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1 Introduction

Measures of entanglement, such as the entanglement entropy, have attracted much attention

in recent years, particularly in the context of one-dimensional many body quantum systems

(see e.g. review articles in [1–3]). Among such systems, those enjoying conformal invariance

in the scaling limit are of particular interest as they provide a theoretical and universal

description of critical phenomena. In their seminal work Calabrese and Cardy [4] used

principles of conformal field theory (CFT) to study the entanglement entropy (EE) [5] of

quantum critical systems. Their results generalised previous work [6], provided theoretical

support for numerical observations in critical quantum spin chains [7] and highlighted the

fact that the EE encodes universal information about quantum critical points, such as

the central change of the corresponding CFT and, in more complex setups, about the full

primary operator content of CFT [8–10].

The von Neumann and Rényi entanglement entropies are measures of the amount of

quantum entanglement, in a pure quantum state, between the degrees of freedom associ-

ated to two sets of independent observables whose union is complete on the Hilbert space

H = HA⊗HB. In the scaling limit,1 at quantum critical points, they have been widely stud-

ied using CFT [4, 6, 7, 11–13] and in lattice realizations of critical systems such as quantum

spin chains [14–20] and lattice models [21–23]. In particular, the combination of a geometric

description, Riemann uniformization techniques and standard expressions for CFT parti-

tion functions is very fruitful. Beyond criticality, EEs are accessible by means of the branch

point twist field approach introduced in [24] and also through numerical techniques.

Consider a bipartition where the two sets of observables correspond to the local ob-

servables in two finite-size complementary connected regions, A and B (see for instance

figure 1). Let the system be in a state |Ψ〉L, then the von Neumann entropy associated to

region A is

SΨ
1 (`, L) = −Tr(ρA log ρA) , (1.1)

where ρA = TrB(|Ψ〉LL〈Ψ|) is the reduced density matrix associated to subsystem A and

the trace (1.1) is over the degrees of freedom in subsystem A. One may obtain the entropy

SΨ
1 (`, L) as a limiting case of the sequence of nth Rényi entropies defined as

SΨ
n (`, L) =

log TrρnA
1− n

, (1.2)

thanks to the property

lim
n→1

SΨ
n (`, L) = SΨ

1 (`, L) . (1.3)

One may also consider the so-called single-copy entropy [25–27], defined as

SΨ
∞(`, L) := lim

n→∞
SΨ
n (`, L) . (1.4)

1Starting from a lattice system with a critical point for some value of a parameter λ = λc, the scaling

limit to a critical point described by CFT may be taken by first setting λ = λc so the correlation length

ξ → ∞ and then taking the thermodynamic limit L → ∞. The near-critical behaviour of massive QFT is

recovered by taking the limit λ→ λc and L, `→∞ simultaneously, whilst keeping L/ξ and `/ξ fixed. This

is the regime we consider in this paper.
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Figure 1. Typical bipartition of a one-dimensional finite system of total length L into region A of

length ` and region B of length L− `.

Much of the work carried out so far deals with the entanglement properties of the

ground state (mostly, but not always, in infinite systems). In conformal field theory,

universal results for certain types of excited states are known: in [28, 29], the increment of

Rényi entropy in an excited state |Υ〉 with respect to the ground state of a CFT for the

configuration of figure 1 was found to be

SΥ
n (r)− S0

n(r) =
(1 + n)(h+ h̄)

3n
(πr)2 +O

(
r2∆ψ

)
, (1.5)

for small values of r = `
L . The excited state was defined as

|Υ〉 = lim
ξ,ξ̄→−i∞

Υ(ξ, ξ̄)|0〉 , (1.6)

where Υ(ξ, ξ̄) is a CFT field, h, h̄ are its holomorphic and antiholomorphic dimensions, ξ, ξ̄

are coordinates on the cylinder, and ∆ψ = hψ + h̄ψ is the smallest scaling dimension of

any field in the theory. Therefore, a measurement of the EE of a low-lying excited state in

CFT at finite volume can provide information about the primary field content of the theory.

The most extensive numerical study of other kinds of excited states in critical systems was

performed in [30]. In this work a very detailed study of the excited states of the XY model

in a transverse field and the XXZ Heisenberg spin-chain was carried out. The authors

focussed on the case when L � ` � 1 and on excited states that are macroscopically

different from the ground-state (we will consider instead zero-density states). The EE

of excited states with finite energy density in quantum field theory (QFT) or quantum

lattice models is very simple by the eigenstate thermalization hypothesis (or its extension

to integrable systems): it is dominated by the thermodynamic entropy of the corresponding

Gibbs (or generalized Gibbs) state and is known to satisfy a volume law [3]. However, little

is known so far about the EE of zero-density excited states in gapped systems. The most

extensive numerical study in gapped quantum spin chains was carried out in [31] where

some of the results we obtain here (see section 2) were proposed as describing the “semi-

classical” limit of the EE. Indeed the authors observe how the EE of certain excited states

approaches such semi-classical limit for large enough volumes and appropriate correlation

lengths. In our work [32] we have shown that these bounds, and generalisations, provide,

in fact, exact large-volume predictions that are much more widely applicable.

In the present paper, we provide full analytical computations supporting some of the

results in [32]. We consider excited states of 1+1-dimensional massive QFT with zero

– 2 –
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energy density: those formed of finite numbers of asymptotic particles, at various momenta.

We consider the situation depicted in figure 1, in the limit where both the systems size L

and the length ` of region A are large and in fixed proportion

`, L→∞ with r =
`

L
∈ [0, 1] . (1.7)

Let |Ψ〉L be such an excited state. Employing the branch point twist field approach [24], we

compute the difference between the Rényi entropy in the excited state and in the ground

state, in this limit,

lim
L→∞

SΨ
n (rL, L)− S0

n(rL, L) =: ∆SΨ
n (r) . (1.8)

This entropy increment can be formally written as a ratio of branch point twist field

correlators,

∆SΨ
n (r) = lim

L→∞

1

1− n
log

[
L〈Ψ|T (0)T̃ (rL)|Ψ〉L
L〈0|T (0)T̃ (rL)|0〉L

]
, (1.9)

where T is the branch point twist field and T̃ is its hermitian conjugate [24]. Recall that

branch point twist fields are local fields of the n-copy “replica” QFT, the theory constructed

as n not mutually-interacting copies of the model under study. In the replica theory, the

state |Ψ〉L has the structure

|Ψ〉L = |Ψ〉1L ⊗ |Ψ〉2L ⊗ · · · ⊗ |Ψ〉nL , (1.10)

where |Ψ〉iL is an excited state of the i-th single-copy theory in finite volume L. We

concentrate on the (uncompactified) massive free real boson and free Majorana fermion

models. The techniques that we use — based on form factors of branch point twist fields

— have been chosen so that they are (hopefully) generalizable to integrable models, in

view of extending our results in a future work.

The results we find are very surprising, for various reasons:

• All results are independent of the momenta of the excitations, except for the sole

condition of coincidence or not of rapidities, and are independent of the model under

consideration.

• The structure of all functions ∆SΨ
n (r) is extremely simple. They in fact admit a

combinatorial, or qubit interpretation, related to counting all possible configurations

with various numbers of excitations (particles) “located” in the region A and outside

of it.

• Our numerical analysis also suggests that the formulae hold very precisely even for

arbitrary systems size L, no matter how small, if the momenta of the excitations are

large (even though our calculation methodology employs a large volume expansion).

• Additional numerical analysis presented in [32] has shown they hold also in higher

dimensional free theories and at least some states of interacting quantum spin chains.

– 3 –
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The paper is organized as follows: in section 2 we review our results for the increment of

EE for states with a finite number of excitations. The formulae presented in section 2 as

well as their “qubit” interpretation appeared first in [32]. Here we present a more general

discussion of the “qubit” interpretation. In section 3 we review the connection between

branch point twist fields in replica theories and Rényi entropy. We also highlight the

challenges of generalizing such connection to finite volume and excited states. We explain

how these challenges may be resolved in the case of the massive free boson theory and

introduce the “doubling trick” in this context. In section 4 we derive the general formulae

for the Rényi entropy of a single-particle excited state, a k-particle excited state involving

distinct momenta only, and a k-particle excited state consisting of equal momenta. We

provide concrete examples of all three cases for the 2nd Rényi entropy of the massive free

boson theory. We compare the analytical results to numerical results obtained by employing

the wave functional method. In section 5 we generalize the results of the previous section

to the massive free fermion. We find that the expressions for the EEs of states with

distinct momenta are identical to those in the free boson theory, even if there are technical

differences in the computations involved. In section 6 we present our conclusions and

outlook. In appendix A we review the wave functional method and its application to the

computation of the Rényi entropies of the harmonic chain. In appendix B we present a

derivation of the selection rules which single out those terms in the form factor expansion

that provide the leading large-volume contribution to the Rényi entropies. In appendix C

we prove some properties of the functions gnp (r) in terms of which all EEs can be expressed.

2 Summary of the main results

The computation of the ratio (1.9) for a generic k-particle excited state of a massive free

theory in finite volume involves the use of a considerable number of techniques we will

be presenting in the next sections: the form factor programme for branch point twist

fields [24], the generalization of this programme for finite volume correlators following the

ideas of [33, 34], the rewriting of the branch point twist field in terms of U(1) fields of the

replica free theory by employing the “doubling trick” introduced in [35]. We then use a

new numerical technique based on wave functionals in order to test our analytical results.

This is therefore a rather technical work. However, the results that we have obtained are

surprisingly simple and can be easily summarized. They have been shown to hold more

widely in [32].

2.1 Main formulae

Consider a state consisting of a single particle excitation. Let us denote the entropy

increments of such a state by ∆S1
n(r). We find that

∆S1
n(r) =

log(rn + (1− r)n)

1− n
. (2.1)

The increment of von Neumann entropies is given by

∆S1
1(r) = −r log r − (1− r) log(1− r) , (2.2)

– 4 –
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and the increment of single-copy entropies has the form

∆S1
∞(r) =

{
− log(1− r) for 0 ≤ r < 1

2 ,

− log r for 1
2 ≤ r ≤ 1 .

(2.3)

For excited states consisting of a finite number k of excitations of distinct momenta the

results are simply as above, multiplied by k. In the free boson, we may also consider states

consisting of k particles of equal momenta. We will denote the entropy increments of such

states by ∆Skn(r). We find

∆Skn(r) =
1

1− n
log

k∑
q=0

[(
k

q

)
rq(1− r)k−q

]n
, (2.4)

∆Sk1 (r) = −
k∑
q=0

(
k

q

)
rq(1− r)k−q log

[(
k

q

)
rq(1− r)k−q

]
. (2.5)

The single-copy entropy is a function which is non-differentiable at k points in the interval

r ∈ (0, 1) (generalizing (2.3) which has one non-differentiable point). The positions of these

singularities are given by the values

r =
1 + q

1 + k
, for q = 0, . . . , k − 1 , (2.6)

and the single-copy entropy is given by

∆Sk∞(r) = − log

[(
k

q

)
rq(1− r)k−q

]
, for

q

1 + k
≤ r < 1 + q

1 + k
and q = 0, . . . , k .

(2.7)

Therefore, if the rapidities are distinct, the contribution to the entanglement entropy of k

particles is exactly k times the contribution of a single particle excitation, while if they are

equal, this is not true: the contribution is in fact smaller.

For generic states containing a mixture of excitations with equal and distinct rapidities

we find formulae which are sums of those above. Denoting by ∆Sk1,k2,···n (r) the Rényi

entropies of an excited state consisting of ki particles of momentum pi with pi 6= pj for

i 6= j we find

∆Sk1,k2,···n (r) =
∑
i

∆Skin (r), ∆Sk1,k2,···1 (r) =
∑
i

∆Ski1 (r), ∆Sk1,k2,···∞ (r) =
∑
i

∆Ski∞(r) .

(2.8)

Note that (2.4), (2.5) and (2.7) reduce to (2.1), (2.2) and (2.3), respectively, for k = 1. In

figure 2 we present several examples of the functions above for states of equal and mixed

rapidities (other examples were presented in [32]).

It is easy to show that all the differences of von Neumann entropies have their max-

imum value at r = 1
2 . For states with k distinct rapidities this maximum value is given

simply by k log 2 so that a k-particle excited state may at most add k qubits to the en-

tanglement entropy with respect to its ground state value. This fact was discussed in [36]

– 5 –
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Figure 2. The functions (2.4), (2.5) and (2.7) for a state of 10 equal momenta and for three

“mixed” states with some equal and some distinct momenta. We plot the Rényi entropies for

n = 2, 3, 5, 8, 11, 17 and the von Neumann and single-copy entropies. In each figure, the dashed

(outer-most) curve is the von Neumann entropy and the dot dashed (inner-most) curve is the

single-copy entropy.

for one-particle excitations and shown to hold beyond free theories, for integrable and

non-integrable theories.

For states with some equal rapidities, the maximum is lower. In particular for k

coinciding rapidities, it is given by

∆Sk1

(
1

2

)
=

k∑
q=0

1

2k

(
k

q

)
log

[
1

2k

(
k

q

)]
< k log 2 , for k > 1 . (2.9)

2.2 Qubit interpretation

It turns out that the general formulae (2.1)–(2.7) have interpretations as the entanglement

entropies of simple states formed of qubits, and are easily understandable from a quasi-

classical particle picture of the actual QFT states considered. This was discussed in [32],

and we give here slightly more precision.

In order to explain this, consider a bipartite Hilbert space H = Hint⊗Hext. Each factor

Hint ' Hext is the Hilbert space for Nj distinguishable sets each of j indistinguishable

qubits, for j = 1, 2, 3, . . .. Making the relation with the entanglement problem described

– 6 –
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above, we associate Hint with the interior of the entanglement region of length ` and Hext

with its exterior, and we identify the qubit state 1 with the presence of a particle and 0 with

its absence. With k particles lying on (0, L), we construct the state |Ψqb〉 ∈ H by the (naive)

picture according to which equal-rapidity particles are indistinguishable, and a particle can

lie anywhere in (0, L) with flat probability: any given particle has probability r of lying in

the entanglement region, and 1−r of lying outside. We make a linear combination of qubit

states following this picture, with coefficients that are (square roots of) the total probability

of a given qubit configuration, taking proper care of (in)distinguishability. Then, the Rényi

and von Neumann entanglement entropies of |Ψqb〉 are given exactly by the formulae seen

earlier. In general

S
Ψqb
n (r) =

log
(
TrρnHint

)
1− n

, ρHint = TrHext |Ψqb〉〈Ψqb| , (2.10)

and the statement is that S
Ψqb
n (r) = ∆SΨ

n (r) for some excited state |Ψ〉L corresponding to

the probability distribution described above.

More precisely, we have Hint ' Hext ' ⊗j≥1(Cj+1)⊗Nj . Here Cj+1 is the Hilbert space

of j indistinguishable qubits, with basis elements |q〉, q = 0, 1, . . . , j labelled by the number

of qubits that are in their state 1. One can also write Hint ' Hext ' ⊗Ni=1Cji+1, where N

is the total number of groups, N =
∑

j≥1Nj , and ji take values j1 = · · · = jN1 = 1,

jN1+1 = · · · = jN1+N2 = 2, etc. We denote the basis of vectors in Hint ' Hext by |q〉 for

q = (qi : i = 1, . . . , N)∈
∏
j≥1{0, 1, . . . , j}Nj . We use the notation q̄ = (ji−qi : i = 1, . . . , N)

for the state where the qubits are inverted. We then construct

|Ψqb〉 =
∑

q∈
∏
j≥1{0,1,...,j}

Nj

√
pq |q〉 ⊗ |q̄〉 , (2.11)

where pq is the probability of finding the particle configuration q in the entanglement

region according to the naive picture above, given by

pq =
∏
i

(
ji
qi

)
rqi(1− r)ji−qi . (2.12)

For instance, if a single particle is present, then the state is

|Ψqb〉 =
√
r |1〉 ⊗ |0〉+

√
1− r |0〉 ⊗ |1〉 , (2.13)

as either the particle is in the region, with probability r, or outside of it, with probability

1− r. If two particles of coinciding rapidities are present, then we have

|Ψqb〉 =
√
r2 |2〉 ⊗ |0〉+

√
2r(1− r) |1〉 ⊗ |1〉+

√
(1− r)2 |0〉 ⊗ |2〉 , (2.14)

as either the two particles are in the region, with probability r2, or one is in the region and

one outside of it (no matter which one), with probability 2r(1− r), or both are outside the

region, with probability (1 − r)2. For two particles of different rapidities,

|Ψqb〉=
√
r2 |11〉⊗|00〉+

√
r(1−r) (|10〉⊗|01〉+|01〉⊗|10〉)+

√
(1−r)2 |00〉⊗|11〉 , (2.15)

counting the various ways two distinct particles can be distributed inside or outside the

region.

