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Abstract

Sensitivity analysis is an important component of model building, interpretation
and validation. A model comprises a vector of random input factors, an aggrega-
tion function mapping input factors to a random output, and a (baseline) probability
measure. A risk measure, such as Value-at-Risk and Expected Shortfall, maps the
distribution of the output to the real line. As is common in risk management, the
value of the risk measure applied to the output is a decision variable. Therefore, it is
of interest to associate a critical increase in the risk measure to specific input factors.
We propose a global and model-independent framework, termed ‘reverse sensitivity
testing’, comprising three steps: (a) an output stress is specified, corresponding to
an increase in the risk measure(s); (b) a (stressed) probability measure is derived,
minimising the Kullback-Leibler divergence with respect to the baseline probability,
under constraints generated by the output stress; (c¢) changes in the distributions of
input factors are evaluated. We argue that a substantial change in the distribution
of an input factor corresponds to high sensitivity to that input and introduce a novel
sensitivity measure to formalise this insight. Implementation of reverse sensitivity
testing in a Monte Carlo setting can be performed on a single set of input/output
scenarios, simulated under the baseline model. Thus the approach circumvents the
need for additional computationally expensive evaluations of the aggregation func-
tion. We illustrate the proposed approach through numerical examples with a simple
insurance portfolio and a model of a London Insurance Market portfolio used in in-
dustry.
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1 Introduction

1.1 Problem framing and contribution

Risk managers often use complex quantitative models as decision support tools. Of fun-
damental importance is sensitivity analysis, which is concerned with characterising and
providing insight regarding the relation between inputs and outputs. Sensitivity analysis
can have different aims, including identifying the most influential inputs (factor prioritisa-
tion), detecting the direction of input/output relationships, and inferring model structure;
see Saltelli et al. (2008); Borgonovo and Plischke (2016) for comprehensive reviews. For
the specific aim of factor prioritisation, a sensitivity measure is typically used, assigning
a sensitivity score to each input. When model inputs are subject to uncertainty, global
sensitivity measures are used, considering the whole possible space of multivariate input
scenarios.

In this paper we develop a sensitivity analysis framework appropriate for contexts
where the following considerations, typical in several fields, including probabilistic safety
assessment, reliability analysis and financial/insurance risk management (Saltelli and
Tarantola, 2002; Aven and Ngkland, 2010; Gourieroux et al., 2000; Tsanakas and Mil-
lossovich, 2016), hold:

e Model inputs are uncertain, hence sensitivity and uncertainty analyses are inter-
linked and global sensitivity analysis methods are called for.

e A decision criterion is derived by applying a risk measure on the distribution of the
output. Risk measures are functionals mapping random variables to the real line
(Artzner et al., 1999; Szegd, 2005). Risk measures are used in a variety of operations
research and risk analysis applications, with Value-at-Risk (VaR) and Expected
Shortfall (ES — also known as CVaR) particularly popular choices; indicatively see
Rockafellar and Uryasev (2002); Tapiero (2005); Gotoh and Takano (2007); Ahmed
et al. (2007); Asimit et al. (2017).

e The value of the risk measure, applied on the output distribution, gives an indication
of criticality for the system whose uncertainty is analysed. For example, in the
context of financial risk management, high values of output risk measures may
indicate that a portfolio is not admissible, e.g. due to regulatory constraints (Artzner
et al., 1999). In the context of probabilistic safety assessment, legislation postulates
acceptable probabilities of failure, e.g. of fatality numbers exceeding a threshold
(Borgonovo and Cillo, 2017).

e The relationship between model inputs and outputs is complex and not necessarily
given in analytical form. Furthermore, evaluations of the model are computationally
expensive inducing the need to estimate sensitivity measures from a single sample
of input and output scenarios (Beckman and McKay, 1987; Plischke et al., 2013).

We propose a sensitivity analysis framework, adapted to the above context, termed
reverse sensitivity testing. We work in the standard setting of sensitivity analysis, where
a number of random input factors are mapped to a random output via an aggregation
function. The baseline probability measure summarises the distribution of inputs and
output in the current specification of the model. Our reverse sensitivity testing framework
comprises the following steps. First, an output stress is defined, corresponding to an
increase in the value of the output risk measure. We focus on the widely used risk
measures VaR and ES. The increase in the value of the risk measure is specified so as
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to produce a stress that is problematic to a decision maker. For example, in a capital
management context, a stress on VaR may lead to a situation where insufficient assets
are available to satisfy regulatory requirements.

Secondly, a stressed probability measure is derived. This is a probability (a) under
which the risk measure applied to the model output is at its stressed level and (b) that
minimises the Kullback-Leibler (KL) divergence subject to appropriate constraints on the
output probability distribution. Thus the stressed probability leads to the most plausible
alternative model, under which the output distribution is subjected to the required stress.
We derive analytical solutions of the stressed probability measure under an increase of
VaR and ES. The form of the solutions allows for numerically efficient implementation
via a single set of Monte Carlo simulations.

Finally, the distribution of individual input factors is examined under the baseline and
stressed models. Substantial changes in the distribution of a particular input indicate a
large sensitivity to that input. A new class of reverse sensitivity measures is introduced,
quantifying these input changes, and extended to control for statistical dependence be-
tween inputs. The sensitivity measures are then used to identify the most influential input
factors; in a sense, those factors that may be responsible for ‘breaking the model’.

1.2 Relation to the literature

Prominent sensitivity analysis methods use a (Hoeffding) decomposition of the output
variance (Sobol, 1993; Wagner, 1995; Saltelli et al., 2000; Saltelli, 2002; Saltelli et al.,
2008), as well as moment independent approaches (Borgonovo, 2007; Borgonovo et al.,
2011). Alternative methods consider partial derivatives of statistical functionals of the
output distribution in the direction of parameters of interest, see Glasserman and Liu
(2010) for expectation-type and Hong (2009); T'sanakas and Millossovich (2016) for percentile-
based functionals.

The sensitivity measures we propose in the present paper reflect the joint distribu-
tion of individual input factors and output; hence our proposed method remains formally
within the unifying framework discussed by Borgonovo et al. (2016) and thus are (dis-
tantly) related to variance-based and moment-independent sensitivity measures. Nonethe-
less, our proposed sensitivity measures are conceptually different compared to variance-
based metrics and other current approaches in the literature. First, our approach involves
an assessment of output uncertainty via tail-risk measures rather than the variance. Sec-
ond, we adopt a reverse approach of stressing the output and then evaluating the impact
on the inputs. Our method allows for flexibility in the stress level on the output, giving a
nuanced picture of the sensitivity of input factors. Furthermore, the sensitivity measures
we propose can take both negative and positive values, indicating the direction in which
input factors affect the output. Thus, we view our proposed sensitivity analysis frame-
work as complementary rather than competing with established methods, as it aims to
address different questions.

Conceptually, the reverse direction (from output to input) of the proposed method, is
related to regionalised sensitivity analysis methods (Spear et al., 1994; Osidele and Beck,
2004). However, there is a key difference between regionalised sensitivity analysis and
our approach: in the former, states of the output are identified that are ‘out of control’,
while in the latter what is ‘out-of-control’ are not individual states but specifications of
the output distribution. The numerical tractability of our framework in a Monte Carlo
setting is akin to Beckman and McKay (1987).

In the practice of financial risk management and regulation, reverse stress testing,
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starting with a stressed output state and studying the corresponding surface of scenarios
that provide the adverse outcome, is frequently used (BCBS, 2013; EIOPA, 2009). For
example, “reverse stresses that result in a depletion of capital...” (Lloyd’s, 2016) are used
in the validation of insurance risk models. The academic literature on reverse stress testing
is relatively sparse, with a recent focus towards identifying most likely stress scenarios
(McNeil and Smith, 2012; Breuer et al., 2012; Glasserman and Xu, 2014). Our approach
differs from reverse stress testing, in that we consider most influential factors in relation
to changes in the output distribution and not a particular output state.

The KL-divergence has been widely used in financial risk management, in particular in
the context of model uncertainty, where several plausible specifications of the probability
measure may co-exist. For example, Breuer and Csiszar (2013); Glasserman and Xu
(2014); Blanchet et al. (2017) consider the worst-case probability measure with respect
to all probabilities lying within a KL-divergence radius of the baseline probability. In
contrast, reflecting our focus on sensitivity rather than model uncertainty, we consider
the probability measure with minimal KL-divergence that satisfies given constraints. Our
approach is closely related to the work of Cambou and Filipovi¢ (2017) with probability
set constraints and Weber (2007) with risk measure constraints, see Section 3 for a detailed
comparison.

1.3 Structure of the paper

In Section 2, some preliminaries on risk measures and the KL-divergence are given. In
Section 3, the optimisation problem yielding stressed probability measures is stated and
solved under constraints arising from different risk measures, with emphasis on VaR and
ES. Explicit solutions allow easy implementation and inspection of the distributional
changes arising. Furthermore, we discuss an extension where the distributions of multiple
outputs are stressed. The solutions and their properties are illustrated through an example
of a non-linear insurance portfolio evaluated using Monte Carlo simulation.

