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Abstract

In generalized additive models for location, scale and shape (GAMLSS), the response dis-

tribution is not restricted to belong to the exponential family and all the model’s parameters

can be made dependent on additive predictors that allow for several types of covariate effects

(such as linear, non-linear, random and spatial effects). In many empirical situations, how-

ever, modeling simultaneously two or more responses conditional on some covariates can be

of considerable relevance. The scope of GAMLSS is extended by introducing bivariate cop-

ula models with continuous margins for the GAMLSS class. The proposed computational

tool permits the copula dependence and marginal distribution parameters to be estimated si-

multaneously, and each parameter to be modeled using an additive predictor. Simultaneous

parameter estimation is achieved within a penalized likelihood framework using a trust region

algorithm with integrated automatic multiple smoothing parameter selection. The introduced

approach allows for straightforward inclusion of potentially any parametric marginal distribu-

tion and copula function. The models can be easily used via the copulaReg() function in

the R package SemiParBIVProbit. The proposal is illustrated through two case studies

and simulated data.
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1 Introduction

Regression models typically involve a response variable and a set of covariates. However, mod-

eling simultaneously two or more responses conditional on some covariates can be of consider-

able empirical relevance. Some examples can be drawn from health economics (e.g., modeling

self-selection and dependence between health insurance and health care demand among married

couples), engineering and econometrics (e.g., building time-series models for electricity price and

demand), biostatistics (e.g., modeling adverse birth outcomes), actuarial science (e.g., studying

the interdependence between mortality and losses) and finance (e.g., modeling jointly the prices

of different assets); see Trivedi & Zimmer (2006) for more examples. The copula approach of-

fers a convenient and computationally tractable framework to model multivariate responses in a

regression context and it has been the subject of many methodological developments over the last

few years (e.g., Cherubini et al., 2004; Kolev & Paiva, 2009; Nelsen, 2006; Radice et al., 2016,

and references therein).

Rigby & Stasinopoulos (2005) extended the class of generalized additive models

(GAM; Hastie & Tibshirani, 1990; Wood, 2006) by introducing generalized additive models for

location, scale and shape (GAMLSS). Here, the response distribution is not restricted to belong to

the exponential family and its parameters can be made dependent on flexible functions of explana-

tory variables. A similar idea was followed by Yee & Wild (1996) and has been recently exploited

by Klein et al. (2015b). This article extends the scope of GAMLSS by introducing a computa-

tional tool for fitting bivariate copula models with continuous margins for the GAMLSS class.

The method permits the copula dependence and marginal distribution parameters to be estimated

simultaneously, and each parameter to depend on an additive predictor incorporating several types

of covariate effects (such as linear, non-linear, random and spatial effects). The framework al-

lows for the use of potentially any parametric marginal response distribution, several dependence

structures between the margins as implied by parametric copulae, and as many additive predic-

tors as the number of distributional parameters. The proposed approach is a direct competitor of

the technique by Vatter & Chavez-Demoulin (2015). The main difference is that these authors’

method is based on a two-stage technique where the parameters of the marginal distributions and

of the copula function are estimated separately, whereas our method is based on the simultaneous

estimation of all the model’s parameters. The proposal can also be regarded as an extension of
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the works by Radice et al. (2016) and Yee (2016), and as a frequentist counterpart of the Bayesian

implementation by Klein & Kneib (2016). Other existing bivariate copula regression approaches

and software implementations (e.g., Acar et al., 2013; Gijbels et al., 2011; Kramer et al., 2012;

Kraemer & Silvestrini, 2015; Sabeti et al., 2014; Yan, 2007) cover only parts of the flexibility of

the proposed modeling tool.

The methodology developed in this article is most useful when the main interest is in relat-

ing the parameters of a bivariate copula distribution to covariate effects. Otherwise, semi/non-

parametric extensions where, for instance, the margins and/or copula function are estimated using

kernels, wavelets or orthogonal polynomials may be considered instead (e.g., Kauermann et al.,

2013; Lambert, 2007; Segers et al., 2014; Shen et al., 2008). Such techniques are in principle

more flexible in determining the shape of an underlying bivariate distribution. In practice, how-

ever, they are very limited with regard to the inclusion of flexible covariate effects and may require

the imposition of functional identifying restrictions.

The remainder of the paper is organized as follows. Section 2 introduces the proposed class

of models, discusses parameter estimation and inference, and provides some guidelines for model

building. Sections 3 and 4 illustrate the approach on simulated and real data, whereas Section

5 discusses some potential directions for future research. The models discussed in this paper

can be easily used via the copulaReg() function in the R package SemiParBIVProbit

(Marra & Radice, 2017), and the reader can reproduce the analyses in this paper using the R scripts

in the on-line Supplementary Material.

2 Methodology

This section introduces bivariate copula additive models and describes its main building blocks.

Parameter estimation, inference and model building are also discussed.

2.1 Copula models for the GAMLSS class

Let us express the joint cumulative distribution function (cdf) of two continuous random variables,

Y1 and Y2, conditional on a generic vector of covariates z as

F (y1, y2|ϑ) = C (F1(y1|µ1, σ1, ν1), F2(y2|µ2, σ2, ν2); ζ, θ) , (1)
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where ϑ = (µ1, σ1, ν1, µ2, σ2, ν2, ζ, θ)
T, F1(y1|µ1, σ1, ν1) and F2(y2|µ2, σ2, ν2) are marginal cdfs

of Y1 and Y2 taking values in (0, 1), µm, σm and νm, for m = 1, 2 are marginal distribution pa-

rameters, C is a uniquely defined two-place copula function with dependence coefficient θ (e.g.,

Sklar, 1959, 1973), ζ represents in this case the number of degrees of freedom of the Student-

t copula (which only appears in C and ϑ when such copula is employed), and the parameters

in ϑ are linked to z via additive predictors (see next section). Note that equation (1) also al-

lows for copulae with two association parameters in which case ζ would represent an additional

dependence coefficient. A substantial advantage of the copula approach is that a joint cdf can

be conveniently expressed in terms of (arbitrary) univariate marginal cdfs and a function C that

binds them together. The copulae implemented in SemiParBIVProbit are reported in Table

1. Counter-clockwise rotated versions of the Clayton, Gumbel and Joe copulae are obtained using

the formulae in Brechmann & Schepsmeier (2013). Furthermore, each of the Clayton, Gumbel

and Joe copulae can be mixed with a rotated version of the same family. For instance, mixing the

Clayton copula with its 90 degree (counter-clockwise) rotation allows one to model positive and

negative tail dependence. More details on copulae can be found in Nelsen (2006), for instance.

The marginal distributions of Y1 and Y2 are specified using parametric cdfs and densities de-

noted respectively as Fm(ym|µm, σm, νm) and fm(ym|µm, σm, νm), for m = 1, 2. In this work,

we have considered two and three parameter distributions, hence the notation adopted. However,

the computational framework can be conceptually easily extended to parametric distributions with

more than three parameters. The distributions implemented in SemiParBIVProbit are de-

scribed in Table 2 and have been parametrized according to Rigby & Stasinopoulos (2005); some-

times µm, σm and νm represent location, scale and shape.