From this explicit construction, one can indeed show that (2.10) gives the formula (2.8).

– 7 –
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3 Rényi entropies and branch point twist fields

This section provides a review of various well-known techniques and definitions which we

go on to employ in section 4 to obtain our new results. More precisely:

• Subsection 3.1 reviews the definition of branch point twist fields and their connection

to entanglement measures [4, 24].

• Subsection 3.2 explains how matrix elements of such fields may be computed in finite

volume. In particular, the main challenge of reconciling the presence of a branch

cut in space with working in finite volume is discussed and illustrated schematically

by figure 3.

• Subsection 3.3 reviews the doubling trick [35] for the free Boson theory. Here it is

presented as a tool that allows for the diagonalisation of the branch point twist field

action on quantum states.

• Subsection 3.4 reviews the form factors of the (simpler) U(1) twist fields that emerge

as a result of the diagonalisation above.

• Finally, subsection 3.5 explains how correlation functions of U(1) twist fields may

be first generalised to finite volume and then employed as building blocks for the

correlators of branch point twist fields. Equations (3.41)–(3.42) provide the most

important result of this section, namely the momenta quantization conditions in

finite volume in the presence of U(1) twist fields.

3.1 Branch point twist fields

It has been known for some time that several entanglement measures, including the Rényi

entropies, can be expressed in terms of correlation functions of a special class of local

fields T which have been termed branch point twist fields in [24]. Branch point twist fields

are, on the one hand, twist fields in the broader sense, that is, fields associated with an

internal symmetry of the theory under consideration, and on the other hand related to

branch points of multi-sheeted Riemann surfaces. They are twist fields associated to the

cyclic permutation symmetry of a model composed of n copies of the original model, with

exchange relations

T (x)Oi(y) = Oi+1(y)T (x) for y1 > x1 , (3.1)

= Oi(y)T (x) for x1 > y1 , (3.2)

where Oi(y) is any local field on copy number i, and with On+1(y) = O1(y).

The idea of quantum fields associated with branch points of Riemann surfaces in the

context of entanglement appeared first in [4], where their scaling dimension was evaluated

in CFT

∆T =
c

24

(
n− 1

n

)
, (3.3)

– 8 –
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(see also [37] for an earlier work concerned with similar ideas in the context of orbifold

CFT). Here c is the central charge and n is the number of sheets in the Riemann sur-

face. The general description in terms of branch point twist fields as symmetry fields

associated to cyclic permutation symmetry of the n Riemann surface’s sheets, as per (3.1),

was given in [24], where they were studied in integrable massive QFT. This description

is however independent of integrability, and it was first used in massive QFT outside of

integrability in [38].

The missing logical link that connects the Riemann surface structure mentioned above

with a computation of entanglement measures comes through a result commonly known as

the replica trick. Mathematically speaking, the replica trick is simply the statement (1.3)

with (1.2). However, the word “replica” originates from the fact that the object TrρnA which

features in (1.2) can be interpreted as the partition function of a replica QFT understood as

n non-interacting copies of the original QFT. In the limit L→∞ (for the configuration in

figure 1 with L→∞), this partition function is evaluated precisely on a Riemann surface

with n sheets as described earlier, with a branch cut of length ` across which Riemann

sheets are connected cyclically (when the branch cut starts at the origin and L→∞ this

is exactly the structure of the Riemann surface of the function n

√
z
z−`). Hence the number

of sheets and the number of replicas are both n. For finite volume L, the Riemann sheets

are replaced by cylinders of circumference L cyclically connected along a branch cut in the

compactified (space) direction. In this picture, the nth Rényi entropy with the partitioning

protocol presented in figure 1 is given by:

Sn(`, L) =
log
(
ε4∆T

L〈Ψ|T (0)T̃ (`)|Ψ〉L
)

1− n
, (3.4)

where |Ψ〉L is an excited state of a finite number of excitations in the finite-volume L,

replica QFT. The structure of the state is as reported in (1.10), T̃ = T † is the hermitian

conjugate of the branch point twist field T , and ε is a non-universal short-distance cut-

off. Notice that the dependance on the cut-off ε cancels out when considering the entropy

increment (1.9).

3.2 Challenges posed by the treatment of excited states

For L→∞ in the ground state the function (3.4) has been extensively investigated, both

from the point of view of its universal features [24, 38] and for particular models [39–43].

The study of excited states however presents new challenges.

First, in the context of integrable models of massive QFT, it is natural to evaluate

two-point functions by inserting a sum over a complete set of states and then computing

the matrix elements of local operators that are the building blocks of the resulting sum.

Schematically we can represent this process by writing

L〈Ψ|T (0)T̃ (`)|Ψ〉L ∝
∑
|Φ〉

L〈Ψ|T (0)|Φ〉L × L〈Φ|T̃ (`)|Ψ〉L . (3.5)

The advantage of this decomposition is that for integrable models at least, there exist

effective methods to exactly compute the matrix elements L〈Ψ|T (0)|Φ〉L. In infinite volume
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such methods are usually refered to as the form factor programme [44, 45] and they provide

the most powerful and successful approach to the computation of correlation functions, both

analytically and numerically. For branch point twist fields, the form factor programme was

generalized in [24]. For finite volume and local fields O — excluding twist fields — matrix

elements of the type L〈Ψ|O(0)|Φ〉L are also well understood [33, 34].

In 1+1 dimensions, the states |Φ〉L and |Ψ〉L are characterized by a discrete set of

rapidities (or momenta). Should any of the rapidities in one set coincide with some in

the other set, the matrix element L〈Ψ|O(0)|Φ〉L for L → ∞ will develop, in the usual

infinite-volume normalization of the states, δ-function singularities. Considering instead

finite volume form factors, provides a natural regularization scheme to deal with such

singularities. Indeed, for local operators, a systematic prescription exists to compute the

“physical part” of matrix elements such as L〈Ψ|O(0)|Φ〉L by subtracting the contributions

of any occurring singularities in a way which is controlled by the particular pole structure

of the form factors of local fields.

In our case however, we face the challenge that the branch point twist fields are not

local in the sense required to apply the techniques of [33, 34]. Although they are local with

respect to the Lagrangian density of the replica model (as they implement a symmetry) they

are non-local with respect to the fundamental fields of the theory (those whose associated

modes create and annihilate the physical particles). It is however, still very plausible that

the standard general ideas for the computation of finite-volume non-diagonal form factors

will be applicable to branch point twist fields. We confirm this below by analytical and

numerical results in free theories.

Second, branch point twist fields sit at the origin of branch cuts which, in the standard

prescription, originate at the twist field and extend indefinitely in the space direction. For

the two-point function, the two branch cuts emerging from the twist field and its hermitian

conjugate combine to create a branch cut of finite length ` which is interpreted as the length

of subsystem A. However, once we write down the expansion (3.5) we need to evaluate the

matrix elements L〈Ψ|T (0)|Φ〉L and L〈Φ|T̃ (`)|Ψ〉L. For these matrix elements, an infinitely

long branch cut extending in space is incompatible with working in finite volume L. This

conflict can be resolved by adopting an approach which is reminiscent of that taken in [46]

for the Ising field theory and the matrix elements of its Z2 twist field σ. We may use the

fact that the branch cut can be continuously deformed without changing the value of the

correlation function. Therefore we may continuously “stretch” the branch cut along the

time direction as indicated in figure 3. The result is a product of fields with branch cuts

extending in the time direction. In this configuration, the fields are well defined in the

quantization on the circle, where they are intertwining operators. The operator ordering

of the two-point function in the quantization scheme on the circle, is implemented in the

path integral by a time ordering: an infinitesimal shift τ along the cylinder, as in figure 3.

In parallel to the situation in [46], the Hilbert space of quantization on the circle is

divided into sectors characterized by periodicity conditions: if an internal symmetry σ

exists, then the Hilbert space Hσ is that of field configurations with the quasi-periodicity

condition O(x + L) = σ · O(x). For the Ising model, the Z2 symmetry leads to two

sectors, Ramond-Ramond and Neveu-Schwarz. In the case of our replica model, we have in

– 10 –



J
H
E
P
1
0
(
2
0
1
8
)
0
3
9

Figure 3. Branch cut deformation along the time direction on an infinite cylinder of circumference

L. Note that, formally, the fields are also slightly shifted in the time direction (hence the parameter

τ) to ensure time ordering.

particular n sectors labelled by cyclic elements of the permutation group. The intertwining

operators corresponding to the branch point twist fields act as follows:

T : Hσ → Hω−1◦σ , T̃ : Hσ → Hω◦σ , (3.6)

where ω is the elementary cyclic permutation symmetry of the n-copy replica model, taking

copy i to copy i+ 1 mod n. This is seen as follows: the condition (3.1) imposes continuity

between Oi below and Oi+1 above the branch extending towards the right. After the

deformation as in figure 3, this becomes continuity between Oi on the left and Oi+1 on

the right of the branch extending towards negative times. This adds a factor of ω on the

Hilbert space on which T acts, or equivalently, a factor ω−1 on the image Hilbert space.

Therefore, in the matrix elements L〈Ψ|T (0)|Φ〉L and L〈Φ|T̃ (`)|Ψ〉L, the state |Ψ〉L is in a

different sector than the state |Φ〉L. In the cylinder picture of figure 3, the state |Φ〉 lies

between the twist fields, in the time slice of extent τ introduced by the operator ordering.

Finally, the question arises as to how the matrix elements of branch point twist fields

with states in different sectors can be computed. Answering this question in general in-

tegrable QFT is somewhat complicated and will be discussed in a future work. However,

for free theories there are additional resources at our disposal. More precisely, for free

theories, it is possible to express the branch point twist fields in terms of simpler U(1)

twist fields, where the permutation symmetry has been diagonalized. This is achieved by

employing the so-called doubling trick introduced in [35] and employed successfully in the

branch point twist field context in [24, 47], where it allowed for the computation of the

vacuum expectation value of the branch point twist field. A similar idea was also used

in [48] in the study of the EE of free theories.

– 11 –



J
H
E
P
1
0
(
2
0
1
8
)
0
3
9

The doubling trick is the simple idea that a real free fermion (Majorana) and a real free

boson theory can be doubled to construct a complex free fermion (Dirac) and a complex

free boson theory. This doubling induces a U(1) symmetry in the new theory to which

a U(1) twist field is associated. In a replica theory whose fundamental building blocks

are doubled free theories, the U(1) symmetry on each individual copy is extended to a

U(n) symmetry, which includes cyclic permutation of the copies. Diagonalizing the cyclic

permutation, in the new basis the branch point twist field is then expressed as a product

of n individual U(1) twist fields Tp for p = 1, . . . , n.

Having summarized the main challenges and techniques involved in the computation

of Rényi entropies of excited states in finite volume, we proceed now to present these

techniques in some detail for the case at hand.

3.3 Doubling trick and replica free boson model

In this and the remaining subsections, we concentrate on the free boson model. We then

generalize the construction to the free fermion in section 5.

In [35] Fonseca and Zamolodchikov introduced the “doubling trick”. There, it was

employed to find differential equations that are satisfied by certain combinations of cor-

relation functions in the Ising model. This technique was later used in order to obtain

vacuum expectation values 〈T 〉 in infinite volumes in the works [24] (free fermion) and [47]

(free boson).

The idea is to “double” the free theory in order to have an additional continuous

symmetry. Let φa and φb be two independent free massive real bosons. We construct a

free massive complex boson as:

Φ =
φa + iφb√

2
and Φ† =

φa − iφb√
2

, (3.7)

which has an internal continuous U(1) symmetry. This symmetry can then be exploited in

order to obtain information about the original (not doubled) theory. In the context of the

branch point twist field, the doubling trick is used as follows. In the doubled replica model,

the combination of the U(1) symmetry of the complex field on each replica, and of the per-

mutation symmetry of the replica, implies the existence of a U(n) symmetry of the model.

Cyclic permutations form a subgroup of the U(1) symmetry group of rotations amongst

the copies, which can be diagonalized. The diagonal basis is a new set of n independent

complex free bosons, each of which has its own U(1) symmetry, and the cyclic permutation

action is expressed as a product of U(1) actions on each of these bosons. Therefore, the

branch-point twist field acts as a product of U(1) twist fields in the diagonal basis.

In the replica theory we have n copies of the complex free boson, Φj with j = 1, . . . , n.

Since the components φa,j , φb,j are commuting fields and the permutation symmetry ω acts

in a factorized way as ωa × ωb, the branch point twist field also factorises,

T = Tcomplex = Ta ⊗ Tb . (3.8)

Therefore, correlators of T in any state that is factorized into the copies a and b, also

factorize into those of Ta and Tb in the real boson theory. The idea is to perform calculations
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in the replica complex free boson theory and interpret the results in terms of the real free

boson using this factorization.

In matrix form, the permutation symmetry ω acts as

ω


Φ1

Φ2

...

Φn−1

Φn

 =


Φ2

Φ3

...

Φn

Φ1

 , that is , ω =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

1 0 0 · · · 0

 . (3.9)

The eigenvalues of this matrix are exactly the nth roots of unity λp = e
2πip
n for p = 1, . . . , n.

The cyclic permutation action is diagonalized by the fields

Φ̃p =
1√
n

n∑
j=1

e−
2πijp
n Φj , (3.10)

which are themselves canonically normalized complex free boson fields. Since ω acts diag-

onally on the basis Φ̃p, it can be factorized into a product of U(1) fields. We denote by Tp
the U(1)-field acting nontrivially on sector p, and T̃p its hermitian conjugate. The field Tp
has exchange relations

Tp(x)Φ̃q(y) = e
2πip
n

δqpΦ̃q(y)Tp(x) for y1 > x1 , (3.11)

= Φ̃q(y)Tp(x) for x1 > y1 ,

for q, p = 1, . . . , n with q ≡ q+n and p ≡ p+n, and T̃p has similar exchange relations with

complex conjugate phase. Then,

T =
n∏
p=1

Tp , (3.12)

where, by definition, the field Tn is the identity field. For free bosons, such U(1) fields have

been studied and it is known that they have scaling dimensions [49]

∆p =
p

2n

(
1− p

n

)
, (3.13)

so that

∆T =
n∑
p=1

∆p =
1

12

(
n− 1

n

)
, (3.14)

which coincides with (3.3) for c = 2 (the central charge of the complex free boson).

In order to study the entanglement entropy of excited states in finite volume L, we

will consider states of the complex boson theory which are k-particle states in copy a times

the vacuum in copy b,

|k〉L = |k〉aL ⊗ |0〉bL = |k〉a,1L ⊗ · · · ⊗ |k〉
a,n
L ⊗ |0〉

b,1
L ⊗ · · · ⊗ |0〉

b,n
L . (3.15)

In this factorized state, we have

L〈k|T (0)T̃ (`)|k〉L = a
L〈k|Ta(0)T̃a(`)|k〉aL × b

L〈0|Tb(0)T̃b(`)|0〉bL . (3.16)
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The second factor is the vacuum expectation value, which is known. We therefore obtain

the required real free boson result as

a
L〈k|Ta(0)T̃a(`)|k〉aL =

L〈k|T (0)T̃ (`)|k〉L
b
L〈0|Tb(0)T̃b(`)|0〉bL

. (3.17)

In order to describe the many-particle states |k〉L more precisely, we introduce the

creation and annihilation operators (a±j )†(θ) and a±j (θ), respectively, of the complex free

boson Φj ; these create / annihilate a particle of rapidity θ and U(1) charge ± in replica

copy j. The creation operator on doubling-trick copy a and replica copy j is expressed as

(aaj )
†(θ) =

1√
2

((a+
j )†(θ) + (a−j )†(θ)) . (3.18)

Therefore, the normalized k-particle state (3.15) is, explicitly in the case of distinct

rapidities,

|k〉L = |θ1, . . . , θk〉aL ⊗ |0〉bL =
1

2
kn
2

n∏
j=1

k∏
i=1

(
(a+
j )†(θi) + (a−j )†(θi)

)
|0〉L . (3.19)

In the free boson theory, one may consider states with some coinciding rapidities, in which

case the normalization of the state needs to be slightly modified. This will be discussed in

more detail in subsection 4.2.2.