In Section 4 we propose metrics tailored to the proposed reverse sensitivity testing
approach. A comparison study of the proposed reverse sensitivity measures with moment
independent and variance-based sensitivity measures is conducted, illustrating differences
between the concepts but also demonstrating coherent sensitivity rankings of inputs. In
addition, a generalisation of reverse sensitivity measures is proposed, with the aim of
controlling for dependence between input factors.

Section 5 demonstrates the applicability of the reverse sensitivity testing framework
to a commercially used insurance portfolio model.

Appendix A is devoted to a comparison of the stressed and the baseline probability
measures through stochastic order relations, in order to establish formal properties of
the proposed framework. We find that the distribution of the output under the baseline
probability is first-order stochastically dominated by that under the stressed probabil-
ity. A similar dominance relation is provided for input factors, under the assumption
of a non-decreasing aggregation function and positive dependence between input factors.
Moreover, stressed probability measures stemming from different stress severities lead to
stochastically ordered input factors and output. All proofs are provided in Appendix B.

2 Preliminaries

We consider a measurable space (€2, .4) and denote by P the set of all probability measures
on (9, 4). For a random variable Z on (Q2,.A) we write Fg() = Q(Z < ) for its



distribution under Q € P, and similarly, E?(-) for its expectation. Throughout, we
use the Kullback-Leibler divergence (KL-divergence, Kullback and Leibler (1951)) as a
measure of discrepancy between two probability measures. For Q',@? € P, the KL-
divergence, also known as relative entropy, of Q' with respect to Q? is defined by

dQ 2 1 )
DL(Q'Q%) = {fd 7 log (dQ2)dQ ifQ'<Q

otherwise,

where we use the convention that 0log(0) = 0. The KL-divergence is non-negative,
vanishes if and only if Q' = Q?, and is in general not symmetric (Kullback, 1959; Cover
and Thomas, 2012). The KL-divergence is a special case of the class of f-divergences,
first introduced by Ali and Silvey (1966), for the choice f(z) = xlog(z), x > 0. For a
given convex function f, the f- divergence of Q' with respect to Q2, for any Q',Q? € P,
is defined through D¢(Q'|Q?) = [ f(ngQ)dQ2

Risk measures are tools used in risk management, which associate to every random
variable a real number. The application of risk measures leads to a classification of dif-
ferent levels of risk severities, see Artzner et al. (1999); Follmer and Schied (2011) for
an overview. Moments, such as the mean and standard deviation, can be seen as risk
measures. In recent years, percentile-based risk measures (Acerbi, 2002) have become
prominent, with the most commonly used risk measures being Value-at-Risk (VaR) and
Expected Shortfall (ES). These risk measures are used extensively in financial regula-
tion for the calculation of capital requirements, specifically VaR for European insurance
companies, EIOPA (2009), and ES for banks, BCBS (2012, 2013).

The VaR at level a € [0, 1] of a random variable Z is defined as the left a-quantile of
the distribution of Z, VaR@(Z) = Fg’_l(a) = inf{z € R| Fg(z) > a}, where, as usual,
inf @ = 4o00. In particular, the essential supremum of Z is esssup® Z = Fg’fl(l). The
ES (also CVaR) of Z at level a € [0,1) is defined by

1
1
/ VaR%(Z)du = -

ESY(Z) =

((z - var(2)), ) + Var2(2),

—

where, in the second representation, VaR%(Z) can be replaced by any a-quantile of F g :
Unlike VaR, the ES takes into account the whole tail of the distribution of Z, that is all
realisations larger than VaR%(Z). See Follmer and Schied (2011) for a comparison of the
two risk measures.

Shortfall risk measures, associated with utility-type arguments, are defined through
p9(Z) = inf{z € R|E?((Z — 2)) < 2} for Q € P, where £ is a non-decreasing, non-
constant and convex loss function while zg is a point in the interior of the range of £
(Follmer and Schied, 2002). Examples of shortfall risk measures include entropic risk
measures, Gerber (1974), and the class of generalised quantiles called expectiles (Newey
and Powell, 1987; Bellini et al., 2014).

3 Deriving the stressed model

3.1 Problem statement

We consider the standard setting of (reverse) sensitivity analysis, involving a (typically
complicated) function, mapping model inputs to an output that is used in a decision
making process. Mathematically, we define the input factors as a random vector X =
(X1,...,X,) on the measurable space (€2,.A). The (measurable) function g: R” — R,



3.2 Probability constraints

is called the aggregation function, which gives, when applied to input factors X, the
one-dimensional random output of interest Y = g(X). The variability of the output Y to
changes in input factors is of fundamental importance in sensitivity analysis (Saltelli et al.,
2008; Borgonovo and Plischke, 2016) and the focus of this paper. We adopt throughout
the convention that large values of the output correspond to adverse states.

We call the triple (X, g, P), the baseline model with baseline probability measure
P € P. The probability P is seen as encoding current beliefs regarding (or software
implementation of) the distribution of X. Under the baseline probability P we suppress
the superscript and write, for example, Fz(-) = FZ(-) and E(-) = EF(-), and analogously
for risk measures, VaRo(-) = VaRL(:) and ES,(-) = ESL(-). We call any Q € P an
alternative probability measure and (X, g, Q) an alternative model. A Radon-Nikodym
(RN) density is a non-negative random variable ¢ on (2, 4) such that E({) = 1. We
denote by Q¢ the probability measure which is absolutely continuous with respect to P
with RN-density ¢, that is, ¢ = 9&-.

The starting point of reverse sensitivity analysis is to define a stress on the distribu-
tion of the output that would be problematic to a decision maker, such as a risk manager
or regulator. For example, one may require that the probability of a particular event,
representing system failure, increases to an extent that the risk of failure is no longer ac-
ceptable. Specific stress definitions using different risk measures are discussed in Sections
3.2-3.6. Subsequently, we call (X, g, Q) a stressed model with stressed probability measure
Q@ € P if, under Q, the output Y fulfils a set of probabilistic constraints (the stress) and
@ has minimal KL-divergence with respect to P. Thus, a stressed probability measure is
defined as a solution to

gli% Dx1,(Q||P), s.t. constraints on the distribution of ¥ under @ hold. (1)
€

The optimisation problem (1) is robust in the sense that convergence in the KL-
divergence implies weak convergence of the probability measures, Gibbs and Su (2002).
This means that an alternative probability which satisfies the constraints of (1) and is
close in KL-divergence to the stressed probability, is also close to the stressed probability
in the Lévy metric.

Optimisation problem (1) under linear (i.e. moment) constraints was first studied
in the seminal paper by Csiszar (1975). In the context of financial risk management,
in particular when risk measures are used, optimisation problem (1) involves non-linear
constraints and Csiszar’s theory cannot be applied. Relevant research includes Cambou
and Filipovi¢ (2017) who consider the optimisation problem for general f-divergences
and probability set constraints. Weber (2007) works with bounded random variables and
considers risk measure constraints such as ES and shortfall risk measures, see Sections
3.3 and 3.4 for a more detailed comparison.

3.2 Probability constraints

Before studying problem (1) with constraints involving the risk measures of Section 2,
we consider stresses under which the probabilities of (adverse) outcomes of ¥ = g(X)
are altered. These outcomes are captured by disjoint sets Bi,...,Br C R, each set B;
associated with an event {Y € B;} where the system being studied is failing or ‘out of
control’. In a financial context, where Y is interpreted as a loss, one can identify B; with
a region of extreme losses.

The following result is an immediate consequence of Theorem 3.1 in Csiszar (1975);
we also refer to Cambou and Filipovi¢ (2017).
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Proposition 3.1. Let By,...,B; C R be disjoint Borel sets with P(Y € B;) > 0,7 =
1,...,I, and aq,...,ar > 0 such that oy + --- + ay < 1. Then there exists a unique
solution to

with RN-density given by ¢ = Z@'I:o %R{YEBZ}’ where we write ag = 1 — Zle a;

and By = (UL, B)°.

The RN-density ¢ in Proposition 3.1 is a piecewise constant function of Y. This implies
that all outcomes of Y within a set B; receive the same probability re-weighting by the
change to the stressed probability. In particular, if a; > P(Y € B;), under the alternative
probability @) the probability of all outcomes in B; increases. Note that moving from
the baseline to the stressed model might induce a new dependence structure in the input
factors.

3.3 VaR constraints

We now consider optimisation problem (1) under a constraint on the risk measure VaR,
applied to the output Y. A VaR constraint is not equivalent to a probability constraint
of optimisation problem (2), when Fy is not strictly increasing.

