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Abstract

The Determinantal Assignment Problem (DAP) is a family of synthesis methods that has emerged as the abstract
formulation of pole, zero assignment of linear systems. This unifies the study of frequency assignment problems of
multivariable systems under constant, dynamic centralized, or decentralized control structure. The DAP approach is
relying on exterior algebra and introduces new system invariants of rational vector spaces, the Grassmann vectors
and Plücker matrices. The approach can handle both generic and non-generic cases, provides solvability conditions,
enables the structuring of decentralisation schemes using structural indicators and leads to a novel computational
framework based on the technique of Global Linearisation. DAP introduces a new approach for the computation of
exact solutions, as well as approximate solutions, when exact solutions do not exist using new results for the solution
of exterior equations. The paper provides a review of the tools, concepts and results of the DAP framework and a
research agenda based on open problems.

Keywords: Linear multivariable control, Structural Control Methods, Output feedback, Pole placement, Frequency
assignment, Algebraic-Geometry methods

1. Introduction

Systems and Control provide a paradigm that in-
troduces many open problems of mathematical nature
(Rosenbrock, 1970), (Kailath, 1980), (Wonham, 1979).
We distinguish two main approaches in Control The-
ory, the design methodologies (based on performance
criteria and structural characteristics) are mostly of iter-
ative nature and the synthesis methodologies (based on
the use of structural characteristics, invariants) linked to
well defined mathematical problems. Of course, there
exist variants of the two aiming to combine the best
features of the two approaches. The Determinantal As-
signment Problem (DAP) is a synthesis method and has
emerged as the unified abstract problem formulation of
pole, zero assignment of linear systems (Karcanias and
Giannakopoulos, 1984, 1989), (Karcanias et al., 1988).
DAP unifies the study of (pole, zero) frequency assign-
ment problems of multivariable systems under constant,
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dynamic centralized, or decentralized control structures.
There are two approaches developed for the study of fre-
quency assignment problems which are: (i) the affine
space approach; (ii) the projective geometry approach.
The first approach was introduced in (Hermann and
Martin, 1977), (Martin and Hermann, 1978), (Brock-
ett and Byrnes, 1981), (Byrnes, 1989), and deals with
the formulation of the problem in an affine space as an
intersection problem of the Grassmannian with a linear
space. The DAP approach, as it has been developed in
Karcanias and Giannakopoulos (1984), Karcanias et al.
(1988), Leventides and Karcanias (1995) is based on
the Plücker embedding (Hodge and Pedoe, 1952) of
the Grassmannian of the affine space into an appropri-
ate projective space and then deals with finding solu-
tions as the real intersections of a linear space with the
Grassmann variety (Hodge and Pedoe, 1952) of the cor-
responding projective space. The DAP approach relies
on exterior algebra (Marcus, 1973) and on the explicit
description of the Grassmann variety, in terms of the
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Quadratic Plücker Relations (QPR) (Hodge and Pedoe,
1952). There are many approaches dealing with specific
frequency assignment problems (pole-zero), but they
rely on specific system representations and they can-
not be easily extended to deal with the whole family of
constant, dynamic, decentralised problems. The affine
geometry approach deals with generic cases only and
it does not provide computations for exact, as well as,
approximate problems. The DAP approach has the ad-
vantage of introducing new system invariants of rational
vector spaces in terms Grassmann vectors and Plücker
matrices (Karcanias and Giannakopoulos, 1984) pro-
viding a matrix characterisation of decomposability in
terms of the Grassmann matrices (Karcanias and Gi-
annakopoulos, 1988), (Karcanias and Leventides, 2015)
and developing a novel computational framework based
on the technique of Global Linearisation (GL) (Leven-
tides and Karcanias, 1995). GL is based on the notion of
degenerate feedback (Brockett and Byrnes, 1981) and
apart from establishing solvability conditions (Leven-
tides and Karcanias, 1995), also provides a linearisa-
tion of the inherently nonlinear equations and leads to
the computation of solutions (when such solutions ex-
ist). Within the DAP framework a number of solvability
conditions have been established (Leventides and Kar-
canias, 1995, 1992, 1993; Karcanias and Leventides,
1996) for the exact and generic frequency assignment
problem. The GL methodology has in general high sen-
sitivity leading to high gains in the compensation. Tech-
niques such as, homotopy continuation and Newton-
type schemes (Leventides et al., 2014a,b) have been
used in order to be able to achieve solutions with much
better sensitivity properties.

The DAP framework has been used for the study
of constant and dynamic pole assignment, where low
complexity solutions have been established (Leventides
and Karcanias, 1998b), as well as for problems of zero
assignment by squaring down (Karcanias and Gian-
nakopoulos, 1989), (Leventides and Karcanias, 2009).
Degenerate feedback gains (Karcanias et al., 2016b) are
defined for both constant and dynamic assignment prob-
lems. Parametrising the family of degenerate feedbacks
gives extra degrees of freedom in computing appropri-
ate controllers that linearise asymptotically DAP and
enabling the selection of solutions with reduced sen-
sitivity This parametrisation methodology plays a key
role in selecting feasible structures for decentralized
control problems. The selection of a decentralisation
scheme has been handled mostly using conditions de-
rived from the nature and spatial arrangement of sub-
process units (Siljak, 1991). DAP can provide an al-
gebraic framework for selection of the desirable decen-

tralisation (Karcanias et al., 2016c) aiming at develop-
ing schemes that allow the satisfaction of generic solv-
ability conditions and shaping the parametric invariants
linked to solvability of decentralised control problems.
DAP framework provides simple tests for avoiding fixed
modes by exploiting the relationship of algebraic invari-
ants (Plücker matrices) to decentralised Markov param-
eters (Leventides and Karcanias, 1998a). The overall
philosophy is to devise methods for design that facil-
itate the solvability of decentralised control problems.
Amongst the problems considered are: (i) Define the de-
sirable cardinality of input, output structures to permit
satisfaction of generic solvability conditions, (ii) Design
the structure of input, output maps (matrices B, C) to
eliminate the fixed modes and guarantee full rank prop-
erties to the decentralised Plücker matrices (Leventides
and Karcanias, 2006).

A significant advantage of the DAP framework is that
it introduces a new approach for the computation of ex-
act and approximate solutions of DAP. This is based on
an alternative, linear algebra type, criterion for decom-
posability of multivectors to that defined by the QPRs,
in terms of the rank properties of structured matrices, re-
ferred to as Grassmann matrices (Karcanias and Gian-
nakopoulos, 1988), (Karcanias and Leventides, 2015).
The development of the new computational framework
requires the study of the properties of Grassmann ma-
trices, which are further developed by using the Hodge
duality (Hodge and Pedoe, 1952) leading to the defi-
nition of the Hodge-Grassmann matrix (Karcanias and
Leventides, 2015). Computing solutions (exact, or ap-
proximate) to DAP requires the investigation of dis-
tance problems, such as: (i) distance of a point from the
Grassmann variety; (ii) distance of a linear variety from
the Grassmann variety; (iii) parametrisation of families
of linear varieties with a given distance from the Grass-
mann variety; (iv) relating the latter distance problems
with properties of the stability domain. The distance
problems extend the exact intersection problem between
the Grassmann and the linear space varieties and are
related to classical problems, such as spectral analysis
of tensors (Lathauwer et al., 2000), homotopy and con-
strained optimization methods (Absil et al., 2008), the-
ory of algebraic invariants etc.

This paper provides a review of the concepts,
methodology and results of the DAP framework, as well
as relevant results that complement those of the current
approach. The review is then completed by providing a
number of challenges for the DAP approach which form
a research agenda for future activities.
The paper is structured as follows: Section 2, deals with
the frequency assignment problems in Control Theory,

2



whereas Section 3 presents the abstract DAP framework
which is reduced to the study of polynomial combinants
and the problem of decomposability of multivectors.
The solvability is equivalent to finding real intersections
between a linear variety and the Grassmann variety of a
projective space. DAP introduces new invariants of ra-
tional vector spaces defined by the Grassmann vectors
and the Plücker matrices. Section 4, deals with the de-
composability of multivectors where first the Quadratic
Plücker Relations and then a new test for decomposabil-
ity provided by the rank properties of the Grassmann
matrix is presented. Section 5, examines the solvability
of DAP under the genericity assumption. We focus on
determining real solutions and a number of results are
reviewed derived from the DAP framework and other re-
lated approaches. Section 6, deals with the GL method-
ology by examining the properties of the pole placement
map, the notion of degenerate compensators with their
parametrisation and the sensitivity of such solutions.
Section 7, extends the GL methodology to decentral-
ized control problems. The parametrisation of the fam-
ily of decentralized degenerate schemes is linked to the
selection of appropriate asymptotic linearising decen-
tralized schemes capable of assigning the closed loop
poles. Section 8, deals with the computation of exact
and approximate solutions of DAP, in terms of the prop-
erties of structured matrices, the Grassmann and Hodge-
Grassmann matrices. Finally, Section 8 provides a list
of open questions related to the DAP framework which
form a future research agenda.
Notation: Throughout the paper the following nota-
tion is adopted: If F is a field, or ring then Fm×n de-
notes the set of m × n matrices over F. R[s] is the ring
of polynomials and R(s) is the field of rational func-
tions over R respectively. If H is a map, then R(H),
Nr(H), Nl(H) denote the range, right, left null-spaces
respectively. Qk,n denotes the set of lexicographically
ordered, strictly increasing sequences of k integers from
the set n̄ = {1, 2, . . . , n}. If V is a vector space and
{vi1

, . . . , vik
} are vectors ofV then vi1

∧ . . . ∧ vik
= vω ∧,

ω = (i1, . . . , ik) denotes their exterior product and ∧rV

the r−th exterior power of V (Marcus, 1973). If H ∈
Fm×n and r 6 min{m, n} then Cr(H) denotes the r−th
compound matrix of H (Marcus and Minc, 1964). In
most of the following, we assume that F = R , or C.

2. The Determinantal Assignment Problems in
Control Theory

2.1. Introduction
The DAP methodology (Karcanias and Giannakopou-
los, 1984) has been formulated as a unifying approach

for all pole, zero frequency assignment problems with
constant and dynamic compensators. This framework
may be also applied to the case of decentralised control
problems.

