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DECOMPOSITION NUMBERS FOR THE CYCLOTOMIC BRAUER

ALGEBRAS IN CHARACTERISTIC ZERO

C. BOWMAN, A. G. COX, AND M. DE VISSCHER

Abstract. We study the representation theory of the cyclotomic Brauer algebra via truncation to
idempotent subalgebras which are isomorphic to a product of walled and classical Brauer algebras.
In particular, we determine the block structure and decomposition numbers in characteristic zero.

Introduction

The symmetric and general linear groups satisfy a double centraliser property over tensor space.
This relationship is known as Schur–Weyl duality and allows one to pass information between the
representation theories of these algebras. The Brauer algebra is an enlargement of the symmetric
group algebra and is in Schur-Weyl duality with the orthogonal (or symplectic) group.

The cyclotomic Brauer algebra Bm
n is a corresponding enlargement of the complex reflection

group algebra Hm
n of type G(m, 1, n). This was introduced by [HO01] as a specialisation of the

cyclotomic BMW algebra, and has been studied by various authors (see for example [GH09, RX07,
RY04, Yu07]).

The algebra Hm
n is Morita equivalent to a direct sum of products of symmetric group algebras.

One might ask if this equivalence extends to the cyclotomic Brauer algebra. Although there is no
direct equivalence, we will see that the underlying combinatorics of Bm

n is that of a product of
classical Brauer and walled Brauer algebras.

Our main result is that certain co-saturated idempotent subalgebras of Bm
n are isomorphic to

a product of classical Brauer and walled Brauer algebras. Over a field of characteristic zero, this
induces isomorphisms between all higher extension groups Exti(F(∆),−). Hence we obtain the
decomposition numbers and block structure of the cyclotomic Brauer algebra in characteristic zero
from the corresponding results for the Brauer and walled Brauer algebras [Mar, CD11].

We exhibit a tower of recollement structure [CMPX06] for Bm
n , and discuss certain signed in-

duction and restriction functors associated with this. We expect that this structure will also be a
useful tool in the positive characteristic case.

Diagrams for the cyclotomic Brauer algebra come with an orientation due to the relationship
with the cyclotomic BMW algebra. However, one can define a similar algebra without orientation,
which we shall call the unoriented cyclotomic Brauer algebra. In an Appendix we show that our
results can be easily modified for this algebra, to reduce its study to a product now just of Brauer
algebras. The advantage of this unoriented version is that analogues can be defined associated to
general complex reflection groups of type G(m, p, n); we will consider the representation theory of
such algebras in a subsequent paper.

We thank the referee for their very careful reading of this paper.

Date: January 8, 2013.
2000 Mathematics Subject Classification. 20C30.
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1. Cyclotomic Brauer algebras

In this section we define the cyclotomic Brauer algebra, Bm
n = Bm

n (δ) over an algebraically closed
field k of characteristic p ≥ 0. We assume throughout the paper that m is invertible in k and we
fix a primitive m-th root of unity ξ.

1.1. Definitions

Given m,n ∈ N and δ = (δ0, . . . , δm−1) ∈ km, the cyclotomic Brauer algebra Bm
n (δ) is a finite

dimensional associative k-algebra spanned by certain Brauer diagrams. An (m,n)-diagram consists
of a frame with n distinguished points on the northern and southern boundaries, which we call
nodes. We number the northern nodes from left to right by 1 . . . n and the southern nodes similarly
by 1̄, . . . , n̄. Each node is joined to precisely one other by a strand; strands connecting the northern
and southern edge will be called through strands and the remainder arcs. There may also be closed
loops inside the frame, those diagrams without closed loops are called reduced diagrams.

Each strand is endowed with an orientation and labelled by an element of the cyclic group Z/mZ.
We may reverse the orientation by relabelling the strand with the inverse element in Z/mZ. We
identify diagrams in which the strands connect the same pairs of nodes and (after being identically
oriented) have the same labels.

As a vector space, Bm
n is the k-span of all reduced (m,n)-diagrams. Figure 1 gives an example

of two such elements in B3
6(δ).

x=

2 2

1 2

2

1
2

y= 0

1

2

1 0

Figure 1. Two elements in B3
6(δ).