Proposition 3.2. Let 0 < a < 1 and ¢ € R such that VaR,(Y) < ¢ < esssupY and
consider the optimisation problem

in D P), s.t. VaR2(Y) = q. 3
i, kL(Q[P), s.t. VaRg(Y) =g¢q (3)

There exists a unique solution to (3) if and only if P(¢q —e <Y < ¢q) > 0 for all € > 0.
The RN-density of the solution is given by

B « 1 1—«a 1
(= P(Y <q) (v<q} + P(Y > q) {Y2>q}-

The assumption P(q—e <Y < gq) > 0 for all £ > 0, implies that ¢ cannot be chosen
arbitrarily. In particular, problem (3) does not have a solution if the distribution of ¥
is constant to the left of ¢ (¢ excluded); this includes the (uncommon in practice) case
where Y is a discrete random variable. This complication arises from using the constraint
VaR&(Y) = ¢ rather than Q(Y < ¢) = a. If ¢ cannot be chosen to fulfil the assumptions
in Proposition 3.2, the form of ¢ in Proposition 3.2 remains meaningful: by Proposition
3.1, it is the solution to an optimisation problem where the constraint VaRg(Y) =gqis
replaced by Q(Y < q) = a.

The RN-density ¢ of the solution to (3) is a non-decreasing function of Y since a <
P(Y <VaR,(Y)) < P(Y < q). Hence, under the stressed probability, adverse realisations
of the output are given higher probabilities of occurrence.

Remark. Propositions 3.1 and 3.2 hold true for any f-divergence with a strictly convex
function f. In particular, the RN-densities ¢ of the solutions of (2) and (3) are independent
of the choice of f-divergence. We do not provide a proof for this statement, however the
steps of the proofs of Propositions 3.1 and 3.2 can be closely retraced if one substitutes
the KL-divergence with a general f-divergence. We refer to Ben-Tal et al. (2013) for
robust linear optimisation with general f-divergence constraints.
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Remark. Let VaR,(Y) < ¢* < esssupY be a stress for which the distribution function
of Y under P is increasing and continuous in a neighbourhood of ¢*, so that a solution of
problem (3) exists for all ¢ in that neighbourhood. Then, viewed as a function of ¢, the
RN-density ((q) is a.s. continuous under P. Thus, the corresponding probability measure
Q%@ solution of problem (3), converges in total variation distance to Q@) implying
that stressed models are robust with respect to stresses in VaR.

The explicit form of the RN-density in Proposition 3.2 (as well as the subsequent
Propositions 3.3-3.4), allows easy implementation of the change of measure in a Monte
Carlo simulation context similar to Beckman and McKay (1987). Note that the RN-
density is a function of Y, in the sense that ((w) = n(Y(w)), w € £, for a function 7.
Then, one can follow the process:

1. Sample M multivariate scenarios £V, ..., ™) from X under P. Calculate y¥) =
g™, k=1,..., M.

2. Set ¢¥) =y, k=1,..., M.

3. The distributions of the output and inputs under the stressed measure () are esti-

mated by:
1 M
Fg(y) = M Z C(k):ﬂ-{y(k)gy}a Yy S Rv
k=1
1 M
F)%(x) = MZC(k)ﬂ{xEMSm}’ reR, i=1,...,n.
k=1

Thus, the process of working out the distribution of input factors under the stressed mea-
sure is akin to importance sampling, with ¢(¥) playing the role of importance weights.
Note that this calculation allows stressing the model without the need to re-simulate sce-
narios under ), which can be of practical importance if evaluation of g is computationally
expensive. Straightforward implementation yields a computational cost of M(n + 1) for
calculating the empirical distribution functions under the stressed model for the output
and all input factors. In a simulation environment, convergence can be improved if Quasi
Monte Carlo sampling is deployed, which is not a route we pursue here. Note that when
simulations are computationally very expensive, meta-modelling techniques are often used
in practice.

Example. The following insurance portfolio, similar to Example 1 in Tsanakas and Mil-
lossovich (2016), will be used as an illustrative example throughout the paper. An insur-
ance company faces a loss L resulting from two lines of business. The two lines produce
losses X7, X9 respectively, which are subject to the same multiplicative inflation factor
X3, such that L = X3(X; + X3). The insurance company has a reinsurance contract
on the loss L with limit [ and deductible d. The total portfolio loss for the insurance
company is

Y =L — (1 - X)min{(L — d)s,1},

where X, captures the percentage lost due to a default of the reinsurance company.

In this example, the two lines of business X7, X5 are truncated Log-Normal(4.98,0.232%)
and Gamma(100, 2) distributed, with respective means 150, 200 and standard deviations
35, 20. The truncation point for X7 is chosen to be the 99.9% quantile. The multiplica-
tive factor X3 follows a truncated Log-Normal(0.05,0.022) distribution with mean 1.05,
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standard deviation 0.02 and truncation point equal to the 99.9% quantile. The default
loss X4 is modelled through a Beta(0.125, 1.125) distribution, corresponding to mean 0.1
and standard deviation 0.2. To complete the specification of the joint distribution of X,
we further assume that X1, X, X3 are independent and X4 is independent of (X7, X2, X3)
given L. Additionally, X, is taken to be dependent on the aggregated loss L through a
Gaussian copula with correlation 0.6. The deductible of the insurance contract is d = 380
and the limit [ = 30.
Consider optimisation problem (3) with a 10% increase in VaRg g, that is

in D P), s.t. VaRZ,(Y) = 1.1 VaRgo(Y). 4
Doin, KL(Q[IP), s.t. VaRge(Y) aRo.o(Y) (4)

The solution to the problem (4) is estimated from a Monte Carlo sample containing
M = 100,000 simulated scenarios from (X,Y). Simulated values of the RN-density ¢ are
plotted in the left of Figure 1, against samples from Y. It is seen that the RN-density is
a non-decreasing function of Y and thus gives more weight to adverse outcomes of Y.
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Figure 1: Left: simulated RN-density of the solution to (4). Right: simulated empirical
distribution functions of the output under the baseline (dashed black) and the stressed
(solid grey) model under problem (4).

The empirical distribution functions of the total loss Y of the insurance company
under the baseline probability (dashed black) and the stressed probability (solid grey) are
displayed in the right of Figure 1. The output distribution under the stressed probability
lies beneath, and therefore first-order stochastically dominates, the distribution of Y under
the baseline probability. We refer to Section A for a more detailed discussion of stochastic
comparisons of stressed and baseline probabilities.

Figure 2 displays the change in distribution of the input factors when moving from the
baseline model to the stressed model. It can be seen that all factors under the stressed
probability first-order stochastically dominate the corresponding inputs under the baseline
probability. However, not all input factors are impacted the same: the distributions of
inputs X7 and X4 are stressed more compared to the baseline model. This indicates a
higher sensitivity to X; and X4, compared to Xo and X3. A specific sensitivity measure
reflecting the above observations is introduced in Section 4.

Table 1 summarises basic characteristics of the change in the output and the input
factors under the two models. Consistently with Figure 2, it is seen that X; and X4
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Figure 2: Empirical distribution functions of the input factors under the baseline (dashed
black) and the stressed model (solid grey) under problem (4). The dark red line displays
the difference of the distribution functions according to the axis on the right.

Table 1: Distributional characteristics of inputs and output under the baseline and

stressed model under problem (4).

Sensitivity Input factors Output
X1 Xo Xz Xy Y
Mean under P 150 200 1.05 0.10 362
Mean under 156 201 1.05 0.14 369
Standard deviation under P 35 20 0.02 0.20 36
Standard deviation under @ 41 21 0.02 0.24 45
Skewness under P 06 0.2 00 25 0.4
Skewness under @ 1.2 05 01 24 1.2
Excess kurtosis under P 05 0.1 -0.1 5.6 1.3
Excess kurtosis under @ 08 0.2 -01 39 14

are the most affected input factors by the change of probability measure. For example,
under the stressed probability, X;, X4 are subject to a relative increase of the standard
deviation of 17%, 20%, respectively.
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3.4 VaR and ES constraints

3.4 VaR and ES constraints

This section addresses optimisation problem (1) with a constraint on both, VaR and ES.
Adding to problem (3) a constraint on ES allows to stress the whole tail of the output
distribution. Weber (2007) considers optimisation problem (1) with an ES constraint
only. In that case there does not exist an analytic solution of the stressed probability and
Weber (2007) offers a procedure for a numerical solution.

Proposition 3.3. Let 0 < a < 1 and ¢, s € R such that VaR,(Y) < g < s < esssupY.
Assume the cumulant generating function of Y'|Y > ¢ under P exists in a neighbourhood
of 0 and that E(Y|Y > ¢q) < s. Consider the optimisation problem

min Dkn(Q|IP),  s.t. VaRY(Y) = ¢, ESY(Y) = s. (5)
S

Define the sets A; = {Y > ¢} and Ay = {Y > ¢} and, for i = 1,2, denote by 6 the
unique positive solution of the equation

E ((Y — 5)ef0) | AZ-> ~0. (6)
There exists a unique solution to problem (5) under either
1. Plg—e<Y <q)>0foralle >0 and E(eef(y*q) ‘Al) < %.