On the other hand, in the diagonal basis (3.10), the operators ã±p (θ) (and hermitian

conjugate) are given by

(ã±p )†(θ) =
1√
n

n∑
j=1

e±
2πijp
n (a±j )†(θ) or (a±j )†(θ) =

1√
n

n∑
p=1

e∓
2πijp
n (ã±p )†(θ) . (3.20)

Expressing the operators a±j (θ) in terms of the tilde operators through (3.20) leads, after

some manipulations, to

|k〉L =
1

(2n)
nk
2

n∏
j=1

∑
ε1,...,εk=±

n∑
p1,...,pk=1

e−
2πij
n

∑k
i=1 piεi(ãε1p1)†(θ1) · · · (ãεkpk)†(θk)|0〉L . (3.21)

This is a useful expression, because thanks to (3.12), correlation functions of twist fields

in the diagonalized basis factorize into correlations on the sectors p = 1, . . . , n. Let us

introduce the short-hand notation

ã+
j (θ) := aj(θ) and ã−j (θ) := bj(θ) . (3.22)

Then, the following state factorizes as

a
†
1(θ)a†2(θ)b†3(θ)b†2(θ)|0〉L = a†1(θ)|0〉1;L ⊗ a†2(θ)b†2(θ)|0〉2;L ⊗ b†3(θ)|0〉3;L , (3.23)

where we write |0〉L = ⊗nj=1|0〉j;L. Using this, for n = 3 we have for instance

L〈0|a1(θ)a2(θ)b3(θ)b2(θ)T (0)T̃ (`)a†1(θ)a†2(θ)b†3(θ)b†2(θ)|0〉L
= 1;L〈0|a1(θ)T1(0)T̃1(`)a†1(θ)|0〉1;L × 2;L〈0|a2(θ)b2(θ)T2(0)T̃2(`)a†2(θ)b†2(θ)|0〉2;L , (3.24)
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where we used the fact that

3;L〈0|b3(θ)T3(0)T̃3(`)b†3(θ)|0〉3;L = 1 , (3.25)

since T3 is the identity field for n = 3. In this way, any two-point function can be expressed

as a sum of factorized correlators involving only particles and U(1) twist fields acting on a

particular sector of the theory. A detailed computation for k-particle states of equal and

distinct momenta will be presented below.

The computation of matrix elements such as (3.24) requires two additional ingredients:

first, the introduction of finite volume form factors, and second, the understanding of how

particle rapidities are quantized in finite volume. We address these questions in the next

two subsections.

3.4 Infinite volume form factors of U(1) fields

As explained in the previous subsection, explicit computations of the Rényi entropy may

be obtained by computing matrix elements of U(1) twist fields. Let us review here some

of the properties of these form factors in the free boson theory. The form factors have

been known in the literature for quite some time [47, 50]. We define the two particle form

factors of the p-th U(1) field as

F p|+−(θ1 − θ2) := p〈0|Tp(0)a†p(θ1)b†p(θ2)|0〉p = F p|−+(θ2 − θ1) ,

F p|++(θ1 − θ2) := p〈0|Tp(0)a†p(θ1)a†p(θ2)|0〉p = 0 ,

F p|−−(θ1 − θ2) := p〈0|Tp(0)b†p(θ1)b†p(θ2)|0〉p = 0 . (3.26)

The last two form factors are vanishing for symmetry reasons (the twist field preserves

the total U(1) charge). The form factor programme for quasi-local fields [44, 45, 51] tells

us that the nonvanishing form factors may be computed as the solutions to a set of three

equations. First, Watson’s equations

F p|±∓(θ) = F p|∓±(−θ) and F p|±∓(θ + 2πi) = γ±p F
p|∓±(−θ) = γ±p F

p|±∓(θ) , (3.27)

where γ±p are the factors of local commutativity associated to the bosons ±. From the

exchange relations (3.11) we expect that γ+
p = (γ−p )−1 = e

2πip
n . Finally, the kinematic

residue equation is

Resθ=0F
p|±∓(θ + iπ) = i(1− γ±p )τp , (3.28)

where

τp = p〈0|Tp(0)|0〉p , (3.29)

is the vacuum expectation value. Based on the equations above it is easy to make a general

ansatz:

F p|+−(θ) =
Aeaθ

cosh θ
2

, (3.30)

where A and a are constants to be determined. It is then easy to show that the equations

are satisfied if

a =
p

n
− 1

2
and A = −τp sin

πp

n
. (3.31)
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This gives the solution

F p|+−(θ) = −τp sin
πp

n

e(
p
n
− 1

2)θ

cosh θ
2

. (3.32)

Another solution can be obtained by shifting j 7→ j+n but if we assume p ≤ n the solution

above is singled out. Since the theory is free, higher particle form factors can be obtained

by simply employing Wick’s theorem. For the complex free boson they have the structure

F p,n2m (θ1, . . . , θm;β1, . . . , βm) = p〈0|Tp(0)a†p(θ1) · · · a†p(θm)b†p(β1) · · · b†p(βm)|0〉p
= τp

∑
σ∈Sm

fnp (θσ(1) − β1) · · · fnp (θσ(m) − βm) , (3.33)

where we introduced the normalized two-particle form factor

fnp (θ) :=
F p|+−(θ)

τp
, (3.34)

and σ are all elements of the permutation group Sm of m symbols.

In what follows we will require the form factors (3.33) as well as slightly more general

matrix elements. These can be related to form factors as

p〈0|
s∏

i1=1

ap(θi1)

q∏
i2=1

bp(βi2)Tp(0)

q′∏
i4=1

b
†
p(β
′
i4)

s′∏
i3=1

a
†
p(θ
′
i3)|0〉p (3.35)

= F p,ns+s′+q+q′(θ
′
1, . . . , θ

′
s′ , β1 + iπ, . . . , βq + iπ;β′1, . . . , β

′
q′ , θ1 + iπ, . . . , θs + iπ)δs−q,s′−q′ ,

as long as θi 6= θ′i and βi 6= β′i for all i. That is, any matrix element can be written

in terms of form factors as long as there are no repeated rapidities leading to additional

singularities [45].

3.5 Finite volume matrix elements: a simple example

Once the correlation function has been expressed in terms of correlators acting on a par-

ticular sector, the latter can be computed by the insertion of a complete set of states. In

finite volume both the rapidities of the excited state and intermediate states are quantized.

We will use the following simple example to explain what these quantization conditions are

in general.

Consider a simple matrix element on sector p of the form

p;L〈0|
k∏
i=1

ap(θi)Tp(0)T̃p(`)
k∏
i=1

a
†
p(θi)|0〉p;L

=
∑
|q〉p

p;L〈0|
k∏
i=1

ap(θi)Tp(0)|q〉p;L × p;L〈q|T̃p(`)
k∏
i=1

a
†
p(θi)|0〉p;L . (3.36)

We will think of this matrix element as a particular building block of a more complicated

two-point function. This means that the external state
∏k
i=1 a

†
p(θi)|0〉p;L depends on ra-

pidities {θi} which are the same rapidities of the original excited state |k〉L in (3.19). Here
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|q〉p;L are q-particle states of the form

|q〉p;L =
s∏
i=1

a
†
p(βi)

q∏
i=s+1

b
†
p(βi)|0〉p;L , (3.37)

and the sum over intermediate states is a sum over q = 0, . . . ,∞ and over βis. Charge

conservation requires that

2s− q = k. (3.38)

In finite volume L one must choose a quantization sector in order to determine the set

of values the rapidities {θi} and {βi} may take. Below we choose the state |k〉L to be in

the trivial quantization sector, where the field is periodic, Φj(x+ L) = Φj(x) for all j. In

each copy this generates the Hilbert space H1. According to (3.6), the twist fields T and

T̃ change quantization sector as follows:

T̃ : H1 → Hω , T : Hω → H1 , (3.39)

where Hω is the Hilbert space with quasi-periodicity condition Φi(x + L) = Φi+1(x).

Therefore, in the two-point function (3.36), the intermediate states are in the quanti-

zation sector Hω. As per (3.11), in the diagonal basis, Hω has quasi-periodicity condition

Φ̃p(x + L) = e
2πip
n Φ̃p(x). This means that the quantization of momenta (rapidities) is

as follows:

P (θi) = mL sinh θi = 2πIi with Ii ∈ Z and i = 1, . . . , k . (3.40)

for the external state (as these are the rapidities of the excited state), and

P (βi) = mL sinhβi = 2πJ+
i +

2πp

n
with J+

i ∈ Z and i = 1, . . . , s , (3.41)

P (βi) = mL sinhβi = 2πJ−i −
2πp

n
with J−i ∈ Z and i = s+ 1, . . . , q , (3.42)

for the intermediate states (3.37). Note that the different signs in (3.41)–(3.42) are associ-

ated with particles created by operators a†p(βi) and b†p(βi), respectively.

These quantization conditions provide the generalization of the Bethe-Yang equa-

tions [52, 53] (in the free case) in the presence of the branch cut induced by the U(1)

twist field Tp and can be naturally extended to more general external states.

With this information the finite-volume correlator can be expanded as (the full details

of this expansion will be discussed in section 4)

p;L〈0|
k∏
i=1

ap(θi)Tp(0)T̃p(`)
k∏
i=1

a
†
p(θi)|0〉p;L

=
∞∑
s=k

1

s!(s− k)!

∑
{J+
i }

∑
{J−i }

p;L〈0|
k∏
i=1

ap(θi)Tp(0)
s∏
r=1

a
†(βr)

2s−k∏
r=s+1

b
†(βr)|0〉p;L

× p;L〈0|
s∏
r=1

a(βr)

2s−k∏
r=s+1

b(βr)T̃p(`)
k∏
i=1

a
†
p(θi)|0〉p;L . (3.43)
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Although (3.43) only shows the form factor expansion of a particular correlator, the

above analysis easily extends to any other cases. We note that the expansion (3.43) may

alternatively be expressed by replacing the sums
∑
{J±i }

by a set of contour integrals such

that the sum over residues enclosed by the contours reproduces the original sum. This

technique turns out to be rather useful in order to generalize the computation above to

any external state. We will make full use of it in subsection 4.1.2.

The final ingredient needed to evaluate (3.43) are the finite-volume non-diagonal form

factors inside the sums. Fortunately, it is known [33, 34] that such matrix elements can

generically be related to the infinite-volume form factors (3.33) simply as

p;L〈0|
s∏

i1=1

ap(θi1)

q∏
i2=1

bp(βi2)Tp(0)

q′∏
i4=1

b
†
p(β
′
i4)

s′∏
i3=1

a
†
p(θ
′
i3)|0〉p;L (3.44)

=
F p,ns+s′+q+q′(θ

′
1, . . . , θ

′
s′ , β1 + iπ, . . . , βq + iπ;β′1, . . . , β

′
q′ , θ1 + iπ, . . . , θs + iπ)δs−q′,s′−q′√

ρ(θ1, . . . , θs;β1, . . . , βq)ρ(θ′1, . . . , θ
′
s′ ;β

′
1, . . . , β

′
q′)

,

up to exponentially decaying corrections O(e−µL). The functions in the denominator are

the so-called density functions of the left- and right-states, respectively. In general, these

can be computed from the Bethe-Yang equations [52, 53]. However, for free theories they

are simply products over the particle energies times the volume, that is,

ρ(θ1, . . . , θs;β1, . . . , βq) =

s∏
i1=1

LE(θ′i)

q∏
i2=1

LE(β′i), (3.45)

ρ(θ′1, . . . , θ
′
s′ ;β

′
1, . . . , β

′
q′) =

s′∏
i3=1

LE(θi)

q′∏
i4=1

LE(β′i) , (3.46)

with E(θ) = m cosh θ. The form factor in the numerator is exactly the same function as

in the infinite volume expression (3.35) up to the quantization conditions on the rapidities

discussed earlier.

We now know that finite-volume form factors are proportional to infinite-volume ones

up to quantization of the rapitidities. It is worth noting here an important property of the

form factor (3.32), namely its leading behaviour near the kinematic singularity. Consider

the form factor fnp (β1−θ1+iπ) and suppose that the rapidites are quantized through Bethe-

Yang equations of the form (3.40) for θ1 and (3.41) for β1. Then the leading contribution

for θ1 ≈ β1 can be expressed as

fnp (β1 − θ1 + iπ) =
θ1≈β1

mL sin πp
n cosh θ1 e

iπp
n

π(J+
1 − I1 + p

n)
. (3.47)

Later computations will often involve the evaluation of the modulus square of fnp (θ) near

a kinematic pole, giving rise to sums of the form

gnp (r) =
sin2 πp

n

π2

∑
J∈Z

e2πir(J+ p
n

)

(J + p
n)2

= 1− (1− e
2πip
n )r . (3.48)

A proof of the equality (3.48) and a discussion of some other properties of the functions

gnp (r) is presented in appendix C.
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4 Rényi entropy in the massive free boson

Employing the techniques reviewed in section 3 we now proceed to derive the main results

of this paper for the free boson theory.

• Subsection 4.1 presents the computation for a single particle excitation employing

two slightly different techniques: exact summation over the quantum numbers of

intermediate states or alternatively, replacing such sums by contour integrals. We

show how both techniques lead to (2.1). The case n = 2 is given as an example.

• Subsection 4.2 presents the computation for a k-particle excited state with distinct

or equal rapidities. Each case is then illustrated for n = 2 and k = 2.

• Subsection 4.3 provides numerical verification of our results for excited states of one,

two, three and four particles in the harmonic chain. A brief discussion of the region

of parameters for which our results are expected to hold is presented.

4.1 Single-particle excited states

We will start by considering the simplest type of excited state, namely a one-particle excited

state of rapidity θ, that satisfies the Bethe-Yang equation (3.40) with quantum number I.

The excited state (3.19) for k = 1 has the form

|1〉L =
1

2
n
2

n∏
j=1

(
(a+
j )†(θ) + (a−j )†(θ)

)
|0〉L . (4.1)

As explained in the previous section, such a state admits a more intuitive expression after

changing to the new basis of creation operators (3.20), as per (3.21). Here we write it as

|1〉L =
∑
{N±}

Cn
(
{N±}

) n∏
p=1

[
a
†
p(θ)

]N+
p
[
b
†
p(θ)

]N−p
|0〉L , (4.2)

where the Cn ({N±}) coefficients contain all the phase factors from the transforma-

tion (3.20), and the summation runs over the integer sets {N±} = {N+
1 , N

−
1 , . . . , N

+
n , N

−
n }

subject to the condition
n∑
p=1

∑
ε=±

N ε
p = n . (4.3)

These are the boson occupation numbers of particles/antiparticles in each sector. As seen

before, both the branch point twist fields and generic states factorize into sectors so that

the two-point function of branch point twist fields in the excited state (4.1) at finite volume

may be expressed using (4.2) as

L〈1|T (0)T̃ (`)|1〉L =
∑
{N±}

∑
{Ñ±}

[Cn({N±})]∗Cn({Ñ±})
n∏
p=1

Fp
(
N±p , Ñ

±
p

)
, (4.4)
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where ∗ denotes complex conjugation, and

Fp
(
N±p , Ñ

±
p

)
= p;L〈0|(ap(θ))N

+
p (bp(θ))

N−p Tp(0)T̃p(`)(b†p(θ))Ñ
−
p (a†p(θ))

Ñ+
p |0〉p;L , (4.5)

is the finite-volume two-point function in sector p. Note that both here and later, the

order of the creation and annihilation operators is irrelevant as they all commute in the

free boson case.