As it should be clear from our model specification, this paper is concerned with conditional

copula models. We would like to stress that the theory for such models is relatively new. Patton

(2002) first discussed conditional copulae by assuming that the conditioning covariate vector is the

same for the margins and copula, whereas Fermanian & Wegkamp (2012) relaxed this assumption

and developed the concept of pseudo-copula. Vatter & Chavez-Demoulin (2015) pointed out that

a regression-like theory for the dependence parameter is possible when using conditional copulae

and assuming exogeneity of the covariates.

In the above notation, observation index i was suppressed to avoid clutter. In fact, our focus
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Copula C(u, v; ζ, θ) Ranges of θ and ζ Transformation Kendall’s τ

AMH ("AMH") uv
1−θ(1−u)(1−v) θ ∈ [−1, 1] tanh−1(θ)

− 2
3θ2

{

θ + (1− θ)2

log(1− θ)}+1

Clayton ("C0")
(

u−θ + v−θ − 1
)−1/θ

θ ∈ (0,∞) log(θ − ǫ) θ
θ+2

FGM ("FGM") uv {1 + θ(1− u)(1− v)} θ ∈ [−1, 1] tanh−1(θ) 2
9θ

Frank ("F")
−θ−1 log

{

1 + (e−θu − 1)
(e−θv − 1)/(e−θ − 1)

} θ ∈ R\ {0} − 1− 4
θ [1−D1(θ)]

Gaussian ("N") Φ2

(

Φ−1(u),Φ−1(v); θ
)

θ ∈ [−1, 1] tanh−1(θ) 2
π arcsin(θ)

Gumbel ("G0")
exp

[

−
{

(− log u)θ

+(− log v)θ
}1/θ

] θ ∈ [1,∞) log(θ − 1) 1− 1
θ

Joe ("J0")
1−

{

(1− u)θ + (1− v)θ

−(1− u)θ(1− v)θ
}1/θ θ ∈ (1,∞) log(θ − 1− ǫ) 1 + 4

θ2
D2(θ)

Student-t ("T") t2,ζ

(

t−1
ζ (u), t−1

ζ (v); ζ, θ
) θ ∈ [−1, 1]

ζ ∈ (2,∞)
tanh−1(θ)

log(ζ − 2− ǫ)
2
π arcsin(θ)

Table 1: Definition of copulae implemented in SemiParBIVProbit, with corresponding parameter ranges of as-

sociation parameter θ and number of degrees of freedom ζ (when present), transformation/link function of θ and ζ,

and relation between Kendall’s τ and θ. Φ2(·, ·; θ) denotes the cdf of a standard bivariate normal distribution with

correlation coefficient θ, and Φ(·) the cdf of a univariate standard normal distribution. t2,ζ(·, ·; ζ, θ) indicates the cdf

of a standard bivariate Student-t distribution with correlation θ and ζ degrees of freedom, and tζ(·) denotes the cdf

of a univariate Student-t distribution with ζ degrees of freedom. D1(θ) =
1
θ

∫ θ

0
t

exp(t)−1dt is the Debye function and

D2(θ) =
∫ 1

0
t log(t)(1− t)

2(1−θ)
θ dt. Quantity ǫ is set to 1e-07 and is used to ensure that the restrictions on the space

of θ are maintained. Argument BivD of copulaReg() in SemiParBIVProbit allows the user to employ the

desired copula function and can be set to any of the values within brackets next to the copula names in the first column;

for example, BivD = "J0". For Clayton, Gumbel and Joe, the number after the capital letter indicates the degree

of rotation required: the possible values are 0, 90, 180 and 270. Each of the Clayton, Gumbel and Joe copulae is

allowed to be mixed with a rotated version of the same family. This allows the user to simultaneously model posi-

tive and negative tail dependence. The options available are "C0C90", "C0C270", "C180C90", "C180C270",

"G0G90", "G0G270", "G180G90", "G180G270", "J0J90", "J0J270", "J180J90" and "J180J270".

Note that for copulae with two association parameters, ζ would represent an additional dependence coefficient.
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Fm(ym|µm, σm, νm) fm(ym|µm, σm, νm) E(Ym) V(Ym)
Support of ym

Parameter ranges

beta ("BE")

I(y;α1, α2)

α1 = µ(1−σ2)
σ2

α2 = (1−µ)(1−σ2)
σ2

yα1−1(1−y)α2−1

B(α1,α2)
µ σ2µ(1− µ)

0 < y < 1
0 < µ < 1, 0 < σ < 1

Dagum ("DAGUM")

{

1 +
(

y
µ

)−σ
}−ν

σν
y

[

( y
µ )

σν

{( y
µ )

σ
+1}ν+1

]

−µ
σ

Γ(− 1
σ )Γ(

1
σ
+ν)

Γ(ν)
if σ > 1

−
(

µ
σ

)2
[

2σ
Γ(− 2

σ )Γ(
2
σ
+ν)

Γ(ν)

+

{

Γ(− 1
σ )Γ(

1
σ
+ν)

Γ(ν)

}2
]

if σ > 2

y > 0
µ > 0, σ > 0, ν > 0

Fisk ("FISK")

{

1 +
(

y
µ

)−σ
}−1

σyσ−1

µσ{1+( y
µ )

σ}2
µπ/σ

sin(π/σ) if σ > 1 µ2
{

2π/σ
sin(2π/σ) −

(π/σ)2

sin(π/σ)2

}

if σ > 2

y > 0
µ > 0, σ > 0

gamma ("GA") 1

Γ( 1
σ2 )

γ
(

1
σ2 ,

y
µσ2

)

1

(µσ2)
1
σ2

y
1
σ2 −1

exp
(

− y

µσ2

)

Γ( 1
σ2 )

µ µ2σ2 y > 0
µ > 0, σ > 0

Gumbel ("GU") 1− exp
{

− exp
(

y−µ
σ

)}

1
σ exp

{(

y−µ
σ

)

− exp
(

y−µ
σ

)}

µ− 0.57722σ π2σ2

6

−∞ < y < ∞
−∞ < µ < ∞, σ > 0

inverse Gaussian ("iG")

Φ

{

1√
yσ2

(

y
µ − 1

)

}

+

exp
(

2
µσ2

)

Φ

{

− 1√
yσ2

(

y
µ + 1

)

}

1√
2πσ2y3

exp
{

− 1
2µ2σ2y (y − µ)

2
}

µ µ3σ2 y > 0
µ > 0, σ > 0

log-normal ("LN") 1
2 + 1

2erf
{

log(y)−µ

σ
√
2

}

1
yσ

√
2π

exp
[

−{log(y)−µ}2

2σ2

]

√

exp (σ2) exp (µ)
exp

(

σ2
) {

exp
(

σ2
)

−1} exp (2µ)
y > 0
µ > 0, σ > 0

logistic ("LO") 1

1+exp(− y−µ
σ )