We define the product x · y of two reduced (m,n)-diagrams x and y using the concatenation of x
above y, where we identify the southern nodes of x with the northern nodes of y. More precisely, we
first choose compatible orientations of the strands of x and y. Then we concatenate the diagrams
and add the labels on each strand of the new diagram to obtain another (m,n)-diagram.

Any closed loop in this (m,n)-diagram can be oriented such that as the strand passes through the
leftmost central node in the loop it points downwards. If this oriented loop is labelled by i ∈ Z/mZ
then the diagram is set equal to δi times the same diagram with the loop removed.

Example 1.1.1. Consider the product x · y of the elements in Figure 1. After concatenation we
obtain the element in Figure 2. Reading from left to right in the diagram we have that 1− 0 ≡ 1,
2 + 2 ≡ 1, and 1− 2− 1 + 0 ≡ 1, (mod 3) and therefore we obtain the reduced diagram in Figure
3 by removing the closed loop labelled by 1, and multiply by δ1.

From now on, we will omit the label on any strand labelled by 0 ∈ Z/mZ.

We will need to speak of certain elements of the algebra with great frequency. Let ti,j (for
1 ≤ i, j ≤ n) be the diagram with only 0 labels and having through strands from i to j̄, j to ī,
and l to l̄ for all l 6= i, j. Let tri (for 1 ≤ i ≤ n and 0 ≤ r ≤ m − 1) be the diagram with through
strands from l to l̄ for all l, with the through strand from i labelled by r and all other labels being
0. These elements are illustrated in Figure 4. We let ei,j (for 1 ≤ i, j ≤ n) be the diagram with
only 0 labels and having arcs from i to j and ī to j̄, and through strands from l to l̄ for all l 6= i, j.
This element is illustrated in Figure 5.
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Figure 2. The unoriented and unreduced product of x and y.

2 2

2
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δ
1

Figure 3. The reduced product of x and y.

The elements ti,i+1 (with i ≤ n− 1) and t11 are generators of the group algebra

Hm
n = k((Z/mZ) o Σn)

as a subalgebra of Bm
n (δ). Note that Bm

1 (δ) ∼= k(Z/mZ); for convenience, we set Bm
0 (δ) = k. It is

easy to see that the cyclotomic Brauer algebra is generated by the elements ti,i+1, t
1
1, and e1,2 (for

i ≤ n− 1).

t
i,j
= t r

i
=

ji i

r

Figure 4. The elements ti,j and tri .

ji

Figure 5. The element ei,j .

We have defined the cyclotomic Brauer algebra in terms of δ = (δ0, . . . , δm−1) ∈ km. However,
we shall find that it is signed polynomials in these parameters which govern the representation
theory of the algebra.

Definition 1.1.2. For each 0 ≤ r ≤ m− 1 we define the rth signed cyclotomic parameter to be

δr =
1

m

m−1∑
i=0

ξirδi.



4 C. BOWMAN, A. G. COX, AND M. DE VISSCHER

Note that δr and δm−r are swapped by the map ξ ↔ ξ−1.

Remark 1.1.3. Cyclotomic Brauer algebras were originally defined by Häring-Oldenburg [HO01].
Our definition can easily be seen to be equivalent to that of Rui and his collaborators (see [RY04]
and [RX07]). The version considered by Goodman and Hauschild Mosley [GH09] and Yu [Yu07] is
the specialisation of this algebra obtained by setting δr = δm−r.

Remark 1.1.4. In [RY04] and [RX07] semi-simplicity conditions are given for Bm
n in terms of the

signed parameters. We note that there is a mistake in the statement of [RY04, Theorem 8.6] which
runs through both of these papers. This is a simple misreading of the (correct) circulant matrices
calculated in the proof of the theorem.

Their vanishing conditions are given in terms of δr−mε(r,0) where ε(r,0) is the Kronecker function.