2.2. Control Problems leading to the DAP formulation
Consider the linear system, S (A, B,C), described by:

ẋ = Ax + Bu, A ∈ Rn×n , B ∈ Rn×p (1)
y = Cx, C ∈ Rm×n

where (A, B) is controllable, (A,C) is observable,
or equivalently the transfer function matrix G(s) =

C(sI − A)−1B has rankR(s) {G(s)} = min (m, p). In terms
of Left, Right Coprime Matrix Fraction Descriptions
(LCMFD, RCMFD) (Kailath, 1980), G(s) may be rep-
resented as

G(s) = Dl(s)−1 · Nl(s) = Nr(s) · Dr(s)−1 (2)

where, Nl(s),Nr(s) ∈ R[s]m×p and Dl(s) ∈ R[s]m×m,
Dr(s) ∈ R[s]p×p. The following frequency assignment
problems are defined:
(i) Pole assignment by state feedback: Consider L ∈
Rn×p, where L is a state feedback applied on system (1).
The state feedback design involves finding L ∈ Rn×p

assigning the closed loop characteristic polynomial:

pL(s) = det{sI − A − BL} = det{B(s) · L̃} (3)

where, B(s) = [sI − A,−B] and L̃ =
[
In, Lt]t.

(ii) Design of an n−state observer: The design prob-
lem of an n−state observer for system (1) involves find-
ing an output injection, T ∈ Rn×m, such that the charac-
teristic polynomial of the observer is:

pT (s) = det{sI − A − TC} = det{T̃ ·C(s)} (4)

where, T̃ = [In,T ] and C(s) =
[
sI − At,−Ct]t.

(iii) Pole assignment by constant output feedback:
For the system described by (2), the constant output
feedback design problem requires finding a matrix K ∈
Rm×p that assigns the closed loop pole polynomial:

pK(s) = det{Dl(s) + Nl(s) · K} = det{Dr(s) + K · Nr(s)}

or, equivalently

pK(s) = det{Tl(s) · K̃l} = det{K̃r · Tr(s)} (5)

by defining the composite matrices Tl(s) ∈ R[s]m×(m+p),
Tr(s) ∈ R[s](m+p)×p, K̃l ∈ R(m+p)×m, K̃r ∈ Rp×(m+p)

Tl(s) = [Dl(s),Nl(s)] K̃l =
[
Im,Kt

]
Tr(s) =

[
Dr(s)
Nr(s)

]
K̃r =

[
Ip,Kt

]
3



(iv) Zero assignment by squaring down: For a sys-
tem with m > p we can expect to have independent
control over at most p−linear combinations of m out-
puts. If c ∈ Rp is the vector of the variables which are
to be controlled, then, c = Hy, where H ∈ Rp×m is a
squaring down post-compensator, and G

′

(s) = H ·G(s)
is the squared down transfer function matrix (Karca-
nias and Giannakopoulos, 1989). A right MFD for
G
′

(s) is defined by G
′

(s) = H · Nr(s)Dr(s)−1 where
G(s) = Nr(s)Dr(s)−1. Finding H such that G

′

(s)
has assigned zeros is defined as the zero assignment
by squaring down problem. The zero polynomial of
S (A, B,HC,HD) is given by:

zk(s) = det{H · Nr(s)} (6)

Figure 1: Feedback configuration.

(v) Dynamic Compensation Problems: Consider the
standard feedback configuration (Kucera, 1979) shown
in Fig.1. If G(s) ∈ R(s)m×p

pr , C(s) ∈ R(s)p×m
pr , and assume

coprime MFDs as in (2) and

C(s) = Al(s)−1 · Bl(s) = Br(s) · Ar(s)−1 (7)

the closed loop characteristic polynomial is

f (s) = det
{

[D`(s), N`(s)]
[

Ar(s)
Br(s)

]}
(8)

f (s) = det
{

[Al(s), Bl(s)]
[

Dr(s)
Nr(s)

]}
(9)

If p ≥ m, the C(s) may be interpreted as pre-
compensator (8); whereas, if p ≤ m, then C(s) may
be interpreted as feedback compensator (9). The above
general dynamic formulation covers a number of impor-
tant families of C(s)−compensators as:
Constant Controllers: If p ≤ m, Al = Ip, Bl = K ∈
Rp×m, then (9) expresses the constant output feedback
case; whereas if p ≥ m, Ar = Im, Br = K ∈ Rp×m ex-
presses the constant pre-compensation.
Proportional plus Integral Controllers:

C(s) = K0 +
1
s

K1 =
[
sIp

]−1
[sK0 + K1] (10)

where, K0,K1 ∈ Rp×m and the left MFD for C(s) is co-
prime, if and only if, rank(K1) = p. Then, f (s) is:

f (s) = det
{

[sIp, sK0 + K1]
[

Dr(s)
Nr(s)

]}
(11)

= det

[Ip,K0,K1]

 sDr(s)
sNr(s)
Nr(s)




Proportional plus Derivative Controllers:

C(s) = sK0 + K1 =
[
Ip

]−1
[sK0 + K1] (12)

where, K0,K1 ∈ Rp×m and the left MFD for C(s) is co-
prime for finite s and also for s = ∞ if rank(K0) = p.
Then, f (s) is:

f (s) = det
{

[Ip, sK0 + K1]
[

Dr(s)
Nr(s)

]}
(13)

= det

[Ip,K1,K0]

 Dr(s)
Nr(s)
sNr(s)




PID Controllers:

C(s) = K0 +
1
s

K1 + sK2 (14)

=
[
sIp

]−1 [
s2K2 + sK0 + K1

]
where, K0,K2 ∈ Rp×m and the left MFD is coprime with
the only exception possibly at s = 0, s = ∞ (coprime-
ness at s = 0 is guaranteed by rank(K1) = p and at
s = ∞ by rank(K2) = p). Then, f (s) is expressed as:

f (s) = det
{

[sIp, s2K2 + sK0 + K1]
[

Dr(s)
Nr(s)

]}

= det

[Ip,K0,K1,K2]


sDr(s)
sNr(s)
Nr(s)

s2Nr(s)


 (15)

The problems introduced here belong to the same fam-
ily, DAP, involving solving the following equation with
respect to polynomial matrix H(s):

det{H(s) · M(s)} = f (s) (16)

where, f (s) is a polynomial of an appropriate degree (n)
and M(s) a polynomial matrix defined by the system.
Existence of solutions of the problems stated above are
reduced to finding real intersections between the Grass-
mann variety of a projective space and a linear variety
as discussed in Section3. Such conditions deal with
generic and exact problems and the results depend on
the specific design problem formulation. Such condi-
tions are given in Section 5.
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3. The Abstract DAP, the Projective Geometry Ap-
proach and Grassmann Invariants

3.1. Introduction
The determinantal nature of DAP demonstrates that it
is of a multilinear nature. Such problems may be natu-
rally split into a linear and multilinear problem (decom-
posability of multivectors). The final solution is thus
reduced to the solvability of a set of linear equations
together with quadratics (characterising the multilinear
problem of decomposability).

3.2. The Decomposition of DAP
The family of DAP problems requires solving

det{H(s) · M(s)} = f (s) (17)

with respect to polynomial matrix H(s), where f (s) ∈
R[s] with deg( f (s)) = n and M(s) is a polynomial ma-
trix related to the system and the problem under study.
The difficulty in solving DAP is due to the multilinear
nature of the problem. Note that all dynamic problems
may be reduced to equivalent constant DAP by shifting
all dynamics from H(s) to M(s) and defining an equiv-
alent matrix M(s)∗.

Remark 1. The reduction of dynamic DAP problems
to equivalent constant is evident from the formulation
of general dynamic DAP problems, as indicated for in-
stance, by conditions (11), (13), (15) for the PI, PD and
PID design problems respectively. The shifting of dy-
namics implies development of appropriate augmented
design matrices M(s) (M(s)∗).

Let M(s) ∈ R[s]p×r, r ≤ p, such that rank{M(s)} = r
and letH be a family of full rank r×p constant matrices
H having a certain structure defined by the nature of the
system and the type of compensation. The degree of
f (s) depends upon the degree of M(s) and the structure
of H ∈ H . Hence, (17) is equivalent to

fM (s,H) = det{H · M(s)} = f (s) (18)

If hi
t, mi(s), i ∈ r̄, denote the rows of H ∈ Rr×p,

columns of M(s) ∈ R[s]p×r respectively, then

Cr(H) = h1
t ∧ . . . ∧ hr

t = ht∧ ∈ R1×σ

Cr (M(s)) = m1(s) ∧ ... ∧ mr(s) = m∧ ∈ Rσ[s]

where σ =
(

p
r

)
. By Binet-Cauchy theorem (Marcus and

Minc, 1964) we have that (Karcanias and Giannakopou-
los, 1984):

fM (s,H) = Cr (H) ·Cr (M(s)) =
〈
h∧,m(s)∧

〉
=

∑
ω∈Qr,p

hω · mω(s) (19)

where, 〈·, ·〉 denotes the inner product, ω = (i1, . . . , ir) ∈
Qr,p, and hω,mω(s) are the coordinates of h∧,m(s)∧ re-
spectively. Note that hω is the r × r minor of H which
corresponds to the ω-set of columns of H and thus hω
is a multilinear alternating function of the hi j entries.
The multilinear nature of DAP suggests that the natu-
ral framework for its study is of exterior algebra. The
essence of exterior algebra is that it reduces the study
of multilinear skew-symmetric functions to the simpler
study of linear functions. An example on how to com-
pute the exterior product for a set of vectors is given
below.

