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Matched Shrunken Cone Detector (MSCD):

Bayesian Derivations and Case Studies for

Hyperspectral Target Detection
Ziyu Wang, Rui Zhu, Kazuhiro Fukui, Member, IEEE, and Jing-Hao Xue

Abstract— Hyperspectral images (HSIs) possess non-negative
properties for both hyperspectral signatures and abundance
coefficients, which can be naturally modeled using cone-based
representation. However, in hyperspectral target detection, cone-
based methods are barely studied. In this paper, we propose a
new regularized cone-based representation approach to hyper-
spectral target detection, as well as its two working models
by incorporating into the cone representation l2-norm and
l1-norm regularizations, respectively. We call the new approach
the matched shrunken cone detector (MSCD). Also important,
we provide principled derivations of the proposed MSCD from
the Bayesian perspective: we show that MSCD can be derived
by assuming a multivariate half-Gaussian distribution or a
multivariate half-Laplace distribution as the prior distribution
of the coefficients of the models. In the experimental studies,
we compare the proposed MSCD with the subspace methods
and the sparse representation-based methods for HSI target
detection. Two real hyperspectral data sets are used for evaluating
the detection performances on sub-pixel targets and full-pixel
targets, respectively. Results show that the proposed MSCD can
outperform other methods in both cases, demonstrating the
competitiveness of the regularized cone-based representation.

Index Terms— Target detection, hyperspectral image (HSI),
cone representation, non-negativity, half-Gaussian distribution,
half-Laplace distribution, shrunken estimation.

I. INTRODUCTION

W ITH the help of remote sensors, hyperspectral imaging

has become an important scientific tool for various

fields of real-world applications. In the analysis of hyperspec-

tral images (HSIs), target detection is a major task, which aims

to detect small objects or anomalies in an hyperspectral image.

Typical target detection applications include military defence,

agricultural management and mineral detection.
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Target detection is essentially a binary classification prob-

lem, of which the task is to determine if an HSI pixel is

a target spectrum or a background spectrum. Hence, target

detection can be regarded as a binary hypothesis model with

two competing hypotheses: the null hypothesis H0 for the

absence of the target; and the alternative hypothesis H1 for

the presence of the target. Binary hypothesis models for target

detection have been nicely reviewed in [1]–[4].

Target objects often appear as sub-pixels in an HSI. That

is, the spectrum of an HSI pixel can be a mixture of different

component spectra of materials. These component spectra are

usually termed endmembers. To model the mixture of an

HSI pixel, the linear mixing model (LMM) [5] has been

widely adopted. The underlying assumption of LMM is that

an HSI pixel can be approximated by a linear combination

of endmembers with different fractions. When a target pixel

presents, its spectrum is decomposed as a linear combination

of background endmembers and target endmembers; in con-

trast, when a background pixel presents, its spectrum is fully

represented by background endmembers.

Within the framework of binary hypothesis modelling,

researches have explored a variety of techniques and exten-

sions on the basis of LMM. Since it is difficult to obtain com-

prehensive spectral libraries to serve as the endmembers for all

desired targets, many methods focus on extract endmembers

directly from HSIs. On the one hand, provided with a large

number of background samples, subspace methods have been

widely developed for target detection. Typical methods, such

as the orthogonal subspace projection detector (OSP) [6] and

matched subspace detector (MSD) [7], adopt the leading eigen-

vectors (with dominant eigenvalues) as the subspace bases and

implicitly the endmembers. On the other hand, sparse rep-

resentation (SR) techniques [8] originating from compressed

sensing have been recently studied in the HSI analysis [9].

For HSI target detection, SR-based methods, such as sparse

target detection (STD) [10], sparse representation-based binary

hypothesis model (SRBBH) [11] and hybrid sparsity and

statistics detector [12], model a test HSI pixel as a linear

combination of only a few training samples (aka atoms of

an over-complete dictionary). It implicitly regards the atoms

as endmembers, hence the SR-based methods can be viewed

as being developed in the original sample space.

These methods can be further extended to nonlinear mixing

models. The kernel methods, which aim to define a model in

a high-dimensional feature space associated with a nonlinear

mapping of input data, have also been studied for HSI target

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



5448 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 11, NOVEMBER 2017

detection [13]–[15]. In [13], subspace methods such as MSD,

OSP have been extended to their kernel versions. Kernelisation

of the SR-based methods has been also developed, such as

kernel-based STD [14] and kernel-based SRBBH [15].

For the sake of physical interpretations, HSIs as instances of

natural signals possess non-negative properties for both hyper-

spectral signatures and the abundance coefficients. A number

of investigations have focused on the non-negative matrix

factorisation (NMF) [16], [17] for HSI unmixing problems.

NMF factorises a sample data matrix into two low-dimensional

matrices in terms of bases and corresponding coefficients, and

explicitly enforces the non-negative constraints on both of

them. However, in the past researches of HSI target detec-

tion [6], [7], [9]–[15], the non-negativity properties have not

been considered yet, particularly for the abundance coeffi-

cients. If we use the samples directly from HSIs as endmem-

bers, it is desirable to impose the non-negative constraints on

the coefficients. In this way, both endmembers and coefficients

are non-negative, such that this physical characteristic of

hyperspectral signatures are modelled.

Statistically, the estimation of non-negatively-constrained

coefficients in the LMM is often termed non-negative least

squares (NNLS) [18]. Geometrically, the NNLS estimation

induces a cone-shape representation [19]. Suppose that a

hyperspectral spectrum x is a p-dimensional vector, and

that there are K types of materials, i.e. K endmembers

potentially constituting an HSI pixel, which are represented

by m1, . . . , mK with each mk also a p-dimensional vector.

Then the cone-based representation of pixel x expresses the

spectral signature of x as a non-negative linear combination

of endmembers m1, . . . , mK with corresponding non-negative

abundance fractions a1, . . . , aK , such that ak ≥ 0 for k =
1, . . . , K . More specifically, a convex cone C is defined as

C :
{

x|x =
K

∑

k=1

akmk = Ma, ak ≥ 0

}

, (1)

where M is a p×K matrix whose columns are the K endmem-

bers spectra mk = [mk,1, . . . , mk,p]T ; and a = [a1, . . . , aK ]T

denotes the abundance vector. For the non-negative LMM, an

additional noise term is also considered:

x = Ma + n, ak ≥ 0, (2)

where the vector n is assumed to be the Gaussian white noise,

i.e. n ∼ (0, σ 2Ip), where Ip is the p × p identity matrix.

It is worth noting that, LMM-based methods may suffer

from the problem of high variance of coefficients estimations.

To this end, shrinkage methods [20] have been developed in

statistical learning. Typical shrinkage methods include l2-norm

regularisation, also known as ridge regression or Tikhonov

regularisation, and l1-norm regularisation, also known as lasso.

For the convex cone analysis, these regularisations have also

been studied, mainly on the computational efficiency of the

algorithms developed based on the NNLS [21]–[24].

In this paper, to account for the non-negativity as well as

the shrinkage of the coefficients of the convex cone model (2)

for HSI target detection, we propose a new approach called the

matched shrunken cone detector (MSCD). Specifically, on the

cone representations we propose to shrink the abundance coef-

ficients of target endmembers and background endmembers

by imposing constraints; we propose two working models

with the l2-norm and l1-norm regularisations, respectively.

