high-dimensional datasets.249

It is clear in Table 1 that the only difference between simulation A and250

simulation B is the values of Σ1 and Σ2, which determines the importance251

of
∑p

i=q+1(t
k,new
i )2 for classification. In both simulations, the first dimen-252

sions of the feature vectors contain major discriminative information since253

µ11 = 0 and µ21 = 10, while other dimensions contain little discriminative254

information since µ1i = µ2i = 0 (i 6= 1). Therefore, the variance of the255

first dimension determines how the discriminative information between two256
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classes is distributed to the PCs. The discriminative information left in the257

residuals for classification is determined by the discriminative information in258

the first few PCs used in the class subspace.259

If the first dimension has the largest variance and the discriminative in-260

formation is concentrated on the first PC which is definitely used in the class261

subspace, i.e. (Σ1)11 = (Σ2)11 = 5000 in simulation A, then
∑p

j=1(e
k,new
j )2262

is not very discriminative (or say unimportant for classification) and so is263 ∑p
i=q+1(t

k,new
i )2. In contrast, if the first dimension has a small variance and264

contributes randomly to the PCs, i.e. (Σ1)11 = (Σ2)11 = 0.1 in simulation B,265

then the discriminative information may not be concentrated on the first few266

PCs that are used in the class subspace. In this case,
∑p

j=1(e
k,new
j )2 can be267

discriminative (or say important for classification) and so be
∑p

i=q+1(t
k,new
i )2.268
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(a) Simulation A.
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(b) Simulation B.

Figure 1: The loading plots of the first dimension.

Here we show an example to demonstrate the above argument. Two269

datasets with p = 1250 are generated. Applying PCA separately to the two270

classes of each dataset, we obtain the PCs for each class. We record the271
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first entries of all the PCs in each class, i.e. V q(1, :), and plot them against272

the PCs sorted in decreasing order of singular values, as shown in Figure 1273

for simulation A and simulation B, respectively. These loadings indicate the274

contributions of the first dimensions of the feature vectors to the PCs.275

In simulation A, the absolute loadings of the first PC are close to one while276

those of other PCs are close to zeros, which indicates that the discriminative277

information between the two classes is concentrated on the the first PC.278

Since the first PC is definitely used to build the class subspace,
∑p

j=1(e
k,new
j )2279

contains little discriminative information from the first dimension. Thus, as280

a part of
∑p

j=1(e
k,new
j )2,

∑p
i=q+1(t

k,new
i )2 is not important for classification.281

In simulation B, the loadings are distributed randomly around zero, which282

indicates that the discriminative information is spread over all PCs. There-283

fore,
∑p

j=1(e
k,new
j )2 may contain discriminative information important for284

classification and so be
∑p

i=q+1(t
k,new
i )2.285

4.3.2. Real datasets286

A low-dimensional dataset (the iris data) and three high-dimensional287

datasets (the Phenyl data, the meat data and the fat data) are used in288

the experiments.289

The iris dataset [12] contains 150 samples with three classes: each class290

contains 50 samples. Each sample is described by four features.291

The Phenyl dataset is provided in the R package, ‘chemometrics’. The292

dataset consists of 600 mass spectrum of chemical components, with 300293

compounds contain the phenyl substructure and 300 compounds do not con-294

tain the substructure. Each spectra contains 658 mass spectral features. We295

randomly select 100 samples from the Phenyl dataset for our experiments,296
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with 50 contain the phenyl substructure and 50 do not contain the structure.297

The meat dataset [1] consists of 108 spectra of meat spectra measured at298

1051 wavelengths, with 55 chicken samples and 54 turkey samples.299

The fat dataset [11] consists of 193 spectra of finely chopped meat, with300

122 meat samples of less than 20% fat and 71 samples of larger than 20%301

fat. Each spectrum is measured at 100 wavelengths.302

4.4. Experiment settings303

For the iris data and the Phenyl data, we randomly select 25 samples304

from each class to generate the training set. For the meat data, we randomly305

select 27 chicken samples and 27 turkey samples for training. For the fat306

data, we randomly select 35 samples of less than 20% fat and 35 samples307

of larger than 20% fat for training. The remaining samples of each dataset308

generate the test set.309

We repeat this procedure 100 times and perform the two methods, SIMCA310

and SIMCA-D, on each training-test split.311

In both methods, the number of PCs are chosen using the criterion that312

the variance explained is more than 85% for all classes. Thus the numbers313

of PCs, r, are the same for the two methods.314

4.5. Results315

4.5.1. Simulated datasets316

To explore the effect of the nk/p ratio on the performances of SIMCA317

and SIMCA-D, we plot the the mean MP against the nk/p ratio in Figure 2318

for simulation A and simulation B, respectively. It is clear that the mean319

MPs of SIMCA and SIMCA-D are the same when nk/p = 1.5, i.e. in the320
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(b) Simulation B.