Correct versions of these statements can be deduced by substituting this by δr−mε(r,m−r). Compare
[CDDM08, Theorem 6.2] and [CDM09, Proposition 4.2] to see how the −mε(r,m−r) relates to the
semi-simplicity of the Brauer algebra versus the walled Brauer algebra.

Remark 1.1.5. We have that B2
n(δ) is a subalgebra of the recently defined Brauer algebra of type

Cn (see [CLY]). This can be seen by ‘unfolding’ the diagrams (as outlined in [MGP07, Section 4.3])
and using [Bow12, Theorem 3.6].

1.2. Classical Brauer and walled Brauer algebras

The classical Brauer algebra B(n, δ) (δ ∈ k) is given by the particular case B1
n(δ) with δ0 = δ.

Note that the orientation of the strands in Brauer diagrams plays no role in this case and so can
be ignored.

The walled Brauer algebra WB(r, s, δ) is the subalgebra of B(r + s, δ) spanned by the so-called
walled Brauer diagrams. Explicitly, we place a vertical wall in the (r+s)-Brauer diagrams after the
first r northern (resp. southern) nodes and we require that arcs must cross the wall and through
strands cannot cross the wall.

2. Representations of Hm
n

In this section we review the construction of the Specht modules for the group algebra Hm
n of

the complex reflection group (Z/mZ) o Σn.

2.1. Compositions and partitions

An m-composition of n is an m-tuple of non-negative integers ω = (ω0, . . . , ωm−1) such that∑m−1
i=0 ωi = n. A partition is a finite decreasing sequence of non-negative integers. An m-partition

of n is an m-tuple of partitions λ = (λ0, . . . , λm−1) such that
∑m−1

i=0 |λi| = n (where |λi| denotes
the sum of the parts of the partition λi). Given an m-partition λ we associate the m-composition

|λ| = (|λ0|, |λ1|, . . . , |λm−1|).
For an m-composition of n, ω, we define another m-composition [ω] by

[ω] = ([ω0], [ω1], . . . , [ωm−1] = n)

where [ωr] =
∑r

i=0 ωi for 0 ≤ r ≤ m− 1. For an m-partition λ we define [λ] = [|λ|].
The Young diagram of an m-partition is simply the m-tuple of Young diagrams of each partition.

We do not distinguish between the m-partition λ and its Young diagram. For an m-partition λ,
define the set rem(λ) (resp.add(λ)) of all removable boxes (respectively addable boxes) to be those
which can be removed from (respectively added to) λ such that the result is the Young diagram
of an m-partition. We can refine this by insisting that a removable (respectively addable) box has
sign ξr if it can be removed (respectively added) to λr, for 0 ≤ r ≤ m− 1. We denote these sets by
ξr-rem(λ) and ξr-add(λ) respectively.
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2.2. Idempotents

We define some idempotents in Hm
n which play a very important role in this paper. Note that

k(Z/mZ× . . .× Z/mZ) occurs naturally as the subalgebra of Hm
n spanned by all diagrams where

node i is connected to node i for all 1 ≤ i ≤ n. As m is invertible in k we have that k(Z/mZ) is
semisimple and decomposes into a sum of 1-dimensional modules given by ξr (0 ≤ r ≤ m− 1). We
denote by T ri the idempotent in the copy of k(Z/mZ) on the i-th strand corresponding to ξr. This
idempotent is given as follows.

Definition 2.2.1. For each 1 ≤ i ≤ n and each 0 ≤ r ≤ m− 1, define the idempotent

T ri =
1

m

∑
0≤q≤m−1

ξqrtqi .

Now we will consider certain products of these idempotents. Let ω be an m-composition of n.
We have

0 ≤ [ω0] ≤ [ω1] ≤ [ω2] ≤ . . . ≤ [ωm−1] = n.

So for each 1 ≤ i ≤ n there is a unique 0 ≤ r ≤ m− 1 with

[ωr−1] < i ≤ [ωr]

(where we set [ω−1] = 0). In this case we write i ∈ [ωr]. Now we define the (orthogonal) idempotent
πω as follows.

Definition 2.2.2. Let ω be an m-composition of n. Then we define

πω =
m−1∏
r=0

∏
i∈[ωr]

T ri .