We call these two methods MSCD-l2 and MSCD-l1. Equally

important, we derive the proposed MSCD from the Bayesian

perspective, showing that MSCD-l2 and MSCD-l1 can be

derived if a multivariate half-Gaussian distribution [25] and a

multivariate half-Laplace distribution [26] are assumed as the

prior distributions of the coefficient vectors. To our knowledge,

it is the first time that the cone representations with the l2-norm

and l1-norm regularisations are derived from the Bayesian

perspective, as well as the prior distributions identified.

The main novelties and contributions of this paper are

summarised as follows.

1) We propose a regularised cone-based representation

approach called MSCD for HSI target detection. This is the

first time that the cone-based representation and its regularised

versions are brought to HSI target detection.

2) We introduce two independent working models of

MSCD, namely MSCD-l2 and MSCD-l1, by incorporating

l2-norm and l1-norm regularisations, respectively, into the

cone-based representation (2).

3) More importantly, we derive the proposed MSCD-l2

and MSCD-l1 from the Bayesian perspective, showing that

they imply a multivariate half-Gaussian distribution and a

multivariate half-Laplace distribution as the prior distrib-

utions for the coefficients. As far as we are concerned,

this is the first time that the l2-norm and l1-norm regu-

larised cone representations are derived from the Bayesian

perspective with their corresponding prior distributions

identified.

4) Through illustrating the Bayesian derivations of the

proposed MSCD-l2 and MSCD-l1, our principled work opens

a door to different new regularised models to accommodate

various prior knowledge of the practitioners, which provides

a valuable direction to further and enrich the research of HSI

target detection.

5) Last but not least, we illustrate the competitive detection

performance of the proposed models, compared with some

classical and state-of-the-art HSI target-detection methods, on

two real hyperspectral datasets for sub-pixel and full-pixel

target detections, respectively.

It is worth noting that our proposed models are in nature

different from the widely-used sparse-representation-based

detectors [10], [11], the collaborative-representation-based

detector [27] and their hybrids [28], although our two working

models also apply the l2-norm and l1-norm regularisations.

From the modelling perspective, motivated by NMF and phys-

ical interpretations, our MSCD introduces the non-negativity

constraints into the estimation of the model coefficients. From

the geometrical perspective, these non-negativity constraints

induce a cone-shaped representation. Furthermore, we provide

comprehensive statistical derivations of our proposed models

from both frequentist and Bayesian perspectives. In fact,

none of the non-negativity, the cone-based representation,

or the Bayesian derivation were presented in [10], [11],

[27], and [28].
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In the rest of the paper, Section II reviews the binary hypoth-

esis model in terms of the likelihood ratio test. Section III

introduces the propose MSCD. Section IV shows the deriva-

tions of the proposed MSCD-l2 and MSCD-l1 from the

Bayesian perspective with the prior distributions of the coeffi-

cients identified. Section V illustrates the superior performance

of MSCD to other subspace and SR-based methods; and

section VI gives the conclusion of this work.

II. BINARY HYPOTHESIS TESTING MODEL FOR

HSI TARGET DETECTION

HSI target detection methods are typically derived from

a binary hypothesis testing model [3]. We suppose that an

HSI pixel x is a continuous random vector. A likelihood

ratio of the conditional probability density functions (pdfs)

on two competing hypotheses is constructed as follows:

H0 : x is a background pixel,

H1 : x is a target pixel.

⇒ D(x) = fx|H1(x)

fx|H0(x)

H1

≷
H0

ν. (3)

In (3), D(x) is an output detector, which is the ratio of

two conditional pdfs of x under the null hypothesis H0 and

the alternative hypothesis H1, i.e. fx|H0(x) and fx|H1(x); ν is

a predefined detection threshold, such that when D(x) > ν

the test HSI pixel x is identified as a target. The pdfs

are usually unknown and estimated parametrically. Specif-

ically, the likelihood ratio is replaced by the generalised

likelihood ratio (GLR), using their maximum likelihood

estimates (MLEs):

DG L R(x) = fx|H1(x; ω̂1)

fx|H0(x; ω̂0)

H1

≷
H0

ν

= maxω1{ fx|H1(x; ω1)}
maxω0{ fx|H0(x; ω0)}

H1

≷
H0

ν. (4)

In (4), we use ω̂0 and ω̂1 to denote the MLEs of ω0 and

ω1, where ω0 and ω1 are unknown parameters of conditional

pdfs fx|H0(x; ω0) and fx|H1(x; ω1), respectively.

A. Formulation of LMM-Based Binary Hypothesis Models

In the framework of LMM [5], a test pixel x is modelled

by a linear combination of target endmembers and background

endmembers. Specifically, the LMM for HSI target detection

is constructed as follows:

H0 : x = MBβ + n0, x is a background pixel,

H1 : x = MT γ + MBβ + n1, x is a target pixel, (5)

where MT = [t1, . . . , tNt ] is a p × Nt matrix whose columns

t1, . . . , tNt are Nt target spectra; MB = [b1, . . . , bNb ] is a

p × Nb matrix whose columns are Nb background spec-

tra; γ and β are the abundance vectors of MT and MB ,

respectively; and n0 and n1 are assumed to be p-dimensional

vectors of Gaussian white noise: n0 ∼ N (0, σ 2
H0

Ip) and

n1 ∼ N (0, σ 2
H1

Ip), where Ip is the p × p identity matrix.

For a more convenient representation, we let

M be the concatenated matrix of MT and MB :

M = [MT , MB ] = [t1, . . . , tNt , b1, . . . , bNb ] ∈ Rp×(Nt +Nb ).

Accordingly, we concatenate the abundance vectors γ

and β of model H1 into one vector α: α =
[

γ

β

]

=
[γ1, . . . , γNt , β1, . . . , βNb ]T ∈ R(Nt +Nb ). Then model H1 can

be rewritten as

H1 : x = MT γ + MBβ + n1

=
[

MT MB

]

[

γ

β

]

+ n1

= Mα + n1, (6)

and the LMM-based binary hypothesis model becomes

H0 : x = MBβ + n0, x is a background pixel,

H1 : x = Mα + n1, x is a target pixel, (7)

where now the unknown parameters are β, α, n0 and n1.

B. Derivations of LMM-Based GLR

The generalised likelihood ratio (GLR) of LMM for target

detection is formulated as

l̂(x) =
l(α̂, σ̂ 2

H1
; x)

l(β̂, σ̂ 2
H0

; x)

=
(

σ̂ 2
H1

σ̂ 2
H0

)−p/2

exp

{

− 1

2σ̂ 2
H1

∥

∥n̂1

∥

∥

2

2
+ 1

2σ̂ 2
H0

∥

∥n̂0

∥

∥

2

2

}

. (8)

The MLEs σ̂ 2
0 and σ̂ 2

1 are equal to 1
p

∥

∥n̂0

∥

∥

2

2
and 1

p

∥

∥n̂1

∥

∥

2

2
,

respectively. Taking the 2/p power of (8), we have

L L M M (x) = (l̂(x))2/p

=
(

σ̂ 2
H1

σ̂ 2
H0

)−1

=
σ̂ 2

H0

σ̂ 2
H1

=
∥

∥n̂0

∥

∥

2

2
∥

∥n̂1

∥

∥

2

2

=

∥

∥

∥x − MB β̂

∥

∥

∥

2

2
∥

∥x − Mα̂
∥

∥

2

2

. (9)