1
σ

{

exp
(

−y−µ
σ

)} {

1 + exp
(

−y−µ
σ

)}−2
µ π2σ2

3

−∞ < y < ∞
−∞ < µ < ∞, σ > 0

normal ("N") 1
2

{

1 + erf
(

y−µ

σ
√
2

)}

1
σ
√
2π

exp
{

− (y−µ)2

2σ2

}

µ σ2 −∞ < y < ∞
−∞ < µ < ∞, σ > 0

reverse Gumbel ("rGU") exp
{

− exp
(

−y−µ
σ

)}

1
σ exp

{(

−y−µ
σ

)

− exp
(

−y−µ
σ

)}

µ+ 0.57722σ π2σ2

6

−∞ < y < ∞
−∞ < µ < ∞, σ > 0

Singh-Maddala ("SM") 1−
{

1 +
(

y
µ

)σ}−ν
σνyσ−1

µσ{1+( y
µ )

σ}ν+1
µ

Γ(1+ 1
σ )Γ(− 1

σ
+ν)

Γ(ν)
if σν > 1

µ2
{

Γ
(

1 + 2
σ

)

Γ(ν)Γ
(

− 2
σ + ν

)

−Γ
(

1 + 1
σ

)2
Γ
(

− 1
σ + ν

)2
}

if σν > 2

y > 0
µ > 0, σ > 0, ν > 0

Weibull ("WEI") 1− exp
{

−
(

y
µ

)σ}
σ
µ

(

y
µ

)σ−1

exp
{

−
(

y
µ

)σ}

µΓ
(

1
σ + 1

)

µ2
[

Γ
(

2
σ + 1

)

−
{

Γ
(

1
σ + 1

)}2
]

y > 0
µ > 0, σ > 0

Table 2: Definition and some properties of the distributions implemented in SemiParBIVProbit. These have been parametrised according to Rigby & Stasinopoulos (2005) and

are defined in terms of µ, σ and ν (which sometimes represent location, scale and shape). Subscript m can take values 1 and 2; to avoid clutter in the notation we have suppressed m in

the main body of the table. The means and variances of DAGUM, FISK (also known as log-logistic) and SM are indeterminate for certain values of σ and ν. If a parameter can only take

positive values then the transformation/link function log(· − ǫ) is employed, where ǫ is defined and its use explained in the caption of Table 1. If a parameter can take values in (0, 1)
then the inverse of the cumulative distribution function of a standardized logistic is used. I(·; ·, ·) is the regularized beta function, B(·, ·) is the beta function, Γ(·) is the gamma function,

γ(·, ·) is the lower incomplete gamma function, Φ(·) is the cdf of a univariate standard normal distribution, and erf(·) is the error function. Argument margins of copulaReg()

in SemiParBIVProbit allows the user to employ the desired marginal distributions and can be set to any of the values within brackets next to the names in the first column; for

example, margins = c("WEI", "DAGUM"). In many cases the parameters of the distributions determine E(ym) and V(ym) through functions of them.
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is on modeling independent bivariate realizations (yi1, yi2)
T as functions of additive predictors,

where i = 1, . . . , n and n is the sample size.

2.2 Predictor specification

All the model’s parameters are related to covariates and regression coefficients via additive predic-

tors η’s and known monotonic link functions which ensure that the restrictions on the parameter

spaces are maintained (see Table 1 and the caption of Table 2 for the links employed). As an

example, if σ1 and σ2 can only take positive values and we wish to model them as functions of

covariates and regression coefficients then we can specify g(σ1i) = ησ1i and g(σ2i) = ησ2i, where

the link function g(·) is equal to log(·). As for the copula parameter, similarly to Klein & Kneib

(2016) and Sabeti et al. (2014), we can use log(θi− 1) = ηθi in the Gumbel case; this would allow

for the strength of the (upper tail) dependence between the marginals to vary across observations.

Copula models in which each parameter in ϑ is related to an additive predictor can also be regarded

as instances of the distributional regression framework described by Klein et al. (2015a).

Let us define a generic predictor ηi as a function of an intercept and smooth functions of sub-

vectors of a generic covariate vector zi. That is,

ηi = β0 +
K
∑

k=1

sk(zki), i = 1, . . . , n, (2)

where β0 ∈ R is an overall intercept, zki denotes the kth sub-vector of the complete covariate

vector zi (containing, for example, binary, categorical, continuous, and spatial variables) and the

K functions sk(zki) represent generic effects which are chosen according to the type of covari-

ate(s) considered. Each sk(zki) can be approximated as a linear combination of Jk basis functions

bkjk(zki) and regression coefficients βkjk ∈ R, i.e.

Jk
∑

jk=1

βkjkbkjk(zki). (3)

Equation (3) implies that the vector of evaluations {sk(zk1), . . . , sk(zkn)}T can be written as Zkβk

with βk = (βk1, . . . , βkJk)
T and design matrix Zk[i, jk] = bkjk(zki). This allows the predictor in
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equation (2) to be written as

η = β01n + Z1β1 + . . .+ ZKβK , (4)

where 1n is an n-dimensional vector made up of ones. Equation (4) can also be written in a more

compact way as η = Zβ, where Z = (1n,Z1, . . . ,ZK) and β = (β0,β
T

1 , . . . ,β
T

K)
T.

Each βk has an associated quadratic penalty λkβ
T

k Dkβk whose role is to enforce specific prop-

erties on the kth function, such as smoothness. It is important to note that Dk only depends on the

choice of basis functions. The smoothing parameter λk ∈ [0,∞) controls the trade-off between fit

and smoothness, and plays a crucial role in determining the shape of ŝk(zki). The overall penalty

can be defined as βTDβ, where D = diag(0, λ1D1, . . . , λKDK). Finally, the smooth functions

are subject to centering (identifiability) constraints (Wood, 2006). In practice, the model’s addi-

tive predictors and corresponding penalties are set up using the R mgcv package (Wood, 2016);

Supplementary Material 1 (SM-1) gives some examples of smooth function specification for the

reader’s convenience.