Example 1. For a set of 2 vectors in R4 with coordi-
nates (

a11 a12 a13 a14
a21 a22 a23 a24

)
the exterior product can be computed by taking all the
2 × 2 minors lexicographically ordered:

C2(A) = (|A(1, 2)| , |A(1, 3)| , |A(1, 4)| ,
|A(2, 3)| , |A(2, 4)| , |A(3, 4)|)

where, |A(i, j)| denote the 2× 2 minors of matrix A con-
sists of the i, j-th columns lexicographically ordered. �

The study of the zero structure of fM(s,H) may thus be
reduced to a linear subproblem and a standard multilin-
ear algebra subproblem:
Linear sub-problem of DAP: Set m(s)∧ = p(s) ∈
Rσ[s]. Determine whether there exists a k ∈ Rσ, k , 0,
such that for f (s) ∈ R[s]

fM

(
s, k

)
= kt · p(s) =

∑
i∈σ

ki · pi(s) = f (s) (20)

Multilinear sub-problem of DAP: Assume that K is
the family of solution vectors k of (20). Determine
whether there exists Ht =

[
h1, . . . , hr

]
∈ Rp×r such that

h1 ∧ · · · ∧ hr = h∧ = k, k ∈ K (21)

Polynomials defined by (20) are called polynomial com-
binants (Karcanias and Giannakopoulos, 1984) and the
zero assignability of them provides necessary condi-
tions for the solution of DAP. The solution of the ex-
terior equation (21) is a standard problem of exterior
algebra known as decomposability of multivectors. The
essence of the DAP approach is projective. We use a
natural embedding for determinantal problems to em-
bed the space of the unknown, H, of DAP, the rows of
which define an r−space of the Grassmanian H (Grif-
fiths and Harris, 1978) of the r−dimensional subspaces

5



V into an appropriate projective space Pσ−1, σ =
(

p
r

)
.

This map is referred to as the Plücker Embedding (Mar-
cus, 1973) of the GrassmanianH into a projective space
Pσ−1. Thus, we are searching for common solutions of
some set of linear equations and another set of second
order polynomial equations, i.e. the set of Quadratic
Plücker Relations (QPRs) characterising the Grassman
variety of Pσ−1 (Hodge and Pedoe, 1952), (Marcus,
1973). This also allows us to compactify H into H̄ and
then use algebraic geometric, or topological intersec-
tion theory methods to determine existence of solutions
for the above sets of equations. The current framework
allows the use of algebraic geometry and topological
methods (Brockett and Byrnes, 1981), (Byrnes, 1989),
(Leventides and Karcanias, 1992) for the study of solv-
ability conditions but also computations.

3.3. The Grassmann and Plücker Invariants of a
Rational Vector Space

The DAP framework uses the natural embedding of a
Grassmannian into a projective space and this in turn de-
fines new sets of invariants characterising the solvabil-
ity of the different DAP problems. We may summarise
the main results next (Karcanias and Giannakopoulos,
1984):
Let T (s) =

[
t1(s), . . . , tr(s)

]
∈ Rp×r(s), r ≤ p,

rank{T (s)} = r and Xt = rowspanR(s){T (s)}. If T (s) =

M(s)D(s)−1 is a RCMFD of T (s), then M(s) is a poly-
nomial basis for Xt. If Q(s) is a greatest right divisor
of M(s) then T (s) = M̃(s)Q(s)D(s)−1, where M̃(s) is a
least degree polynomial basis ofXt (Rosenbrock, 1970).
A Grassmann Representative (GR) for Xt is defined by

t(s)∧ = t1(s) ∧ . . . ∧ tr(s)
= m̃1(s) ∧ . . . ∧ m̃r(s) · zt(s)/pt(s)

where, zt(s) = det{Q(s)}, pt(s) = det{D(s)} are the zero,
pole polynomials of T (s) and m̃(s)∧ = m̃1(s) ∧ . . . ∧
m̃r(s) ∈ Rσ[s], is also a GR of Xt. Since, M̃(s) is a least
degree polynomial basis for Xt, the polynomial entries
of m̃(s)∧ are coprime and it will be referred to as a re-
duced polynomial GR of Xt. If δ = deg{m̃(s)∧}, then
δ is the Forney dynamical order (Forney, 1975) of Xt.
m̃(s)∧ may always be expressed as

m̃(s)∧ = p(s) = p
0

+ sp
1

+ · · ·+ sδp
δ

= Pδ · eδ(s) (22)

where, Pδ ∈ Rσ×(δ+1) is a basis matrix for m̃(s)∧ and
eδ(s) =

[
1, s, . . . , sδ

]t
. By choosing an m̃(s)∧ with

‖Pδ‖ = 1, a canonical R[s]−GR of Xt is defined de-
noted by g (Xt). The basis matrix Pδ of g (Xt) is defined
as the Plücker matrix of Xt. The following properties
hold true (Karcanias and Giannakopoulos, 1984):

Theorem 1. The R[s]−GR, g (Xt), or the associated
Plücker matrix, Pδ, is a complete invariant of Xt.

Remark 2. Let T (s) =
[
t1(s), . . . , tr(s)

]
∈ Rp×r(s), r ≤

p, rank{T (s)} = r, and zt(s), pt(s) be the monic zero,
pole polynomials of T (s) and let g (Xt) = p(s) be the
C−R[s]−GR ofXt. t(s)∧may be uniquely decomposed
as

t(s)∧ = c · p(s) · zt(s)/pt(s) (23)

and the linear part of DAP is thus reduced to

fM

(
s, k

)
= kt p(s)zm(s) = kt · Pδ · eδ(s) · zm(s) (24)

The zeros of T (s) are fixed zeros of all combinants of
t(s)∧.

The freely assigned zeros of fM

(
s, k

)
are those of the

combinant fM

(
s, k

)
= kt · m(s)∧, where m(s)∧ is re-

duced. If a(s) = at
δeδ(s) = a0 + a1s + · · ·+ aδsδ ∈ R[s] is

the polynomial to be assigned, then max(deg(a(s)) = δ,
where δ is the Forney dynamical order ofXt, and finding
k ∈ Rσ, such that fM

(
s, k

)
= a(s), is reduced to:

Pt
δ · k = a (25)

Remark 3. Let M(s) ∈ Rp×r[s] be a least degree ma-
trix, Pδ be the Plücker matrix of Xm and let π =

rank (Pδ). Then, necessary and sufficient condition for
M(s) to generate a DAP that is Linearly Assignable
(LA) (no decomposability constraints) is that π = δ + 1.

3.4. The Grassmann and Plücker Invariants of a system
Plücker type matrices associated with state space de-
scriptions are defined (Karcanias and Leventides, 1996):
Controllability Plücker Matrix: For the pair (A, B),
b(s)t∧ denotes the exterior product of the rows of B(s) =

[sI − A,−B] and P(A, B) is the (n+1)×
(

n+p
n

)
basis matrix

of b(s)t∧. P(A, B) is the Controllability Plücker matrix.

Corollary 2. The system S (A, B) is controllable if and
only if b(s)t∧ is coprime, or equivalently P(A, B) has
full rank.

Example 2. Consider the system S (A, B) described by
the pencil [sI − A,−B] = R(s) s −1 0 0

0 s −1 0
0 0 s −1

 =

 r1(s)t

r2(s)t

r3(s)t


The exterior product of the rows of R(s) is defined by
the minors of maximal order of R(s) lexicographically
ordered, i.e.

r(s)t∧ = r1
t(s)∧r2

t(s)∧r3
t(s) =

[
s3 −s2 s −1

]
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and the Controllability Plücker matrix, P(A, B), is then

P(A, B) · e3(s) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

︸                   ︷︷                   ︸
P(A,B)


s3

s2

s
1


Clearly, P(A, B) has full rank and hence the system is
controllable. �

A similar result for observability may be stated using
duality principle.
Transfer Function Matrix Plücker Matrices: For
the transfer function matrix G(s) represented by the
RCMFD, LCMFD we define by tr(s)∧, tl(s)t∧ the ex-
terior product of the columns of Tr(s), rows of Tl(s) re-
spectively , where Tr(s), Tl(s) are defined by (2). By
P(Tr) we denote the

(
m+p

p

)
×(n+1) basis matrix of tr(s)∧,

and by P(Tl) the (n + 1) ×
(

m+p
p

)
basis matrix for tl(s)t∧.

P(Tr), P(Tl) will be referred to as right, left fractional
Plücker matrices respectively. Such matrices provide
the necessary conditions for the solvability of pole as-
signment problems by output feedback.

Proposition 3 (Leventides and Karcanias (1995)). For
a generic system with mp > n, then the Plücker matrices
P(Tr), P(Tl) have full rank.

Column, Row Plücker Matrices: For the transfer func-
tion G(s), with m ≥ p, we denote by n(s)∧ the exte-
rior product of the columns of the numerator Nr(s), of a
RCMFD and by P(N) the

(
m
l

)
× (d + 1) basis matrix of

n(s)∧. Note that d = δ, the Forney order of Xt, if G(s)
has no finite zeros and d = δ + k, where k is the number
of finite zeros of G(s) otherwise. If Nr(s) is least degree,
then Pc(N) will be called the column space Plücker ma-
trix of the system. The row space Plücker matrix Pr(N)
may be similarly defined when m ≤ p. Such matrices
play a key role in the study of squaring down problems
(Karcanias and Giannakopoulos, 1989).

Proposition 4. For a generic system with m > p, for
which p(m − p) > δ + 1, where δ is the Forney order,
Pc(N) has full rank.

Similar definitions and invariant may be defined for dy-
namic compensation transfer function matrices.

4. Decomposability of Multivectors and the
Grassmann Variety

4.1. Introduction: Decomposability of Multivectors
The solution of DAP is reduced to finding amongst the
family of solutions, K , of the linear problem in (20),

at least a solution k ∈ K that also satisfies the exterior
equation (21). The set of r−dimensional subspaces of
Rp is referred to as the r− Grassmaniann and the row
space of H, H , defines a basis for such subspaces. The
mapping of each r−dimensional subspace H expressed
by h1 ∧ . . .∧ hr = h∧r = k, where hi are the row vectors
of H, is a vector k ∈ Rσ, k , 0 that defines a point
in the projective space Pσ−1 (R), σ =

(
p
r

)
; for some

H ∈ Rr×p, the points of Pσ−1 which satisfy (21) are
those which belong to the Grassmann variety Ω(r, p) of
Pσ−1(R). The coordinates kω, ω = (i1, ...., ir) ∈ Qr,p are
referred to as the Plücker coordinates of k ∈ Rσ, and
the mapping of H through ∧r is known as the Plücker
Embedding of the r−Grassmaniann into Pσ−1 (R). The
characterisation of the Ω(r, p) variety and the construc-
tion of the subspaces H corresponding to k ∈ Ω(r, p)
are considered next.