2. P(Y =q) >0and P(g—e <Y < q) =0 for some ¢ > 0, and E(e%2(Y=9 | A;) >

P(A3)/P(Az2)
a/(l1-a)
The corresponding RN-density of the solution is
a 11—« *
= GV =01,. =12
G P(Ag) T (0 V=01,) ‘ Avt= o

Note that, compared to stressing solely the VaR, adding an ES constraint may provide
a solution even for an output following a discrete distribution. The condition on the
moment generating function in cases 1 and 2 restricts the choice of s and ¢, such that the
stressed risk measure values cannot be chosen independently.

The RN-density of Proposition 3.3 under case 1, (7, is a non-decreasing function of
Y. Under Proposition 3.3 case 2, the RN-density (> is not monotone. However, both
RN-densities are exponentially increasing for realisations of Y exceeding ¢. Thus, under
the stressed model, adverse outcomes of Y, such as tail events, admit a higher likelihood
compared to the baseline model.

Remark. Let VaR,(Y) < ¢* < s* < esssupY be a stress of VaR and ES for which
the cumulant generating function of Y |Y > ¢* under P exists in a neighbourhood of 0,
E(Y|Y > q*) < s*, the distribution function of Y under P is increasing and continuous
in a neighbourhood of ¢* and the second inequality in case 1 of Proposition 3.3 holds
strictly. Then, a solution of problem (6) exists in a neighbourhood of (¢*, s*). Viewed
as a function of (g¢,s), the RN-density ((g,s) is a.s. continuous under P. Thus, the
corresponding probability measure Q%) solution of problem (5), converges in total
variation distance to Q¢(¢"*") implying that stressed models are robust with respect to
stresses in VaR and ES.
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3.4 VaR and ES constraints
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Figure 3: Left: simulated RN-density of the solution. Right: simulated empirical distri-
bution functions of the output under the baseline (dashed black) and the stressed (solid
grey) model under problem (5) with a 10% increase in VaRg 9 and a 13% increase in ESg g.

Example (continued). We consider optimisation problem (5) with a 10% increase in

VaRg9 and a 13% increase in ESyg. Figure 3 displays samples of the RN-density of the
stressed probability measure, see Proposition 3.3 case 1 For high outcomes of the output
Y, the RN-density ( is exponentially increasing as a function of Y, hence inflates stressed
tail probabilities. On the right hand side, the empirical distribution functions of the
output under the baseline (dashed black) and the stressed model (solid grey) are shown.

Observe that the stressed distribution of the output appears similar to the stressed
distribution of optimisation problem (4), see Figure 1. This is due to the fact that
increasing VaRg g by 10% in optimisation problem (4), already leads to an increase of
8.5% in ESg ¢ under the stressed model. However, comparing Tables 1 and 2 it is seen
that the standard deviation, skewness and kurtosis of Y increase more when stressing
VaR and ES, compared to stressing VaR alone.

Table 2: Distributional characteristics under the baseline and the stressed model under
problem (5) with a 10% increase in VaRg 9 and a 13% increase in ESg 9.

Sensitivity Input factors Output
X X X3 Xy Y
Mean under P 150 200 1.05 0.10 362
Mean under @) 157 202 1.05 0.14 371
Standard deviation under P 35 20 0.02 0.20 36
Standard deviation under @ 43 21 0.02 0.26 50
Skewness under P 06 02 00 25 0.4
Skewness under @) 14 05 01 24 1.7
Excess kurtosis under P 05 0.1 -0.1 5.6 1.3
Excess kurtosis under @) 1.3 0.2 -0.1 3.7 2.8
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3.5 Shortfall risk measure constraints
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Figure 4: Empirical distribution functions of the input factors under the baseline (dashed
black) and the stressed model (solid grey) under problem (5) with a 10% increase in
VaRgg and a 13% increase in ESgg9. The dark red line displays the difference of the

distribution functions according to the axis on the right.

Similar to optimisation problem (4), the output and the input factors under the base-
line probability are first-order stochastically dominated by the stressed probability, as can
be seen in Figure 3 and 4. We refer to Section A for a formal treatment of stochastic
comparison of the stressed and baseline probabilities.

3.5 Shortfall risk measure constraints

Optimisation problem (1) with shortfall risk measure constraints is studied in Weber
(2007) and is a direct application of Theorem 3.1 in Csiszar (1975). Nonetheless, we
present the solution for completeness.

Proposition 3.4. Let p be a shortfall risk measure with loss function ¢ and g, and ¢ € R
in the support of Y such that E(/(Y — q)) < yo. If the moment generating function of
(Y — q) exists in a neighbourhood of 0, then the optimisation problem

min Dxu(QIIP), st P(Y)=q, (7)

has a unique solution whose density is given by ( = mee*mf—@, where 6* is the

unique positive solution of E ((K(Y —q) — yo)e%(Y—Q)) =0.
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3.6 Multivariate output
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Figure 5: The simulated empirical distribution of the output under the baseline model
(dashed black) and under the stressed model (solid grey) under problem (8). The left
graph depicts the output before reinsurance, L, whereas the right plot shows the output
after reinsurance, Y.

3.6 Multivariate output

Problem (1) can be extended to constraints on a multivariate output, that is, to ¥ =
(Y1,...,Y3) = g(X), for k € N and aggregation function g: R* — R¥. The general case
under set constraints can be treated along the lines of Cambou and Filipovi¢ (2017),
Section 7. We provide below an example based on two outputs.

Example (continued). We revisit the insurance portfolio example of Section 3.3 and
view as output both the loss before reinsurance, L, and after reinsurance, Y. To shorten
notation let vy, = VaRg (L) and vy = VaRgo(Y) and consider the problem of stressing
the VaR of L and Y by 10%

min D, (QIIP), st VaR%, (L) = 1.1 vy, VaRZy(Y) = 1.1 vy (8)

The constraints can be written as Q(L < vz) = 0.9 and Q(Y < vy) = 0.9, since the
distribution functions of L and Y are increasing and continuous around those stressed
VaR. Thus, problem (8) can be solved straightforwardly using the Lagrange multiplier
technique. The RN-density of the solution of (8) is constant on the four sets {L < vr, Y <
Uy}, {L >vr, Y < Uy}, {L <wvp, Y > Uy} and {L >vr, Y > Uy}.

Figure 5 displays the simulated empirical distribution of L and Y under the baseline
model and the stressed model. Note that stressing both L and Y, in contrast to stressing
only Y, do not lead to radical different results, as can be seen comparing Tables 1 and 3.
This is because the stressed model, solution of problem (4), already induces an increase of
7% in VaRg9(L). Moreover, stressing L, the portfolio loss before reinsurance, in addition

to Y, reduces the importance of the default of the reinsurance displayed in the change of
X4 under Q.
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Table 3: Distributional characteristics under the baseline and the stressed model under
problem (8).

Sensitivity Input factors Output

X1 X9 X3 Xy L Y
Mean under P 150 200 1.05 0.10 367 362
Mean under ) 157 202 1.05 0.13 376 370

Standard deviation under P 35 20 0.02 0.2 42 36
Standard deviation under @ 42 21 0.02 0.23 52 46

Skewness under P 06 0.2 00 25 04 04
Skewness under @ 1.3 05 01 24 1.2 1.3
Excess kurtosis under P 05 0.1 -0.1 5.6 0.3 1.3
Excess kurtosis under @ 09 02 -01 43 0.7 1.6

4 Sensitivity measures for importance ranking

4.1 Definition of sensitivity measures

Plots such as the ones shown in Figures 2 and 4 provide some insight into the sensitivity
of the output risk measure to different input factors. In order to produce a ranking of
inputs, it is necessary to introduce a formal sensitivity or importance measure; this is
especially the case for models with large numbers of inputs for which succinct sensitivity
summaries are needed. Here we develop a sensitivity measure that quantifies changes in
input factors under the stressed model, compared to the baseline model.

Before proceeding to the definitions, some preliminaries are due. The random couple
(V, W) is comonotonic if it can be written as (V, W) L (F, 1 (U), Fip'(U)), for a uniformly
distributed random variable U on (0,1). In contrast, (V,W) is counter-monotonic if
(V, W) 4 (F,'(U), Fy' (1 — U)). Comonotonicity and counter-monotonicity correspond
to extremal positive and negative dependence structures respectively, for a random couple
with fixed marginals (Miiller and Stoyan, 2002). For a random variable V', we denote

by Viw, Vjw+ the random variables satisfying Vjy 4 Vit 4 V, such that (Vjy, W) is

comonotonic and (V|WT, W) is counter-monotonic. Then for any V' £ V it holds that
(Rischendorf, 1983),

E(WViy) < EWV') < E(WViy).

The subsequent definition introduces a sensitivity measure that captures the extent
to which a random variable is affected by a stress on the baseline model, that is, a change
in probability measure.

Definition 4.1. Let Q¢ be an alternative probability with RN-density & = d%;. The
sensitivity of a random variable Z to the change of measure is given by
E(Z§) — E(Z)
max a, E(Zy)— E(Z)
E(Z§) — E(Z)

- therwi
minwig E(Z0) — B(Z) otherwise,

E(2¢) = E(2),
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4.1 Definition of sensitivity measures

where we use the convention i% = #+1 and % =0.