In sector n, the U(1) twist-fields coincide with the identity, hence the two-point function

is only nonzero if N±n = Ñ±n , and its value is just the normalization of the finite-volume

states

Fn
(
N±n , N

±
n

)
= N+

n !N−n ! . (4.6)

For other sectors however, the matrix elements (4.5) are non-trivial. As standard, they

can be obtained by inserting a complete set of states between the two fields so that (4.5)

becomes a sum over products of the form factors (3.33). Explicitly,

I =

∞∑
m±=0

∑
J±1 ≤J

±
2 ≤···≤J

±
m±

∏m+

i=1 a
†
p(θi)

∏m−

j=1 b
†
p(βj)|0〉p;L p;L〈0|

∏m−

j=1 bp(βj)
∏m+

i=1 ap(θi)

N ({J+
i })N ({J−i })

,

(4.7)

where the rapidity sets {θi}, {βi} satisfy the Bethe-Yang equations (3.41) or (3.42) with

the quantum numbers {J±i }. The numbers N ({J±i }) are the norms of the finite-volume

states. They are different from 1 only if there are coinciding rapidities, and every group

of s coinciding rapidities contributes an s! factor to the norm. The restriction in the sums

over quantum numbers prevents us from over-counting states in the finite-volume Hilbert-

space. Alternatively, combinatorial considerations allow us to rewrite (4.7) in the following

simpler form

I =

∞∑
m±=0

∑
{J±}

1

m+!m−!

m+∏
i=1

a
†
p(θi)

m−∏
j=1

b
†
p(βj)|0〉p;L p;L〈0|

m−∏
j=1

bp(βj)

m+∏
i=1

ap(θi) , (4.8)

without any restriction. We can now insert the complete set of states (4.8) into the two-

point function (4.5). Employing the action of the translation operator on energy eigen-

states, and the finite-volume form factor formulae (3.44), we arrive to

Fp
(
N±p , Ñ

±
p

)
=

∞∑
m±=0

∑
{J±}

1

m+!m−!

e
i`
[∑m+

i=1 P (θi)+
∑m−
i=1 P (βi)−(Ñ+

p +Ñ−p )P (θ)
]

[√
LE(θ)

]N+
p +N−p +Ñ+

p +Ñ−p ∏m+

i=1 LE(θi)
∏m−

i=1 LE(βi)

× F p,n
N−p +N+

p +m−+m+
(θ̂, . . . , θ̂︸ ︷︷ ︸

N−p

, θ1, . . . , θm+ ; θ̂, . . . , θ̂︸ ︷︷ ︸
N+
p

, β1, . . . , βm−)

× Fn−p,n
Ñ−p +Ñ+

p +m−+m+
(θ, . . . , θ︸ ︷︷ ︸

Ñ+
p

, β̂1, . . . , β̂m− ; θ, . . . , θ︸ ︷︷ ︸
Ñ−p

, θ̂1, . . . , θ̂m+) , (4.9)

where x̂ := x+ iπ. As seen earlier in (3.33) the form factors above are only non vanishing if

N−p +m+ = N+
p +m− and Ñ−p +m+ = Ñ+

p +m− , (4.10)
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which is equivalent to N+
p −Np

− = m+−m− = Ñ+
p −Ñp

−
. Note that the order of rapidities

is chosen as in the definition (3.33) (this is just for convenience as for free bosons the order

is irrelevant).

We will now take the expression (4.9) and evaluate its leading large-volume behaviour.

There are two equivalent ways of doing this which we present below.

4.1.1 Computation by exact summation over quantum numbers

For large volume, the density factors in the denominator of (4.9) become large. However,

if some rapidity of the intermediate states approaches the rapidity of the excited state, the

kinematic poles of the form factors will give rise, due to (3.47), to positive powers of the

volume. The powers in the numerator and denominator will combine to give an overall

power of the volume L. In this section we will show that the largest such power is zero.

Therefore, as L → ∞ the two-point function (4.9) tends to a volume-independent value.

There are three different cases we should investigate for a given rapidity θi or βi. Recall

that from (3.33) each of the form factors above consists of a large sum of products over

two-particle form factors.

The first case of interest occurs when we consider the contribution to (4.9) of those

terms where the same rapidity θi is paired up with the rapidity θ (in the Wick-contraction

sense of (3.33)) in a two-particle form factor coming from each of the form factors in (4.9).

If θi ∼ θ, then the form factor product above will be dominated by the contribution around

the corresponding kinematic poles and we can write

F p,n
N−p +N+

p +m−+m+
(. . . , θ1, . . . , θm+ ; θ̂, . . . , θ̂︸ ︷︷ ︸

N+
p

, . . . )

∼ N+
p f

n
p (θi − θ̂)F p,nN−p +N+

p +m−+m+−2
(. . . , θ1, . . . , θ̌i, . . . , θm+ ; θ̂, . . . , θ̂︸ ︷︷ ︸

N+
p −1

, . . . ) , (4.11)

and, similarly

Fn−p,n
Ñ−p +Ñ+

p +m−+m+
(θ, . . . , θ︸ ︷︷ ︸

Ñ+
p

, . . . ; . . . , θ̂1, . . . , θ̂m+)

∼ Ñ+
p f

n
n−p(θ − θ̂i)F

n−p,n
Ñ−p +Ñ+

p +m−+m+−2
(θ, . . . , θ︸ ︷︷ ︸
Ñ+
p −1

, . . . ; . . . , θ̂1, . . . ,
ˇ̂
θi, . . . θ̂m+ , . . .) , (4.12)

where x̌ means that the variable x is no longer present in the form factor. Above we

kept implicit the dependence of the form factors on sets of rapidities not involved in the

contraction. The combinatorial factors N+
p and Ñ+

p come from the many pairings of θi
with θ as per the permutation in (3.33).

The leading large-volume term from the summation over the quantum number J+
i ,

pertaining to the rapidity θi, is∑
J+
i ∈Z

fnp (θi − θ̂)fnn−p(θ − θ̂i)ei`(P (θi)−P (θ))

cosh θ cosh θi
∼ (mL)2

∑
J+
i ∈Z

sin2 πp
n

π2

e2πir(J+
i −I+

p
n

)

(J+
i − I + p

n)2

= (mL)2gnp (r) , (4.13)
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where, as before, r = `
L and we used the Bethe-Yang equations (3.40) and (3.41) to

express the rapidites in terms of the associated quantum numbers. Here gnp (r) are the

functions (3.48). Note that since the sum is over all integers, the value of the integer I has

no effect on the outcome of the sum. In other words, the result is independent of the value

of the rapidity θ. Similarly, for the case when some βi is paired up with θ in both the form

factors we get∑
J−i ∈Z

fnp (θ̂ − βi)fnn−p(β̂i − θ)ei`(P (βi)−P (θ))

cosh θ coshβi
∼ (mL)2

∑
J−i ∈Z

sin2 πp
n

π2

e2πir(J−i −I−
p
n

)

(J−i − I −
p
n)2

= (mL)2gn−p(r) . (4.14)

As a consequence, if a rapidity is paired up with θ in both the form factors, the summation

gives an (mL)2 factor.

The second case of interest occurs when none of the rapidities θi, βi are paired up in

any of the form factors with θ. In this case, the large volume limit is regular, there is

no kinematic singularity playing a role, and we can replace the summation over quantum

numbers by integration∑
J+
i ∈Z

∼ mL
∫

dθi and
∑
J−i ∈Z

∼ mL
∫

dβi . (4.15)

This operation generates additional factors of order mL for each integral.

Finally, there is a third case which is a mixture of the previous two, namley when θi or

βi is paired up with θ in one of the form factors but with a different rapidity in the other.

Due to the shifts in the Bethe-Yang equations (3.40), (3.41) and (3.42), the summation is

not singular at any value of the volume, and it can be rewritten with principal value integral∑
J+
i

∼ mLP

∫
θ

dθi and
∑
J−i

∼ mLP

∫
θ

dβi , (4.16)

giving once more an mL factor.

By successively using the expansion (4.11), (4.12) with the summations (4.13)

and (4.14) we can calculate the overall leading large-volume contribution to the two-point

function. Indeed, in appendix B we show that this leading large-volume contribution is of

order L0 and is obtained exactly when N±p = Ñ±p with N±p ≤ m±, and N+
p (N−p ) inter-

mediate rapidities θi (βi) are paired up with θ in both form factors. Each pairing of the

rapidities gives rise to a sum of the type (3.48) with the remaining, unpaired rapidities

giving rise to form factors dependant on a smaller set of variables. Explicitly

Fp
(
N±p ,N

±
p

)
=
∞∑

q±=0

∑
{J±}∈Z

1

(q++N+
p )!(q−+N−p )!

e
i`

[∑q+

i=1P (θi)+
∑q−
i=1P (βi)

]
∏q+

i=1LE(θi)
∏q−

i=1LE(βi)

×F p,n
q++q−(θ1, . . . ,θq+ ;β1, . . . ,βq−)Fn−p,n

q++q−(β̂1, . . . , β̂q− ; θ̂1, . . . , θ̂q+)

×(N+
p !)2(N−p !)2

(
q++N+

p

N+
p

)(
q−+N−p

N−p

)[
gnp (r)

]N+
p
[
gn−p(r)

]N−p , (4.17)
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where q± = m± − N±p is the number of remaining intermediate state rapidities after the

contractions. The factorials in the denominator are just m±!, that came from the complete

set of state insertion. Out of m± original intermediate rapidities, N±p are paired up with

the rapidity θ in the sense described earlier. All particular pairing choices are equivalent to

each other under relabelling of the rapidities, as they are all integrated over, that is counted

by the binomial factors. The N±p ! combinatorial factors arise from the pairing of the chosen

intermediate rapidities to θ in the form factors, as explained in (4.11) and (4.12). Once

all possible contractions with a rapidity θ have been carried out, two form factors will still

remain depending on q+ + q− rapidities. In addition, we know from (3.33) that only form

factors with q+ = q− = q are non-vanishing. Simplifying we obtain

Fp
(
N±p , N

±
p

)
= N+

p !N−p !
[
gnp (r)

]N+
p
[
gn−p(r)

]N−p ∞∑
p=0

1

(q!)2

∑
{J±}∈Z

ei`
∑q
i=1(P (θi)+P (βi))∏q

i=1 L
2E(θi)E(βi)

× F p,n2q (θ1, . . . , θq;β1, . . . , βq)F
n−p,n
2q (β̂1, . . . , β̂q; θ̂1, . . . , θ̂q) . (4.18)

Aside from the prefactor N+
p !N−p !

[
gnp (r)

]N+
p
[
gn−p(r)

]N−p , the expression above ex-

actly reproduces the finite-volume vacuum two-point function in the given sector, i.e.

p,L〈0|Tp(0)T̃p(`)|0〉p,L. As a consequence, our end result for the finite-volume two-point

function can be expressed as

L〈1|T (0)T̃ (`)|1〉L
L〈0|T (0)T̃ (`)|0〉L

=
∑
{N±}

|Cn({N±})|2
n∏
p=1

∏
ε=±

(N ε
p!)
(
gnεp(r)

)Nε
p +O(L−1) . (4.19)

In particular, for p = n, the factor reproduces the norm of the finite-volume state as

expected, since g±n(r) = 1 and n;L〈0|Tn(0)T̃n(`)|0〉n;L = 1.

4.1.2 Computation by contour integration

Another way of calculating the leading large-volume term of the two-point function in a

given sector (4.9) is to transform the summation over quantum numbers of the intermediate

states into contour integrals. This approach not only leads to the same result (4.19) but

seems more amenable to generalization to interacting theories, something we would like to

attempt in future work. Consider generic sums of the form

∑
J+
i ∈Z

h+(θi, . . .)

LE(θi)
=
∑
J+
i

∫
C
J+
i

dθ̃i
2π

h(θ̃i, . . . )

ei(LP (θ̃i)− 2πp
n

) − 1
, (4.20)

and ∑
J−i ∈Z

h−(βi, . . .)

LE(βi)
=
∑
J−i

∫
C
J−
i

dβ̃i
2π

h(β̃i, . . . )

ei(LP (β̃i)+
2πp
n

) − 1
, (4.21)

where h± are functions that are regular at the positions θi, βi, respectively and CJ±i is a

small contour encircling θi, βi with positive orientation, and the denominators inside the

integrals are the exponential form of the Bethe-Yang equations (3.41) and (3.42), that is
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zero at every solution of the equations. From now onwards we will omit the tilde on the

integration variables.

Transforming every sum in (4.9) into a contour integral we obtain the expression

Fp
(
N±p , Ñ

±
p

)
=

∞∑
m±=0

1

m+!m−!

1[√
LE(θ)

]N+
p +N−p +Ñ+

p +Ñ−p

m+∏
i=1

∑
J+
i ∈Z

∫
C
J+
i

dθi
2π



×

m−∏
k=1

∑
J−k ∈Z

∫
C
J−
k

dβk
2π

 e
i`
[∑m+

i=1 P (θi)+
∑m−
i=1 P (βi)−(Ñ+

p +Ñ−p )P (θ)
]

∏m+

i=1[ei(LP (θi)− 2πp
n

) − 1]
∏m−

i=1[ei(LP (βi)+
2πp
n

) − 1]

× F p,n
N+
p +N−p +m++m−

(θ̂, . . . , θ̂︸ ︷︷ ︸
N−p

, θ1, . . . , θm+ ; θ̂, . . . , θ̂︸ ︷︷ ︸
N+
p

, β1, . . . , βm−)

× Fn−p,n
Ñ+
p +Ñ−p +m++m−

(θ, . . . , θ︸ ︷︷ ︸
Ñ+
p

, β̂1, . . . , β̂m− ; θ, . . . , θ︸ ︷︷ ︸
Ñ−p

, θ̂1, . . . , θ̂m+) . (4.22)

Our next step is to combine the small contours around the Bethe-Yang solutions into a

contour encircling the real axis for each variable. While doing so, the contour will cross

the kinematic poles of the form factors, whenever θi = θ or βi = θ for some i, and we need

to account for the residues of these poles.