2.3 Some estimation details

It is well known that the log-likelihood function for a copula model with continuous margins can

be written as (e.g., Kolev & Paiva, 2009; Vatter & Chavez-Demoulin, 2015)

ℓ(δ) =
n

∑

i=1

log {c (F1(y1i|µ1i, σ1i, ν1i), F2(y2i|µ2i, σ2i, ν2i); ζi, θi)}+
n

∑

i=1

2
∑

m=1

log {fm(ymi|µmi, σmi, νmi)} ,

where c is the copula density and is given by
∂2C(F1(y1i),F2(y2i))
∂F1(y1i)∂F2(y2i)

(here the conditioning on pa-

rameters has been suppressed for notational simplicity). The distributional parameters are de-

fined as µmi = g−1
µm

(ηµmi), σmi = g−1
σm

(ησmi), νmi = g−1
νm(ηνmi), for m = 1, 2, ζi = g−1

ζ (ηζi)

and θi = g−1
θ (ηθi), where the g’s are link functions. The parameter vector δ is defined as

(βT

µ1
,βT

µ2
,βT

σ1
,βT

σ2
,βT

ν1
,βT

ν2
,βT

ζ ,β
T

θ )
T, which is indeed made up of the coefficient vectors associ-

ated with ηµ1i, ηµ2i, ησ1i, ησ2i, ην1i, ην2i, ηζi and ηθi. Because of the flexible predictors’ structures

employed here, the use of a classic (unpenalized) optimization algorithm is likely to result in
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unduly wiggly estimates (e.g., Ruppert et al., 2003; Wood, 2006). Therefore, we maximize

ℓp(δ) = ℓ(δ)− 1

2
δTSδ, (5)

where ℓp is the penalized log-likelihood, S = diag(Dµ1 ,Dµ2 ,Dσ1 ,Dσ2 ,Dν1 ,Dν2 ,Dζ ,Dθ). The

smoothing parameters contained in the D components make up the overall vector

λ = (λT

µ1
,λT

µ2
,λT

σ1
,λT

σ2
,λT

ν1
,λT

ν2
,λT

ζ ,λ
T

θ )
T.

To maximize (5), we have extended the efficient and stable trust region algorithm with inte-

grated automatic multiple smoothing parameter selection by Marra et al. (2017) to incorporate two

and three parametric continuous marginal distributions and two-parameter copula functions, and

to link all the model’s parameters to additive predictors. Estimation of δ and λ is carried out as

follows. At iteration a, holding λ fixed at a vector of values and for a given δ[a], we maximize

equation (5) using a trust region algorithm. That is,

δ[a+1] = δ[a] + arg min
e:‖e‖≤∆[a]

ℓ̆p(δ
[a]), (6)

where ℓ̆p(δ
[a]) = −

{

ℓp(δ
[a]) + eTgp(δ

[a]) + 1
2
eTHp(δ

[a])e
}

, gp(δ
[a]) = g(δ[a])−Sδ[a] and Hp(δ

[a]) =

H(δ[a])− S. Vector g(δ[a]) consists of gµ1
(δ[a]) = ∂ℓ(δ)/∂βµ1|βµ1=β

[a]
µ1

, . . . ,

gθ(δ
[a]) = ∂ℓ(δ)/∂βθ|βθ=β

[a]
θ

, the Hessian matrix has elements H(δ[a])o,h = ∂2ℓ(δ)/∂βo∂β
T

h |βo=β
[a]
o ,βh=β

[a]
h

where o, h = µ1, µ2, σ1, σ2, ν1, ν2, ζ, θ, ‖·‖ denotes the Euclidean norm and ∆[a] is the radius of the

trust region which is adjusted through the iterations. The first line of (6) uses a quadratic approxi-

mation of −ℓp about δ[a] (the so-called model function) in order to choose the best e[a+1] within the

ball centered in δ[a] of radius ∆[a], the trust-region. Estimation is made precise and quick by using

the analytical score and Hessian. Also, close to the converged solution, the trust-region usually

behaves like a classic unconstrained optimization algorithm.

Then, holding the model’s parameter vector value fixed at δ[a+1], we solve the problem

λ[a+1] = arg min
λ

‖M[a+1] − A[a+1]M[a+1]‖2 − ň+ 2tr(A[a+1]), (7)

where M[a+1] =
√

−H(δ[a+1])δ[a+1] +
√

−H(δ[a+1])
−1

g(δ[a+1]),

A[a+1] =
√

−H(δ[a+1])
(

−H(δ[a+1]) + S
)−1 √−H(δ[a+1]), tr(A[a+1]) is the number of effective
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degrees of freedom (edf) of the penalized model and ň = 8n (if three parameter marginal distri-

butions and the Student-t copula are employed). The formulation of (7) is derived in Marra et al.

(2017), whereas the problem is solved using the computational approach by Wood (2004) which is

based on the performance iteration idea of Gu (1992). Since H and g are obtained as a byproduct

of the estimation of δ, little computational effort is required to set up the quantities required for

(7).

Trust-region algorithms have several advantages over classical alternatives. For instance, in

line-search methods, when an iteration falls in a long plateau region, the search for step δ[a+1] can

occur so far away from δ[a] that the evaluation of the model’s log-likelihood may be indefinite or

not finite, in which case user’s intervention is required. Trust-region methods, on the other hand,

always solve sub-problem (6) before evaluating the objective function. So, if this is not finite at the

proposed δ[a+1] then step e[a+1] is rejected, the trust-region shrunken, and the optimization com-

puted again. The radius is also reduced if there is not agreement between the model and objective

functions (i.e., the proposed point in the region is not better than the current one). Reversibly, if

such agreement occurs, the trust region is expanded for the next iteration. In summary, δ[a+1] is

accepted if it improves on δ[a] and allows for the evaluation of ℓ̆p, whereas the reduction/expansion

of ∆[a+1] is based on the similarity between model and objective functions. Theoretical and practi-

cal details of the method can be found in Nocedal & Wright (2006, Chapter 4), Conn et al. (2000)

and Geyer (2015). The latter also discusses the necessary modifications to the sub-problem (6)

and the radius for ill-scaled variables.

The methods for estimating δ and λ are iterated until the algorithm satisfies the criterion

|ℓ(δ[a+1])−ℓ(δ[a])|
0.1+|ℓ(δ[a+1])| < 1e − 07. Proving algorithmic convergence when smoothing parameters are

estimated in a performance iteration fashion is difficult and to the best of our knowledge this is

still an open issue (see, for instance, Gu (2002) for a full discussion). However, the ease of im-

plementation and success of this approach for practical modeling justifies its use in many contexts

including the one considered in this paper (e.g., Marra et al., 2017; Wood, 2004, 2006; Yee, 2016).

Starting values for the parameters of the marginals are obtained using the function gamlss()

within SemiParBIVProbit, which has been designed to fit GAMLSS with two or three param-

eter response distributions and additive predictors, using the estimation approach of this paper.

An initial value for the copula parameter is obtained by using a transformation of the empirical
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Kendall’s association between the responses. The analytical score and Hessian of ℓ(δ) required for

estimation have been derived in a modular way. It will therefore be easy to extend our algorithm

to other copulae and marginal distributions not included in Tables 1 and 2 as long as their cdfs and

probability density functions (pdfs) are known and their derivatives with respect to their parame-

ters exist. If a derivative is difficult and/or computationally expensive to compute then appropriate

numerical approximations can be employed. The score and Hessian for all combinations of copu-

lae and marginal distributions considered here have been verified using the functions available in

the numDeriv R package (Gilbert & Varadhan, 2015).