4.2. The Grassmann Variety and the Quadratic Plücker
Relations

The variety Ω(r, p) is characterised by the result (Mar-
cus, 1973):

Theorem 5. Necessary and sufficient condition for an
H =

[
h1, . . . , hr

]t
∈ Rr×p to exist, such that

h∧ = h1 ∧ . . . ∧ hr = k = [. . . , kω, . . .] (26)

is that the coordinates kω satisfy the following quadratic
relations

r+1∑
k=1

(−1)v−1ki1,...,ir−1 , jkv j1, ..., jv−1, jv+1, jr+1 = 0 (27)

where, 1 ≤ i1 < i2 < . . . < ir−1 ≤ n and 1 ≤ j1 < j2 <
. . . < jr+1 ≤ n.

The vectors k which satisfy (27) are known as decom-
posable and the set of quadratics defined by (27) as
Quadratic Plücker Relations (QPR) (Hodge and Pedoe,
1952), (Marcus, 1973) and they define the Grassmann
variety of Pσ−1(R). Interesting questions are: (i) Defin-
ing alternative conditions for decomposability; (ii) Re-
constructing the matrix H for a decomposable k; (iii)
Characterising the distance of a general k ∈ Pσ−1(R)
from the Grassmann variety Ω(r, p). The reconstruction
of H from the decomposable k is given in Giannakopou-
los et al. (1985) and in Section 4.3.

Corollary 6. Let k = [. . . , kω, . . .]t ∈ Rσ, be a decom-
posable vector and let ka1,...,ar be a non-zero coordinate
of k. If we define by

hi j = ka1,...,ai−1, j,ai+1,...,ar , i ∈ r̄, j ∈ p̄ (28)

then for the matrix H =
[
hi j

]
, Cr(H) = k.
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The procedure for constructing H for a decomposable k
also requires writing down an independent set of QPRs
which completely describes Ω(r, p).

Example 3. Assume p = 4, r = 2 and let
{x12, x13, x14, x23, x24, x34} be the coordinates of a vec-
tor in ∧2R4. The Grassmann variety Ω(2, 4) is defined
by the single QPR:

x12x34 − x13x24 + x14x23 = 0

4.3. The Grassmann Matrix and Decomposability of
Multivectors

The Grassmann matrix of z ∈ ∧r (Hr) (Karcanias and
Giannakopoulos, 1988) is introduced and a number of
its properties are examined. This matrix provides an
alternative test for decomposability of z, which also al-
lows the computation of theHr solution space in an easy
manner.

Proposition 7 (Marcus (1973)). Let U be a
p−dimensional vector space over F and let
0 , z ∈ ∧rU. Then, z is decomposable, if and
only if, there exists a set of linearly independent vectors
{hi, i ∈ r̄} inU such that

vi ∧z = 0,∀i ∈ p̄ (29)

Lemma 8. Let BU = {ui, i ∈ p̄} be a basis of U, Br
U

=

{uω∧, ω ∈ Qr,p} be a basis of U the corresponding ba-
sis of ∧rU and let v =

∑r
t=1 ct ut, z =

∑
ω∈Qr,p

aω uω ∧.
Then,

v ∧ z =
∑

γ∈Qr+1,p

bγ uγ ∧ bγ =

r+1∑
k=1

(−1)k−1cγ(k)aγ(k̂)

where, γ(k) denotes the k−th element of
γ(k) ∈ Qr+1,p and γ(k̂) is the sequence
{γ(1), . . . , γ(k − 1), γ(k + 1), . . . , γ(r + 1)} ∈ Qr,p.

Notation: Let γ = ( j1, j2, . . . , jk, jr+1) ∈ Qr+1,p with r +

1 6 p. We denote by Qγ
r,r+1 the subset of Qr,p sequences

with elements taken from the γ set of integers. Qγ
r,r+1 has

r + 1 elements and the sequences in it are defined from
γ by deleting an index in γ. Thus, for all k ∈ r + 1

Qγ
r,r+1 =

{
ργ[ ĵk] = ( j1, . . . , jk−1, jk+1, . . . , jr+1)

}
Definition 1. Let {aω, ω ∈ Qr,p} be the coordinates of
z ∈ ∧rU with respect to a basis Br

U
of ∧rU, r + 1 6 p,

γ = ( j1, . . . , jk, jr+1) ∈ Qr+1,p. We define

φ : {i : i = 1, . . . , p} ×
{
γ, γ ∈ Qr+1,p

}
→ F (30)

with, ργ[ ĵk] = ( j1, . . . , jk−1, jk+1, . . . , jr+1) ∈ Qγ
r,r+1

φi
γ = φγ(i) = 0 , i f i , γ

φi
γ = φγ(i) = sign

(
jk : ργ[ ĵk]aργ[ ĵk]

)
, i f i = jk ∈ γ

where,

sign
(

jk : ργ[ ĵk]
)

= sign ( jk, j1, . . . , jk−1, jk+1, . . . , jr+1) .

Theorem 9 (Karcanias and Giannakopoulos (1988)). If
BU = {ui, i ∈ p̄}, Br

U
= {uω∧, ω ∈ Qr,p} are bases

of U, ∧rU, v =
∑n

i=1 ci ui ∈ U : v , 0, and z =∑
ω∈Qr,p

aω uω ∧ ∈ ∧
rU : z , 0. Then, v ∧ z = 0, if and

only if,
n∑

i=1

φi
γci = 0, for all γ ∈ Qr+1,p (31)

If we denote by γt the elements of Qr+1,p (lexicograph-
ically ordered), with t = 1, 2, . . . ,

(
p

r+1

)
= τ, then (31)

may be expressed as



φ1
γ1
, φ2

γ1
, . . . , φi

γ1
, . . . , φ

p
γ1

...
...

...
...

φ1
γt
, φ2

γt
, . . . , φi

γt
, . . . , φ

p
γt

...
...

...
...

φ1
γτ
, φ2

γτ
, . . . , φi

γτ
, . . . , φ

p
γτ

︸                                             ︷︷                                             ︸
Φr

p(z)



c1
c2
...
ci
...

cp

︸ ︷︷ ︸
c

= 0

(32)

The matrix Φr
p(z) ∈ Fτ×p is a structured matrix (has ze-

ros in fixed positions), it is called the Grassmann Matrix
(GM) of z and it is defined by the pair (r, p) and the co-
ordinates {aω, ω ∈ Qr,p} of z ∈ ∧rU.

Theorem 10 (Karcanias and Giannakopoulos (1988)).
Let U be an n−dimensional vector space over F , BU
a basis of U, 0 , z ∈ ∧rU, Φr

p(z) the GM of z) with
respect to BU and let N r

p(z) = Nr{Φ
r
p(z)}. Then,

(i) dimN r
p(z) 6 r and equality holds, if and only if z is

decomposable.

(ii) If dimN r
p(z) = r, then a representation of the solu-

tion space, Hz of h1 ∧ . . . ∧ hr = z with respect to
U is given by N r

p(z).

This result provides an alternative characterisation for
decomposability of multivectors, and a simple proce-
dure for reconstruction of the solution space of the ex-
terior equation.
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Corollary 11. Let Φr
p(z) be the GR of z ∈ ∧rU, z , 0.

Then,

i) If r = 1 then for all p, Φ1
p(z) is always canonical;

furthermore, if p > 3 rankF
{
Φ1

p(z)
}

= p − 1.

ii) If r = p − 1, then Φ
p−1
p (z) ∈ F 1×p and it is always

canonical with rankF
{
Φ

p−1
p (z)

}
= 1.

iii) If r = p − ρ, p > 1, and ρ ≥ 2, then for all z,
rankF

{
Φ1

p(z)
}
≥ p−ρ, where equality holds, if and

only if, Φr
p(z) is canonical.

5. Real Intersections of the Grassmann Variety and
Linear Space: Generic Solvability Conditions

DAP can be formulated as an intersection problem be-
tween a linear variety, LR, and the Grassmann variety,
Gp(Fm+p) of a projective space, where the field F is con-
sidered to be either R (real) or C (complex).

Proposition 12. The set of (finite and infinite) real so-
lutions of the constant pole assignment problem is given
by

LR ∩ Gp
(
Rp+m)

(33)

where, LR is a linear variety of co-dimension (n) in
P(R)σ−1 defined by the linear DAP sub-problem.

The real constant pole assignment problem is generi-
cally solvable if and only if the intersection (33) is non-
void. (Similarly is defined the generic solvability for
the complex case). The real solvability of the inter-
section problem (33) is challenging due to the lack of
strong intersection theorems when the definition field of
the problem is not algebraically closed. For instance, in
the simple case of one polynomial equation with one un-
known real solvability is not guaranteed. The only thing
we can say is that when the degree of the polynomial is
odd there exists at least one real solution. In contrast, re-
garding the complex solvability case, we know that we
have always as many roots as the degree of the polyno-
mial to be assigned. The main results on the solvability
of the output feedback pole assignment problem via the
intersection theory are summarised below:

Theorem 13 (Leventides and Karcanias (1992)). A suf-
ficient condition for the existence of real solutions of the
output feedback pole assignment problem for a generic
proper system (p−inputs, m−outputs, n−states) is

h(p,m) > n (34)

where, h(p,m) is the height of the first Whitney class (w)
(Hiller, 1980) of a real Grassmannian Gp (Rp+m).