It is easy to see from (3.28), that the contribution from residues at θ coming from a

single kinematic singularity is of order L0 in the volume and therefore they will be strongly

suppressed by the power of L in the denominator of (4.22). However, if we consider terms

where both form factors have a kinematic pole at the same location θi = θ or βi = θ, then

we have to calculate the residue of a second order pole, and this can change the order in

the volume. Let us calculate this residue for a particular rapidity θi

−
∫
C
J+
i

dθi
2π

ei`(P (θi)−P (θ))

ei(LP (θi)− 2πp
n

) − 1
F p,n
N+
p +N−p +m++m−

(. . . , θi, . . . ; θ̂, . . . , θ̂︸ ︷︷ ︸
N+
p

, . . . )

× Fn−p,n
Ñ+
p +Ñ−p +m++m−

(θ, . . . , θ︸ ︷︷ ︸
Ñ+
p

, . . . ; . . . , θ̂i, . . . ) . (4.23)

Recall that here, as earlier hatted variables are variables shifted by iπ. From the kinematic

residue equation (3.28) it follows that near the kinematic poles the integrand may be

approximated as

−
∫
C
J+
i

dθi
2π

ei`(P (θi)−P (θ))

ei(LP (θi)− 2πp
n

) − 1

−iN+
p

(
1− e−

2πip
n

)
θi − θ

−iÑ+
p

(
1− e

2πip
n

)
θ − θi

× F p,n
N+
p +N−p +m++m−−2

(. . . , θ̌i, . . . ; θ̂, . . . , θ̂︸ ︷︷ ︸
N+
p −1

, . . . )

× Fn−p,n
Ñ+
p +Ñ−p +m++m−−2

(θ, . . . , θ︸ ︷︷ ︸
Ñ+
p −1

, . . . ; . . . ,
ˇ̂
θi, . . . ) . (4.24)
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Evaluating the corresponding residue we obtain

− iN+
p Ñ

+
p

(
1− e

2πip
n

)(
1− e−

2πip
n

) d

dθi

(
ei`(Pθi)−P (θ))

ei(LP (θi)− 2πp
n

) − 1

)
θi=θ

× F p,n
N+
p +N−p +m++m−−2

(. . . , θ̌i, . . . ; θ̂, . . . , θ̂︸ ︷︷ ︸
N+
p −1

, . . . )

× Fn−p,n
Ñ+
p +Ñ−p +m++m−−2

(θ, . . . , θ︸ ︷︷ ︸
Ñ+
p −1

, . . . ; . . . ,
ˇ̂
θi, . . . ) , (4.25)

where the checked variables are absent. Simplifying, the final result is

LE(θ)N+
p Ñ

+
p g

n
p (r)F p,n

N+
p +N−p +m++m−−2

(. . . , θ̌i, . . . ; θ̂, . . . , θ̂︸ ︷︷ ︸
N+
p −1

, . . . )

× Fn−p,n
Ñ+
p +Ñ−p +m++m−−2

(θ, . . . , θ︸ ︷︷ ︸
Ñ+
p −1

, . . . ; . . . ,
ˇ̂
θi, . . . ) , (4.26)

where we also used the Bethe-Yang equation (3.40), and the N+
p , Ñ+

p combinatorial factors

are the result of the pairing of θi with the θs. It is important to note, that the result is

proportional to the volume, and also to the function gnp (r) introduced in (3.48). An entirely

similar computation, for a rapidity βi gives the result

−
∫
C
J−
i

dβi
2π

ei`(P (βi)−P (β))

ei(LP (βi)+
2πp
n

) − 1
F p,n
N+
p +N−p +m++m−

(θ̂, . . . , θ̂︸ ︷︷ ︸
N−p

, . . . ; . . . , βi, . . . )

× Fn−p,n
Ñ+
p +Ñ−p +m++m−

(. . . , β̂i, . . . ; θ, . . . , θ︸ ︷︷ ︸
Ñ−p

, . . . )

= LE(θ)N−p Ñ
−
p g

n
−p(r)F

p,n

N+
p +N−p +m++m−−2

(θ̂, . . . , θ̂︸ ︷︷ ︸
N−p −1

, . . . ; . . . , β̌i, . . . )

× Fn−p,n
Ñ+
p +Ñ−p +m++m−−2

(. . . ,
ˇ̂
βi, . . . ; θ, . . . , θ︸ ︷︷ ︸

Ñ−p −1

, . . . ) . (4.27)

As a consequence of these residues, we get the leading large-volume contribution to the

two-point function, if we pick up the largest possible number of residues of second order

poles which are enveloped as the contour is deformed. The maximum number of second

order poles is min(N±p , Ñ
±
p ), that implies, that m± ≥ max(N±p , Ñ

±
p ). These terms have an

emLR dependence on the volume with

R = min(N+
p , Ñ

+
p ) + min(N−p , Ñ

−
p )−

N+
p +N−p + Ñ+

p + Ñ−p
2

. (4.28)

As argued more generally in appendix B (the formula above can be seen as an especializa-

tion of equation (B.4) in appendix B) the leading contribution is obtained when N±j = Ñ±j ,
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and in that case R = 0. The leading large-volume term of the two-point function then

becomes

Fp
(
N±p ,N

±
p

)
=

∞∑
q±=0

(N+
p !)2(N−p !)2

(q++N+
p

N+
p

)(q−+N−p
N−p

)
(q++N+

p )!(q−+N−p )!

[
gnp (r)

]N+
p
[
gn−p(r)

]N−p  q+∏
i=1

∫
C�

dθi
2π


×

 q−∏
i=1

∫
C�

dβi
2π

 e
i`

(∑q+

i=1P (θi)+
∑q−
i=1P (βi)

)
∏p+

i=1(ei(LP (θi)− 2πp
n

)−1)
∏q−

i=1(ei(LP (βi)+
2πp
n

)−1)

×F p,n
q++q−(θ1, . . . ,θq+ ;β1, . . . ,βq−)Fn−p,n

q++q−(β̂1, . . . , β̂q− ; θ̂1, . . . , θ̂q+) , (4.29)

where C� denotes the contour encircling the real axis, q± = m±−N±p , and the combinatorial

factors came from counting the various choices of intermediate rapidities giving rise to

double pole residue integrals. Simplifying the combinatorial factors and noticing that

q+ = q− = q for the form factors above to be non-vanishing, we can easily factor out

the vacuum two-point function from the expression above and we obtain once more the

result (4.19).

4.1.3 Example: 2nd Rényi entropy of a single-particle excitation

Let us illustrate the general methods above with the simplest example: we compute the

2nd Rényi entropy, i.e n = 2, of a single-particle excited state. From (4.1) we can easily

write down the state

|1〉L =
1

4
a
†
2(θ)a†2(θ)|0〉2;L +

1

4
b
†
2(θ)b†2(θ)|0〉2;L +

1

2
a
†
2(θ)b†2(θ)|0〉2;L

− 1

4
a
†
1(θ)a†1(θ)|0〉1;L −

1

4
b
†
1(θ)b†1(θ)|0〉1;L −

1

2
a
†
1(θ)b†1(θ)|0〉1;L

=
1

4

[
(a†2(θ) + b†2(θ))2 − (a†1(θ) + b†1(θ))2

]
|0〉L , (4.30)

and identify the nonzero coefficients C2(N+
1 , N

−
1 , N

+
2 , N

−
2 ) of the expansion (4.2) as

C2(2, 0, 0, 0) = −1

4
,C2(0, 0, 2, 0) =

1

4
,

C2(0, 2, 0, 0) = −1

4
,C2(0, 0, 0, 2) =

1

4
,

C2(1, 1, 0, 0) = −1

2
,C2(0, 0, 1, 1) =

1

2
. (4.31)

These can be directly plugged into (4.19)

lim
L→∞

L〈1|T (0)T̃ (rL)|1〉L
L〈0|T (0)T̃ (`)|0〉L

=
2!

16

[
g2

1(r)
]2

+
2!

16

[
g2
−1(r)

]2
+

1

4
g2

1(r)g2
−1(r)

+
2!

16

[
g2

2(r)
]2

+
2!

16

[
g2
−2(r)

]2
+

1

4
g2

2(r)g2
−2(r)

=
1

2
+

1

2
[g2

1(r)]2 = r2 + (1− r)2 , (4.32)
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where we used the fact that g2
2(r) = g2

−2(r) = 1 and g2
1(r) = g2

−1(r) = 1 − 2r. Therefore

the difference of Rényi entropies is

∆S1
2(r) = − log(r2 + (1− r)2) , (4.33)

which agrees with the expression (2.1) for n = 2. This is also exactly the second Rényi

entropy of the two qubit state (2.13).

4.2 Multi-particle excited states

In this section we adapt the techniques presented for the one-particle excited state case to

more general states involving both distinct and equal rapidities. As we will see the essential

ideas are the same but the state is more involved which makes the combinatorics of the

problem more complicated.

4.2.1 Distinct rapidities

Let us denote a general k-particle state (3.19) involving only distinct rapidity excitations

as | 1, 1, . . . , 1︸ ︷︷ ︸
k

〉L. It can be expressed similarly as (4.2) in the form

| 1, 1, . . . , 1︸ ︷︷ ︸
k

〉L =
k∏
q=1

∑
{Nq,±}

Cn
(
{N q,±}

) n∏
p=1

[
a
†
p(θq)

]Nq,+
p
[
b
†
p(θq)

]Nq,−
p

|0〉L , (4.34)

where the Cn ({N q,±}) coefficients are all identical for each value of q (the state is invariant

under relabelling of the rapidities). For fixed q they are exactly the same as for the one-

particle state. We have the following restrictions for the integers

n∑
p=1

∑
ε=±

N q,ε
p = n , (4.35)

for all q. The two-point function takes the form

L〈1, 1, . . . , 1|T (0)T̃ (`)|1, 1, . . . , 1〉L (4.36)

=

 k∏
q=1

∑
{Nq,±}

∑
{Ñq,±}

[Cn({N q,±})]∗Cn({Ñ q,±})

 n∏
p=1

Fp
(
{N q,±

p }, {Ñ q,±
p }

)
, (4.37)

where

Fp
(
{N q,±

p }, {Ñ q,±
p }

)
(4.38)

= p;L〈0|

 k∏
q=1

(ap(θq))
Nq,+
p (bp(θq))

Nq,−
p

 Tp(0)T̃p(`)

 k∏
q=1

(b†p(θq))
Ñq,−
p (a†p(θq))

Ñq,+
p

 |0〉p;L .
To find the leading contribution in the volume to Fp

(
{N q,±

p }, {Ñ q,±
p }

)
, we follow the

same steps as in section 4.1. As seen in subsections 4.1.1 and 4.1.2, we need to focus on
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the contributions arising when some intermediate rapidity approaches one of the rapidities

of the excited state in both of the form factors. In other words, we need to pair up the

intermediate rapidities with the same rapidity of the excited state from the in- and out-

states. This mechanism singles out the leading large-volume contribution as corresponding

to N q,±
p = Ñ q,±

p for every q. Carrying out the calculation, the combinatorial factors simplify

to yield the result

Fp
(
{N q,±

p }, {Ñ q,±
p }

)
=

k∏
q=1

N q,+
p !N q,−

p !
[
gnp (r)

]Nq,+
p
[
gn−p(r)

]Nq,−
p

p;L〈0|T (0)T̃ (`)|0〉p;L +O(L−1) . (4.39)

As a consequence, in the infinite volume limit, the result for a state involving k distinct

rapidities factorizes into k single-particle state contributions. That is

lim
L→∞

L〈1,1, . . . |T (0)T̃ (rL)|1,1, . . .〉L
L〈0|T (0)T̃ (`)|0〉L

=

k∏
q=1

 ∑
{Nq,±}

|Cn({N q,±})|2
n∏
p=1

∏
ε=±

N q,ε
p !
[
gnεp(r)

]Nq,ε
p


= lim
L→∞

[
L〈1|T (0)T̃ (rL)|1〉L
L〈0|T (0)T̃ (`)|0〉L

]k
. (4.40)

This in turn leads to the relation

∆S1,1,...
n (r) =

k∑
q=1

∆S1
n(r) = k∆S1

n(r) , (4.41)

which is a special case of the formula (2.8).

4.2.2 Coinciding rapidities

The simple result (4.41) no longer holds if all or some rapidities of the excited state coincide.

Let us consider a k-particle excited state where all the rapidities coincide, and are denoted

by θ. In this case the norm of the k-particle state as written in (4.34) is k!n, thus the

normalization needs to be appropriately modified. The properly normalized state can then

be written as

|k〉L =
1√
k!
n

∑
{N±}

Dk
n

(
{N±}

) n∏
p=1

[
a
†
p(θ)

]N+
p
[
b
†
p(θ)

]N−p
|0〉L , (4.42)

which looks very much like the one-particle state (4.2). This is not too surprising as both

states depend on a single rapidity variable. The coefficients Dk
n ({N±}) are related to the

coefficients Cn ({N±}) of the previous subsections by

Dk
n({N±}) =

k∏
q=1

∑
{Nq,±}

Cn({N q,±})
n∏
p=1

∏
ε=±

δNε
p,
∑k
q=1N

q,ε
p
. (4.43)
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This relation is of practical use when evaluating our formulae with the help of algebraic

manipulation software. The two point function is then

L〈k|T (0)T̃ (`)|k〉L =
1

(k!)n

∑
{N±}

∑
{Ñ±}

[Dk
n({N±})]∗Dk

n({Ñ±})
n∏
p=1

Fp
(
N±p , Ñ

±
p

)
, (4.44)

where Fp is the same function as for the one-particle case (4.5), but now the integers N±p
obey the selection rule

n∏
p=1

∏
ε=±

N ε
p = nk , (4.45)

which depends on the number of excitations k, and the same condition holds for Ñ±p . The

leading large-volume term of the two-point function then becomes

lim
L→∞

L〈k|T (0)T̃ (rL)|k〉L
L〈0|T (0)T̃ (rL)|0〉L

=
1

(k!)n

∑
{N±}

|Dk
n({N±})|2

n∏
p=1

∏
ε=±

(
N ε
p

)
!
[
gnεp(r)

]Nε
p . (4.46)

Explicit evaluation of this product for specific values of k and n then leads to the result (2.4).

4.2.3 The general case

The techniques we have just presented for states of distinct and equal rapidities can be

easily adapted to deal with more general states: states where some rapidities are equal and

other distinct. As expected, the EE difference for a multi-particle mixed state is a sum

over the EEs of simpler states associated with groups of coinciding rapidities. This result

is expressed by the formula (2.8).

Regarding the results of this section overall, it is worth noting that we do not yet

have closed formula for coefficients Cn({N±}) and Dk
n({N±}) for general n, however it is

straightforward to calculate them systematically on the computer and we have done this

up to n = 6 for two coinciding rapidities and up to smaller values of n as the number of

coinciding rapidities was increased to k = 6. Once the coefficients are known we can easily

evaluate formula (4.46) for several values of k, and we observe that the results are always

polynomials that have r ↔ 1− r symmetry as expected. It was by working out such par-

ticular examples that we were eventually able to establish the general pattern (2.1)–(2.7).

4.2.4 Example: 2nd Rényi entropy of a two-particle excitation

In order to make the results above more concrete, we will now consider the EE of two-

particle excited states both with distinct and with equal rapidities. The non-trivial part

of the computation is in the characterization of the states, namely the computation of the

coefficients Cn({N±}) and Dk
n({N±}) as arising in the formulae (4.34) and (4.46). Once

these are know the EEs can be systematically obtained for any state.

Let us consider a two-particle excited state with distinct rapidities which we represent

as |1, 1〉L. From the general expression (3.21) it is easy to see that

|1, 1〉L =
1

4

[
(a†2(θ1) + b†2(θ1))2 − (a†1(θ1) + b†1(θ1))2

]
× 1

4

[
(a†2(θ2) + b†2(θ2))2 − (a†1(θ2) + b†1(θ2))2

]
|0〉L . (4.47)
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The state can be fully characterized by the coefficients C2({N q,±}) with q = 1, 2 and these

give two copies of the coefficients (4.31) of the one-particle state (4.30). Substituting these

values into the formula we obtain exactly the square of (4.32), that is

lim
L→∞

L〈1, 1|T (0)T̃ (rL)|1, 1〉L
〈0|T (0)T̃ (`)|0〉

=

[
1

2
+

1

2
[g2

1(r)]2
]2

=
[
r2 + (1− r)2

]2
. (4.48)

Consider instead a two-particle excited state of equal rapidities. The state may be written as

|2〉L =
1

2!

[
1

4

[
(a†2(θ) + b†2(θ))2 − (a†1(θ) + b†1(θ))2

]]2

|0〉L . (4.49)

The coefficients D2
2(N+

1 , N
−
1 , N

+
2 , N

−
2 ) entering the formula (4.46) can be read off by either

expanding (4.49) and looking at the coefficients of all distinct states in the ensuing linear

combination, or by using (4.43)

D2
2(4, 0, 0, 0) =

1

16
, D2

2(0, 4, 0, 0) =
1

16
, D2

2(0, 0, 4, 0) =
1

16
, D2

2(0, 0, 0, 4) =
1

16
,

D2
2(2, 0, 2, 0) = −1

8
, D2

2(2, 0, 0, 2) = −1

8
, D2

2(0, 2, 2, 0) = −1

8
, D2

2(0, 2, 2, 0) = −1

8
,

D2
2(3, 1, 0, 0) =

1

4
, D2

2(1, 3, 0, 0) =
1

4
, D2

2(0, 0, 3, 1) =
1

4
, D2

2(0, 0, 1, 3) =
1

4
,

D2
21, 1, 2, 0) = −1

4
, D2

2(1, 1, 0, 2) = −1

4
, D2

2(2, 0, 1, 1) = −1

4
, D2

2(0, 2, 1, 1) = −1

4
,

D2
2(2, 2, 0, 0) =

3

8
, D2

2(0, 0, 2, 2) =
3

8
, D2

2(1, 1, 1, 1) = −1

2
. (4.50)

Plugging the coefficients into (4.46) leads to

lim
L→∞

L〈2|T (0)T̃ (`)|2〉L
L〈0|T (0)T̃ (`)|0〉L

=
1

2!2

{(
1

16

)2

4!
([
g2

1(r)
]4

+
[
g2
−1(r)

]4
+
[
g2

2(r)
]4

+
[
g2
−2(r)

]4)
+

(
3

8

)2

2!2!
([
g2

1(r)
]2 [

g2
−1(r)

]2
+
[
g2

2(r)
]2 [

g2
−2(r)

]2)
+

(
1

8

)2

2!2!
([
g2

1(r)
]2

+
[
g2
−1(r)

]2)([
g2

2(r)
]2

+
[
g2
−2(r)

]2)
+

(
1

4

)2

3!
([
g2

1(r)
]3
g2
−1(r)+g2

1(r)
[
g2
−1(r)

]3)
+

(
1

4

)2

3!
([
g2

2(r)
]3
g2
−2(r)+g2

2(r)
[
g2
−2(r)

]3)
+

(
1

4

)2

2!g2
1(r)g2

−1(r)
([
g2

2(r)
]2

+
[
g2
−2(r)

]2)
+

(
1

4

)2

2!
([
g2

1(r)
]2

+
[
g2
−1(r)

]2)
g2

2(r)g2
−2(r)

+

(
1

2

)2

g2
1(r)g2

−1(r)g2
2(r)g2

−2(r)

}
=

3

8
+

3

8

[
g2

1(r)
]4

+
1

4

[
g2

1(r)
]2

= r4+4r2(1−r)2+(1−r)4 , (4.51)
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where the last line follows from noting once more that g2
2(r) = g2

−2(r) = 1 and g2
1(r) =

g2
−1(r) = 1− 2r. This then gives the expression

∆S2
2(r) = − log(r4 + 4r2(1− r)2 + (1− r)4) . (4.52)

4.3 Numerical results: the harmonic chain

The formulae (2.1)–(2.7) are somewhat surprising for their simplicity and their qubit and

semiclassical interpretations, especially as that they emerge from an exact, involved QFT

computation. It is therefore important to convince ourselves that this is indeed the be-

haviour of entanglement that emerges when explicitly carrying out the scaling and thermo-

dynamic limit of a discrete quantum mechanical system. In the free boson case the ideal

model on which to test our formulae is the harmonic chain.