2.4 Further details

At convergence, reliable point-wise confidence intervals for linear and non-linear functions of the

model coefficients (e.g., smooth components, copula parameter, joint and conditional predicted

probabilities) are obtained using the Bayesian large sample approximation

δ
·∼ N (δ̂,−Hp(δ̂)

−1). (8)

The rationale for using this result is provided in Marra & Wood (2012) for GAMs, whereas some

examples of interval construction are given in Radice et al. (2016) for copula binary models. This

result can be justified using the distribution of M discussed in Marra et al. (2017), making the large

sample assumption that H(δ) can be treated as fixed, and making the usual Bayesian assumption

on the prior of δ for smooth models (e.g., Silverman, 1985; Wood, 2006). Note that (8) neglects

smoothing parameter uncertainty. However, as argued by Marra & Wood (2012) this is not prob-

lematic provided that heavy oversmoothing is avoided (so that the bias is not too large a proportion

of the sampling variability) and in our experience we found that (8) works well in practice (see

Section 3.2 for some simulation-based evidence). To test smooth components for equality to zero,

the results discussed in Wood (2013a) and Wood (2013b) are employed.

Proving consistency of the proposed estimator is beyond the scope of this paper although, un-

der certain assumptions on the size of the spline bases and on the asymptotic behavior of the

smoothing parameters, this could be straightforwardly demonstrated (e.g., Radice et al., 2016;

Vatter & Chavez-Demoulin, 2015).

The proposed approach has generally proved to be fast and reliable. In our experience, con-
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vergence failure typically occurs when the model is misspecified and/or the sample size is low

compared to the complexity of the model. Examples of misspecification include using marginal

distributions that do not fit the responses satisfactorily, and employing a copula which does not

accommodate the type and/or strength of dependence between the margins (e.g., using the AMH

copula when the association between the margins is strong). copulaReg() produces a warning

message if there is a convergence issue, and conv.check() provides some detailed diagnostics

about the fitted model.

2.5 Model building

The flexibility of the proposed framework means that the researcher has to be able to choose a suit-

able copula function and response distributions as well as select relevant covariates in the model’s

additive predictors. To this end, we recommend using the Akaike information criterion (AIC)

and/or Bayesian information criterion (BIC), normalized quantile residuals (Dunn & Smyth, 1996)

and hypothesis testing. Since many choices need to be made, model building can become a time

consuming and daunting process when working with large data sets and many candidate regres-

sors. To facilitate the process, we suggest following roughly the guidelines of Klein et al. (2015a)

who argue that each of the above criteria is most useful for specific aspects of model building. In

short, quantile residuals can be used to assess the goodness of fit of the marginal distributions and

AIC/BIC to find a best fitting model given some pre-selected marginal distributions. The criteria

are discussed below in more detail.

Quantile residuals for each margin are defined as r̂mi = Φ−1 {Fm(ymi|µ̂mi, σ̂mi, ν̂mi)}, for

i = 1, . . . , n and m = 1, 2, where Φ−1(·) is the quantile function of a standard normal distribu-

tion. If Fm(ymi|µ̂mi, σ̂mi, ν̂mi) is close to the true distribution then the r̂mi follow approximately

a standard normal distribution, hence a normal Q-Q plot of such residuals is a useful graphical

tool for detecting lack of fit of the marginal distributions. We observed that, in practice, quantile

residuals are fairly robust to the exact specification of the additive predictors of the distribution’s

parameters; this has also been found by Klein et al. (2015a). Therefore, the choice of marginal

distributions can be based, for example, on more or less complex model specifications. Also, note

that adequate marginal fits are necessary but not sufficient conditions for a satisfactory fit of the

multivariate model. Function post.check() in SemiParBIVProbit produces histograms
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and normal Q-Q plots of normalized quantile residuals.

AIC and BIC are defined as −2ℓ(δ̂)+2edf and −2ℓ(δ̂)+log(n)edf , respectively, where the log-

likelihood is evaluated at the penalized parameter estimates and edf = tr(Â). Given some marginal

distributions, AIC/BIC can be used to select a copula function and the most relevant covariates in

the model’s predictors (using stepwise backward and/or forward selection, for instance). To favor

more parsimonious models, small differences in the AIC/BIC values of competing models can be

assisted by looking at the significance of the estimated effects; for instance, a covariate with linear

effect could be excluded if the respective parameter’s p-value is larger than 5%. Here, the relevant

R functions are AIC(), BIC(), summary() and plot().

3 Simulation study

3.1 Setup

We consider two continuous outcomes, one binary covariate and two continuous regressors. The

responses are assumed to follow inverse Gaussian and Singh-Maddala distributions, respectively.

The responses are joined using several copulae. Linear and non-linear effects of the regressors

on the parameters of the resulting bivariate distributions are also introduced. In practice, this is

achieved as follows.

library(copula); library(gamlss)

library(SemiParBIVProbit)

cor.cov <- matrix(0.5, 3, 3); diag(cor.cov) <- 1

s1 <- function(x) x*sin(3*x)

s2 <- function(x) sin(2*pi*x) # sin(6*pi*x)

data.gen <- function(cor.cov, s1, s2, FAM){

cov <- rMVN(1, rep(0,3), cor.cov)

cov <- pnorm(cov)

z1 <- cov[, 1]

z2 <- cov[, 2]

z3 <- round(cov[, 3])

eta_mu1 <- 0.5 - 1.25*z2 - 0.8*z3

eta_mu2 <- 0.1 - 0.9*z1 + s1(z2)
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eta_sigma1 <- 1.8

eta_sigma2 <- 0.1

eta_nu <- 0.2 + z3

eta_theta <- 0.2 + z1 + s2(z2)

if( FAM == "clayton") theta.para <- exp(eta_theta) + 1e-07

if( FAM == "gumbel") theta.para <- exp(eta_theta) + 1

if( FAM %in% c("normal", "t")) theta.para <- tanh(eta_theta)

if( FAM %in% c("clayton", "gumbel") ) Cop <- archmCopula(family = FAM,

dim = 2, param = theta.para)

else Cop <- ellipCopula(family = FAM, dim = 2, param = theta.para, df = 4)

speclist1 <- list( mu = exp(eta_mu1), sigma = exp(eta_sigma1) )

speclist2 <- list( mu = exp(eta_mu2), sigma = exp(eta_sigma2), nu = 1,

tau = exp(eta_nu) )

spec <- mvdc(copula = Cop, c("IG", "GB2"), list(speclist1, speclist2) )

c(rMvdc(1, spec), z1, z2, z3)

}

Package copula (Yan, 2007) contains functions archmCopula(), ellipCopula, mvdc()

and rMvdc()which allow us to simulate from the desired copula. Package gamlss (Stasinopoulos et al.,

2016) contains all functions required to simulate inverse Gaussian (IG) and Singh-Maddala (GB2

with nu = 1) deviates, and rMVN() (from SemiParBIVProbit) allows us to simulate Gaus-

sian correlated variables. The correlation matrix used to associate three simulated Gaussian co-

variates is cor.cov, whereas cov <- pnorm(cov) allows us to obtain Uniform(0,1) corre-

lated covariates (e.g., Gentle, 2003). A balanced binary variable is created using round(cov[,

3]). Following Vatter & Nagler (2016), FAM is set to "clayton", "gumbel", "normal"

and "t". Functions s1 and s2 produce curves with different complexity; the latter is from