The first important result on this problem was given in
Kimura (1975) and Davison and Wang (1975), where
they showed that for a strictly proper system a sufficient
condition for generic pole placement is that

m + p − 1 > n

Using tools from algebraic geometry (Hermann and
Martin, 1977), (Giannakopoulos and Karcanias, 1985)
showed that a necessary and sufficient condition for ar-
bitrary pole assignment by complex (constant) output
feedback is m · p > n, whereas, a special case (m · p = n
and d(m, p) = odd) was proved to be a sufficient con-
dition for generic pole assignment via real output feed-
back (Brockett and Byrnes, 1981).
A similar nature condition for arbitrary pole assignment
of real poles using other topological invariants of the
Grassmannian were given in Byrnes (1983) in terms of

LS cat(p,m) > n (35)

where, LScat is the Ljusterning Snirelman category of
the Grassmannian Gp (Rp+m). In both complex and real
cases the intersections (33) may be represented as cer-
tain elements of the corresponding cohomology ring,
i.e. H∗

(
Gp(Rp+m); Z2

)
where the existence of inter-

section is then reduced to whether these elements are
nonzero. The intersection points are considered mod-2
(i.e. odd number of points correspond to one and even
number of points to zero). This element is of the form
wn, where w is the first Whitney class (Hiller, 1980) of
the Grassmannian and n is the number of poles to be
placed. Hence, for a generic real solution we require
wn , 0. If we let h(p,m) the highest exponent, h, of
w ∈ H∗

(
Gp(Rp+m); Z2

)
so that wh , 0, then a sufficient

condition for real solvability of DAP is n 6 h(p,m). It
is worth noting that not all intersections (33) correspond
to wn. It is only the intersections for which some regu-
larity condition holds true. Note that, since

m + p − 1 6 h(p,m) 6 m · p (36)

where the upper bound is the best possible bound (com-
plex case) for the degree of the polynomial and in most
cases h(p,m) is closer to the lowest bound (Leventides
and Karcanias, 1992). These approaches are of very
general and qualitative and tackle only the existence
problem. They do not consider the special nature of
the problem and they do not provide computation of so-
lutions. A considerable improvement which overcomes
the above deficiencies has been given by the GL method
(Leventides and Karcanias, 1995).
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6. The Global Linearisation Methodology

The solvability of DAP may be seen as a problem
of finding real intersections between the linear variety
and the Grassmann variety of an appropriate projec-
tive space. An approach that applies to generic and
given systems which leads to establishing of existence
results and also provides a computation scheme, has
been based on the notion of degenerate feedback solu-
tions; this is referred to as Global Linearisation (GL)
(Leventides and Karcanias, 1995). Degenerate solutions
have been introduced in (Brockett and Byrnes, 1981)
as the compensation solutions where the feedback con-
figuration vanishes. Such solutions have the signifi-
cant property that linearise asymptotically the multilin-
ear nature of DAP and thus lead to the computation of
solutions. The GL approach leads to numerical meth-
ods to design feedback laws for DAP applications capa-
ble to handle dynamic schemes, as well as structurally
constrained compensation schemes (Leventides et al.,
2014a,b). Furthermore, it has provided new solvability
of control problems for both generic and non-generic
cases.

6.1. The Pole Placement Map (Primitive Results)

Consider the pole placement problem via constant out-
put feedback. The closed-loop pole polynomial is

det
(
[I,K] ·

[
D(s)
N(s)

])
= det ([I,K] · M(s)) = p(s)

(37)
where, M(s) ∈ R[s](p+m)×p is the composite MFD of the
open-loop system transfer function G(s) = N(s)·D−1(s),
[I,K] ∈ Rp×(m+p) are the generalised finite feedback
compensators with K ∈ Rp×m and p(s) the target poly-
nomial to be assigned.
Solvability conditions of the pole placement problem
under complex and real output feedback have been es-
tablished in Leventides and Karcanias (1992) based on
the dimension of the Pole Placement Map (PPM) and in
particularly the image of the maps:
Pole Placement Map (PPM): The PPM under real
(or complex) output feedback which maps every K to
p = (pn, . . . , p1) under the relation (37) is defined by

PPM : Fp×m → Fn : PPM(K) = p (38)

where, F is either R (for real) or C (for complex).
The solvability of the arbitrary pole placement problem
is translated into onto properties of the related PPM.
For the complex case there are results based on Shard
Theorem (Byrnes, 1983). In Leventides and Karcanias

(1993) the global onto properties of a polynomial map
can be proved by the local onto properties of the map
(linear) i.e. the differential of the mapping at a point is
onto, which requires only to test the rank of a jacobian
matrix (differential).
Procedure: The computational procedure involves: (i)
express the PPM; (ii) calculate the differential at any
point; (iii) select a specific point that the differential is
easily calculated (linear map); (iv) calculate the rank of
the differential of the related PPM ; (v) if the rank of the
differential is full then the PPM is almost onto. �
It has been proved that for a generic proper system ar-
bitrary pole placement is solvable with complex con-
trollers when m · p > n (Byrnes, 1983), (Leventides
and Karcanias, 1992). However, this procedure answers
only the existence of solutions and does not lead to a
construction of such solutions. Next, we summarize
the main early results as far as sufficient conditions for
generic pole placement.

Theorem 14. Sufficient conditions of generic systems
for pole placement via complex controllers are given:

(i) m + p − 1 > n; in Kimura (1975)

(ii) mp > n; in Byrnes (1983); Leventides and Karca-
nias (1992)

whereas, for pole placement via real controllers the
main results have been given by:

(i) LS cat(p,m) > n; in Byrnes (1983)

(ii) h(p,m) > n; in Leventides and Karcanias (1992)

(iii) mp = n (holds when the degree of Gp (Rp+m) is
odd); in Brockett and Byrnes (1981).

A first breakthrough regarding the sufficiency of the
static generic pole assignability was established by
Wang (1992) as, m · p > n. Using geometric tech-
niques Rosenthal and Wang (1996, 1997) derive that,
q · max(m, p) + mp > n, implies generic assignability
over the reals with dynamic compensators of q−degree.
Moreover, by using the linearisation procedure around
a degenerate point (Leventides and Karcanias, 1995,
1998b) derive not only sufficient conditions but also
closed formulas and a procedure for construction of
feedback compensators. Similar results have been given
by (Rosenthal et al., 1995), (Wang, 1996), (Ravi et al.,
1996), (Rosenthal and Sottile, 1998), (Ariki, 1998),
(Sottile, 2000), (Eremenko and Gabrielov, 2002), (Hu-
ber and Verschelde, 2000), whereas for a comprehensive
review on the open pole placement problems see Rosen-
thal and Willems (1999).
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6.2. Degenerate Solutions

Degenerate gains were first introduced by Brockett and
Byrnes (1981) in their generalized form as follows:

Definition 2. A generalized gain, D = rowspan (A,K),
is degenerate if and only if satisfies equation:

det ([A,K] · M(s)) ≡ 0 (39)

Degenerate gains can be constructed easily from the
null-spaces of certain matrices (Wang, 1992), (Leven-
tides and Karcanias, 1995). In the following we denote
by M = colsp (M(s)), the R[s]−module generated by
the columns of the system composite MFD M(s).

Theorem 15. For the system represented by composite
MFD, M(s) ∈ R[s](m+p)×p, a p−dimensional space, D =

rowspan (A,K), corresponds to degenerate gain if and
only if either of the following two conditions hold true:

(i) There exists an (m+p)×1 polynomial vector, m(s) ∈
M, such that (A,K) · m(s) = 0,∀s ∈ C

(ii) There exists an (m + p) × 1 polynomial vector,
m(s) ∈ M, with coefficient matrix Pm such that
rank(Pm) 6 m.

The following example illustrates the standard proce-
dure for constructing degenerate points.

Example 4. Consider a p = 2−input, m = 3−output
system with n = 5 states represented by M(s) =[

D(s)t N(s)t
]t

M(s) =


s3 0
1 s2

s2 + 1 s + 1
s + 3 s
s + 1 1

 =
[

m1(s) m2(s)
]

To construct a degenerate point, we select a polynomial
vector m(s) ∈ M with the lowest (column) degree, i.e.
m(s) = m2(s) =

[
0 s2 s + 1 s 1

]t
and extract

its coefficient matrix, hence we express it as:

m(s) = Pm · e2(s) =


0 0 0
1 0 0
0 1 1
0 1 0
0 0 1

 ·
 s2

s
1


A p=2-dimensional subspace that corresponds to a de-
generate point can be found by constructing a basis for
the left null-space of Pm, such that D · Pm = 02×3. Thus,

a degenerate gain which satisfies conditions (i), (ii) of
Th.16 is given by

D = rowspan (A,K) =

[
1 0 0 0 0
0 0 1 −1 −1

]
�

A degenerate solution for the feedback configuration is
a gain where the closed-loop system has a singularity,
in the sense that the feedback system is not well posed
i.e. p(s) ≡ 0. In many cases, especially when the
open loop system is strictly proper, degeneracy can oc-
cur only when K → ∞ (since if K is finite, p(s) is not
identically 0). To cover also this case (K → ∞), the
gain space has been extended to the Grassmannian (the
set of all p−dimensional subspaces of Fp+m).
The extended PPM (where F = R : real or C : complex)
to the projective space is

x̃ : Gp
(
Fm+p)→ Pn (F) (40)

This extension introduces new generalized controllers
for output feedback, apart from the standard finite
(bounded) controllers (37) appear in in the original for-
mulation, which have the following form:

• Infinite controllers: K̃ = [A,K] ∈ Fm×(m+p), where
det(A) = 0

• Degenerate controllers: K̃d = [A,K] ∈ Fm×(m+p),
for which the closed-loop polynomial is not de-
fined, i.e.

det
(
K̃d · M(s)

)
≡ 0

The family of degenerate controllers are crucial for the
development of the GL method. The GL method in-
troduces new solvability conditions and provides the
means for the parametrisation of the families of degen-
erate controllers using the theory of minimal bases (Kar-
canias et al., 2013), (Karcanias et al., 2016a).

6.3. The Global Linearisation Methodology

The GL methodology is an algebro-geometric method
that tackles the problem of pole placement for generic
and given systems under output feedback controllers.
This method is based on an asymptotic linearisation of
the pole placement map. The output feedback problem
is reduced to solving a set of linear equations whereas
the asymptotic solution of the problem (as ε → 0) is
given in closed form in terms of a one-parameter family
of feedback compensators, i.e. A(s)+ε·B(s) where, A(s)
is the so-called degenerate compensator and B(s) is the
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solution from the set of linear equations. We can con-
struct a degenerate gain for the GL methodology (Lev-
entides and Karcanias, 1995, 1998b) and consider se-
quences of generalized gains such as

S ε = [A,K] + ε · [A1,K1]

that converge to the degenerate gain [A,K] as
ε → 0. It has been shown that for the stan-
dard feedback configuration and using the gain matrix
[A + ε · A1]−1 [K + ε · K1], the closed-loop pole polyno-
mial has the same roots as:

pε(s) = det
{

S ε

[
D(s)
N(s)

]}
= det {S ε · M(s)} (41)

where, pε(s) tends to p(s) as ε→ 0. The polynomial in
(41) is called the prime polynomial with respect to the
degenerate point D = rowspan (A,K). The relationship
between the perturbed direction and the pole polyno-
mial (Leventides and Karcanias, 1995) is described as:

Theorem 16. For a given degenerate point of a sys-
tem, rowspan (A,K), and a sequence of gains, S ε,
converging to it, the linear function that maps the
direction (A1,K1) = [bi j] to the coefficient vector
p of the prime polynomial p(s) has a matrix repre-
sentation denoted by LD which is the p(m + p) ×
(n + 1) coefficient matrix of the polynomial vector[
p11(s), . . . , pi j(s), . . . , pp(m+p)(s)

]
and p can be written

as:
p = vec(bi j) · LD (42)

where, vec(bi j) is the vector formed by stacking all the
rows of (A1,K1) = [bi j].