The MLEs of β and α in (9) are given by

β̂ = argmax
β

{

fx|H0(x; β, σ 2
0 )

}

= argmin
β

{

1

2σ 2
H0

‖x − MBβ‖2
2

}

(10)

and

α̂ = argmax
α

{

fx|H1(x; α, σ 2
H1

)
}

= argmin
α

{

1

2σ 2
H1

‖x − Mα‖2
2

}

, (11)

and thus

β̂ = (MT
BMB)−1MT

Bx and (12)

α̂ = (MT M)−1MT x, (13)

by least square estimates. Based on solutions (12) and (13),

the residual sums of squares (RSS) e0 and e1 for mod-

els H0 and H1 are computed as

H0 : e0 =
∥

∥n̂0

∥

∥

2

2
=

∥

∥

∥x − MB β̂

∥

∥

∥

2

2

= xT (Ip − MB(MT
BMB)−1MT

B)x (14)
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Fig. 1. Illustration of cone-representation methods in a 2D case with different constraints on coefficient vector a: (a) cone (17); (b) cone representation with
l2-norm regularisation (18); and (c) cone representation with l1-norm regularisation (19).

and

H1 : e1 =
∥

∥n̂1

∥

∥

2

2
=

∥

∥x − Mα̂
∥

∥

2

2

= xT (Ip − M(MT M)−1MT )x, (15)

respectively. The final GLR detector of LMM is then

DL M M (x) = e0

e1
= xT (Ip − MB(MT

BMB)−1MT
B)x

xT (Ip − M(MT M)−1MT )x

H1

≷
H0

ν.

(16)

The value of DL M M (x) is compared to a threshold ν to

make the final decision of which hypothesis should be rejected

for the test pixel x. It is worth noting that the over-fitting

problem may happened in (16), and to this end the matched

subspace detector (MSD) [7] can be used instead. In MSD,

the endmembers of background spectra and target spectra,

MB and MT , are represented by the leading eigenvectors of

the background and target subspaces, respectively.

III. MATCHED SHRUNKEN CONE DETECTOR (MSCD)

Rather than using an unconstrained LMM, it is desirable to

adopt the non-negative linear model for modelling a mixed

HSI pixel, so as for a reasonable physical interpretation.

On top of that, we also introduce the regularisation to the

non-negative representation to control the variance of esti-

mates, and derive the whole new model from the Bayesian

perspective. Particularly, we introduce the popular l2-norm

and l1-norm regularisations to the cone-based representation.

We call the proposed approach matched shrunken cone detec-

tor (MSCD) with two specific models MSCD-l2 and MSCD-l1.

A. Regularised Cone

The cone representation of a mixed pixel and its l2-norm

and l1-norm regularised models are formulated as follows.

Cone representation:

argmin
a≥0

‖x − Ma‖2
2 ; (17)

l2-norm regularised cone representation:

argmin
a≥0

‖x − Ma‖2
2 + λ ‖a‖2

2 ; (18)

l1-norm regularised cone representation:

argmin
a≥0

‖x − Ma‖2
2 + λ ‖a‖1 . (19)

To illustrate the relationship among (17), (18) and (19),

we show a two-dimensional cone with different constraints

in Fig. 1. It is easily to see that the non-negative linear

combination of two endmembers m1 and m2 will always lie in

the cone. With additional l2-norm or l1-norm regularisations,

the regions of the constructed vectors are down-sized to be a

fan or a triangle, respectively. In other words, l2-norm and

l1-norm regularisations shrink the value of the coefficient

vector a for the representation of an HSI pixel.

In the following sections, we shall derive the cone-based

binary hypothesis models corresponding to the optimisation

problems of (17), (18) and (19), respectively.

B. Regularised Cone-Based Estimators of Coefficient Vectors

The cone-based binary hypothesis models for target detec-

tion can be formulated as the model in (7) but with addi-

tional constraints. Then we call such models corresponding

to (17), (18) and (19) matched cone detector (MCD), matched

shrunken cone detector with l2-norm regularisation (MSCD-l2)

and matched shrunken cone detector with l1-norm regularisa-

tion (MSCD-l1), respectively.

MCD: given the non-negative constraints (17), the MLEs

of β and α for models H0 and H1 of (7) are given by

β̂ = argmin
β≥0

{

‖x − MBβ‖2
2

}

and (20)

α̂ = argmin
α≥0

{

‖x − Mα‖2
2

}

. (21)

MSCD-l2: given the l2-norm regularised cone representation

in (18), the estimators of β and α of (7) are given by

β̂ = argmin
β≥0

{

‖x − MBβ‖2
2 + λ0 ‖β‖2

2

}

and (22)

α̂ = argmin
α≥0

{

‖x − Mα‖2
2 + λ1 ‖α‖2

2

}

. (23)

MSCD-l1: given the l1-norm regularised cone representation

in (19), the estimators of β and α of (7) are given by

β̂ = argmin
β≥0

{

‖x − MBβ‖2
2 + λ0 ‖β‖1

}

and (24)

α̂ = argmin
α≥0

{

‖x − Mα‖2
2 + λ1 ‖α‖1

}

. (25)
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IV. BAYESIAN DERIVATIONS OF MSCD

Given the cone representation under the null hypothesis H0

of (7) and Bayes’ theorem

f (β|x) = f (x|β) f (β)

f (x)
, (26)

the maximum a posteriori (MAP) estimate of β is

β̂ = argmax
β

f (β|x) = argmax
β

f (x|β) f (β). (27)

As the noise n0 ∼ N (0, σ 2
H0

Ip), the likelihood function

f (x|β) can be formulated as

f (x|β) ∝ exp

{

− 1

2σ 2
H0

‖x − MBβ‖2
2

}

. (28)

Similarly, the MAP estimate of α in the alternative hypoth-

esis model H1 is

α̂ = argmax
α

f (α|x) = argmax
α

f (x|α) f (α), (29)

and as the noise n1 ∼ N (0, σ 2
H1

Ip), the likelihood function

f (x|α) can be formulated as

f (x|α) ∝ exp

{

− 1

2σ 2
H1

‖x − Mα‖2
2

}

. (30)

In the ordinary cone representations (20) and (21) of the

MCD model, improper uniform (non-informative) prior dis-

tributions are actually implied for parameters β and α, with

β ≥ 0 and α ≥ 0. However, in the proposed regularised

MSCD-l2 and MSCD-l1, multivariate folded distributions are

in fact utilised as the priors for the estimation of β in (22)

and (24) and α in (23) and (25), as we shall show below.

A. Folded Distributions

Suppose that the pdf of a random variable Y is g(y) with

y ∈ R. The folding of g(y) over to the non-negative line is

accomplished via transform

X = |Y |, (31)

where X is a random variable on the non-negative real line

R+ = [0,∞) with pdf f (x) [26]:

f (x) = g(x) + g(−x), x ∈ R+. (32)

If we treat coefficients βi and αi in (7) as random variables,

then the non-negative constraints on them imply that their

pdf are on R+. We shall identify that a multivariate folded

Gaussian distribution and a multivariate folded Laplace distri-

bution are the prior distributions of coefficients in the proposed

MSCD-l2 and MSCD-l1, respectively.

B. Prior Distributions of β and α in MSCD-l2

A univariate half-Gaussian distribution is defined as follows.