Vatter & Nagler (2016). The various eta refer to the predictors of the marginal and copula pa-

rameters. These are transformed in speclist1 and speclist2 to ensure that the restrictions

on the parameters’ spaces of the marginal distributions are maintained (see Table 2). For the same

reason, theta.para transforms the respective predictor based on the chosen copula (see Ta-

ble 1). Since archmCopula() and ellipCopula() do not allow for the use of vectors for

param, function data.gen() is executed as many times as the number of observations that the

user wishes to simulate.
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Sample sizes are set to 500 and 5000, the number of replicates to 1000, and the copulae

employed are C0C90, G0G90, N, and T with 4 degrees of freedom. Models are fitted using

copulaReg() in SemiParBIVProbit and the two-stage approach by Vatter & Chavez-Demoulin

(2015) (in this case, using gamlss() from the gamlss R package for the margins and gamCopula

(Vatter & Nagler, 2017) for the copula parameter). In both approaches, each smooth function is

represented using a penalized low rank thin plate spline with second order penalty and 10 basis

functions. For each replicate, smooth function estimates are constructed using 200 equally spaced

fixed values in the (0, 1) range (e.g., Radice et al., 2016).

3.2 Results

This section compares the performance of copulaReg() with that of gamlss + gamCopula

by assessing the accuracy and precision of the linear and non-linear effect estimates. Some model

selection and computation time considerations are also provided. We only discuss the results

obtained for the case of data simulated using FAM = "t" as they are virtually identical to those

obtained using the other copulae and hence do not lead to any further insight. We also repeated

the experiments using a Weibull distribution instead of Singh-Maddala for the second margin; the

substantive conclusions did not change.

Figures 1 and 2 depict linear and non-linear estimates under the two methods whereas Table

3 reports the bias and root mean squared error of the parameter estimators. All mean estimates

are very close to the true values and, as expected, their variability decreases as the sample size in-

creases. Our proposal generally delivers less biased and more efficient estimates. The main excep-

tions are the estimates related to the copula parameter which are fairly close, with copulaReg()

yielding slightly better results. Using a more complex function for s2 (i.e., sin(6*pi*x) from

Vatter & Nagler (2016)) did not lead to different conclusions when comparing the two methods.

We also calculated 95% average coverage probabilities for the smooth functions using point-wise

intervals based on the result of Section 2.4. The coverages delivered by copulaReg() for s1

and s2 were 0.961 and 0.943 for n = 500, and 0.952 and 0.956 for n = 5000, hence confirming

the good performance of the employed approximation.

We also explored whether the correct model is selected by AIC/BIC in the presence of several

misspecified models. The latter were based on the ‘non-correct’ copulae with correct margins, and
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Figure 1: Linear coefficient estimates obtained by applying copulaReg() (black circles and black vertical bars)

and the two-stage method by Vatter & Chavez-Demoulin (2015) (grey circles and grey vertical bars) to data simulated

from Student-t copula models with inverse Gaussian (IG) and Singh-Maddala (SM) margins. The two stage approach

is implemented using gamlss() from the gamlss R package for the margins and gamCopula for the copula

parameter. copulaReg() and gamlss + gamCopula were specified using the Student-t copula with IG and

SM margins. Circles indicate mean estimates while bars represent the estimates’ ranges resulting from 5% and 95%
quantiles. True values are indicated by black solid horizontal lines.
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Figure 2: Smooth function estimates obtained by applying copulaReg() and gamlss + gamCopula to data

simulated from Student-t copula models with inverse Gaussian and Singh-Maddala margins. True functions are

represented by black solid lines, mean estimates by dashed lines and pointwise ranges resulting from 5% and 95%
quantiles by shaded areas.
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Bias RMSE

copulaReg gamlss + gamCopula copulaReg gamlss + gamCopula

n = 500 βµ11 0.070 0.000 0.650 0.911

βµ12 0.019 0.024 0.400 0.504

βµ21 -0.006 -0.018 0.137 0.235

βν 0.018 -0.030 0.080 0.108

βθ 0.029 -0.018 0.188 0.190

s1 0.021 0.035 0.084 0.117

s2 0.023 0.029 0.118 0.120

n = 5000 βµ11 0.017 -0.001 0.167 0.245

βµ12 0.002 0.002 0.110 0.146

βµ21 -0.002 -0.022 0.041 0.077

βν 0.004 -0.039 0.023 0.051

βθ 0.005 0.013 0.057 0.061

s1 0.008 0.017 0.029 0.043

s2 0.010 0.014 0.039 0.042

Table 3: Bias and root mean squared error (RMSE) obtained by applying the copulaReg() and gamlss +

gamCopula parameter estimators to data simulated from Student-t copula models with inverse Gaussian and Singh-

Maddala margins. Bias and RMSE for the smooth terms are calculated, respectively, as n−1
s

∑ns

i=1 |¯̂si − si| and

n−1
s

∑ns

i=1

√

n−1
rep

∑nrep

rep=1 (ŝrep,i − si)
2
, where ¯̂si = n−1

rep

∑nrep

rep=1 ŝrep,i, ns is the number of equally spaced fixed

values in the (0, 1) range, and nrep is the number of simulation replicates. In this case, ns = 200 and nrep = 1000.

The bias for the smooth terms is based on absolute differences in order to avoid compensating effects when taking the

sum.

non-correct copulae with one incorrect margin (i.e., Singh-Maddala was replaced with Weibull).

For each scenario and replicate, the correct model was always chosen by both criteria.

Finally, comparing the computation times of the two methods for the scenarios considered here

when using a 2.20-GHz Intel(R) Core(TM) computer running Windows 7, we generally found that

copulaReg is 1.3 times faster than gamlss + gamCopula. As for the latter approach, the

margins’ estimation step was the most expensive as it typically amounted to 93% of the total

computation time.

4 Empirical illustrations

The next sections illustrate the proposed bivariate copula additive modeling framework using two

empirical case studies based on electricity and birth data.

4.1 Analysis of Spanish electricity price and demand data

The aim of this section is to build an explanatory bivariate time-series model for electricity price

and demand. In the engineering and econometric literature electricity demands are related with
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electricity prices throughout the time and one way of capturing this is via transfer function models

(e.g., Nogales & Conejo, 2006). Here, we take a different approach by relating price and demand

of energy using copulae. We also quantify the effect of prices of raw materials (oil, gas and

coal) on electricity price and demand. In the last decade, the issue of modeling electricity price

and demand has been the key question to determine the causes of price behavior as well as the

macroeconomic significance of the prices of raw materials, since Spain is an importer country. We

use working-daily data from January 1, 2002 to October 31, 2008 which are available from the R

package MSwM (Sanchez-Espigares & Lopez-Moreno, 2014).