Theorem 17. Let D = rowspan (A,K) be a degener-
ate gain defined by the composite MFD representation
M(s). The target polynomial of the given system with
respect to D and the direction [A1,K1] =

[
bi j

]
can be

written as:
p(s) =

∑(
bi j · pi j(s)

)
(43)

where, i = 1, 2, . . . , p, j = 1, 2, . . . , p + m and pi j is the
determinant of the p×p polynomial matrix Di j(s) having
the same rows as the matrix [A · D(s) + K · N(s)] apart
from the i−th which is replaced by the j−th row of M(s).

Note that in the characterization of degenerate gains we
consider all possible gains (bounded and unbounded)
which are further classified as:

(i) Regular (bounded) degenerate compensators:
rank(L) = n + 1

(ii) Non-regular (unbounded) degenerate compen-
sators: rank(L) < n + 1

Global Linearisation Method (Leventides and Karca-
nias, 1995)

1) Construct a degenerate point: D = rowspan (A,K)
2) Calculate the matrix LD (Theorem 16)
3) If rank (LD) = n + 1, then solve the linear equation

(42) with the direction (A1,K1) = [bi j] else return
to Step (1)

4) The one parameter family of m × p matrices,
Kε = [A + ε · A1]−1 [K + ε · K1], are the real con-
stant output feedback compensators placing the
poles at the given set as ε→ 0.

5) Select a small enough ε (in Kε), to approach the
given closed-loop pole polynomial as close as it is
desirable. �

The computational approach of GL is based on the as-
sumption that we can select degenerate points for which
the map LD (related to the Plücker invariant of the sys-
tem) has full rank. There exists a non-trivial family of
systems for which this property can be satisfied:

Corollary 18 ((Leventides and Karcanias, 1995)). For
a generic proper system of p−inputs, m−outputs,
n−states for which the condition m · p ≥ n is satisfied,
the following hold true:

i) There always exist a degenerate compensator D =

rowspan (A,K) such as the matrix, LD, has full
rank.

ii) Every closed-loop polynomial of an appropriate
degree (n) can be approximately assigned by se-
quences of feedback controllers converging to a de-
generate gain.

iii) A generic closed-loop polynomial of an appropri-
ate degree (n) can be exactly assigned by a real
constant output feedback compensator.

A distinct advantage of the GL framework is that it
permits the calculations of feedback compensators as
solutions of a simple linear set of equations and al-
lows the parametrisation of all such solutions based on
the (restricted) system Plücker matrix, LD, and another
matrix associated with the degenerate point. The nu-
merical aspects of this scheme such as sensitivity, ro-
bustness and limitation of high gains have been exam-
ined with various numerical schemes based on the GL
framework aiming to improve significantly the sensitiv-
ity properties of the solutions. The numerical methods
are based: (a) on a predictor-corrector scheme (Leven-
tides et al., 2014b), and (b) on a modified quasi-Newton
method (Leventides et al., 2014a). The iterative numer-
ical schemes have been applied to the output feedback
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pole placement problem. The framework applied here
for the output feedback pole placement problem may
also be extended to the other DAP variants, such as dy-
namic (Leventides and Karcanias, 1998b) and decen-
tralised (Karcanias and Leventides, 2005).

7. Decentralised DAP and Selection of the
Decentralisation

We specialize now the previous results on the central-
ized DAP, to the case of the structured frequency assign-
ment problems (decentralised control problems) and we
review the main results on the structural characteristics
and diagnostics for the selection of the possible decen-
tralisation schemes. Central to this approach is the no-
tion of decentralisation characteristic, which expresses
the effect of decentralisation on the design problem and
the resulting structural invariants that predict properties
of the decentralised control schemes (Karcanias et al.,
1988), (Karcanias and Leventides, 2005), such as fixed
and almost-fixed modes.

7.1. The decentralised pole assignment problem

We consider linear systems described by a proper trans-
fer function matrix G(s) ∈ R(s)m×p of McMillan de-
gree n. We assume that we have a k−channel decen-
tralisation scheme, where k 6 min(m, p), defined by
the k−partition of the input, output vectors u ∈ Rp and
y ∈ Rm. For a given pair (m, p) we also define the sets
of integers, introduced by partitioning of m, p as:

{m} = {mi, mi > 1,
k∑

i=1

mi = m}

{p} = {pi, pi > 1,
k∑

i=1

pi = p}

where it is also assumed that mi > pi, ∀i ∈ k̃. The
set ID = ({m}, {p}; k) will be called a decentralisation
index. If local feedback laws of the following type

ui(s) = Ci(s) · y
i
(s)

are applied to each channel, i = 1, 2, . . . , k, then the
closed loop transfer function is G(s)[I + C(s)G(s)]−1,
with C(s) = diag{C1(s), . . . ,Ck(s)} ∈ Rp×m(s), Ci(s) ∈
Rpi×mi (s) representing the controller. The closed loop
pole polynomial is

p(s) = det
{

[A(s), B(s)] ·
[

D(s)
N(s)

]}
= det{H(s) · M(s)}

where, A(s)−1B(s) is a left coprime MFD for C(s),
N(s)D(s)−1 is a right coprime MFD of G(s) and M(s) =

[Dt(s),N t(s)]t, H(s) = [A(s), B(s)] are the compos-
ite descriptions of G(s) and C(s) respectively. The
structured controller matrix H(s) can be written as[
Ā(s); ¯B(s)

]
, where Ā(s) = bl.diag{A1(s), . . . , Ak(s)} and

B̄(s) = bl.diag{B1(s), . . . , Bk(s)}. By a simple reorder-
ing of the blocks the following problems are defined:

Problem 1 (Dynamic Dec. Pole Assignment). Given
an arbitrary set of poles by p(s), solve the equation

p(s) = det

bl.diag [H1(s), . . . ,Hk(s)] ·


M1(s)
...

Mk(s)




= det {Hdec(s) · Mdec(s)} (44)

with respect to the decentralised controller Hdec(s),
where Hi(s) = [Ai(s), Bi(s)] and Mi(s) =

[
Dt

i(s),N t
i (s)

]t
.

Problem 2 (Constant Dec. Pole Assignment). Given
an arbitrary polynomial p(s), solve the equation

p(s) = det
{[

Ip; Hdec

]
· Mdec(s)

}
(45)

with respect to the constant structured matrix
[
Ip; Hdec

]
,

where Hdec = bl.diag (H1, . . . ,Hk).

7.2. Parameterisation of decentralised degenerate com-
pensators

The selection of a decentralisation scheme is a problem
that has not been properly addressed as a structural de-
sign and control theory issue with the exception of the
graph methodologies (Siljak, 1991). DAP can provide
an algebraic framework for selection of the desirable
decentralisation (Karcanias et al., 2016a) aiming at de-
veloping schemes that allow the satisfaction of generic
solvability conditions and shaping the parametric invari-
ants linked to solvability of decentralised control prob-
lems The structural indicators suggest the desirable val-
ues of inputs, outputs and their partitioning. The results
of the exterior algebra framework provide the means for
simple tests for avoiding fixed modes (Karcanias et al.,
1988), whereas the link of Plücker matrices to decen-
tralised Markov parameters (Leventides and Karcanias,
1998a) allow the linking of the algebraic invariants to
state space design. The overall philosophy aims to de-
vise methods for design, or redesign the system in or-
der to facilitate the solvability of decentralised control
problems. Amongst the specific problems considered
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are: (i) Define the desirable cardinality of input, out-
put structures to permit satisfaction of generic solvabil-
ity conditions, (ii) Design the structure of input, out-
put maps (matrices B, C) to eliminate the existence of
fixed modes and guarantee full rank properties to the de-
centralised Plücker matrices (Leventides and Karcanias,
2006). By extending the results from the centralised
DAP case for degenerate feedback gains, we have:

Definition 3. A decentralised controller Hdec(s) is de-
generate if the closed loop system is not well posed, i.e

det{Hdec(s) · Mdec(s)} ≡ 0 (46)

The existence of dynamic decentralised degenerate
gains (DDG) are given below (Leventides and Karca-
nias, 2006). Let us denote byM = col.span{M(s)}.

Proposition 19 ((Leventides and Karcanias, 2006)). A
polynomial matrix Hdec(s) = bl.diag [H1(s), · · · ,Hk(s)]
corresponds to a degenerate compensator of the feed-
back configuration, if and only if, either of the following
equivalent conditions holds true:

(i) There exists an (m+p)×1 polynomial vector m(s) ∈
M, such that, Hdec(s) · m(s) = 0, ∀s ∈ C.

(ii) There exists an (m+p)×1 polynomial vector m(s) ∈
M, which if partitioned (conformally with the de-
centralised controller) into the set of (mi + pi) × 1
polynomial vectors, we have that, Hi(s) ·mi(s) = 0
where, mi(s) ∈ Mi, i = 1, . . . , k.

For constant structured matrices we may define for any
given ID, the corresponding composite output feedback
constant decentralised gain as

[
Ip; Hdec

]
=


Ip1 0 0 0 H1 0 0 0
0 Ip2 0 0 0 H2 0 0

0 0
. . . 0 0 0

. . . 0
0 0 0 Ipk 0 0 0 Hk


where, Hi ∈ Rpi×mi , ∀i ∈ k̃. For a generator m(s) ∈ M
and a decentralisation index ID, m∗(s) denotes the cor-
responding permuted vector. The family of all genera-
tors that lead to degenerate gains is denoted byD.