In the definition of S(Z,§), the numerator E(Z{) — E(Z) reflects the increase in
the expectation of Z under the alternative model. The denominator normalises this
difference, as it represents the maximal (or minimal) increase of the expectation of Z,
under all alternative models with density 1 that are equal in distribution to &. This
ensures normalisation of the sensitivity measure to [—1,1]. If S(Z,&) = 1or S(Z,¢) = —1,
the alternative model produces a maximal stress on the variable Z, representing a positive
or negative impact of the changes in probability measure on Z respectively.

Note that argmax 4. E(Zy) = &z and arg minw%g E(Zy) = §zi. This allows for a
straightforward calculation of the sensitivity measure. If working within a Monte Carlo
simulation context, as is common in risk analysis, &z, resp. {7, can be simply obtained
by re-arranging samples of £ to be sorted in the same, resp. opposite, way as samples

from Z. This context gives a different perspective on the constraint 1 4 &: if simulated
elements of £ represent a particular scheme for re-weighting simulated scenarios, then 1)
are vectors containing the same weights as £, but re-arranged to potentially prioritise
different scenarios.

Next we define two sensitivity measures that are specific to the reverse sensitivity
analysis framework of this paper.

Definition 4.2. Let Q¢ be an alternative model with density ¢ = % = n(Y), for a
non-decreasing function 7. For input X; and output Y, we define the reverse and forward
sensitivity measures I'; and A; by:

I = S(X”u C)v

Here, ¢ = n(Y) can be arrived at as the solution of optimisation problems (3), (5) or
(7). T; thus reflects the extent to which the reverse sensitivity test affects the expectation

of the input factor X;. Note that for F(X;() > E(X;), we can write I'; = %,
wE¢ ’

showing that the reverse sensitivity measure can also be understood as a dependence
measure between X; and Y. In this sense it is closely related to the dependence measure
introduced by Kachapova and Kachapov (2012). Indeed, sensitivity measures considering
the dependence between X; and Y have a rich history in sensitivity analysis, for an
overview see for example Borgonovo et al. (2016). Thus, in contrast to variance-based
sensitivity measures, I'; and A; can take both negative and positive values, indicating the
direction in which input factors affect the output.

A possible criticism of the measure I'; and, by extension, the reverse sensitivity testing
framework we propose, is as follows. Let I'; be high. This implies that stressing the
model output Y leads to a substantial change in the distribution of the input factor
X;. However, this is not equivalent to a perturbation in the distribution of X; leading
to a sizeable stress in the distribution of the output Y. Such a discrepancy, though
uncommon, is theoretically possible and has been termed probabilistic dissonance (Cooke
and van Noortwijk, 1999).

This motivates the introduction of the forward sensitivity measure A;, as a companion
measure to I';. The definition of the forward sensitivity measure A; is analogous to that
of I';, but with a focus on the change in the expectation of Y when perturbing the
distribution of the model input X;. Recall that (x, = arg max 4. E(¢X;). Therefore,

(x; is a RN-density with the same distribution as ¢ that has the most adverse effect on
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4.1 Definition of sensitivity measures

the input factor X;. Thus A; captures the impact of a change in the input X; on the
output Y. Reporting A; along with I'; can thus produce warning signs of probabilistic
dissonance.

Properties of the sensitivity measures I'; and A;, reflecting their nature as dependence
measures, are summarised below.

Proposition 4.3. Using the above introduced notation, the sensitivity measures I'; and
A; are well-defined and have the following properties:

1. —1<Ti,A; < 1.

2. I'; = A; =0, if X;,Y are independent.

3. Iy =A, =1, if (X;,Y) is comonotonic.

4. Ty = A, = —1, if (X;,Y) is counter-monotonic.

5. Ty = A; >0, if (X;,Y) are positively quadrant dependent®.
6. I'; = A; <0, if (X;,Y) are negatively quadrant dependent'.

Remark. Let ¢ be the RN-density of the solution of problem (3) or (5). Then, for an
input X; with continuous distribution function, the corresponding reverse and forward
sensitivity measures, [';, A;, are robust in the size of the stress as long as the RN-density
is a.s. continuous in a neighbourhood of that stress. We refer to the remarks on robustness
in Section 3.3 and 3.4 for details on the conditions required on the RN-density.

The above defined sensitivity measures focus on the difference of expectations under an
alternative and the baseline model. If the interest lies in other distributional properties,
such as tails, Definition 4.2 can be extended to consider monotone transformations of
input factors. Specifically, one can calculate S(u(X;), (), respectively S(u(Y),(|x,), for an
appropriately chosen non-decreasing function u. As the couple (u(X;), X;) is comonotonic,
the interpretation of the sensitivity measures remains unchanged. One particular example
is the choice

w (X)) = (Xi = F () — (Fx'(1=v) = X))y, 05<0 <L, (9)
For v = 0.5, the function wug 5 is the identity and thus S(ug5(X;),() = I';, respectively
S(uo5(Xi), (x;) = Ai. When v > 0.5, the function u, is zero whenever X; € [F)}il(l —
v), F)}j (v)] and linearly increasing otherwise. Thus, increasing v places higher emphasis
on the tail behaviour of X;. The random variable u,(Y") is defined and interpreted in a
similar way.

We denote I';, = S(uy(X;),¢) and Ay = S(uy(Y),(|x,). It is easily seen that the
properties of Proposition 4.3 still apply to I'; ,, A; . In addition, it holds that

S(uy(aXi +b),C) = sign(a)S(uy(Xi), 0),

such that the reverse sensitivity measure is invariant under linear transformations of input
factors.

!These concepts are reviewed in Section A.
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4.2 Comparison to other sensitivity measures

Example (continued). Figure 6 displays the forward and reverse sensitivity measures
Ly, Ay for v € [0.5,0.999), for the stressed model arising from optimisation problem (5)
with a 10% increase in VaR and a 13% increase in ES. Consistently with the example in
Section 3.4, the highest sensitivity, for both reverse and forward measures, is displayed by
X1, followed by X4, Xo and X3. Furthermore, the ranking is not affected by the level v
and is thus not sensitive to emphasising the tails of the distributions. In the next section
we present a situation where this no longer holds true.

S — x1 a7
—A— X2
X3
— X4

— x1
—A— X2
X3
— X4

0.8
I
0.8

0.6

Reverse sensitivity
0.4
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/
f

Figure 6: Reverse (left plot) and forward (right plot) sensitivity measures I'; ,,, A; ,, with
a 10% increase in VaR and 13% increase in ES.

To illustrate the impact on the sensitivity measure I'; of the size of the stress applied
to the output risk measure, we fix a = 0.9 and let ¢ = AVaR,(Y), with A ranging from
0.8 to 1.2.2 Results are given in Table 4. For A < 1 it is seen that the sensitivity measure
I'; takes negative values. This is a result of applying a negative stress on Y, such that the
RN-density ¢ becomes a decreasing function of Y. The absolute value of the sensitivity
measure responds asymmetrically to positive (A > 1) or negative (A < 1) stresses on
VaR,(Y), in extremis even leading to a change in the ranking of inputs. This reflects a
different sensitivity to input factors with view to increasing or decreasing the VaR of the
output.

Table 4: Reverse sensitivity measure I'; for a 10% and 20% increase / decrease of VaRy g.

Input A=08 A=09 A=11 A=12
X1 -0.83 -0.85 0.88 0.90
Xo -0.58 -0.51 0.36 0.34
X3 -0.17 -0.17 0.15 0.14
X4 -0.93 -0.72 0.60 0.68

4.2 Comparison to other sensitivity measures

By the proposed reverse sensitivity measure I';, we aim to quantify the extent to which
a stress in the output distribution impacts different inputs. In the present section we
compare I'; to the moment independent sensitivity measure introduced in Borgonovo

2Note that in general Proposition 3.2 only applies for A > 1. However, continuity of Y in this example
implies that the RN-density ¢ of Proposition 3.2 is a solution to problem (3) even for A < 1.
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4.3 Controlling for dependence in the sensitivity measure

(2007), and to the variance-based sensitivity measures, see Borgonovo and Plischke (2016)
for an overview, which are designed to apportion the output variance to individual input
factors. Specifically, the first order sensitivity index S;, the total effects sensitivity index
T; and the moment independent sensitivity measure J; are respectively defined as

g _ Var(E(Y|X;))
’ Var(Y)

T — E(Var(Y|X_;))
‘ Var(Y)

=58 ([ 1) = Frisixolay )

where X _; = (X1,..., Xj—1, Xit1,..., Xy), fy and fy|x, denote the density of the output
Y and the density of Y conditional on the input factor X;, respectively. The measure S;
can be understood as the expected reduction in the variance of Y that would be achieved
if input X; could be fixed, whereas T; is interpreted as the expected variance that would
be left if all inputs but X; could be fixed (Sobol, 1993; Wagner, 1995; Saltelli et al., 2008).
The moment independent sensitivity J; can be seen as the expected shift of the output
induced by fixing the input factor X; (Borgonovo, 2007).