The first step is to choose the margins. Following the guidelines of Section 2.5, we choose the

normal and Gumbel distributions for price and demand, respectively. As for the choice of copula

we start off with the normal. We also allow the dependence between the margins, location and

scale parameters to vary with raw material prices. In addition to these covariates, we employ a

time variable as the underlying electricity prices and demands tend to vary with time, for reasons

which may have little or nothing to do with material prices. When we attempt to fit a copula model

in which all variables (time, oil, gas and coal prices) enter the five equations (two equations for the

location parameters, two for the scale parameters and one equation for the association parameter)

the algorithm fails to converge. This suggests that the sample size is perhaps low compared to the

complexity of the model. We, therefore, try out more parsimonious specifications. Specifically,

we always keep the time variable in all the model’s equations and, in a forward selection fashion,

choose the best (converged) model as judged by AIC and BIC. This leads to

eq.mu.1 <- Price ~ s(t, k = 60) + s(Oil) + s(Coal)

eq.mu.2 <- Demand ~ s(t, k = 60) + s(Oil) + s(Gas) + s(Coal)

eq.sigma2.1 <- ~ s(t, k = 60)

eq.sigma2.2 <- ~ s(t, k = 60) + s(Oil) + s(Gas)

eq.theta <- ~ s(t, k = 60)

fl <- list(eq.mu.1, eq.mu.2, eq.sigma2.1, eq.sigma2.2, eq.theta)

outN <- copulaReg(fl, margins = c("N", "GU"), data = energy, ...)

where the s are smooth functions of time, oil, gas and coal represented using penalized low rank

thin plate splines with default second order penalties and k (the number of basis functions) equal

to 10, unless otherwise stated; see SM-1 for more details. The value of k = 60 for the smooth

of t has been chosen to be a fraction (about 3.4%) of the sample size (n = 1784). This value

implies that there are approximately 10 basis functions per year. As explained, for instance, in
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Peng & Dominici (2008), if k per year is small (say 2) then only the long-term trend and sea-

sonality are accounted for and other sub-seasonal and shorter-term variations remain in the data.

When building an explanatory time-series model, using 10 or 12 bases per year is more appropri-

ate as variation in the data longer than a timescale of about one week is modeled. As a sensitivity

analysis, we increased the k values for the s terms by several multiples of their original values;

the smooth functions of t became increasingly wigglier and the effects of raw material prices

progressively smoother. This suggested that allowing the time variable to capture very short

timescale variation in the data has a detrimental impact on the explanatory power of the model

(e.g., Peng & Dominici, 2008; Wood, 2006). The final estimated edfs for the smooth components

are 57.7, 1, 6.6 for eq.mu.1, 55.2, 8.4, 7.4, 8.8 for eq.mu.2, 55.2 for eq.sigma2.1, 53.6,

8.3, 7.4 for eq.sigma2.2, and 50.7 for eq.theta. Recall that when the edf is equal to 1,

the respective estimated effect is linear, hence the covariate can enter the model parametrically.

On the other hand, the higher the edf the more complex the estimated curve. The total number of

estimated parameter is 363 and the computation time was about 12 minutes. The R code used for

this analysis is given in SM-2.

The overall Kendall’s τ̂ and θ̂ are positive and significant (see summary(outN)), however

some of the individual τ̂ and θ̂ assume negative values. We, therefore, tried all mixed combinations

of the Clayton, Gumbel and Joe families, T, F, AMH and FGM where the last two can only account

for weak dependencies (−0.18 ≤ τ ≤ 0.33 and −0.22 ≤ τ ≤ 0.22, respectively). The Gaussian

copula is the most supported model by AIC and BIC. Using the Student-t copula virtually yielded

the same results as those obtained under the Gaussian copula; this did not come as a surprise as

the estimated value for the ζ was 249.15.

Marginal residual plots for the final model are shown in Figure 3 and suggest that the choice of

distribution for the first margin is sound, whereas that for the second margin is questionable as the

lower-tail residuals are off the reference line. Unfortunately, in this case, it was not possible to find

a better fitting distribution. Autocorrelation plots of the response variable and quantile residuals

(obtained after fitting the model) show that, while most of the structure has been modeled, short

term auto-correlation is still present in the data; see Figure 1 in SM-2. This could be addressed by

incorporating in the model autoregressive and/or moving average components but it is beyond the

scope of this article.
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Figure 3: Histograms and normal Q-Q plots of normalized quantile residuals for electricity price (top) and demand

(bottom) produced after fitting a Gaussian copula model with normal and Gumbel margins to electricity data.
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Figure 4: Estimates and 95% intervals for θ over time from a Gaussian copula model with normal and Gumbel margins

fitted to electricity price and demand data.

Using the fitted model, we build the plot in Figure 4 which shows that the correlation between

Price and Demand fluctuates around 0.5 (a similar plot could be produced for Kendall’s τ ).

Many of the intervals do not contain zero: after accounting for raw material prices, a significant

association between the two responses which varies over time still persists. The reason of these

fluctuations are most likely due to variables, such as weather conditions and human habits, that

we could not control for because they were not available. Moving on to the covariate effects and

focusing, for instance, on the first equation, Figure 5 displays the impacts of t, Oil and Coal on

Price. The plots show a cyclic trend with maximum and minimum peaks and suggest that on

average electricity price tends to linearly increase with Oil, and decrease and then stabilize with

Coal although there is substantial uncertainty related to the last half of the curve. The estimated

effect of Coal is counter-intuitive and further research is needed to shed light on this. Figure 2

in SM-2 reports the estimates and intervals for σ2
1 . We could also predict joint and conditional

probabilities of interest from the model. This point is illustrated in the next section.

When we employed the two-stage estimation approach by Vatter & Chavez-Demoulin (2015),

the algorithm converged in about 16 minutes (after setting control = gamlss.control(n.cyc

= 1e2)) for the marginal univariate models); the results were very similar to those reported
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Figure 5: Estimated smooth effects of time, oil and coal prices on electricity price and associated 95% point-wise

intervals obtained when fitting a Gaussian copula model with normal and Gumbel margins to electricity price and

demand data. The jittered rug plot, at the bottom of each graph, shows the covariate values. The number in brackets

in the y-axis caption represents the edf of the respective smooth curve.
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above.

It would be interesting to compare the performance of bivariate and univariate GAMLSS in

a context of forecasting. However, this would make more sense if the models were specified

with this goal in mind. A possibility would be to follow the approach by Marx et al. (2010) and

Lee & Durban (2012) in which case the scope of the models would have to be extended accord-

ingly.

4.2 North Carolina birth data analysis

The analysis in this section uses 2010 birth data from the North Carolina Center for Health Statis-

tics (http://www.schs.state.nc.us/) which provides details on all the live births oc-

curred within the State of North Carolina, including information on infant and maternal health

and parental characteristics. The data cover maternal demographic information, pregnancy related

events and outcomes, maternal medical complications, newborn conditions and maternal health

behaviors. The choice of variables largely follows the work by Neelon et al. (2012) and the anal-

ysis reported below is for female infants (similar results were obtained for male infants). The

responses are birth weight in grams (bwgram) and gestational age in weeks (wksgest). The co-

variates are maternal ethnicity (nonhisp, categorized as non-Hispanic and Hispanic), singleton

birth (multbirth, born as a multiple or single birth), maternal age (mage in years), mother’s

marital status (married) and county (county, indicating the North Carolina county of resi-

dence of the mother).