The numerical method that we have employed is a wave functional method and we

present the details in appendix A. This is a method based on the exact inversion of a

matrix, for which we have simply used Gauss-Jordan elimination with double-precision

floating numbers (relative error 10−19). Numerical disagreement with the QFT theoret-

ical predictions (2.1)–(2.7) is therefore dominated not by computational error, but by

physical parameters. The domain of applicability of (2.1)–(2.7) is characterized by the

condition [32]:

min

(
m−1,

2π

P

)
� min(`, L− `) , (4.53)

where P is the largest momentum of any of the excitations in the state |Ψ〉L (2π
P can

be interpreted as the De Broglie wave length associated to that particular excitation),

and ξ = m−1 is the system’s correlation length. The numerical calculation is performed

for a finite-volume lattice, and how near the limit (4.53) is reached determines how well

formulae (2.1)–(2.7) are reproduced. Currently, however, we do not know how to assess

theoretically the corrections to our predictions away from this exact limit.

In all cases studied here, there is excellent agreement between the numerical compu-

tation at large enough volumes and region lengths L, ` and small enough lattice spacings

∆x (towards the large-volume scaling limit L, `� m−1 � ∆x described by massive QFT),

and the analytical results (2.1)–(2.7).

The condition (4.53), as explained in [32], implies that the results (2.1)–(2.7) are in

fact expected to be correct in a regime of parameters that goes beyond the universal scaling

regime of QFT. This includes large momenta regions, beyond the low-energy QFT regime,

and holds independently of the value of the lattice spacing ∆x. Below we present some

large-momenta results that confirm this.

In figure 4 a series of the Rényi entropies (2.1) is presented in the case of a single particle

excitation, k = 1. In the cases n = 2, 3, 4, 5, 6, 11, both the analytic (continuous curves) and

numerical (dots, squares, triangles etc.) results are presented. All curves have a single max-

imum at r = 1
2 . The numerical results are in good agreement with the analytic results, with

relative differences of less than 10−7. Numerical results are obtained for mL = 5 and with

the largest momentum allowed by the chosen lattice spacing (∆x = 0.01), which is in the
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Figure 4. Comparison between analytic results (continuous curves) and numerical values (dots)

of the Rényi entropies for a single particle excited state. We show the Rényi entropies from n = 2

(red) to n = 11 (orange), with momentum P = 100π.
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Figure 5. Comparison between analytic results (continuous curves) and numerical values (dots)

of the Rényi entropies for two particle states with equal and distinct momenta. We show the 2nd

Rényi entropies with distinct momenta given by P1 ≈ 30, P2 ≈ 45 (squares, red curve) and with

equal momenta P1 = P2 ≈ 50 (dots, blue curve). Additional choices of the momenta are explored

in tables 1 and 2.

middle of the Brillouin zone. Note that this is much beyond the low-energy, universal scaling

regime of QFT, and thus confirms the wider scope of the result (2.1) as described by (4.53).

In figure 5 we show the 2nd Rényi entropy for a two-particle excited state. The outer-

most curve is

∆S1,1
2 (r) = −2 log(r2 + (1− r)2) . (4.54)

This is twice the second Rényi entropy of a single excitation. The squares are the numerical

values for volume L = 10, m = 1 and a particular choice of relatively large, distinct

momenta. The inner-most curve (with the lowest maximum) is the function (2.4) with

k = 2, that is

∆S2
2 = − log(r4 + 4r2(1− r)2 + (1− r)4) . (4.55)

– 32 –



J
H
E
P
1
0
(
2
0
1
8
)
0
3
9

r 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

∆S1,1
2 (r) 0 0.20 0.40 0.59 0.77 0.94 1.09 1.21 1.31 1.37 1.39

P1 ≈ 0.6, P2 ≈ 2 0 0.21 0.37 0.53 0.70 0.87 1.03 1.18 1.29 1.35 1.37

Table 1. The difference of 2nd Rényi entropies of a two-particle excited state with distinct mo-

menta. The second row shows the exact values of the function (4.54). The third row shows the

numerical values for the given momenta. The other parameters are m = 1, L = 10 and ∆x = 0.01.

We see that agreement is not as good as for the data in figure 5, especially for small `. This is due

to momenta being too small. More precisely min(2π/P1, 2π/P2, ξ) = 1 which is larger than some

of the values of ` considered, a regime in which we do not expect our formulae to hold. However,

even for such small momenta the disagreement with (4.54) is at worse around 10%.

r 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

∆S2
2(r) 0 0.19 0.37 0.53 0.67 0.77 0.86 0.91 0.95 0.97 0.98

P1 = P2 ≈ 2 0 0.18 0.35 0.51 0.66 0.78 0.85 0.91 0.95 0.97 0.98

P1 = P2 ≈ 10 0 0.20 0.37 0.53 0.67 0.77 0.86 0.91 0.95 0.97 0.98

Table 2. The difference of 2nd Rényi entropies of two-particle excited states with equal momenta.

The second row shows the exact values of the function (4.55). The third and fourth rows show

numerical values for the given momenta. The other parameters are m = 1, L = 10 and ∆x = 0.01.

For P1 = P2 = 2 agreement is poorer, especially for small ` due to the momenta being too small.

More precisely min(2π/P1, ξ) = 1 which is larger than some of the values of ` considered, a regime

where we do not expect our formulae to hold. However the disagreement with (4.55), even for such

small momenta is relatively small. For P1 = P2 = 10 (as for 50, in figure 5) agreement is excellent

for all values of r.

This describes the entanglement of a two-particle excited state with particles of the same

momentum. Numerical results are presented with L = 10, m = 1 and relatively large,

equal momenta. In both cases, the numerical results are again in good agreement with the

analytic results, with relative differences of less than 10−4 in the former case, and 10−3 in

the latter. In both cases, the momenta are high enough so as to approach the limit (4.53),

yet not too high so as to stay well within the QFT regime.

It is interesting to investigate how the chosen values of the momenta affect the accuracy

of the fit. Table 1 shows an additional example for distinct, small momenta P1 ≈ 0.6

and P2 ≈ 2, and table 2 shows additional values for equal momenta P1 = P2 = 2 and

P1 = P2 = 10. Relatively good agreement is obtained even for such small momenta, with

differences of less than 10%.

In figure 6 we present the 2nd Rényi entropy of three kinds of three-particle excited

states. The outer-most curve is three times the function (2.1) with n = 2,

∆S1,1,1
2 (r) = −3 log(r2 + (1− r)2) , (4.56)

The middle curve is the function

∆S1
2(r) + ∆S2

2(r) , (4.57)
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Figure 6. 2nd Rényi entropies of three particle states for various choices of the momenta: P1 ≈ 10,

P2 ≈ 20, P3 ≈ 30 (squares, red curve), P1 = P2 ≈ 30, P3 ≈ 50 (circles, blue curve) and P1 = P2 =

P3 ≈ 50 (triangles, light brown curve).
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Figure 7. 2nd Rényi entropies of four particle states for various choices of the momenta: P1 ≈ 10,

P2 ≈ 20, P3 ≈ 30, P4 ≈ 40 (squares, black curve), P1 = P2 ≈ 30, P3 = P4 ≈ 50 (circles, blue curve),

P1 = P2 = P3 ≈ 30, P4 = 50 (diamonds, red curve), and P1 = P2 = P3 = P4 ≈ 50 (triangles, green

curve). In all cases m = 1, L = 10 and ∆x = 0.01. Agreement with analytic expressions is excellent

in all cases. This is expected as the momenta chosen are well within the QFT regime and comparable

to the mass. For instance with P = 50 we have sin(P∆x/2) ≈ P∆x/2 = 0.25 to within 1%.

which describes the entanglement of a three-particle excited state with two particles of the

same momentum and one of a different momentum. Finally, the innner-most curve is the

function (2.4) with k = 3,

∆S3
2 = − log(r6 + 9r4(1− r)2 + 9r2(1− r)4 + (1− r)6) , (4.58)

which is the second Rényi entropy of a three-particle excited state with equal momenta.

Finally, in figure 7 we show the 2nd Rényi entropy of a four-particle excited state. Here

four cases are shown: the outer-most curve is the case where all momenta are distinct,

corresponding to the function 4∆S1
2(r); the curve with the second highest maximum is

the case where particles are divided into two distinct-momentum groups of two equal-
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momentum particles, corresponding to the function 2∆S2
2(r); the curve with the third

highest maximum is the case where three particles have equal momenta and the fourth

particle has a different momentum, corresponding to the function ∆S1
2(r)+∆S3

2(r); finally,

the inner-most curve is the second Rényi entropy of a four-particle excited state with all

rapidities equal. This is given by the function

∆S4
2(r) = − log(r8 + 16r6(1− r)2 + 36r4(1− r)4 + 16r2(1− r)6 + (1− r)8) . (4.59)

In all cases the volume is mL = 10, and momenta are again chosen high enough so as to

approach the limit (4.53), yet not too high so as to stay well within the QFT regime.

From the above, we observe that, in agreement with (4.53), as the momentum ap-

proaches the middle of the Brillouin zone, the agreement between numerics and analytics

becomes better. We have further verified that, again in agreement with (4.53), the con-

dition of the volume L being much larger than the correlation length m−1 is no longer

necessary at very large momenta: results for any values of L, `,∆x with L, ` � ∆x, even

with m−1 � L, ` (large correlation lengths). We do not currently have a derivation of this

result. Intuitively, this indicates that when the wave function of the excited state presents

a large number of oscillations within each subregion, then the entanglement behaves as that

of the qubit system explained in subsection 2.2: the large number of oscillations guarantees

that the particle is “evenly distributed” within the subregions.

It would be interesting to numerically study the finite-volume corrections to our for-

mulae (2.1)–(2.7) and to compare the results to a QFT computation. We expect to in-

vestigate this problem in a future work. Some results were reported in the supplementary

material of [32] which, for the harmonic chain, where compatible with integer power law

corrections in L.

5 Excited state entropies of the massive free fermion

Technically speaking the computations presented in the previous few sections follow

through with few but important changes for the free fermion theory. Interestingly how-

ever, the results (2.1)–(2.3) hold unchanged for free fermions. For free fermions states

involving two identical creation operators have zero norm and therefore the more involved

cases (2.4)–(2.7) do not arise in this case. Instead, for a state |1, 1, . . .〉L of k particles of

distinct rapidities the results (2.1)–(2.3) hold as well upon multiplication by k (as for free

bosons). As we will see later, in some respects, the free fermion theory is easier to treat

by the techniques outlined in this paper simply because states have a simpler structure.

In this section we review those technical features that are different for free fermions and

present a detailed computation of the case of a one-particle excitation.

5.1 Doubling trick and replica free fermion model

In this section we develop similar ideas as in section 3.3. Consider two copies of a real

(Majorana) fermion labeled by a and b. This gives us our “doubled theory” which we

can now regard as a single complex (Dirac) fermion. The suitably normalized spinor
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components of this complex fermion are

ΨR =
1√
2

(ψa + iψb) and ΨL =
1√
2

(ψ̄a − iψ̄b) , (5.1)

and, if ψa,b, ψ̄a,b are real, then

Ψ†R =
1√
2

(ψa − iψb) and Ψ†L =
1√
2

(ψ̄a + iψ̄b) , (5.2)

so ψa = 1√
2
(ΨR + Ψ†R). At the level of creation (annihilation) operators there exists a

similar relation:

(a(a))†(θ) =
1√
2

((a+)†(θ) + (a−)†(θ)) , (5.3)

and, considering now n-copies of such a real fermion in the replica theory, labelled by an

index k we similarly have

(a
(a)
j )†(θ) =

1√
2

((a+
j )†(θ) + (a−j )†(θ)), for j = 1, . . . , n . (5.4)

As noted in [24, 48] where the ground state entanglement of free fermions was studied by

employing similar ideas, it is possible to diagonalize the branch point twist field as well

but it is important to make a distinction between n even and n odd. More precisely, the

relation (3.9) generalizes to

ω


ΨR,1

ΨR,2
...

ΨR,n−1

ΨR,n

 =


ΨR,2

ΨR,3
...

ΨR,n

ΨR,1

 , that is , ω =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

(−1)n+1 0 0 · · · 0

 . (5.5)

and similarly for the fields ΨL,j . Note that, unlike for the free boson case, the matrix

above is different depending on whether n is even or odd, a feature that has been discussed

in [24, 48]. The eigenvalues of this matrix are λp = e
2πip
n for p = −n−1

2 , · · · , n−1
2 , that is

the nth roots of unity for n odd the nth roots of −1 for n even. The cyclic permutation

action is diagonalized by the fields

Ψ̃R,p =
1√
n

n∑
j=1

e−
2πijp
n ΨR,j , with p = −n− 1

2
, · · · , n− 1

2
, (5.6)

and the creation operators satisfy the relations

(ã±p )†(θ) =
1√
n

n∑
j=1

e±
2πijp
n (a±j )†(θ), with p = −n− 1

2
, · · · , n− 1

2
, (5.7)

and {aj1(θ), a†j2(β)} = δj1j2δ(θ − β), {aj1(θ), aj2(β)} = 0 for all j1, j2 = 1, . . . , n. The

relation can also be inverted to

(a±j )†(θ) =
1√
n

n−1
2∑

p=−n−1
2

e±
2πipj
n (ã±p )†(θ), with j = 1, . . . , n , (5.8)
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and {ãp1(θ), ã†p2(β)} = δp1p2δ(θ − β), {ãp1(θ), ãp2(β)} = 0 for all p1, p2 = −n−1
2 , · · · , n−1

2 .

For free fermions, the U(1) fields associated to these generators have been also studied (see

e.g. [54]) and it is known that they have scaling dimensions

∆p =
p2

2n2
, (5.9)

so that

∆T =

n−1
2∑

p= 1−n
2

∆p =
1

24

(
n− 1

n

)
, (5.10)

note that for the massless Dirac fermion c = 1. The form factors of these U(1) fields are

also discussed in [54] and they are very similar to those found for free bosons. The two

particle form factors have the same structure:

F
p|+−
2 (θ) =

Aeaθ

cosh θ
2

, (5.11)

and satisfy

F p|+−(θ1 − θ2) := p〈0|Tp(0)|a†p(θ1)b†p(θ2)|0〉p = −F p|−+(θ2 − θ1) ,

F p|++(θ1 − θ2) := p〈0|Tp(0)|a†p(θ1)a†p(θ2)|0〉p = 0 ,

F p|−−(θ1 − θ2) := p〈0|Tp(0)|b†p(θ1)b†p(θ2)|0〉p = 0 . (5.12)

The two last form factors are vanishing for symmetry reasons. The form factor programme

for quasi-local fields [44, 45, 51] tells us that these form factors are solutions to a set of

three equations. First, Watson’s equations

F p|±∓(θ) =−F p|∓±(−θ) and F p|±∓(θ+2πi) = γ±p F
p|∓±(−θ) =−γ±p F p|±∓(θ) , (5.13)

where γ±p = e±
2πip
n are the factors of local commutativity associated to the fermions ±.