If Y ∼ N(0, σ 2) with mean zero, then X = |Y | follows a half-

Gaussian distribution

f (x) = 2√
2πσ

exp

(

− x2

2σ 2

)

, x ≥ 0, (33)

Fig. 2. Illustration of a half-Gaussian distribution.

with mean

E(X) =
√

2/πσ, (34)

and variance

var(X) = σ 2(1 − 2/π). (35)

An illustration of the half-Gaussian distribution is shown in

Fig. 2. The half-Gaussian distribution is a special case of the

folded version of Gaussian distribution N(µ, σ 2) when µ = 0.

We shall identify that, if two multivariate half-Gaussian

distributions are imposed on the coefficients α and β, respec-

tively, as the prior distributions, then the estimators (22)

and (23) of MSCD-l2 can be derived in a Bayesian way.

In the model of the null hypothesis H0 of the proposed

MSCD-l2, let us assume a multivariate half-Gaussian distri-

bution as the prior for the coefficient vector β. Specifically,

suppose that a vector s = [s1, . . . , sNb ]T follows a multivariate

Gaussian distribution N(0, σ 2
β INb ), where INb is the Nb × Nb

identity matrix, then β = [β1, . . . , βNb ]T follows a multivari-

ate half-Gaussian distribution with βi = |si | and βi ≥ 0, where

i = 1, . . . , Nb . The expectation of β is

E(β) =
√

2/πσβ1Nb ∈ R
Nb ,

where 1Nb = [1, . . . , 1]T is an Nb-dimensional vector of all

ones; the covariance matrix

C OV (β) = σ 2
β (1 − 2/π)INb ∈ R

Nb×Nb ,

and the pdf is

f (β) = 1

( 1
2
πσ 2

β )Nb/2
exp

(

−||β||22
2σ 2

β

)

. (36)

In MSCD-l2, placing the likelihood function f (x|β) (28)

and the prior distribution f (β) (36) into the MAP estimate

f (β|x) (27) and taking a logarithm, we have

β̂ = argmax
β≥0

log{ f (β|x)}

= argmax
β≥0

log{ f (x|β) f (β)}

= argmax
β≥0

{

− 1

2σ 2
H0

‖x − MBβ‖2
2 − 1

2σ 2
β

‖β‖2
2

}

= argmin
β≥0

{

‖x − MBβ‖2
2 + λ0 ‖β‖2

2

}

, (37)
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where λ0 = σ 2
H0

/σ 2
β . In this way, parameter λ0 effectively

controls the degree of shrinkage via the ratio of two variances

σ 2
H0

and σ 2
β . Equation (37) is exactly the same as model (22).

Similarly, let us assume the prior distribution of coefficients

γ of the target endmembers in the alternative hypothesis H1 is

a multivariate half-Gaussian distribution, with the expectation

E(γ ) =
√

2/πσγ 1Nt ∈ R
Nt ,

where 1Nt = [1, . . . , 1]T is an Nt -dimensional vector; the

covariance matrix

C OV (γ ) = σγ (1 − 2/π)INt ∈ R
Nt ×Nt ,

where INt is the Nt × Nt identity matrix; and the pdf is

f (γ ) = 1

( 1
2
πσ 2

γ )Nt /2
exp

(

−||γ ||22
2σ 2

γ

)

. (38)

Then the concatenated α in model H1 is actually assumed

to follow a half-Gaussian distribution with mean

E(α) =
√

2/π [σγ , . . . , σγ , σβ , . . . , σβ ]T ∈ R
(Nt +Nb). (39)

Let � denote an (Nt +Nb)×(Nt +Nb) diagonal matrix equal to

diag
(

[σγ , . . . , σγ , σβ , . . . , σβ ]T
)

. Then the covariance matrix

of α is

C OV (α) = (1 − 2/π)�, (40)

which is an (Nt + Nb) × (Nt + Nb) matrix; and the pdf is

f (α) =
Nt +Nb
∏

i=1

2√
2πσi

exp

(

−
α2

i

2σ 2
i

)

, (41)

where σi = σγ for i = 1, . . . , Nt and σi = σβ for i =
Nt + 1, . . . , Nt + Nb .

When σγ = σβ and we let both of them be σα , (41) can be

simplified to

f (α) = 1

( 1
2
πσ 2

α )(Nt +Nb )/2
exp

(

−‖α‖2
2

2σ 2
α

)

. (42)

Then placing the likelihood function f (x|α) (30) and the prior

distribution (42) into the MAP estimate f (α|x) (29), we have

α̂ = argmax
α≥0

log{ f (α|x)}

= argmax
α≥0

log{ f (x|α) f (α)}

= argmax
α≥0

{

− 1

2σ 2
H1

‖x − Mα‖2
2 − 1

2σ 2
α

‖α‖2
2

}

= argmin
α≥0

{

‖x − Mα‖2
2 + λ1 ‖α‖2

2

}

, (43)

where λ1 = σ 2
H1

/σ 2
α is the shrinkage parameter. Equation (43)

is exactly the same as model (23).

We can further generalise (43) to a slightly-adaptive shrink-

age model:

α̂ = argmin
α≥0

⎧

⎨

⎩

‖x − Mα‖2
2 +

Nt +Nb
∑

i=1

λ1iα
2
i

⎫

⎬

⎭

. (44)

In (44), when i = 1, . . . , Nt , we have λ1i = σ 2
H1

/σ 2
γ , and

when i = Nt + 1, . . . , Nt + Nb , we have λ1i = σ 2
H1

/σ 2
β .

Fig. 3. Illustration of a half-Laplace distribution.

C. Prior Distributions of β and α in MSCD-l1

A Laplace distribution is defined as follows. If a random

variable Y has a Laplace distribution L(µ, b), then it has

mean µ, variance 2b2, and pdf

g(y) = 1

2b
exp −|y − µ|

b
, y ∈ R. (45)

A folded Laplace distribution is also accomplished via trans-

form (31), and the pdf of the transformed random variable

X becomes (32). Placing (45) in (32), we have the pdf of a

folded Laplace distribution [26]:

f (x) = 1

b

⎧

⎨

⎩

exp(−µ

b
) cosh(

x

b
) for 0 ≤ x < µ,

exp(− x

b
) cosh(

µ

b
) for µ ≤ x .

(46)

Specifically, when µ = 0, (46) reduces to

f (x) = 1

b
exp

(

− x

b

)

, x ∈ R+, (47)

which is the pdf of a half-Laplace distribution with mean b.

We shall also identify that, if two multivariate half-

Laplace distributions are imposed on the coefficients α and β,

respectively, as the prior distributions, then the estimators

(24) and (25) of MSCD-l1 can be derived in a Bayesian way.

Let a random multivariate vector v = [v1, . . . , vNb ]T have a

multivariate Laplace distribution L(0, ϕβINb ). For model (24),

coefficient vector β = [β1, . . . , βNb ]T follows a multivariate

half-Laplace distribution if βi = |vi | for i = 1, . . . , Nb . In this

case, the mean of β is E(β) = ϕβ1Nb and the pdf is

f (β) = 1

ϕ
Nb

β

Nb
∏

i=1

exp

(

− βi

ϕβ

)

, for βi ≥ 0. (48)

Then placing the likelihood function f (x|β) (28) and the

prior distribution f (β) (48) into the MAP function f (β|x) (27)

and taking the logarithm, we have

β̂ = argmax
β≥0

log{ f (β|x)}

= argmax
β≥0

log{ f (x|β) f (β)}

= argmax
β≥0

⎧

⎨

⎩

− 1

2σ 2
H0

‖x − MBβ‖2
2 − 1

ϕβ

Nb
∑

i=1

βi

⎫

⎬

⎭

= argmax
β≥0

{

− 1

2σ 2
H0

‖x − MBβ‖2
2 − 1

ϕβ
‖β‖1

}

= argmin
β≥0

{

‖x − MBβ‖2
2 + λ0 ‖β‖1

}

, (49)
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where λ0 = 2σ 2
H0

/ϕβ controls the degree of shrinkage through

the ratio of 2σ 2
H0

and ϕβ . Equation (49) is exactly the same

as model (25).