Birth weight and gestational age are important determinants of infant and child health; re-

cent evidence has also shown that these factors affect long-term health throughout adulthood

(Oreopoulos et al., 2008; Hack et al., 2002). Although both birth weight and gestational age are

predictors of future health, modelling these outcomes jointly is essential for a number of reasons.

First, birth weight and gestational age are highly correlated and confounded by factors such as

intrauterine growth restriction (Slattery & Morrison, 2002). In addition, risk factors for low birth

weight, such as maternal age, are also the same risk factors for preterm birth. Finally, evidence

suggests that the impact of low birth weight on health may be elevated by low gestational age, and

vice-versa (Hediger et al., 2002). Thus, modelling these outcomes independently would present a

confounded picture of who is most vulnerable to poor infant health and how best to intervene; a

23

http://www.schs.state.nc.us/


more accurate picture is revealed by modelling these outcome jointly. The goal is, therefore, to

build a bivariate copula regression model for the simultaneous analysis of bwgram and wksgest.

The resulting model can, for instance, be used to estimate the association (adjusted for covariates)

between bwgram and wksgest by county, to quantify the effects of covariates on bwgram and

wksgest, and to calculate joint and conditional probabilities of interest.

We first choose the marginal distributions for bwgram and wksgest based on the guidelines

outlined in Section 2.5. The normal Q-Q plots of the normalized quantile residuals and AIC/BIC

suggest that the best fits for bwgram and wksgest are achieved using the logistic and Gum-

bel distributions (see Figure 3 in SM-4). Using backward selection, we fit bivariate models for

bwgram and wksgest and choose the best model as judged by AIC and BIC. Several copulae

are also tried out in a similar way as described in the previous section. The final model is

eq.mu.1 <- bwgram ~ nonhisp + multbirth + married + s(mage) +

s(county, bs = "mrf", xt = xt)

eq.mu.2 <- wksgest ~ nonhisp + multbirth + married + s(mage) +

s(county, bs = "mrf", xt = xt)

eq.sigma2.1 <- ~ nonhisp + multbirth + married + s(mage) +

s(county, bs = "mrf", xt = xt)

eq.sigma2.2 <- ~ multbirth + married + s(mage) +

s(county, bs = "mrf", xt = xt)

eq.theta <- ~ nonhisp + multbirth + s(mage) +

s(county, bs = "mrf", xt = xt)

fl <- list(eq.mu.1, eq.mu.2, eq.sigma2.1, eq.sigma2.2, eq.theta)

outC0 <- copulaReg(fl, margins = c("LO", "GU"), BivD = "C0",

data = datNC, ...)

where the default number of basis functions for the Gaussian Markov random field smooth term

(mrf) is equal to the number of covariate’s levels or regions (in this case, number of North Car-

olina counties which is 100), and a Clayton copula is used to join the logistic and Gumbel distri-

butions for the two responses. The first two equations refer to the µ parameters of bwgram and

wksgest, the third and fourth to the σ2 parameters and the last to θ. These parameters are mod-

eled using additive predictors involving factor, continuous and regional variables. The use of mrf

smoothers in all equations ensures that the distribution parameters vary smoothly across counties.

The total number of observations and estimated parameters are 56940 and 558, respectively, and

the computation time was about 25 minutes. Increasing the k values for the s terms did not af-
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fect the final result and only increased the computation time. The estimated edfs for the smooth

components are 5.5, 52.0 for eq.mu.1, 4.3, 68.6 for eq.mu.2, 5.3, 3.9 for eq.sigma2.1,

2.6, 45.6 for eq.sigma2.2, and 5.3, 36.6 for eq.theta. Note that a low value for the edf of

the mrf smooth term indicates that the estimated county effects are similar with each other and

vice-versa. The R code used for this analysis is given in SM-3.

Figure 6 shows the joint probabilities of low weight birth babies and premature deliveries

in North Carolina when using a copula model and an independence model (which assumes that

bwgram an wksgest are not associated after accounting for covariates). This joint probability

was calculated for all the observations in the dataset and then averaged by county. The AIC/BIC

values for the copula and independence models suggest that the former provides a better fit to

the data. As it can be seen from Figure 6, in this case, assuming independence leads to smaller

probabilities. Looking at the copula model’s results, the probabilities vary across counties, ranging

from around 2% to 7%. The least favorable places to be born are clustered in the northeast of

the state, specifically Hertford, Northampton, Halifax, Edgecombe, Gates, Chowan, Perquimans,

Pasquotank, Camden, Currituck, Tyrell and Hyde counties.

For comparison purposes, we also employed the two stage approach with the same model

specification as that used for copulaReg(). Computatio time was around 34 minutes where

the majority of time was spent at the margins’ stage. Results are similar to those obtained using

copulaReg() (see Figures 4, 5 and 6 in SM-4).

An analysis similar to that produced in Section 4.1, showing for instance some estimated

smooth function and Kendall’s τ̂ by county is given in SM-4 to save space.

5 Discussion

We have introduced a modeling framework for bivariate copula additive models for location, scale

and shape. The modularity of the estimation approach allows for easy inclusion of potentially any

parametric continuous marginal distribution and copula function as long as the cdfs and pdfs are

known and their derivatives with respect to their parameters exist. Parameter estimation is carried

out within a penalized maximum likelihood estimation framework with integrated automatic mul-

tiple smoothing parameter selection, and known and reliable inferential results from the smoothing

literature are employed for interval construction and hypothesis testing. The proposed models can
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Figure 6: Joint probabilities that bwgram is less than or equal to 2500 grams and that wksgest is less than or

equal to 36 weeks by county in North Carolina. These have been calculated using a Clayton copula model and an

independence model (assuming that bwgram and wksgest are not associated after accounting for covariates).
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be easily used via copulaReg() in SemiParBIVProbit and the potential of the approach

has been demonstrated using simulated and real data.

Future releases of SemiParBIVProbit will incorporate more copulae and marginal dis-

tributions as well as facilities for comparing the predictive ability of competing models based,

for instance, on proper scoring rules (Gneiting & Raftery, 2007). Copula models with binary-

discrete, binary-continuous, discrete-discrete and discrete-continuous margins will also be made

available in the near future. These developments will obviously involve writing and implementing

the respective log-likelihood functions, score vectors and Hessian matrices, but the estimation and

inferential framework will essentially be unaffected by such changes.

Future research will look into the feasibility of strengthening the framework described in

this article by incorporating two-parameter and non-exchangeable copulae (e.g., Durante, 2009;

Frees & Valdez, 1998; Brechmann & Schepsmeier, 2013). Another interesting extension would

be to consider systems involving more than two responses using C- and D-Vine copulae (e.g.,

Brechmann & Schepsmeier, 2013).
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