Thus, the interpretation of the reverse sensitivity measure I'; is quite different to
that of S;, T; and §;, which are designed to answer different questions. Furthermore,
I'; is designed with reference to a (tail) risk measure like VaR/ES and hence captures
distributional impacts differently than the variance-based or the moment independent
sensitivities, as is illustrated by the following numerical example.

Example (continued). We return to the simple insurance portfolio example of Section
3.3 (optimisation problem (4)), stressing VaRq(Y') by 10%, for « = 0.5 and o = 0.9. The
sensitivity indices S;,T; and §; are calculated, in addition to I';, where the calculation of
the variance-based sensitivities is carried out via estimation of the necessary conditional
expectations from the existing Monte Carlo sample by local polynomial regression and
the estimation of §; utilises kernel smoothing as in Borgonovo et al. (2011).

In Table 5, the sensitivity measures are reported for a variation of the model, where the
aggregation function g and the marginal distributions of the inputs X; are unchanged, but
the vector X is independent. Assuming that the input factors are independent facilitates
comparison of I'; and d; with the variance based sensitivity measures, S; and 7;. It can be
seen that all sensitivity measures produce a consistent ranking, with Xy assigned a very
low sensitivity. Note that the first order sensitivities, S;, sum up to 0.98, implying that
the interaction terms are nearly as important as S3.

The sensitivity measure I'; is slightly increasing in «, while I's is decreasing. This
reflects the different tail characteristics of X; (LogNormal) and X» (Gamma); for a high
«, the focus is on the right tail of Y, for which the heavier tail of X; is more important.

4.3 Controlling for dependence in the sensitivity measure

The literature on sensitivity indices has long been concerned with the implications for
sensitivity analyses of statistical dependence between inputs. In particular for variance-
based sensitivities, Saltelli and Tarantola (2002); Oakley and O’Hagan (2004), show that
correlation between inputs can impact sensitivity measures in ways that do not reflect
the functional dependencies in the model’s aggregation function and are thus viewed as
spurious; see Section 4.3 in Borgonovo and Plischke (2016) for more discussion of this
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4.3 Controlling for dependence in the sensitivity measure

Table 5: Comparison of the variance based sensitivity measures S;, T;, the moment inde-
pendent sensitivity measure 0; and the reverse sensitivity measure I'; with a 10% increase
in VaR,, for & = 0.5 and o = 0.9, for independent input vector X.

Input S; T; 0; T

a=05 a=0.9

X3 0.71 0.73 0.46 0.87 0.89
Xy 0.24 0.26 0.21 0.41 0.36
X3 0.03 0.03 0.06 0.15 0.15
Xy 0.00 0.01 0.04 0.09 0.07

topic and extensive references. Refinements of variance-based sensitivity indices have
been proposed to address dependence between inputs, indicatively see Xu and Gertner
(2008a,b); Mara and Tarantola (2012).

Our sensitivity measure I';, similarly to many other sensitivity measures (Borgonovo
et al., 2016), is evaluated on the joint distribution of (X;,Y). As a result, it does not
control for dependence between inputs and is therefore subject to problems of confounding
typical in multivariate analyses. In this section, we put forward a proposal for generalising
the sensitivity measure I';, in order to take into account such effects.

To proceed with the definition, denote by N = {1,...,n} and Xy = (Xj);er for
T C N. Consider now, for T C N\{i}, the quantity S(X; — E(X;|Xr),(), measuring
the reverse sensitivity to that part of X; that is not already explained by the inputs Xr.
With the above in mind, we define the k-order reverse sensitivity measure as

rg’“):; > S(X; — BE(X|X7),0), k=0,....,n—1,
" ren\G}, ITI=k
where ¢, = (";1) Thus ng) represents the average reverse sensitivity to X;, after
controlling for all subsets of inputs of size k. Note the special cases FEO) = I'; and

1" = S(X; — B(X;|X_;),¢). If X, is independent of X_;, then T'") = T; for all
k=0,...,n—1.

Example (continued). Continuing with the insurance portfolio example, we work out
k*P-order reverse sensitivity measures for k = 0, ..., 3, with the RN-density ¢ derived from
problem (4) for an 10% increase of VaRg9(Y"). The results are summarised in Table 6 and
show that, as the order of the sensitivity measure increases, the sensitivity of some input
factors is impacted more than that of others. This is particularly noticeable for Xy: for
k = 3, where all other input factors are controlled for, the sensitivity drops substantially.

Comparing the first column in Table 6, that is I';, with Table 5, the sensitivity for
the independent input vector, we see that the rank of X5 and X4 are reversed. The
observed impact of dependence between inputs on the importance ranking of X4 can be
understood as follows. X, represents the percentage of reinsurance recovery lost due to
default. In our baseline model, X4 is dependent on L = X3(X; + X2), with Gaussian
copula correlation of 0.6. The correlation reflects the notion that such recovery losses are
more likely under those scenarios when they are most needed (i.e. L is large), leading to
a high sensitivity to Xj.
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Table 6: The k*™-order reverse sensitivity measure ng), for k =0,...,3, of problem (4)
for a 10% increase of VaRgg(Y).

Input k=0 k=1 k=2 k=3

X4 088 0.81 076 0.71
Xo 036 030 029 031
X3 0.15 013 012 0.13
Xy 0.60 048 034 0.18

5 Financial application: a London Insurance Market port-
folio

In this section we demonstrate the use of the sensitivity measures I';, and A;,, in a
more realistic insurance risk model with a higher number of inputs. This is a proprietary
model of a London Insurance Market portfolio, currently in use by a participant in that
market. We have been supplied by the model owner with a Monte Carlo sample of size
M = 500,000, containing simulated observations from input factors X = (Xj,..., X72)
and output Y. Each of the X;’s represents a normalised loss for a particular part of the
portfolio and is measured on the same scale. The output Y stands for the portfolio loss.
The aggregation function g is linear, specifically

72
Y =g(X) =) wXj,
j=1

for a vector of weights w = (wq,...,wr2). The linearity of g is not used for sensitivity
calculations, since the reverse sensitivity testing framework makes no assumptions on the
form of g. We do not have access to the joint probability distribution that was used to
generate samples from the random vector X; in fact the distribution of X is not given
in closed form, as samples from X are themselves outputs of a different model, which
remains a completely black box to us.

We consider optimisation problem (5) with risk measure constraints on VaR and ES
given by ¢ = VaR(?%(Y) = 1.08VaRg 95(Y) and s = E8895(Y) = 1.1ESp.95(Y). In Figure
7, the reverse and forward sensitivity measures I'; ,, A; , for v = 0.5 and v = 0.95, are
presented for all 72 inputs. The input factors are ordered according to I'; o5 and the sizes
of the markers reflect the weights w; attached to the individual input factors X;.

Observations on the plot of Figure 7:

e The ranking of input factors according to I'; g5 and I'; 0.95 is not fully consistent;
moving focus to the tails of input factors changes the order of the sensitivity mea-
sures. Hence, under the stressed model, for some input factors the expectation is
affected more, while for others the impact is higher in the tail.

e For v = 0.5, the ranking produced by the reverse and forward sensitivity metrics
is not equivalent. However, once the focus is moved towards the tails of risk fac-
tor distributions (e.g. v = 0.95), the discrepancy of the two sensitivity measures
diminishes.

e There is no clear relation between the sizes of the markers and the ranking of input
factors. This means that the sensitivity measure I'; , does not solely reproduce the
size of the weight w;.
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Figure 7: Reverse and forward sensitivity measures I'; ,, A;,, for the London Insurance
Market portfolio, for v = 0.5 and v = 0.95.

To elaborate on the last of those points, in Figure 8 (left), the reverse sensitivities
I'; 0.95 are plotted against the weights w;. There is a broadly increasing relation, which
is not unreasonable. Given the linearity of the aggregation function, a higher weight w;
implies a higher local sensitivity gTi (Borgonovo and Plischke, 2016). But the relation is
by no means deterministic: weight is a weak predictor of the reverse sensitivity measure
|

Furthermore, the reverse sensitivity measure does not only reflect the shape of the
input risk factor distributions. In Figure 8 (right), I'; 0.95 is displayed against the scaled
percentiles %gg()&) — 1, not showing a clear pattern. Hence the two plots in Figure
8 demonstrate that the proposed reverse sensitivity measure does not reproduce easily
observed characteristics of the aggregation function g or of the distributions of the inputs
X;.

6 Conclusions

We proposed a reverse sensitivity testing framework that is appropriate for contexts where
model inputs are uncertain and the relationship between model inputs and outputs is
complex and not necessarily given in analytical form. At the core of the reverse sensitivity
framework is a stress on the output distribution, corresponding to an increase in the value
of a risk measure applied on the output and representing a plausible but adverse model
change. This leads to stressed probabilities under which the distribution of the input
factors (marginals and dependence structure) is altered such that the output distribution
is subjected to the required stress.