Finally, the kinematic residue equation tells us that

Resθ=0F
p|±∓(θ + iπ) = i(1− γ±p )τp , (5.14)

where

τp = p〈0|Tp(0)|0〉p , (5.15)

is the vacuum expectation value. It is then easy to show that the equations are satisfied if

a =
p

n
and A = iτp sin

πp

n
. (5.16)

This gives the solution

F p|+−(θ) = iτp sin
πp

n

e
p
n
θ

cosh θ
2

. (5.17)

– 37 –



J
H
E
P
1
0
(
2
0
1
8
)
0
3
9

Since the theory is free, higher particle form factors can be obtained by simply employing

Wick’s theorem. For the Dirac fermion they have the structure

F p,n2m (θ1, . . . , θm;β1, . . . , βm) = p〈0|Tp(0)|a†p(θ1) · · · a†p(θm)b†p(β1) · · · b†p(βm)|0〉p (5.18)

= τp
∑
σ∈Sm

sign(σ)fnp (θσ(1) − β1) · · · fnp (θσ(m) − βm) ,

where once again fnp (θ) is the normalized two-particle form factor and σ is an element of

the permutation group Sm of m symbols and sign(σ) is the sign of the permutation σ.

An important property of the form factor (3.32) is its leading behaviour near the

kinematic singularity. Consider the form factor fnp (θ1 − β1 + iπ) and suppose that the

rapidites are quantized through Bethe-Yang equations of the form

mL sinhβ1 = 2πI , mL sinh θ1 = 2π
(
J ± p

n

)
, with I, J ∈ Z . (5.19)

Then the leading contribution for θ1 ≈ β1 can be expressed as

fnp (β1 − θ1 + iπ) =
θ1≈β1

mL sin πp
n cosh θ1 e

iπp
n

π(J − I ± p
n)

. (5.20)

Note that for free fermions it is common to distinguish between periodic and anti-periodic

boundary conditions for the Bethe wave function. These lead to quantization condi-

tions (5.19) which either require I, J ∈ Z or I, J ∈ Z + 1
2 . In our particular computa-

tion this choice makes no difference to the final result as we will obtain expressions such

as (3.47) which only depend on quantum number differences. In addition, the U(1) twist

fields do not change the Z2 sector (contrary to σ field in the Ising model). For this reason

and without loss of generality we consider the quantization condition (5.19) only.

5.2 EE of single-particle excitations

Given the relations (5.4) we can represent a replica one-particle excited state in a free

fermion theory as

|1〉L =
1

2
n
2

n∏
j=1

((a+
j )†(θ) + (a−j )†(θ))|0〉L . (5.21)

In the basis of the generators aj(θ) = ã+
j (θ) and bj(θ) = ã−j (θ) this state becomes

|1〉L =
1

2
n
2

n∏
j=1

1√
n

 n−1
2∑

p=−n−1
2

ωjpa†p(θ) +

n−1
2∑

p=−n−1
2

ω−jpb†p(θ)

 |0〉L
=

1

2
n
2

n∏
j=1

1√
n

n−1
2∑

p=−n−1
2

ωjp
(
a
†
p(θ) + b†−p(θ)

)
|0〉L , (5.22)

where ω = e−
2πi
n . For instance, for n = 2 it is easy to show that the state takes simply

the form

|1〉L = − i
2

(
a
†
− 1

2

(θ) + b†1
2

(θ)

)(
a
†
1
2

(θ) + b†− 1
2

(θ)

)
|0〉L =: − i

2
S(2)|0〉L , (5.23)
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where we introduced the notation S(n) to denote the sum over creation operators. For

n = 3 we have instead

|1〉L =− i

2
3
2

(
a
†
−1(θ)+b†1(θ)

)(
a
†
0(θ)+b†0(θ)

)(
a
†
1(θ)+b†−1(θ)

)
|0〉L =− i

2
3
2

S(3)|0〉L . (5.24)

We note that the main difference between n even and n odd is that for n even there is no

“trivial” sector with index 0.

These particular examples illustrate the general structure of the states. For both n

even and odd, they can be constructed recursively starting from the two simple examples

just discussed. The state for a given n can be obtained from the state for n− 2 as follows

S(n)|0〉L =
eiα

2
n
2

(
a
†
−n−1

2

(θ) + b†n−1
2

(θ)

)
S(n− 2)

(
a
†
n−1
2

(θ) + b†−n−1
2

(θ)

)
|0〉L , (5.25)

where α is a phase which can be determined for every n. Its determination is actually

a rather non-trivial problem but, as the states (5.22) have norm one by construction, we

know it must be a real number. Its value has no effect on subsequent computations as only

the norm of eiα will be involved.

5.3 Leading contribution to the Rényi entropy

The leading contribution to the Rényi entropy can be easily evaluated as all correlators

emerging from the states above have a very simple factorized structure. For instance, for

n = 2 the leading contribution will come from the matrix elements

L〈1|T (0)T̃ (`)|1〉L =

1
2∏

p=− 1
2

L〈1|Tp(0)T̃p(`)|1〉L

=
1

4

[
− 1

2
;L〈0|a− 1

2
(θ)T (0)T̃ (`)a†− 1

2

(θ)|0〉− 1
2

;L × 1
2

;L〈0|a 1
2
(θ)T (0)T̃ (`)a 1

2
(θ)|0〉 1

2
;L

+ − 1
2

;L〈0|b− 1
2
(θ)T (0)T̃ (`)b†− 1

2

(θ)|0〉− 1
2

;L × 1
2

;L〈0|b 1
2
(θ)T (0)T̃ (`)b†1

2

(θ)|0〉 1
2

;L

+− 1
2

;L〈0|a− 1
2
b− 1

2
(θ)T (0)T̃ (`)b†− 1

2

(θ)a†− 1
2

(θ)|0〉− 1
2

;L

+ 1
2

;L〈0|b 1
2
(θ)a 1

2
(θ)T (0)T̃ (`)a†1

2

(θ)b†1
2

(θ)|0〉 1
2

;L

]
, (5.26)

whereas for n = 3 we have instead

L〈1|T (0)T̃ (`)|1〉L = L〈1|
1∏

p=−1

Tp(0)T̃p(`)|1〉L

=
1

4

[
−1;L〈0|a−1(θ)T−1(0)T̃−1(`)a†−1(θ)|0〉−1;L × 1;L〈0|a1(θ)T1(0)T̃1(`)a†1(θ)|0〉1;L

+−1;L〈0|b−1(θ)T−1(0)T̃−1(`)b†−1(θ)|0〉−1;L × 1;L〈0|b1(θ)T1(0)T̃1(`)b†1(θ)|0〉1;L

+−1;L〈0|a−1(θ)b−1(θ)T−1(0)T̃−1(`)b†−1(θ)a†−1(θ)|0〉−1;L

+1;L〈0|a1(θ)b1(θ)T1(0)T̃1(`)b†1(θ)a†1(θ)|0〉1;L

]
. (5.27)
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By leading contribution we mean here that non-diagonal matrix elements (involving dif-

ferent states on the right and left) have been neglected as the arguments presented in

appendix B show that these, even when non-vanishing, will give sub-leading contributions

in the volume.

As can be seen from these examples, the building blocks of the correlation function

are generally matrix elements of the form

p;L〈0|ap(θ)Tp(0)T̃p(`)a†p(θ)|0〉p;L = −p;L〈0|b−p(θ)T−p(0)T̃−p(`)b†−p(θ)|0〉−p;L . (5.28)

Matrix elements of the form p;L〈0|ap(θ)bp(θ)Tp(0)T̃p(`)b†p(θ)a†p(θ)|0〉p;L have leading large L

behaviours which are identical to those of

p;L〈0|ap(θ)Tp(0)T̃p(`)a†p(θ)|0〉p;L × p;L〈0|bp(θ)Tp(0)T̃p(`)b†p(θ)|0〉p;L , (5.29)

so they involve once more matrix elements of the type (5.28).

The leading large volume contribution to such correlators can be evaluated along the

same lines presented for the free boson theory. For instance, let us take one particular

example:

p;L〈0|ap(θ)Tp(0)T̃p(`)a†p(θ)|0〉p;L

=

∞∑
s=0

∑
{J±i }

1

s!(s+1)!
p;L〈0|ap(θ)Tp(0)a†p(θ1) . . . a†p(θs+1)b†p(θs+2) . . . b†p(θ2s+1)|0〉p;L

×p;L〈0|ap(θ1) . . . ap(θs+1)bp(θs+2) . . . bp(θ2s+1)T̃p(0)a†p(θ)|0〉p;L ei`[
∑2s+1
i=1 P (θi)−P (θ)] . (5.30)

Recall that the sets {J±i } are integers corresponding to the quantization of rapidities {θi}.
In finite (large) volume we can write as usual

p;L〈0|ap(θ)Tp(0)T̃p(`)a†p(θ)|0〉p;L

=
∞∑
s=0

∑
{J±i }

|F p,n2s+2(θ1, . . . , θs+1; θ + iπ, θs+2, . . . , θ2s+2;L)|2

s!(s+ 1)!LE(θ)
∏2s+1
i=1 LE(θi)

ei`[
∑2s+1
i=1 P (θi)−P (θ)] . (5.31)

From here, once more the leading contribution will come from terms in the form factor

squared such that the rapidity θ + iπ is “contracted” with the same rapidity θ1, . . . , θs
in both form factors. Such terms (there are s + 1 such choices) contribute a two-particle

form factor squared times the vacuum two-point function, which once more factors out.

This gives

p;L〈0|ap(θ)|Tp(0)T̃p(`)|a†p(θ)|0〉p;L
p;L〈0|Tp(0)T̃p(`)|0〉p;L

= gnp (r) , (5.32)

where gpn(r) are the functions discussed in appendix C. Due to the relations (5.28), states

of the type |1〉L = S(n)|0〉L give

lim
L→∞

L〈1|T (0)T̃ (`)|1〉L
L〈0|T (0)T̃ (`)|0〉L

=

n−1
2∏

p=−n−1
2

gnp (r) = rn + (1− r)n , (5.33)
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both for n even and odd. The fact that this gives the same entanglement entropy as the

free boson is mathematically very interesting in the sense that in this case it comes from

a single product of functions gnp (r) whereas for the free boson it was the result of adding

together a constant plus various powers and products of these same functions. It is also

not difficult to see that this same structure is recovered when considering multi-particle

states of distinct rapidities.

6 Conclusions and outlook

In this paper we have studied the nth Rényi entropy increment

∆SΨ
n (r) := lim

L→∞

[
SΨ
n (rL, L)− S0

n(rL, L)
]
,

of a single-interval in one space dimension and its limits n → 1 (von Neumann entropy)

and n → ∞ (single-copy entropy). Our work has focussed on a very particular class of

QFTs and excited states |Ψ〉: the former are massive free QFTs in 1+1 dimensions and the

latter are zero-density states, populated by finite numbers of particles. We have considered

the particular limit `, L→∞ with r := `
L finite.

It is well-known that the EE of finite-density excited states in gapped systems satisfies

a volume law [3]. In the current work we have shown that for zero-density excited states

in infinite volume the EE of one interval saturates to a value which, upon subtracting

the ground state contribution, is a simple non-negative function of the ratio r. More

precisely, for 0 < r < 1 the excited state provides a net positive additive contribution

to the saturation value of the entanglement entropy. For any zero-density states and

entropies, this contribution is maximal for r = 1/2. Moreover, for excited states consisting

of k excitations of distinct rapidities, the maximum is k log 2, that is, every excitation

“adds” exactly log 2 to the entanglement entropy of the ground state. The simple form of

our results makes them amenable to a qubit interpretation in which each k-particle excited

state is associated with an entangled qubit state with coefficients that are probabilities of

finding q excitations in region A and k − q in region B (see figure above) for q = 0, . . . , k.

Some of our results have previously appeared in the literature (see e.g. [31, 36]) and

have been described as semi-classical limits of the EE. Our work, together with the com-

panion paper [32], strongly suggest that the results (2.1)–(2.7) apply much more generally,

in fact, to any situations were one can reasonably speak of localized quantum excitations.

It is also worth emphasizing that our derivation is the only analytic explicit computation

we know of, leading to the formulae (2.1)–(2.7).

The domain of applicability of (2.1)–(2.7) may be formally characterized by the

condition:

min

(
m−1,

2π

P

)
� min(`, L− `) ,
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where P is the largest momentum of any of the excitations in the state |Ψ〉L and 2π
P can be

interpreted as the De Broglie wave length associated to that particular excitation, whereas

ξ = m−1 is the system’s correlation length. Interestingly, this condition implies that we

may have a situation where the correlation length of the system is very large and P is also

very large and yet still find the same results. Indeed, we provided numerical evidence of

this in figure 4 and 5 and also for higher dimensions in [32].

This work offers ample scope for generalization and extension. It is reasonable to expect

that the same results should also hold for interacting integrable models of QFT. There are

three main reasons for this expectation. First, technically, the key mathematical property

leading to formulae (2.1)–(2.7) from the form factor calculations of sections 4 and 5, is

the kinematic pole structure of the form factors. However, this form is rather universal

and not exclusive to free theories. Second, from [32] and [31] there is evidence that the

same results hold in gapped interacting quantum spin chains whose thermodynamic limit

should be described by integrable QFT. Finally, the qubit interpretation is quite universal

(at least, as long as there is no particle production) so that we see no reason why results

should change in more general theories. However, it would be nice to have a rigorous

derivation of this result and we hope to provide this in a future work.

Another interesting problem is the investigation of finite volume corrections to (2.1)–

(2.7). These can be computed both from the form factor expansion and numerically form

the wave functional method presented earlier. Some numerical analysis of such corrections

was presented in the supplementary material of [32] but a more detailed analysis of how

the corrections depend on the energy of excitations, the value of r and the replica number

n would be very interesting. According to our general arguments in appendix B we expect

the next-to-leading order correction the entropy increment to be of order 1/L in the volume

so that, for a generic state we should have

∆SΨ
n (rL, L) = ∆SΨ

n (r) +
f(n, r, {θi})

mL
+O((mL)−2) , (6.1)

where f(n, r, {θi}) is some function of n, the region size, and the rapidities of the excitations,

which can be computed from a form factor expansion. It would also be interesting to extend

the analysis to higher dimensions. For critical systems it has been shown that the EE

contains information about the shape of the regions (e.g. the number of vertices) [55–61]

and we would like to investigate whether or not such information can also be red off

from the finite volume corrections. At present we cannot compute these exactly in higher

dimensional gapped QFT, but for free theories, we can use the wave functional method to

investigate the problem numerically as in [32].

To conclude, our results provide further evidence that measures of entanglement en-

code universal information about quantum models, be it their universality class [4, 6, 62],

operator content [8, 9, 28, 29], particle spectrum [24, 38, 63] or, as in this case, the number

and nature of their excitations above the ground state. These results come at an exciting

time in the understanding of entanglement measures as experimental results for particular

Rényi entropies have recently become available [64, 65]. It would be extremely interesting

to connect our results to experiments and to understand their implications in the wider

quantum information context.
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A Wave functional method

In this appendix, we describe how to evaluate numerically traces of the nth powers of

reduced density matrices for few-particle excited states in the quantum free boson model.

We use the wave functional method, which is based on completely different principles

than methods using form factors explained in the main text, thus offering an independent

verification of our results. After discretizing the model to a finite chain of size N , the

method reduces the problem to the inversion of a single nN by nN matrix, which can be

performed numerically.