In the same fashion, the prior distribution of coefficients γ

of the target endmembers in the alternative model H1 is also

assumed to be a multivariate half-Laplace distribution with pdf

f (γ ) = 1

ϕ
Nt
γ

Nt
∏

i=1

exp

(

− γi

ϕγ

)

, for γi ≥ 0. (50)

As a result, the concatenated coefficients α in model H1 is in

fact assumed to follow a multivariate half-Laplace distribution

as well, with pdf

f (α) =
Nt +Nb
∏

i=1

1

ϕi

exp

(

−αi

ϕi

)

, for αi ≥ 0, (51)

where ϕi = ϕγ for i = 1, . . . , Nt and ϕi = ϕβ for i =
Nt + 1, . . . , Nt + Nb .

As with the derivations in section IV-B, when we have

ϕγ = ϕβ and let both of them to be ϕα , (51) can be rewritten as

f (α) = 1

ϕ
Nt +Nb
α

exp

(

−||α||1
ϕα

)

, for αi ≥ 0. (52)

Then placing the likelihood function f (x|α) (30) and the prior

distribution f (α) (52) into the MAP estimate of α (29) and

taking the logarithm, we have

α̂ = argmax
α≥0

log{ f (α|x)}

= argmax
α≥0

log{ f (x|α) f (α)}

= argmax
α≥0

{

− 1

2σ 2
H1

‖x − Mα‖2
2 − 1

ϕα
‖α‖1

}

= argmin
α≥0

{

‖x − Mα‖2
2 + λ1 ‖α‖1

}

, (53)

where λ1 is a shrinkage parameter equal to 2σ 2
H1

/ϕα.

Equation (53) is exactly the same as model (25).

Again, (53) can be generalised as

α̂ = argmin
α≥0

⎧

⎨

⎩

‖x − Mα‖2
2 +

Nt +Nb
∑

i=1

λ1iαi

⎫

⎬

⎭

, (54)

where λ1i = 2σ 2
H1

/ϕγ for i = 1, . . . , Nt and λ1i = 2σ 2
H1

/ϕβ

for i = Nt + 1, . . . , Nt + Nb .

It is worth noting that there is often only one target spectrum

available in practice for HSI target detection. In such case, the

target training sample MT is a p × 1 single vector instead of

a p × Nt matrix. Then the variance σγ defined in MSCD-l2

and the diversity ϕγ in MSCD-l1 are both have to be set as

∞, since there is no σγ and φγ can be estimated from the

target samples. In other words, we actually do not shrink the

coefficient γ ∈ R for the target subset MT so long as Nt = 1,

and let non-negative projection of a test HSI pixel x onto the

target endmember to be as much as possible.

D. Regularisation and Prior Distributions of MSCD

To adjust (and often improve) the performance of a statis-

tical model like MSD or MCD, some prior domain knowl-

edge about the model, particularly the coefficients, can be

incorporated by imposing regularisation (a frequentist fashion)

or assuming the prior distributions (a Bayesian fashion).

These two ways, although from different statistical schools

of thinking and inference, can often achieve the same effect,

in particular if we can find the pair of a regularisation term

and a prior distribution. That is, deriving the corresponding

prior distribution to a regularisation term can not only provide

a theoretical justification of the latter, but also assist a deeper

understanding of the latter; and vice versa. This inspires our

derivation of MSCD from the Bayesian perspective.

Specifically, the benefit from proposing MSCD-l2 and

MSCD-l1 can be understood from both regularisation and

Bayesian points of view.

In MSCD-l2, an l2-norm regularisation term is added to

impose constraints on the combination coefficients in the

model of MCD. This will shrink the value of the coefficients

and thus reduce the variances of the estimated coefficients,

as usually achieved by a shrinkage methods [20]. From the

Bayesian perspective, as the coefficients are non-negative, such

an l2-norm regularisation can be derived as corresponding to

a multivariate half-Gaussian prior distribution for the coef-

ficients, as we have shown in section IV-B. Equivalently,

using such a prior will reduce the posterior variances of the

coefficients, in a Bayesian sense. On the one hand, the original

MCD models (20) and (21) are equivalent to (37) and (43)

when λ0 and λ1 are zeros, which implies the use of prior

distributions of infinite prior variance. In contrast, the non-

zero shrinkage parameters λ0 and λ1 in (37) and (43) imply a

finite prior variances for the coefficients. On the other hand,

with such a prior, the posterior variance of a coefficient will

be smaller than the variance of the estimator inferred from the

likelihood only. Provided with the lower variance, MSCD-l2

can provide more stable classification performance than MCD.

The case of MSCD-l1 is similar to MSCD-l2, in terms of

shrinkage, though the l1-norm regularisation on the coefficients

of the cone representation-based MCD implies a multivariate

half-Laplace prior distribution for the coefficients, as we have

shown in section IV-C. In fact, as well known, l1-norm

regularisation (like lasso) or a Laplace prior distribution can

induce not only shrinkage of the values of the coefficients,

but also zero values of some coefficients, i.e. the sparsity of

the coefficient vectors. This actually implies an endmember

selection in the cone representation for HSI target detection.

V. EXPERIMENTS

We conduct target detection experiments on two real hyper-

spectral datasets for sub-pixel target detection and full-pixel

target detection, respectively. For sub-pixel target detection, a

target appearing in an HSI is smaller than an HSI pixel. In this

case we compare the target detection methods on the Hymap

dataset [29], which was captured at the location of Cook

city, USA. For full-pixel target detection, a target appearing

in an HSI can occupy more than one HSI pixel. We use

the dataset collected by Airborne Visible/Infrared Imaging
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Fig. 4. An illustration of the dual-window scheme adopted for adaptively
sampling background. For fair comparison, we set OWR = 15 × 15 and
IWR = 9×9 for all the compared target detection methods listed in Table IV.

Spectrometer (AVIRIS) from San Diego, CA, USA to evaluate

the performance of detecting the full-pixel targets.

We compare the proposed methods MSCD-l2 and MSCD-l1

with four types of target detectors: 1) the classical baseline

methods ACE and CEM, which are not affected by the dual-

window scheme; 2) the cone representation-based detector

MCD in (20) and (21); 3) the subspace detectors OSP [6]

and MSD [7]; and 4) the sparse representation-based detectors

STD [10] and SRBBH [11]. For the proposed MSCD-l2 and

MSCD-l1, we adopt the MATLAB codes provided by [23] and

on http://www.yelab.net/software/SLEP/ to solve the l2-norm

regularised cone model (18) and the l1-norm regularised cone

model (19), respectively.