We provided analytical solutions of the stressed probability measure under an increase
of the VaR and ES risk measures. These explicit solutions facilitate straightforward
implementation in a Monte Carlo simulation context and inspection of changes in the
distributions of inputs. A new class of reverse sensitivity measures is introduced, quan-
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Figure 8: Reverse sensitivity measure I'; 995 for the London Insurance Market portfolio,

against weights w; (left) and scaled input percentiles %)g()xi) — 1 (right).

tifying the extent that the distribution of an input factor is distorted by the transition
to a stressed probability. Analysis of stochastic order relations induced by the change of
measure provides assurance that the proposed method has desirable properties.

The reverse sensitivity framework can be easily deployed by a risk analyst with access
only to a set of input / output scenarios, simulated under the baseline model. Thus there
is no need for a detailed consideration of the model structure or of simulating additional
scenarios, involving computationally expensive model evaluations. Thus the proposed
framework is immediately applicable to industry applications.

A Stochastic comparisons

The proposed reverse sensitivity testing framework is based on the change from a baseline
probability measure P to a stressed probability ). The optimisation problems of Section
3 ensure that under @) the value of particular risk measures applied on Y increases.
But the broader changes in the distributions of input factors X and output Y arising
from the change of measure are also of interest in a risk management context. For @
to be meaningfully called a ‘stressed measure’, we argue that three properties should be
fulfilled. First, under @ the distribution of the output should dominate (in a suitable
stochastic order relation) the output distribution under the baseline model. Second,
under the assumptions of a non-decreasing aggregation function and positive dependence
between input factors, the distribution of the input vector X under () should stochastically
dominate the distribution of X under P. Third, an increase in the extent to which risk
measures are stressed should be reflected in the distributions of output and inputs under
the corresponding stressed probabilities. In this section we aim to give precise conditions
under which the above properties are fulfilled. Note that most of the discussion is not
contingent on ) being a solution of one of the optimisation problems of Section 3.
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We adopt the standard definitions of stochastic order relations. For distribution func-
tions F, G we write ' <4 G if G is larger than F' in first-order stochastic dominance, that
is F(x) > G(x) for all x € R". For univariate F,G, we denote F' =, G if G is larger
than F' in increasing convex (or stop-loss) order, that is ful F~1(s)ds < ful G~1(s)ds for
all u € (0,1). The following dependence concepts are of importance, see Denuit et al.
(2006):

e An m-dimensional random vector Z is stochastically increasing (or positively regres-
sion dependent) in a random variable W, denoted by Z 15; W, if P(Z > z|W = w)
is non-decreasing in w, for all z € R™.

e An m-dimensional random vector Z is associated if Cov(hi(Z),ha(Z)) > 0, for all
component-wise non-decreasing functions hy, ho : R”™ — R for which the covariance
exists.

e The random couple (W, Z) is positively quadrant dependent (PQD) if P(W < w, Z <
z) > P(W <w)P(Z < z) for all w, z € R.

e The random couple (W, Z) is negatively quadrant dependent (NQD) if P(W <
w,Z < z) < PW <w)P(Z < z) for all w, z € R.

For a pair of random variables (W, Z) the above definitions are successively weaker:
Z 15 W implies that (Z, W) is associated, which implies PQD, see Esary et al. (1967).
We write Z_ = (Z1,..., Zk—1,Zk+1y--+»Zm), 1L < k < m for the (m — 1)-dimensional
sub-vector of Z deprived of its k-th component.

The next two propositions characterise the stochastic ordering of inputs and output
under two different probabilities Q', Q?, making alternative assumptions on distributions
under P, on g and on the form of the corresponding two RN-densities.

Proposition A.1. Let Q',Q?> € P be two probability measures with % = m(Y),

%%2 = 12(Y"), for some non-negative functions 7;, j = 1, 2. If the RN-densities cross once,

such that for some d € R

<m(y) y<d
n2(y) { Sy y>d (10)

then the following hold:
1. ;9 <, FY
2. For given i € {1,...,n}, if E((X; —t)4+|Y =y) is non-decreasing in y for all ¢t € R,
1 2
then FY <iex FYY..
. . . Q' Q?
3. For given i € {1,...,n}, if X; T4 Y, then Fy 2 FY..

Proposition A.2. Let Q',Q? € P be two probability measures with (1% = m(Y),

Ci%) = n2(Y") for some non-negative functions 7;, j = 1,2. Assume that 1y — 1y is non-

decreasing. Then the following hold:
1. ;O <, FY.
2. If the aggregation function g is non-decreasing in coordinate ¢ and X; is independent

of X_;, then F <y FE .
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3. Assume that the aggregation function g is non-decreasing.
(a) For given i € {1,...,n}, if (X;,Y) is PQD, then FE =< FE. .
(b) If X is associated, then F)Cgl =st F)Cg2.

Part 1. of both Propositions A.1 and A.2 reflects the comparative impact of the stress
on the output Y, while parts 2. and 3. characterise the impact of the stress on the inputs.
An example where the assumption of Proposition A.1, part 3., is satisfied is the following.
Suppose the input vector X is multivariate normal and Y = h(}_" ; w; X;) for an in-
creasing function h and w; € R for all i. If Cov(X;,h~1(Y)) = > =1 w;Cov(X;, X;) >0,
then X; 14 Y holds. The assumption in Proposition A.2 part 3.(a) holds for example if
X_; Tst X; and g is non-decreasing.

Propositions A.1 and A.2 allow for a stochastic comparison of the output and the input
factors under the stressed and the baseline model. In particular, Proposition A.1 applies
to the solutions of problems (3), (5) and (7) with Q? = Q and Q' = P. Proposition A.2
applies to optimisation problem (1), with Q? = Q and Q' = P, if the RN-density of the
solution is a non-decreasing function of Y. Recall that the RN-density of the solutions
to (3), (5) case 1, and (7) are non-decreasing. Moreover, for a stressed model under
which the input X; stochastically dominates, in first-order or increasing convex order, the
distribution of the input under the baseline model, the introduced sensitivity measure I';
is positive.

Proposition A.1 also enables to contrast stressed probabilities corresponding to differ-
ent stress levels. For example, when solving optimisation problem (3) with two different
VaR constraints, the output under the stressed model corresponding to a higher VaR
should stochastically dominate the output under the other stressed model. The next
lemma associates Proposition A.1 with solutions of the optimisation problems (3) and

(5).
Lemma A.3. The crossing condition of Proposition A.1 is satisfied for:

1. Two solutions @', Q? of optimisation problem (3) with constraints VaR§1 Y)=aq
respectively VaRg(Y) = ¢o, and g1 < ¢o.

2. Two solutions Q', Q% of optimisation problem (5) with constraints VaRgl(Y) =
VaRQQ(Y) = q and Esgl(Y) = s1, respectively ESQQQ (Y) = s9, and s1 < s9.

The second part of Lemma A.3 holds true for both types of solutions of (5).

Example (continued). Applying Proposition A.1 to the two optimisation problems in
this example, we immediately verify that the output under the stressed probabilities first-
order stochastically dominates the output under the baseline probability, see Figures 1
and 3. Moreover, the aggregation function g is non-decreasing and it can be verified that,
for instance, (X4,Y) is PQD. Hence, following Proposition A.2 part 3.(a), the distribution
of X, under the stressed probability first-order stochastically dominates that under the
baseline probability. This can be seen in Figures 2 and 4.

An illustration of Lemma A.3 is given in Figure 9. The left plot shows the RN-
densities of solutions to (3) with two different stress levels. The black line corresponds
to an increase of VaR of 10%, the same as in Figure 1, and the grey line to an increase
of VaR of 15%. The plot to the right displays the RN-densities of solutions to (5) for an
increase of 10% in VaR and 9% in ES (black) and an increase of 10% in VaR and 13%
in ES (grey), see Figure 3. It is seen how in both cases, the two RN-densities satisfy the
crossing condition of Proposition A.1.
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Figure 9: Left: simulated RN-densities of the solution to (4) with a 10% (black) and 15%
(grey) increase in VaR. Right: simulated RN-densities of the solution to (5) case 1, with
a 10% increase in VaR and 9% (black) and 13% (grey) increase in ES.

B Proofs

Proposition 3.1. A similar result can be found in Cambou and Filipovi¢ (2017), we also
refer to Csiszar (1975) for the general form of the solution. It is immediately verified that
¢ is a RN-density for which Q*(Y € B;) = a;, i = 1,...,I. Let £ be any RN-density that
satisfies Q*(Y € B;) = o, i = 1,...,I. Using Jensen inequality, the KL-divergence of Q¢
with respect to P fulfils

1

DxL(Q%|P) =) E(£log(é)|Y € B;) P(Y € B;)
=0
I
> E([Y €Bi)log(E(]Y € B) P(Y € By)
=0

I
= a; log <az>
ZZ:% P(Y € B))
= Dxr(Q°||P).