Theorem 20. For a system with dimensions (n,m, p)
and decentralisation index ID = ({m}, {p}; k), let m(s) ∈
D and denote by m∗(s) = P∗eδ(s) ∈ M∗ the corre-
sponding permuted generator vector and let us consider
P∗ ∈ R(p+m)×(δ+1) partitioned into k−blocks, according

to ID, as indicated below:

P∗ =



P1
...

Pi
...

Pk



l p1 + m1

l pi + mi

l pk + mk

(47)

If Lm∗ is the m∗(s)−DDG family, then Lm∗ contains de-
centralised gains with ID−characteristic if and only if,
mi > rank(Pi), ∀i ∈ k̃. This family is defined by

Lm∗ = {Hdec : Hdec = bl.diag{· · · ; Hi; · · · } : HiPi = 0}

where, rank(Hi) = Pi, ∀i ∈ k̃.

Proposition 21. Given that rank{Pi} 6 rank{P} 6 δ+1
where, δ = ∂{m(s)}, a sufficient condition for the ex-
istence of a decentralised degenerate gain in Lm∗ , or
equivalently Lm, is that:

mi > δ + 1, ∀i ∈ k̃. (48)

Obviously, the smaller the degree of m(s), easier it is to
find decentralised degenerate solutions. The presence of
decentralized elements are implied by the Gain Degen-
eracy Set < L >. For the case where m > p and for a
given generator vector, m(s) ∈ D, the conditions for the
set Lm to contain at least one decentralised element are
given in (Karcanias et al., 2016a).

7.3. The set of Structurally Compatible Partitions

For any generator vector m(s) ∈ D corresponding to a
system with dimensions (n, p,m) and with r = rank{P},
the existence of a set of non-trivial compatible partitions
(k , 1) ID−CP, which are independent from the numer-
ical values of the corresponding partitioned matrices Pi,
is given by the following result.

Proposition 22. Let m(s) = P · eδ(s) ∈ D be a system
with dimensions (n, p,m), r = rank{P} 6 δ+ 1 and let k̄
be the integer defined by k̄ = max{k ∈ Z>0 : k 6 m/r}.
If k̄ > 2, then for any k : 2 6 k 6 k̄ there exist ID−CP,
ID = ({m}, {p}; k), defined by certain k−partitions of m,
p and satisfying the following conditions:

mi > r, mi > pi, ∀i = 1, 2, . . . , k. (49)

Such a set will be denoted by {ID; m} and referred to as
the set of Structurally Compatible Partitions (SCP) of
m(s), and this description does not depend on the values
of elements of P, but only on (m, p, r) numbers.
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Theorem 23. For every system with dimensions
(n, p,m) and any generator m(s) = P · eδ(s) ∈ D with
r = rank{P} 6 δ+ 1, the set of all Structurally Compat-
ible Partitions of the (m, p) pair is given by

{m, p; r} = X(m, p; r) =
k=k̄
∪

k=1
[X(m),X(p)] (50)

The study of properties on a given m(s) ∈ D depends
only on its degree, rank and (p,m) number and not on n,
from which the only numerically dependent parameter
is r. Given that r 6 δ + 1, a numerically independent
subset of {m, p; r}, is the set {m, p; δ + 1}.

8. Exact and Approximate Solutions of DAP

A direct solution to the computation of exact, as well
as approximate solutions of DAP, has been proposed re-
cently in Leventides et al. (2014c), Karcanias and Lev-
entides (2015). The exact DAP is to find a decompos-
able l-vector kt that satisfies (20) and is an intersection
problem between a linear variety and the Grassmann
variety. In the approximate DAP (which is addressed
when the exact problem is not solvable) we aim to min-
imise the distance between the linear variety defined by
(20) and the Grassmann variety of all decomposable
vectors. This new approach is based on a linear alge-
bra type, criterion for decomposability of multivectors
stems from the properties of the Grassmann matrices.

8.1. The Grassmann and Hodge-Grassmann matrices
and the canonical representation of multivectors

The Hodge-Grassmann matrix
The Hodge-Grassmann matrix is the Grassmann matrix
of the Hodge dual of the multivector z and its properties
are dual to those of the Grassmann matrix. In fact de-
composability turns out to be an image problem for the
transpose of the Hodge-Grassmann matrix (Karcanias
and Leventides, 2015).

Definition 4. The Hodge ∗−operator, for a oriented n-
dimensional vector space U equipped with an inner
product < ., . >, is an operator defined as: ∗ : ∧mU →

∧n−mU such that a∧
(
b∗

)
= 〈a, b〉w where a, b ∈ ∧mU,

a ∈ ∧nU defines the orientation onU and m < n.

Definition 5. The Hodge-Grassmann matrix of a multi-
vector z, z ∈ ∧mU, z , 0 is the Grassmann matrix of the
Hodge dual of z, z∗, i.e. it is the matrix Φn−m

n (z∗) repre-
senting the linear map ∧R

z∗ : U → ∧n−m+1U defined as
the representation of: ∧R

z∗ (u) = u ∧ z∗, ∀u ∈ U.

A procedure to calculate the Hodge star of a multi-
vector in ∧mU and the main properties of the Hodge-
Grassmann matrix of a multivector z are given in Kar-
canias and Leventides (2015).

Proposition 24. For any z ∈ ∧mU the following are
equivalent: (i) z is decomposable; (ii) z∗ is decompos-
able.

Furthermore, the following statements hold true:

(i) dimNr{Φ
n−m
n (z∗)} 6 n − m equality holding iff z is

decomposable.

(ii) dimrowspan{Φn−m
n (z∗)} > m equality holding iff z

is decomposable.

Theorem 25. (a) For z ∈ ∧mU, z , 0 the matrix Φm
n (z)T

is the representation of the map T∧R
z : ∧m+1U → U

given by:

T ∧R
z (y) = (−1)n−1(z ∧ y∗)∗ ,where y ∈ ∧m+1U

b) The matrix Φn−m
n (z∗)T is the representation of the map

T∧R
z∗ : ∧n−m+1U → U given by:

T ∧R
z∗ (y)) = (−1)n−1(z∗ ∧ y∗)∗ ,where y ∈ ∧m+1U

The above lead to a new test for decomposability in
terms of the Grassmann and Hodge-Grassmann matri-
ces (Karcanias and Leventides, 2015):

Theorem 26. For any z ∈ ∧mU the following condi-
tions are equivalent:

i) z is decomposable

ii) Φm
n (z) · (Φn−m

n (z∗))T = 0 ∈ R( n
m+1)×( n

n−m+1)

Theorem 27. Let z ∈ ∧mU, then the following holds
true

Nr

{
Φm

n (z)
}
⊆ rowspan

{
Φn−m

n (z∗)
}

= R
{
Φn−m

n (z∗)T
}

Two fundamental spaces associated with z are

D1(z) = Nr(Φm
n (z)) with d1(z) = dimNr(Φm

n (z))

D2(z) = R(Φn−m
n (z∗)T ) with d2(z) = dimR(Φn−m

n (z∗)T )

{0} ⊆ D1(z) ⊆ D2(z) ⊆ U

where, 0 6 d1(z) 6 d2(z) 6 m.

Theorem 28. For a z ∈ ∧mU we have: (i) Let
{u1, . . . , ud1

} be a basis for D1(z) then z can be written
as z = u1 ∧ . . . ∧ ud1

∧z1; (ii) z ∈ ∧mD2(z).
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Corollary 29. If {u1, . . . , ud1
} is a basis for D1(z), then

the multivector z can be represented as z = u1 ∧ . . . ∧
ud1
∧z1 where, z1 ∈ ∧

m−d1D3(z) , where D3(z) is the
orthogonal complement ofD1(z) inD2(z).

A fundamental relationship between the singular vec-
tors and the singular values of the Grassmann and
Hodge-Grassmann matrices is given by (Karcanias and
Leventides, 2015):

Theorem 30. For any z ∈ ∧mRn the following holds
true

Φm
n (z)T Φm

n (z) + Φn−m
n (z∗)T Φn−m

n (z∗) =
∥∥∥z

∥∥∥2
In

Corollary 31. (i) The vector z ∈ ∧mRn is decomposable
iff the matrix Φm

n (z) has m singular values equal to 0 and
n − m singular values equal to

∥∥∥z
∥∥∥.

(ii) The vector z ∈ ∧mRn is decomposable iff the matrix
Φn−m

n (z∗) has n − m singular values equal to 0 and m
singular values equal to

∥∥∥z
∥∥∥.

(iii) The vector z ∈ ∧mRn is decomposable iff

Nr{Φ
m
n (z)} = colspan{Φn−m

n (z∗)T } = span
(
x1, . . . , xm

)
where, {x1, . . . , xm} are the right singular vectors of
the Grassmann matrix corresponding to its 0 singu-
lar value, or the right singular vectors of the Hodge-
Grassmann matrix corresponding to its singular value
that equals to

∥∥∥z
∥∥∥.

8.2. The solution of the exact and approximate DAP
As described in Section 3.2, DAP can be decomposed
into a linear and a multilinear problem. Assume that
a(s) = ate(s), e(s)t =

[
1, s, . . . , sd

]
, is the polynomial to

be assigned, where d is the degree of a(s). Let A be a
right annihilator matrix of at (i.e. atA = 0), then (20)
may be expressed as

ktPA = 0

If V is an orthonormal basis matrix for the left kernel of
PA, then kt equals to kt = xtV , V ∈ Rp×q, where p is the
dimension of the left kernel of PA. Thus, for kt to be
decomposable, or to be the closest to decomposability,
we require that either

a) the QPRs are exactly zero, that is,

Φl
m(k) · Φl

m−l(k
∗)T = 0

b) the square norm of the QPRs is minimum, that is,
minimise ∥∥∥Φl

m(k) · Φl
m−l(k

∗)T
∥∥∥

Therefore, for both exact and approximate DAP, the fol-
lowing optimisation problem has to be solved

Problem 3. min
∥∥∥Φl

m(k) · Φl
m−l(k

∗)T
∥∥∥ subject to,

kt = xtV and
∥∥∥x

∥∥∥ = 1. �

which can be rewritten as a maximisation problem

Problem 4. max tr
(
Φl

m(xtV)T
· Φl

m(xtV)
)2

subject to,∥∥∥x
∥∥∥ = 1. �

The objective function of the new optimisation prob-
lem is a homogeneous polynomial in p variables x =(
x1, x2, . . . , xp

)
under the constraint

∥∥∥x
∥∥∥ = 1. This

is a nonlinear maximisation problem which can be
solved using standard optimisation methods and al-
gorithms. An iterative method resembling the power
method (Kolda and Mayo, 2011) for finding the largest
modulus eigenvalue and its corresponding eigenvector
of a matrix that solves the above problem, is suggested
in (Karcanias and Leventides, 2015).