Figure 2: The plots of mean MP against nk/p.
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low-dimensional situation, in each of the simulation settings, as indicated by321

the leftmost points in each panel of Figure 2.322

However, the relative performances of SIMCA and SIMCA-D are different323

for the two simulations when nk/p ≤ 1, i.e. in the high-dimensional situation.324

In simulation A, the mean MPs of the two methods are similar for all nk/p325

ratios, as shown in Figure 2a. This indicates that ignoring
∑p

i=q+1(t
k,new
i )2326

in the calculation of the OD does not affect the classification results in this327

simulation, because in this case
∑p

i=q+1(t
k,new
i )2 is not important for classifi-328

cation. In addition, since the residuals are not discriminative, the mean MP329

varies around 0.5.330

In simulation B, the difference between the mean MPs of the two methods331

becomes larger as nk/p becomes smaller (i.e. when the data are higher di-332

mensional), as shown in Figure 2b. Since in this simulation the first few PCs333

used in class subspaces contain little discriminative information, the residual334 ∑p
j=1(e

k,new
j )2 is important for classification. SIMCA performs pretty well335

for almost all the nk/p ratios because
∑p

j=1(e
k,new
j )2 captures the discrimi-336

native information for classification. In contrast, SIMCA-D, which only uses337 ∑q
i=r+1(t

k,new
i )2 for classification and ignores

∑p
i=q+1(t

k,new
i )2, cannot capture338

the discriminative information in
∑p

i=q+1(t
k,new
i )2 and can be suboptimal in339

classification, especially when nk/p is small (i.e. when the data dimension is340

high). For example, the mean MP of SIMCA-D worsens to around 0.4 when341

nk/p decreases to 0.008.342

In addition for simulation B, we show an example of how
∑p

i=q+1(t
k,new
i )2343

affects the classification performance using the Coomans’ plots. Figure 3344

shows the Coomans’ plots of the test samples on one training-test split of345
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(a) SIMCA. p = 17, nk
p = 1.5.
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(b) SIMCA-D. p = 17, nk
p = 1.5.
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(c) SIMCA. p = 1250, nk
p = 0.02.
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(d) SIMCA-D. p = 1250, nk
p = 0.02.

Figure 3: Coomans’ plots.
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each simulated dataset. The Coomans’ plot [26] shows the orthogonal dis-346

tance from the test samples to two class subspaces at the same time. In347

our experiments, the horizontal and vertical axes denote the ODs to Group348

1 and Group 2, respectively. In Figure 3, the red reference line divides the349

Coomans’ plot into two parts: in the upper triangular part, the distance to350

Group 1 is smaller than that to Group 2; in the lower triangular part, it is351

the other way around.352

Since SIMCA and SIMCA-D have the same q and r, the Coomans’ plots353

reflect the difference between the ODs of these two methods.354

When nk/p = 1.5 (i.e. low-dimensional), the Coomans’ plots of the two355

methods are the same. When nk/p= 0.02 (i.e. high-dimensional), the Coomans’356

plots of the two methods are different. We observe large differences between357

the values of ODs in Figure 3c and Figure 3d, which indicates that the value358

of
∑p

i=q+1(t
k,new
i )2 is large. Including

∑p
i=q+1(t

k,new
i )2 can perfectly separate359

the two groups as shown in Figure 3c; however, omitting
∑p

i=q+1(t
k,new
i )2 re-360

sults in a mixture of the two groups as shown in Figure 3d. This indicates361

that the additional term
∑p

i=q+1(t
k,new
i )2 is important for classification in this362

high-dimensional simulated dataset.363

4.5.2. Real datasets364

Figure 4 shows the box plots of the MP for the real datasets. In the high-365

dimensional Phenyl data and the high-dimensional meat data, SIMCA-D366

provides worse classification performance than the original SIMCA. However,367

in the high-dimensional fat data, SIMCA-D and SIMCA provides the same368

classification results. The results suggest that SIMCA-D can provide worse369

classification results than SIMCA for some high-dimensional real datasets. In370
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Figure 4: The box plots of the MP for the real datasets.
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the low-dimensional iris dataset, the two methods provide the same results.371

This pattern for the real datasets is consistent with that for the simulated372

datasets.373

5. Conclusion374

We have investigated the formulae in [9] of calculating two ODs, vk,l and375

vk,new. We have shown that the formula for vk,new in [9] is not valid for high-376

dimensional data (i.e. when nk ≤ p). The experiments on both the simulated377

datasets and the real datasets have confirmed that the formula following [9]378

can result in worse classification performance than the original one in [28].379

Therefore, we suggest that the original formulae in [28] for calculating the380

ODs, rather than the formulae in [9], should be used for the classification381

of high-dimensional data which have more features than samples (i.e. when382

nk ≤ p).383
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