It is worth noting that, in real target detection problems,

it is difficult to obtain training background pixels in a global

approach. Instead, most of works on target detection adopt

a local and adaptive approach to obtaining the background

samples. It is believed that, if the target samples appearing in

an HSI scene are sparse enough, we can use the neighbouring

HSI pixels around a test HSI pixel as a set of local background

samples. Therefore as with [3], [10], [11], and [27], we adopt

the dual window scheme. An illustration of a dual window is

shown in Fig. 4, which separates a local area of a test HSI pixel

into two regions: an inner window region (IWR) and an outer

window region (OWR). The IWR is used to enclose the target

of interest but not to be necessarily large. The OWR is set

to be outside of the IWR and the HSI pixels lie between the

IWR and OWR are used to represent the background samples.

However it is often difficult to determine the window sizes in

practice. Therefore as with [11], [12], and [30], we empirically

set OWR and IWR to be 15 × 15 and 9 × 9 respectively for

all compared methods, in order to detect targets appearing in

both of Hymap and AVIRIS datasets.

A. The Hymap Dataset

1) Data Description: The Hymap dataset [29] serves as a

standard dataset for evaluating hyperspectral target detection,

such as in [28] and [31]–[33]. It has a spatial dimension of

280 × 800 and covers 126 spectral bands, as shown in Fig. 5.

In this paper, we use the reflectance spectral data, and pre-

process the Hymap dataset to remove some bad spectral bands

that have negative values in the collected data and finally

preserve 119 spectral bands for evaluation.

In the Hymap scene, there exist seven types of targets,

including four types of cars (F1, F2, F3 and F4) and three

types of fabrics (V1, V2 and V3). In total, nine target samples

Fig. 5. The Hymap dataset with a spatial size of 280×800 and 126 spectral
bands [29].

Fig. 6. (a) The Hymap sub-image (100 × 300) of the 33rd spectral band;
(b) ROIs of seven types of targets (F1, F2, F3, F4, V1, V2 and V3) in the
Hymap sub-image. There are two samples of targets F3 and F4 each, termed
F3a and F3b, and F4a and F4b, respectively. The pixel sizes of the ROIs of
targets F1, F2, F3a, F3b, F4a, F4b, V1, V2 and V3 are 25, 25, 25, 9, 25,
9, 9, 9 and 9, respectively. Different types of targets are shown in different
colours. Pixels in black are background pixels.

need to be identified including F1, F2, F3a, F3b, F4a, F4b, V1,

V2 and V3. The details of the targets and their corresponding

locations in the scene are summarised in Table I.

The detection is performed for each type of targets. For

instance, if we are interested in detecting target F1, other

targets that are not of interest will be regarded as backgrounds.

Note that the spatial resolution of the Hymap dataset is 3m.

From the region of interests (ROIs) of each type of targets as

shown in Table I, we can infer that only targets F1 and F2

are nearly of full pixels, as their ROIs occupy 3m × 3m. The

rest of targets are all smaller than an HSI pixel, as their ROIs

are smaller than 3m × 3m. Therefore, the Hymap dataset is

a good example for evaluating the sub-pixel target detection

performance of all compared methods.

As the targets of interests are mainly located in the central

region of the Hymap scene, we spatially crop a 100×300 sub-

image from the original Fig. 5, as with [27], [28], and [34].

The cropped sub-image as well as the ROIs of all seven types

of targets are shown in Fig. 6(a) and Fig. 6(b), respectively.

The ground-truth spectra of seven types of targets

(F1-F4 and V1-V3) are given in Fig. 7 and the sample spectral
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TABLE I

LIST OF THE TARGETS IN THE HYMAP DATASET [29]

Fig. 7. Rescaled prior spectra of all the targets in the SPL files: (a) fabric
panels; (b) vehicles.

Fig. 8. Rescaled sample spectra of all targets in the Hymap scene: (a) fabric
panels; (b) vehicles. The selected sample spectra are located in the central
coordinates of the ROIs of F1, F2, F3a, F4a, V1, V2 and V3, respectively.

signatures of the corresponding targets in the Hymap scene

are shown in Fig. 8. We can clearly see that target spectra

signatures in the scene are very different from those ground-

truth spectra, which makes the detections difficult.

2) Experimental Settings: The ROIs mean that a target pixel

may appear in any coordinates within the ROIs, and the exact

number of pixels of a type of target is unknown. As with

the experimental settings in [32] and [34], the criterion for

measuring the correct detection is that if at least one pixel in

the ROIs is identified as target, then this detection is regarded

as a correction detection. Moreover, since the predefined

threshold of each compared detector is unknown, we also

adopt the false alarm rate (FAR) defined in [32] and [34] for

measuring the detection performance. The FAR is equal to

the number of pixels that are not in the target ROIs but have

the test values equal to or greater than the highest test value

of pixels within the ROIs, over the total number of pixels in

the Hymap HSI, i.e. 30,000 in the example of Fig. 6. Hence

we expect to see the lower the FAR, the better the detection

performance.

TABLE II

PARAMETER SETTINGS: THE NUMBER rb OF LEADING EIGENVECTORS OF

OSP AND MSD; AND THE SPARSITY LEVEL L OF STD AND SRBBH

TABLE III

PARAMETER SETTINGS: λ0 AND λ1 OF MSCD-l1 AND MSCD-l2

Parameters of the compared methods should be determined.

For the subspace methods OSP and MSD, parameter rb, which

is the number of leading eigenvectors of background subspace,

should be determined. For the sparse-representation methods

STD and SRBBH, parameter L, which is the sparsity level,

should be determined. We shall also determine the parameter

λ0 and λ1, which are the shrinkage parameters of models

H0 and H1, respectively, for both the proposed MSCD-l1

and MSCD-l2. Due to the limited size of training samples,

we are unable to do cross-validation for tuning parameters.

Specifically, we have only one ground-truth spectrum of each

type target and we do not even have the ground-truth spectra

of background samples within the Hymap HSI. Therefore for

illustration purposes, we manually tune the parameters of each

compared method to their optimal values when the FARs of

each method are the lowest, as done by most published works

on the Hymap dataset [31], [32], [35]. The range of rb is

[1, 119]; the range of L is [1, 30]. For the proposed MSCD-l1

and MSCD-l2, we also manually tune the parameters λ0 and

λ1 to their optimal values by sweeping the value in [1e-05,

1e-04, 1e-03, 1e-02, 1e-01, 1e-00, 1e+01, 1e+02]. The optimal

values of rb for OSP and MSD and of L for STD and SRBBH

are listed in Table II. The optimal values of λ0 and λ1 for the

proposed MSCD-l1 and MSCD-l2 are listed in Table III.
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TABLE IV

FALSE ALARM RATE (FAR) OF COMPARED METHODS FOR THE HYMAP DATASET. THE OWR AND IWR ARE SET TO BE 15×15 AND 9×9, RESPECTIVELY,
FOR OSP, MSD, STD, SRBBH, MSCD, MSCD-l1 AND MSCD-l2. THE MINIMUM FARs ARE IN BOLDFACE

Fig. 9. Prediction maps of test statistics for detecting F4 in the Hymap image. (a) The Hymap HSI of the 33rd spectral band; (b) ground-truth labels of F4;
(c) ACE, FAR = 0.21e-02; (d) CEM, FAR = 0.51e-02; (e) OSP, FAR = 0.13e-02; (f) MSD, FAR = 0.26e-02; (g) STD, FAR = 0.32e-02; (h) SRBBH,
FAR = 0.11e-02; (i) MCD, FAR = 0.45e-02; (j) MSCD-l1 , FAR = 0.35e-02; (k) MSCD-l2 , FAR = 0.04e-02.