Consider the real free boson, with hamiltonian

H =
1

2

∫ L

0
dx
(
(∂xΦ(x))2 + Π2 +m2Φ2

)
, (A.1)

where Φ(x) and Π(x) are hermitian canonically conjugate fields, [Φ(x),Π(x′)] = iδ(x−x′).
The wave functional of the ground state can be obtained by methods similar to those used

for the ordinary harmonic oscillator in quantum mechanics. The annihilation and creation

operators are Ap and A†p for p ∈ (2π/L)Z with

Ap =
1√

2LEp

∫ L

0
dx e−ipx (EpΦ(x) + iΠ(x)) , Ep =

√
p2 +m2 , (A.2)

satisfying [Ap, A
†
p′ ] = δp,p′ . We use the representation of wave functionals Ψ[ϕ] = 〈ϕ|Ψ〉,

with wave functionals taking as arguments fields ϕ : [0, L]→ R. In this representation,

Φ(x)Ψ[ϕ] = ϕ(x)Ψ[ϕ], iΠΨ[ϕ] =
δΨ[ϕ]

δϕ(x)
. (A.3)
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The vacuum satisfies ApΨvac = 0, which gives

Ψvac[ϕ] = N exp

[
−1

2

∫ L

0
dxdy K(x− y)ϕ(x)ϕ(y)

]
, K(x− y) =

1

L

∑
p

Epe
ip(x−y) ,

(A.4)

where N is a normalization factor.

Excited states are obtained by acting with the creation operator, giving for instance

A†pΨvac[ϕ] = αp[ϕ]Ψvac[ϕ] ,

A†pA
†
qΨvac[ϕ] = (αp[ϕ]αq[ϕ]− δp+q,0) Ψvac[ϕ] , (A.5)

where

αp[ϕ] =

√
2Ep
L

∫ L

0
dx eipxϕ(x) . (A.6)

In general, for momenta {pj} with all partial sums
∑

i pji non-vanishing,

Ψ{pj}[ϕ] :=
∏
j

A†pjΨvac[ϕ] =
∏
j

αpj [ϕ]Ψvac[ϕ]

(∑
i

pji 6= 0

)
. (A.7)

We now divide space into A = [0, `) and B = [`, L), and construct the reduced den-

sity matrix ρB = TrHA |Ψ〉〈Ψ|. This acts on the space HB of wave functionals taking as

arguments fields ϕB : B → R. It has matrix elements

〈ϕB|ρB|ϕ′B〉 =

∫
DϕAΨ[ϕA, ϕB]Ψ[ϕA, ϕ

′
B]∗ . (A.8)

Here we see [ϕA, ϕB] = [ϕ] as a field on [0, L], and Ψ[ϕA, ϕB] = Ψ[ϕ] = 〈ϕ|Ψ〉 is the wave

functional associated to the state |Ψ〉. The trace of its nth power is

Tr(ρnB) =

∫
Dϕ1 · · · Dϕn Ψ[ϕ1A, ϕ1B]Ψ[ϕ1A, ϕ2B]∗ Ψ[ϕ2A, ϕ2B]Ψ[ϕ2A, ϕ3B]∗

· · ·Ψ[ϕnA, ϕnB]Ψ[ϕnA, ϕ1B]∗ . (A.9)

We denote the reduced density matrix of the vacuum state as ρB|vac, and that of the excited

state as ρB|{pj}. We are interested in the ratio

Tr(ρnB|{pj})

Tr(ρnB|vac)
. (A.10)

By using the Gaussian form of the vacuum wave functional (A.4) and the fact that excited

states are obtained by multiplying by polynomial functionals of the fields, as in (A.7), we

see that (A.10) is the average in a Gaussian measure over the fields ϕj , of a product of the

monomials αpj .

In order to evaluate numerically this average, we discretize space. For this purpose,

we choose

∆x = L/N , (A.11)
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for some N ∈ N, restrict space and momentum variables to

x = x̄
L

N
, p = p̄

2π

L
, x̄, p̄ ∈ {0, 1, 2, . . . , N − 1} , (A.12)

and make the replacement ∫ L

0
dx 7→ L

N

L−∆x∑
x=0

. (A.13)

We also change the action to its discrete version, which gives rise to the following change

in the equations of motion,

∂2
xΦ(x) 7→ 1

∆x2

(
Φ(x+ ∆x) + Φ(x−∆x)− 2Φ(x)

)
. (A.14)

This induces a change in the dispersion relation, the new energy function being

Ep =

√
m2 +

(
2N

L
sin

pL

2N

)2

. (A.15)

Putting these ingredients together, some calculations show that the final result can be

expressed as follows. Define

K(x) =
1

L

2π(N−1)/L∑
p=0

Epe
ipx , (A.16)

Uj(p) =
L

N

L−∆x∑
x=0

eipxϕj(x) , (A.17)

Vj(p) =
L

N

`−∆x∑
x=0

e−ipxϕj(x) +
L

N

L−∆x∑
x=`

e−ipxϕj+1(x) . (A.18)

Note that K(x) with (A.15) is a real function. The ratio of interest is

Tr(ρnB|{pj})

Tr(ρnB|vac)
=

∏
j

2Epj
L

n

〈〈
n∏
i=1

∏
j

Ui(pj)Vi(pj) 〉〉 . (A.19)

The average 〈〈· · ·〉〉 is over the Gaussian measure given by the discretized vacuum wave

functional,

〈〈O[ϕ1, . . . , ϕn]〉〉 =

∫
Dϕ1 · · · DϕnO[ϕ1, . . . , ϕn] exp

[
−1

2M
]∫

Dϕ1 · · · Dϕn exp
[
−1

2M
] , (A.20)

with

M =

n∑
i,j=1

L∑
x,y=0

ϕi(x)Mi,x;j,yϕj(y)

= 2

(
L

N

)2 n∑
j=1

[( ∑
x∈A, y∈A

+
∑

x∈B, y∈B

)
K(x− y)ϕj(x)ϕj(y)

+
∑

x∈A, y∈B
K(x− y)ϕj(x)(ϕj+1(y) + ϕj(y))

]
, (A.21)
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where A is from 0 to `−∆x, and B from ` to L−∆x (inclusively). The Gaussian average

in (A.19) is evaluated using Wick’s theorem with the Wick contraction

ϕi(x) ϕj(y) = (M−1)i,x;j,y . (A.22)

The matrix M is an nN by nN matrix, and the inverse matrix M−1 can easily be evaluated

numerically. Schematically, the matrix M has the following block structure

1 2 N − 1 N︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
A B A B A B A B︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

1

A
{

2KAA KAB 0 KAB
· · ·

0 0 0 0

B
{

KT
AB 2KBB 0 0 0 0 KT

AB 0

2

A
{

0 0 2KAA KAB
· · ·

0 0 0 0

B
{

KT
AB 0 KT

AB 2KBB 0 0 0 0
...

...
. . .

...
...

N − 1

A
{

0 0 0 0
· · ·

2KAA KAB 0 KAB

B
{

0 0 0 0 KT
AB 2KBB 0 0

N

A
{

0 KAB 0 0
· · ·

0 0 2KAA KAB

B
{

0 0 0 0 KT
AB 0 KT

AB 2KBB

where the matrices KQ1Q2 have entries (KQ1Q2)ij := (L/N)2K(xi − xj) with xi ∈ Q1 and

xj ∈ Q2.

B Selection rules for leading terms in the form factor expansion

In this appendix, we identify the terms in the form factor expansion that contribute in the

limit of large system size L. We show that these terms contribute to order L0 (that is,

are finite and nonzero), and that all other terms contribute to orders L−1 or less (that is,

vanish as L → ∞). The leading terms are analyzed in the main text, and give rise to the

main results of this paper.

For simplicity, we will consider the case where the excited state depends on a single

rapidity value: either it is a single particle state, or a many-particle state, where all particles

have the same rapidity θ (this is of course only possible in the free boson case). The general

case, involving many distinct rapidities, can be understood along similar lines.

Consider a generic term in the form factor expansion (4.9). A generic term is charac-

terized by a number N of particles in the (bra) state on the left, a number Ñ of particles in

the (ket) state on the right, the set B = {1, . . . ,M} of rapidity labels in the intermediate

state, and the subsets A ⊂ B and Ã ⊂ B of labels of the rapidities that are Wick con-

tracted with those in the bra and ket states on the left and right, respectively. A term is
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understood as a sum over the intermediate rapidities of the appropriate Wick contractions

of products of finite-volume form factors,

∑
θB={θ1,...,θM}

L〈N |O|θA, θB\A〉〈θB\Ã, θÃ|O
†|Ñ〉L . (B.1)

In the calculation presented in section 4.1, particles are additionally characterized by their

sector as well as their U(1) charge, the operators O and O† are appropriate U(1)-twist

fields and one must evaluate products of such terms over all sectors. However, these details

are not important in the determination of the leading terms and their large-L behaviour.

Additional constraints, such as those from the U(1) charges, can be assessed once the

leading terms are identified.

We show that the generic term (B.1) behaves as O(L0) if and only if N = Ñ , M ≥ N ,

and A = Ã with |A| = N ; and that otherwise it vanishes in the limit L→∞.

We first establish the leading power of L corresponding to (B.1). Due to (3.44) a

finite-volume form factor contributes a factor 1/
√
L for each rapidity:

L−
N+Ñ

2
−M .

Each particle in the intermediate state that is not contracted with a particle in left or right

states (and is, each particle with label in B \ (A∪ Ã)) contributes a factor of L, as for such

particles, the sum is evaluated by transforming it into an integral,
∑

θ ∼ L
∫

dθ:

LM−|A∪Ã| .

Finally, each element in A contributes a factor L, and each element in Ã also contributes

a factor of L. This accounts for two situations. First, a particle may be contracted with

one in the left (or right) state but not with any particle in the right (or left) state, j ∈ A
and j 6=∈ Ã (or vice versa). In this case, the contraction gives rise to a single pole. The

sum over θj can then be transformed into a converging, principal-value integral LP
∫

dθj ,

giving a factor of L. Second, a particle may be contracted both with one in the state on

the left, and one in the state on the right, j ∈ A and j ∈ Ã. In this case, the leading

contribution is obtained by “zooming in” onto the second-order pole that develops, and

summing the resulting second-order pole contribution without transforming the sum into

an integral. This sum is convergent, and results in a factor L2 using the fact that momenta

are proportional to 1/L. For instance
∑

θj
1/(θj − θ)2 ∼

∑
Ij∈Z L

2/(Ij − I − q)2 for some

I ∈ Z and q ∈ (0, 1). The factor of L2 indicates that we must count a factor of L for the

particle both as an element of A and as an element of Ã. Thus, we have

L|A|+|Ã| .

In order to find the leading behaviour, we must therefore maximize

R = −N + Ñ

2
− |A ∪ Ã|+ |A|+ |Ã| = −N + Ñ

2
+ |A ∩ Ã| . (B.2)
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Thus R will be maximized whenever the cardinality of A ∩ Ã is maximized. This occurs

when either A ⊆ Ã or Ã ⊆ A, giving

R = −N + Ñ

2
+ min (|A|, |Ã|) . (B.3)

Given N , Ñ and M , the number of contractions is constrained by the available particles,

giving the bounds

0 ≤ |A| ≤ min (N,M) , 0 ≤ |Ã| ≤ min (Ñ ,M) ,

and all possibilities within these ranges may occur. Let us now fix N , Ñ and M , and

choose A and Ã in order to maximize R. We must take the maximal values for |A| and

|Ã|, and we obtain

R = −N + Ñ

2
+ min (N, Ñ,M) . (B.4)

Fixing N and Ñ , this is maximized by taking M ≥ max (N, Ñ). With this choice, |A| and

|Ã| are maximized by |A| = N and |Ã| = Ñ , and

R = −|N − Ñ |
2

. (B.5)

Finally, this is maximized by taking N=Ñ . In this case, we have |A|= |Ã| and thus A = Ã,

and we find R = 0. This shows the claim at the beginning of this appendix. Moreover, the

argument can be easily generalized to states consisting of various particle types.

C The functions gn
p (r)

Throughout this paper we have used the relations

gnp (r) :=
sin2 πp

n

π2

∑
J∈Z

e2πir(J+ p
n

)

(J + p
n)2

= 1− (1− e
2πip
n )r . (C.1)

The fact that the sum above is a simple polynomial in r can be of course checked numeri-

cally. It can also be shown analytically, for instance, by showing that the second derivative

with respect to r is zero. We compute

∂2
rg
n
p (r) = −4 sin2 πp

n

∑
J∈Z

e2πir(J+ p
n

) = −4 sin2 πp

n
e

2πirp
n

∑
J∈Z

e2πirJ

= −4 sin2 πp

n
e

2πirp
n

[
−1 +

∞∑
J=0

e2πirJ +

∞∑
J=0

e−2πirJ

]
. (C.2)

The resulting sums are not convergent, but can be regularized by introducing a small

parameter ε� 1 and computing instead

lim
ε→0

[ ∞∑
J=0

e2πi(r+iε)J+

∞∑
J=0

e−2πi(r−iε)J

]
= lim
ε→0

[
1

1−e2πi(r+iε)
+

1

1−e−2πi(r−iε)

]
= 1 . (C.3)
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Taking the limit ε → 0 we find he desired result ∂2
rg
n
p (r) = 0. Assuming that gnp (r) is

analytic for at least one value of r, we now know that

gnp (r) = anp + bnpr , (C.4)

where anp , b
n
p are independent of the value of r. We can determine anp by setting r = 0 which

gives us the simple sum

anp = gnp (0) =
sin2 πp

n

π2

∑
J∈Z

1

(J + p
n)2

=
sin2 πp

n

π2

[
Ψ1

( p
n

)
+ Ψ1

(
1− p

n

)]
= 1 . (C.5)

where Ψ1(z) = d2

dz2
ln Γ(z) and Γ(z) is the Gamma-function. The equality above follows

from the known reflection property [66]:

Ψ1(1− z) + Ψ1(z) =
π2

sin2 πz
. (C.6)

Finally, we may fix the value of

bnp = ∂rg
n
p (r) =

2i sin2 πp
n

π

∑
J∈Z

e2πir(J+ p
n

)

J + p
n

. (C.7)

For r = 0, 1 the sum above is singular, but for r = 1
2 it can be computed to

∑
J∈Z

eπi(J+ p
n

)

J + p
n

=
e
iπp
n

2

[
Ψ

(
1

2
+

p

2n

)
−Ψ

(
1

2
− p

2n

)
+ Ψ

(
1− p

2n

)
−Ψ

( p
2n

)]
, (C.8)

where Ψ(z) = d
dz ln Γ(z). The Ψ-function also has a reflection property [66], namely

Ψ(1− z)−Ψ(z) = π cotπz . (C.9)

Using this property, it is a simple matter to show that

bnp = e
2πip
n − 1 . (C.10)

C.1 Properties

From the definition (C.1) it is also clear that

gnp (r) = gnp−jn(r) and gnp (r) = gnjn−p(r)
∗ ∀ j ∈ Z . (C.11)

An additional, not entirely obvious property, is that

n−1
2∏

p=−n−1
2

gnp (r) = rn + (1− r)n . (C.12)

For n odd we have that

n−1
2∏

p=−n−1
2

gnp (r) =

n−1
2∏

p=1

gnp (r)gn−p(r) =

n−1
2∏

p=1

[
r2 + 2r(1− r) cos

2πp

n
+ (1− r)2

]
. (C.13)
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which follows simply from using (C.1). Then, the result (C.12) is a consequence of the

more general identity [66]

n−1∏
p=0

[
x2 − 2xy cos

(
α+

2πp

n

)
+ y2

]
= x2n − 2xnyn cosnα+ y2n . (C.14)

For n odd, α = π, x = r and y = 1− r (C.14) gives

n−1∏
p=1

[
r2 + 2r(1− r) cos

2πp

n
+ (1− r)2

]
= (rn + (1− r)n)2 . (C.15)

Note that the p = 0 term is 1 in this case. We now simply need to observe that

n−1∏
p=1

[
r2+2r(1−r)cos

2πp

n
+(1−r)2

]
=

n−1
2∏

p=1

[
r2+2r(1−r)cos

2πp

n
+(1−r)2

]2

, (C.16)

which then proves (C.12). A similar argument also holds for n even.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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