Iterative method for computing solutions: Let Φ be
the matrix

Φ = ·Φl
m(xtV) · Φl

m(xtV)T =


...

· · · φi j(x) · · ·

...


where, φi j(x) = xtAi jx a quadratic function in x. Then,
the objective function is tr(Φ)2 =

∑m
i, j=1 φ

2
i j(x) and the

Lagrangian of the problem is given by

L(x, λ) =
∑m

i, j=1
φ2

i j(x) − λ
(∥∥∥x

∥∥∥2
− 1

)
(51)

The first-order conditions can be expressed as a nonlin-
ear eigenvalue problem defined by

A(x) · x =
λ

2
x (52)

where, A(x) is the p × p matrix, A(x) =
∑m

i, j=1 φi j(x)Ai j.
The solution of the problem can be found by applying
the following iteration for N = 0, 1, 2, . . . ,Nmax:

xN+1 = A(xN)·xN

/∥∥∥A(xN) · xN

∥∥∥ (53)

The stopping criteria are
∥∥∥xN+1 − xN

∥∥∥ < ε. �
The iterative method described above can be applied to
both exact and approximate DAP.
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Example 5. Consider a system with p = 3 inputs, m =

3 outputs and n = 7 states given by:

M(s)T =

[
D(s)
N(s)

]T

=

=

 s3 s2 s s + 1 1 1
0 s2 + 1 s2 − s − 2 2s + 1 s 1
0 0 s2 s − 1 s − 3 1


The open-loop system is not BIBO stable since it has 5
poles at s = 0 and 2 poles at s = ± j. We would like to
place its poles at (−1,−2, ...,−7) and we are seeking an
output feedback K ∈ R3×3 such that

det ([I3,K] · M(s)) = (s + 1)(s + 2) · · · (s + 7) = a(s)

By applying the Binet-Cauchy theorem we get ktP = at,
with kt ∈ R20, P ∈ R20×8 where at is the coefficient
vector of a(s). The solution of the linear problem is of
the form

kt = xtV, xt ∈ R13,V ∈ R13×20

Starting from an appropriate selected vector x0 ∈ R13,
we apply the iteration (53) and after a sufficiently large
number of iterations we stopped when the value of the
objective function becomes (m + p) − p = 6 − 3 = 3,
that indicates exact pole placement. The final solution
is given by the decomposable vector kt which gives rise
to the feedback controller

K =

 −958.381 1309.17 −117.214
239.588 −326.091 29.119
576.064 −786.652 70.971


9. Open Problems and Suggestions for Further Re-

search

The development of structural methodologies for linear
systems has many open challenges, however this pa-
per has focused to those which may be seen through
the algebro-geometric DAP framework. The DAP ap-
proach for the solution of frequency assignment prob-
lems has provided a new set of system invariants in
terms of the Grassmann vectors and Plücker matrices,
new solvability conditions and a computational frame-
work based on the GL methodology. Furthermore, it
has also provided a methodology for computing approx-
imate solutions when exact solutions cannot be found.
The framework is by no means complete and a number
of open issues remain which define a research agenda
for the future. Areas for future research within the DAP

framework deal with advanced control design and areas
of system structural synthesis as considered below.

Advanced Control Design based on DAP
The general framework of DAP has already being devel-
oped but some key problems need further consideration
by using results from other control and mathematics ar-
eas. The main areas of research include:
Selection of best degenerate compensators for
Global Linearisation of DAP: The overall methodol-
ogy of GL is based on defining a degenerate compen-
sator. In general, there is no unique degenerate compen-
sator. The problem of classifying such compensators for
the constant DAP case has been considered in (Karca-
nias et al., 2013) but the extension to dynamic compen-
sation remains open.
Least sensitivity solutions of the Global Linearisa-
tion Methodology: An inherent feature of the GL is its
sensitivity. Alternative methods for overcoming the sen-
sitivity for a given degenerate compensator have been
considered in (Leventides and Karcanias, 1996), (Lev-
entides et al., 2014a). Improving the sensitivity of the
method for a given degenerate compensator is an area
worth investigating. A major challenge is the study
of sensitivity for the different degenerate compensators
and finding the least sensitivity solution. Such an inves-
tigation may be also extended to dynamic degenerate
compensators, which may offer reduction to sensitivity.
Robustness of solutions under model uncertainty:
The study of DAP so far has assumed a fixed model for
the system. Transforming the DAP from synthesis to a
design methodology requires handling the problem of
model uncertainty. This problem is open and involves
as important sub-problems the effect of model uncer-
tainty on (i) the Grassmann and Plücker invariants; (ii)
the family of degenerate compensators (crucial for GL);
(iii) the linear variety of DAP. The latter implies linking
model uncertainty to the family of resulting linear va-
rieties and then studying DAP for such families. This
area requires enriching the algebraic framework by us-
ing results from robustness and system properties with
their appropriate modification in the context of the DAP
formulation.
Approximate solutions of families of Dynamic DAP:
A framework for finding approximate solutions of
DAP has been developed in (Karcanias and Leventides,
2015). The solution is based on an iterative method re-
sembling the power method (Kolda and Mayo, 2011)
for finding the largest modulus eigenvalue and its corre-
sponding eigenvector of a matrix that solves the above
problem iteratively. The power method may be ap-
plied using a shifted variant, as in the symmetric case,
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which guarantees convexity and hence convergence of
the method. These developments imply use of results
from optimization, numerical computations and approx-
imation and express another enrichment of the original
algebraic framework. Development of techniques that
avoid the iterative nature is an additional challenge.
DAP and the stabilisation problem: Frequency as-
signment may also guarantee stabilisation but it is rather
restrictive. There exist some stabilisation results for
pole assignment (Byrnes, 1983), but the stabilisation
version of DAP takes a different form. In this case we
deal with semi-algebraic sets (stability domain) and the
linear variety of DAP becomes a semi-algebraic set and
this is a study in the field of semi-algebraic geometry.
This is an open field for further development of DAP.
Partial Decomposability of multivectors and re-
stricted DAP: The study of DAP assumes that the de-
sign parameter is entirely free. However, in many prac-
tical cases parts of the design matrix (a row, or a number
of them) are fixed. This is equivalent to decomposing
a multivector as a product of lower dimensional multi-
vectors. In case that this is not possible we examine the
problem of approximate partial decomposability. This
introduces a new dimension to the study of DAP which
is relevant to design problems.

System Structural Synthesis
Network Re-engineering and DAP: The problem of
redesigning autonomous (no inputs or outputs) pas-
sive electric networks (Karcanias et al., 2014) aims to
change the network (natural frequencies) by modifica-
tion of the types of elements, possibly their values, in-
terconnection topology and possibly addition, or elim-
ination of parts of the network. This problem differs
considerably from a standard control problem, but may
be reduced to an equivalent DAP problem where the
topology of the network, types and values of physical
elements become design parameters. A new family of
DAP problems may be introduced when the system car-
dinality changes. In this case the DAP system operator
described by the impedance or admittance matrix may
be expanded, or reduced.
Parametrisation of Decentralized DAP schemes: The
selection of a decentralization scheme has not been
properly addressed as a design issue and has been han-
dled mostly using process heuristics, and conditions de-
rived from the spatial arrangement of sub-process units.
The only exception is the use of Graph theory, which
however has not developed to a systematic methodol-
ogy for selection and parameterization of decentralized
structures. This problem may be considered within the
framework of structural methodologies for linear sys-

tems (Siljak, 1991), (Leventides and Karcanias, 1998a),
(Karcanias and Leventides, 2005). Addressing the de-
sign of decentralisation schemes in order to guarantee
solvability of families of control problems and exclude
undesirable characteristics, such as fixed modes, re-
quires a systematic methodology for synthesis of decen-
tralisation schemes (Karcanias and Leventides, 2005)
based on structural methodologies. DAP based cri-
teria may be deployed on existing generic solvability
conditions and on the DAP diagnostics (Plücker matri-
ces, decentralized Markov parameters) linked to solv-
ability conditions and avoidance of fixed modes. The
parametrisation of degenerate compensations for decen-
tralized schemes (Karcanias et al., 2016b) together with
the DAP invariants and their properties also provides a
possible route for the classification of decentralization
schemes with good control potential.
Minimal design problem: Dynamic compensation
problems may be reduced to constant DAP problems.
Amongst the open issues in the area of dynamic fre-
quency assignment problems, is defining the least com-
plexity compensator (this is frequently defined by the
McMillan degree), for which we may have solvability
of the arbitrary spectrum assignment of the correspond-
ing DAP. This is referred to as the minimal design DAP
problem (Karcanias and Galanis, 2010) and it has been
based on the linear sub-problem of DAP by using the
properties of dynamic polynomial combinants. These
results define lower bounds to the minimal design prob-
lem since the approach has ignored the decomposability
of multivectors constraints. Defining upper bounds for
dynamic compensators solving DAP and parameteris-
ing such families based on their fixed McMillan degree
are challenging open issues.
Synthesis of Grassmann invariants: The solvability
of DAP depends on the properties of the Grassmann
vectors and their respective Plücker matrices. These
invariants are functions of the state space parameters.
Although the state matrix may be fixed the input and
output matrices may be considered as design parame-
ters. Defining such schemes to well condition the solv-
ability of a variety of constant, or dynamic centralized
or decentralized DAP problems introduces new chal-
lenges for the DAP methodology. Within this family
of problems we can consider the problem of reducing
the bounds on the minimal design. Of course, some of
the design parameters may be fixed and such issues may
be considered within the framework partial decompos-
ability considered before. For the case of decentralised
control the selection of decentralised Markov parame-
ters is linked to the design of the matrices C, and B of
the state space model.
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