3) Experimental Results and Analysis: The FARs of

all compared methods for detecting each type of tar-

gets are listed in Table IV. Firstly, for the cone-based

detectors, MCD, MSCD-l2 and MSCD-l1, we can observe

that the proposed MSCD-l2 (FAR 5.12e-02) and MSCD-l1

(13.17e-02) outperform MCD (28.60e-02) for detecting dif-

ferent types of targets. This illustrates the effectiveness of

incorporating the regularisations into the optimisation of non-

negative problems. Furthermore, MSCD-l2 performs signifi-

cantly better than MSCD-l1, which implies that the l2-norm

regularised cone representation is more effective than the

l1-norm regularised cone representation for detecting the tar-

gets in the Hymap dataset.

Secondly, comparing all the methods listed in Table IV,

we can clearly see that our proposed MSCD-l2 outperforms

ACE, CEM, OSP, MSD, STD, SRBBH, MCD and MSCD-

l1 for detecting targets F1, F4 and V1, and it performs the

best in terms of the sum of FARs of detecting fabric targets

F1-F4 with FAR as 0.25e-02. More importantly, MSCD-l2 also

outperforms others in detecting all types of targets, i.e. F1-F4

and V1-V3, with the smallest sum of FARs as 5.12e-02. This

indicates that the proposed MSCD-l2 is more competitive than

the subspace and sparse-representation methods.

Last but not least, we shall note that, among the com-

pared methods, the subspace method MSD and the sparse-

representation method STD perform relatively better than each
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Fig. 10. Effects of λ0 and λ1 of (a) MSCD-l1 and (b) MSCD-l2 on detecting
target F4 in the Hymap dataset. Window sizes: IWR 9×9 and OWR 15×15.
Since FAR is the smaller the better, for easier reading, we plot “−FAR” such
that the best detection performance occurs at the peak of the surface plot.

of their cohort methods, i.e. MSD is better than OSP and STD

is better than SRBBH in terms of the sum of FARs of all

targets. STD also has competitive performance for detecting

the vehicle targets, particularly V2 and V3. However, both of

MSD and STD are not as good as the proposed MSCD-l2

in terms of the sum of FARs for detecting all targets. This

also implies that MSCD-l2 is more stable than other methods,

whatever the types of targets and the sizes of them.

To further illustrate the detection performances of the

compared methods, we display the prediction maps of all

methods in Fig. 9 for detecting target F4. Fig. 9(b) shows

the ground-truth map of target F4. The value of each pixel

shown in Fig. 9(c)-9(k) represents the test statistic value of

the pixel: the brighter the pixel, the higher the test statistic

value, and thus the more likely a target. That is, we expect

a good prediction map to show a clear pattern for detecting

F4 that the brightnesses of the pixels located within the ROIs

of F4 are higher than those outside. From these prediction

maps, we can visually observe that 1) ACE (Fig. 9(c)), CEM

(Fig. 9(d)), OSP (Fig. 9(e)) and MSD (Fig. 9(f)) have no

such a clear pattern; 2) STD (Fig. 9(g)), SRBBH (Fig. 9(h)),

MCD (Fig. 9(i)) and MSCD-l1(Fig. 9(j)) look better, but we

can easily spot many outside pixels brighter than the pixels

within the ROIs of F4; 3) among all the maps, MSCD-l2 in

Fig. 9(k) looks the best, though it still does not provide a zero

FAR (FAR = 0.04e-02 in Table IV), where the bright pixels

largely stick around the ground-truth of F4, rather than spread

over the scene as in other prediction maps.
4) Discussion on Effects of Parameters: We further inves-

tigate the effects of two types of parameters on the perfor-

mance of our proposed MSCD methods: 1) the shrinkage

parameters λ0 and λ1; and 2) the window sizes IWR and

OWR.

Firstly, from Fig. 10 we can make two observations. 1) The

“-FAR” surface of MSCD-l2 (Fig. 10(b)) is smoother than

that of MSCD-l1 (Fig. 10(a)), which indicates that MSCD-l2

is less sensitive to the shrinkage parameters λ0 and λ1 than

MSCD-l1. 2) For both MSCD-l2 and MSCD-l1, the detection

performance tends to be stable in a wide range of values of λ0

and λ1; that is, the values λ0 and λ1 do not have to be exactly

the same as used in Table III to achieve a similar performance

for MSCD-l2 and MSCD-l1.

Secondly, we investigate the effects of window sizes on

the performance of the compared detectors: OSP, MSD, STD,

SRBBH, MCD, MSCD-l1 and MSCD-l2. For a simple and

effective exploration, we fix the values of other parameters

Fig. 11. Effects of window sizes on detecting target F4 in the Hymap dataset.
IWR: 9 × 9; OWR: from 11 × 11, 13 × 13, 15 × 15, 17 × 17 to 19 × 19.

Fig. 12. (a) The AVIRIS sub-image (100 × 100) of the 45th spectral band;
(b) the ground-truth labels of targets including 58 target pixels.

(rb and L in Table II and λ0 and λ1 in Table III), and fix

the IWR and tune OWR. From Fig. 11, we can see that,

among the detectors, MSCD-l2 is the most stable with OWR,

while the two subspace detectors OSP and MSD are the most

sensitive.

B. The AVIRIS Dataset

1) Data Description: The AVIRIS data was captured at

an airport in the San Diego, CA, USA with the planes as

targets. We select a sub-image that spatially covers a region of

100×100. As with [11] and [12], we remove some bad spectral

bands and preserve 189 spectral bands for evaluation. In the

AVIRIS scene, there are three planes need to be detected,

consisting of 58 HSI pixels that are labelled as target pixels.

The hyperspectral image scene and the ground-truth maps are

shown in Fig 12(a) and Fig. 12(b), respectively. It is clear that

each target plane covers more than one HSI pixel. Hence the

AVIRIS dataset adopted here is suitable for evaluating the full-

pixel target detection performance of the compared methods.

2) Experimental Settings: Because the labels for individual

HSI pixels are available in the AVIRIS dataset, we select the

three central HSI pixels of each plane as the prior spectra

of target signatures, as with [11] and [12]. The rest of target

HSI pixels are used to evaluate the detection performances of

methods. The 58 target spectra and the three training target

spectra are shown in Fig. 13(a) and Fig. 13(b), respectively.

We can observe that the spectra of the target HSI pixels still
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Fig. 13. Spectra of targets in the AVIRIS dataset: (a) all target spectra in
the hyperspectral scene; (b) spectra of three training target pixels, which are
the central pixels of the three planes, respectively.

Fig. 14. The ROC curves of the compared methods: ACE, CEM, OSP, MSD,
STD, SRBBH, MCD, MSCD-l1 and MSCD-l2 .

look different from each other. However, compared with Fig. 7

and Fig. 8 for the Hymap dataset, the spectral pattern of the

AVIRIS targets may be clearer and the targets may be easier to

be detected, as the training target pixels are from the HSI rather

than from spectral libraries.