Therefore Q¢ is a solution of (2). Uniqueness follows by strict convexity of the KL-
divergence, see Csiszar (1975). O

Proposition 3.2. Assume that P(q —e <Y < ¢q) > 0 for all € > 0. Then, it is immediate
to verify that ¢ is a RN-density such that VaRaQC(Y) =gq. Let £ = % be a RN-density
for which VaRgé (Y) = q. By Jensen inequality, the KL-divergence of Q¢ with respect to
Pis

Diw(@S1P) = E(Elog(©) | Y < a) PY < q) + B (log(€) |Y > q) P(Y > )
3 13
> Q50 < aptog (L0 ey 2 gy o (L 20

= k(Q5(Y < q), P(Y <)),
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where we define k(z,y) = xlog($)+(1—2) log(1=2 ,), for 0 < <1,0<y <1 Inspection
shows that, for fixed 0 <y < 1, x — k(z,y) is non—lncreasmg on (0 y]. Moreover it holds

QY <q) <a < P(Y < VaRa(Y)) < P(Y < ).
The KL-divergence of Q¢ is thus larger than the KL-divergence of Q¢,

DkiL(Q%||P) > k(Q*(Y < q),P(Y < q))
> k(a, P(Y < q))

~ alog <P(Y‘J‘<q)) +(1—a)log (13(13/_;(1)>
= Dk1(Q°||P),

and Q¢ is a solution of (3). Uniqueness follows by strict convexity of the KL—divergence.

Assume now that there exists ¢ > 0 such that P(¢—e <Y < ¢q)=0. If P(Y =¢q) =0,
by the absolute continuity of the probability measures, the optimisation problem ( ) does
not admit a solution. Hence, we assume that P(Y = ¢q) > 0. Let Q¢ be a RN-density for

which VaRan(Y) =¢q. Denote r = Q5(Y < ¢) and p = P(Y < q). The KL-divergence of
Q¢ with respect to P is

DkL(Q*||P) = E(¢log(€) | Y < q)p+ E(¢log(§)|Y > ¢)(1 - p)

> rlog <;> +(1-r)log G_;)

= DxL(Q"||P),

where we define £* = dg—;u = gl{y<q}+%ﬂ{y>q}7 0 <u < 1. The family of RN-densities
& fulfil V&RSg (Y)=g¢ifand only if o < u < aP(Y<q)

RN-density ¢". Hence the optlmlsatlon problem (3) is reduced to minimise Dy, (Q¢" || P)
subject to @ < u < aP(Y< j- As a function of u the KL-divergence Dx1,(Q%||P) is

non-increasing on (0, p|, hence the optimisation problem does not admit a solution as
O

In particular this holds for the

P
Opry=g <P
Proposition 3.3. For i = 1,2, equation (6) can be rewritten as

E((Y — q)ee(y_q) |Al)
E(e/Y -] A;)

E(’Y9|4;) = =s5—q.

0

a0

The left hand side is increasing for positive 8, negative for § = 0 and diverges for 8 1 0,44,

where O0: = sup{f > 0| E(e?Y|A;) < oo}, by properties of the moment generating
function. Thus, for i = 1,2, there exists a unique positive solution 8 of (6).

Case 1. The RN-density ¢; fulfils the constraints in (5) since Q*(Y < ¢q) = a,

Q4 (Y < q) > « and the ES constraint is equivalent to (1—a))(s—¢q) = EQY ((Y—q)+). Let

£= be a RN-density satisfying the constraints of problem (5) and denote r = Q%(A$)

and p = P(A$). Using Jensen’s inequality, the KL-divergence of Q¢ with respect to P
fulfils

Dy (QF[|P) = B (¢1og(€) 1) + B (§1og(€)1a,) + 051 — a)(s — q) — E (log (10 70)1,, )
> rlog (;) +0i(1—a)(s—q)+ F <§log (9(}/) )A1) (1—p).
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Recall that the perspective of a convex function f, defined by h(z,y) = yf(z/y) is it-
self convex, see Boyd and Vandenberghe (2004). Applying then Jensen’s inequality to
h(z,y) = ylog(¥), the third term becomes

E <§ log <€01(§_q)> ‘fh) (1-p) > E(£[A1)log <E(6ZE§_31|)A1)> (1-p)

(1—r)
= (1—7)log (E (GGI(Y—q)1A1)> :

Collecting all terms,

Dia(@€1P) = riog () 4631~ a)(s — a) + (1 =)o (E (69(;1&_31A )>

= k(r,p, E(eef(y_q)lAl)),
where we define k(z,y, z) = xlog(%) +0;(1—a)(s—q)+ (1 —2)log(2), for 0 <z < 1

and y, z > 0. For fixed y, z > 0, the function = — k(x,y, z) is decreasing on (0, yiz]. The
condition on 07 in 1. is equivalent to

a < p .
p+ E (691 (Y—q) ]]'Al)

Therefore, noting that r < «, we obtain
Dxr(Q¥(IP) = k(r,p, E(e"1"914,)) > k(a,p, E(e"1Y914,)) = D (Q!|1P).
The last equality follows since

11—«

G p) = o 07 (Y ) l—o 4(-a)
Dxr(Q™[|P) = alog <p> tE (EOT(Y—q)ﬂAl)E<e e log (E (P01, )" 1 ) )

o 11—«
= alog (p) +(1—«)log (E (eeT(Y_Q)]lAl)>

11—« 9*(Y— )
E (eef(Y—q)]lAl)E(e Y —q)4)

o 11—« *
= alog <p> +(1—«)log (E (691(1/_(1)]1141)) +6i(1—a)(s—q)
= k(a,p, E(egf(y*q)]lAl)).

+ 07

Therefore Q% is a solution of (5). Uniqueness follows by strict convexity of the KL-
divergence.

Case 2. The proof of case 2 is similar to that of case 1, replacing the set A; with
As and (7 with (. The RN-density (o fulfils the constraints (5). Letting £ = % be a
RN-density satisfying the constraints of problem (5), then the KL-divergence of Q¢ with
respect to P can be bounded by

Dxr(Q%]|P) > k(Q4(A5), P(A35), B(e% 791 ,,)),
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where the function k(z,y,z) has been defined above. For fixed y,z > 0, the function
x — k(z,y, z) is increasing on [yiz, 1). Moreover, the condition on 65 in 2. is equivalent
to

) < a.

(Y—q) ]LA2) -

P(A
P(AS)+E (e

N

>
N ¥

Since o < Q¢(AS) we obtain
Dxr(Q°||P) = k(a, P(A3), B(e" "9 14,)) = Dxr(Q%| P),
which is the KL-divergence of Q%. O

Proposition A.1. Let y < d, then Q*(Y < y) = E(na(Y)Liy<y) < E(m(Y)ly<yy) =
Q'(Y <y). For y > d, it holds Q*(Y <y) =1 - Q* (Y > y) = 1 — E(n2(Y) L{ysy}) <
L=EmY)lyysy) = Q' (Y < y). For the second part we have, for all + € R, using the
tower property under P,

EY (X;—t)4) = EV(E((X; —1)4]Y)) 2 E? (B((Xi —)4]Y)) = B ((X; —t)4),

by first-order stochastic dominance of Y with respect to the measures Q', @?. The last
claim follows using a similar argument. O

Proposition A.2. The RN-densities have to cross once due to normalisation, therefore part
1. applies. In the rest of the proof, let h = 1o — 7.

To prove part 2., let g be non-decreasing in coordinate ¢ and X; independent of X _;.
For any ¢t € R, using the Fortuin-Kasteleyn-Ginibre inequality (Wiithrich and Merz, 2013),
we have

Q*(X; > 1) = QNXi > 1) = E (h(Y)Lix,>) = E (E(h(Y)Lix,>0 | X))

>E(E(hY)| X)) P(X; >t) =0,

proving first-order stochastic dominance.
To show part 3.(a), assume that g is non-decreasing and (X;,Y") are PQD. Hence, for
all t € R,

Q*(Xi > 1) — Q' (Xi > 1) = E (1yx,=nh(Y)) >0,

where the last inequality follows from Lemma 3 in Lehmann (1966). Part 3.(b) follows
by association of the vector (h(Y), X), using a similar argument. O

Lemma A.3. The first claim follows since @ < P(Y < ¢1) < P(Y < ¢2). For part 2.,
consider first the case where P(¢ —e <Y < ¢q) > 0 for all ¢ > 0. Denote by 07,65 the

solutions to (6) with ¢ and s;, respectively sa2. Hence, 67 < 65, and there exists a d > ¢
such that for all w € Q with Y (w) > d we have

0 (Y —
03— (Y(w)—-a) > E (e 3 Q)ILAI)
- B (QGT(Y_q):H-Al) ’

which implies 72 > n; for all w with Y (w) > d. Since on A{, m = 72 P-a.s. the RN-
densities admit a (unique) crossing point. The argument also holds if A; is replace with

As. O
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Proposition 4.3. We also refer to Theorem 6 in Kachapova and Kachapov (2012). The
first two properties are immediate. For 3. if X; and Y are comonotonic, ¢ and (|x, are also
comonotonic since ¢ is a non-decreasing function of Y and (|, a non-decreasing function
of X;. Part 4. follows by a similar argument. Properties 5. and 6. are consequences
of the invariance of PQD (NQD) under non-decreasing (non-increasing) transformations,
see Lemma 1 in Lehmann (1966). O
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