As with [11] and [12], we use the receiver operating char-

acteristic (ROC) curves to measure the detection performances

for the AVIRIS dataset. The reason of using ROC instead of

FAR is that now we have the labelling information for every

single target HSI pixel, instead of the only available ROIs in

the Hymap dataset. We expect that an ROC curve goes to the

top left of the plot, if the detection performance of a method

is good. Additionally, we adopt the area under curve (AUC)

statistics to quantitatively measure the detection performance

in pair with the ROC curves.

Similarly, the parameters of each compare method should

be determined: the number of leading eigenvectors rb for

the subspace methods OSP and MSD; the sparsity level L

for the SR-based methods; and the shrinkage parameters

λ0 and λ1 for both of the proposed MSCD-l1 and MSCD-l2.

Again, for illustration purposes, the parameters are empirically

determined and the values are listed in Table V, with the same

tuning ranges of values as for the Hymap dataset.

3) Experimental Results and Analysis: The ROC curves

of all the compared methods are shown in Fig. 14 and the

corresponding AUC statistics are listed in Table V. Once again,

we can observe that the proposed MSCD-l1 and MSCD-l2

both outperform MCD, which indicates the benefit of

incorporating the l1-norm and l2-norm regularisations into

the cone-based representation for HSI target detection.

Fig. 15. Prediction maps for detecting planes in the AVIRIS image. The
brighter the pixels, the more likely to be targets. (a) ACE, AUC = 0.9398;
(b) CEM, AUC = 0.9596; (c) OSP, AUC = 0.9527; (d) MSD, AUC = 0.9091;
(e) STD, AUC = 0.9647; (f) SRBBH, AUC = 0.9547; (g) MCD, AUC =
0.9616; (h) MSCD-l1 , AUC = 0.9713; (i) MSCD-l2 , AUC = 0.9632.

Moreover, the proposed MSCD-l1 is among the best of all

the compared method. This implies that, for detecting full-size

target HSI pixels, introducing the sparsity constraints on the

coefficients into the MCD can achieve better performance than

the l2-norm constraints on the coefficients. Generally speaking,

the cone-representation methods are better than the sparse-

representation methods; and the sparse-representation methods

are better than the subspace methods for detecting full-size

target HSI pixels in the AVIRIS dataset.

We also plot the prediction maps for all the methods and dis-

play them in Fig. 15. It can be seen that the cone-representation

methods, i.e. MCD (Fig. 15(g)), MCD-l1 (Fig. 15(h)) and

MCD-l2 (Fig. 15(i)), look relatively better than the others.

The difference among these three prediction maps are not so

much. Among the other six methods (ACE, CEM, OSP, MSD,

STD and SRBBH), MSD (Fig. 15(d)) looks the worst, as it

is badly affected by the dual window scheme (Fig. 4); and

STD looks better than ACE, CEM, OSP, MSD and SRBBH.

However, the colour contrast in Fig. 15(e) of STD is not as

large as those in Fig. 15(g)-15(i) of the cone-representation

methods. This means that the test statistics of background

pixels and target pixels of MCD, MSCD-l1 and MSCD-l2 are

more different than those of STD, which further illustrates the

stable performances of the cone-based methods for detecting

targets in the AVIRIS dataset.

4) Discussion on Effects of Parameters: As with the analy-

sis for the Hymap dataset, we also investigate the effects of
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TABLE V

PARAMETERS AND AUC STATISTICS OF THE COMPARED METHODS FOR THE AVIRIS DATASET. THE OWR AND IWR ARE SET TO BE 15×15 AND 9×9,
RESPECTIVELY FOR OSP, MSD, STD, SRBBH, MSCD, MSCD-l1 AND MSCD-l2. THE MAXIMAL AUC IS IN BOLDFACE

Fig. 16. Effects of λ0 and λ1 of (a) MSCD-l1 , (b) MSCD-l2 on detecting
targets in the AVIRIS dataset.

Fig. 17. Effects of window sizes on detecting targets in the AVIRIS dataset.
IWR: 9 × 9; OWR: from 11 × 11, 13 × 13, 15 × 15, 17 × 17 to 19 × 19.

TABLE VI

EXECUTION TIME (SEC/PIXEL) SPENT ON THE AVIRIS DATASET

shrinkage parameters λ0 and λ1 and window sizes IWR and

OWR on the detection performance on the AVIRIS dataset.

Firstly, from Fig. 16 we can observe two similar patterns

to those from Fig. 10: 1) MSCD-l2 is less sensitive to

λ0 and λ1; and 2) both MSCD-l2 and MSCD-l1 can achieve

good performance in a wide range of values of λ0 and λ1.

Secondly, Fig. 17 shows that MCD, MSCD-l1 and MSCD-l2

are less sensitive to OWR, or say more robust to the variation

of background samples, than OSP, MSD, STD and SRBBH.

By analysing the experimental results of the two datasets,

we can observe that MSCD-l2 performs better than MSCD-l1

for the Hymap dataset, while MSCD-l1 is better than MSCD-l2

for the AVIRIS dataset. In line with the debate between choos-

ing sparse representation (lasso) or collaborative representation

(ridge regression) in the HSI analysis, both methods have their

own advantages and it remains an open question which one

is better. We shall also note that MSCD-l1 and MSCD-l2

cost more computational resources than ACE, CEM, OSP

and MSD, because there is no closed-form solution to the

cone-based optimisation. The computational costs of STD,

SRBBH, MCD, MSCD-l1 and MSCD-l2 are listed in Table VI,

as performed on Intel i7-4790 CPU.

VI. CONCLUSION

In this paper, we have proposed a new approach called

matched shrunken cone detector (MSCD) for hyperspectral

target detection. Two new working models of MSCD, namely

MSCD-l2 and MSCD-l1, have also been proposed, with

the l2-norm and l1-norm regularisations incorporated into the

MSCD, respectively. Geometrically, we have analysed the

underlying effectiveness of MSCD. The values of the coeffi-

cients are shrunken within a cone either by the l2-norm regular-

isation or the l1-norm regularisation, which form two different

constrained regions for the coefficients. Statistically, we have

derived MSCD from the Bayesian perspective. We have

shown that if a multivariate half-Gaussian distribution or a

multivariate half-Laplace distribution is assumed as the prior

distribution of the coefficients, then MSCD-l2 or MSCD-l1

can be derived. In our experiments, cases studies on two real

hyperspectral datasets have been conducted, with the Hymap

dataset to illustrate the sub-pixel target detection and the

AVIRIS dataset to illustrate the full-pixel target detection. We

have compared four categories detectors including the base-

line methods, the subspace methods, the sparse-representation

methods and the cone-representation methods. Experimental

results on both of the two datasets have showed the competitive

performance of the proposed MSCD.

We would like to make two further notes about the Bayesian

derivations. One the one hand, in the Bayesian paradigm,

the half-Gaussian or half-Laplace prior distribution can be

assumed on the basis of our prior knowledge that the model

coefficients are positive. In principle any distribution of a

positive random variable can be assumed as the prior for

such a coefficient; in our case, half-Gaussian and half-Laplace

distributions match the l2-norm and l1-norm regularisations,

respectively. That is, the half-Gaussian and half-Laplace priors

provide us with a principled Bayesian interpretation of the

two regularised models. On the other hand, if the practitioners

hold some specific prior domain knowledge which prefers

to be modelled by other positive prior distributions, such as

log-normal distributions or gamma distributions, a Bayesian

derivation like ours can open a door to different new reg-

ularised models, which fit their practice better. This can be

an interesting and practically valuable direction to further our

principled work presented in this paper.
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