The element πω is a linear combination of diagrams, but can be viewed as putting the element
T 0 on each of the first ω0 strands of the identity diagram, then the element T 1 on each of the next
ω1 strands,..., and finally Tm−1 on each of the last ωm−1 strands.

2.3. Specht modules of Hm
n

For an m-composition ω = (ω0, ω1, . . . , ωm−1) of n we define the Young subgroup Σω of Σn by

Σω = Σω0 × Σω1 × . . .× Σωm−1

and the corresponding Young subalgebra Hm
ω of Hm

n by

Hm
ω = k((Z/mZ) o Σω).

Definition 2.3.1. Let λ, µ be m-partitions of n. We say that λ dominates µ and write µEn λ if

[λj−1] +
k∑
i=1

λji ≥ [µj−1] +
k∑
i=1

µji

for all 0 ≤ j ≤ m− 1 and k ≥ 0 (where we set [λ−1] = [µ−1] = 0).

Given any kΣn-module M and any r ∈ Z/mZ we define the Hm
n -module M (r) by setting

M (r) ↓Σn= M and each ti (1 ≤ i ≤ n) acts on M (r) by scalar multiplication by ξr. In partic-
ular, if λ is a partition of n and we denote by S(λ) the corresponding Specht module for kΣn then

we have an Hm
n -module S(λ)(r) for each 0 ≤ r ≤ m− 1. This module is the Specht Hm

n -module la-
belled by (∅, . . . , ∅, λ, ∅, . . . , ∅) where λ is in the r-th position. More generally we have the following
result.
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Proposition 2.3.2 (Section 5 of [GL96]). The algebra Hm
n is cellular with respect to the dominance

order En on the set of m-partitions of n. For a given m-partition λ of n, the cell module S(λ) is
given by

S(λ) ∼= (S(λ0)(0) ⊗ . . .⊗ S(λm−1)(m−1))↑H
m
n

Hm
|λ|
.

We call S(λ) the Specht module for Hm
n labelled by λ.

It is well known (see for example [DM02]) that the algebra Hm
n is Morita equivalent to the direct

sum of group algebras of Young subgroups of Σn. These arise as idempotent subalgebras of Hm
n .

Indeed, the idempotent subalgebra πωH
m
n πω is isomorphic to kΣω. Now, using the description of

cell modules given in Proposition 2.3.2, we see that πωS(λ) = 0 unless ω = |λ|. Now suppose
|λ| = ω and let h be a diagram in Hm

n \Hm
|λ|. So h has a strand between i and j̄ say with i ∈ [ωr]

and j ∈ [ωs] for some s 6= r. Then we have πωh = πωT
r
i h = πωhT

r
j . As s 6= r we have πωh⊗ x = 0

for any x ∈ S(λ0)(0) ⊗ . . .⊗ S(λm−1)(m−1). Thus we have

πωS(λ) ∼=
{
S(λ0)⊗ S(λ1)⊗ . . .⊗ S(λm−1) if |λ| = ω
0 otherwise.

(2.3.1)

3. Cell modules for Bm
n

In this section we show that Bm
n is an iterated inflation (in the sense of [KX01]), and so is

a cellular algebra. We recall the construction of the cell modules and study the restriction and
induction rules for these. When the algebras are quasi-hereditary we obtain a tower of recollement
(in the sense of [CMPX06]).

3.1. Iterated inflation and cell modules

Definition 3.1.1. Suppose that n, l ∈ N with l ≤ bn/2c. An (n, l)-dangle is a partition of {1, . . . , n}
into l two-element subsets (called arcs) and n − 2l one-element subsets (called free nodes). An
(m,n, l)-dangle is an (n, l)-dangle to which an integer r ∈ Z/mZ has been assigned to every subset
of size 2.

We can represent an (n, l)-dangle d by a set of n nodes labelled by the set {1, . . . , n}, where
there is an arc (denoted vij) joining i to j if {i, j} ∈ d, and there is a vertical line starting from
i if {i} ∈ d. An (m,n, l)-dangle can be represented graphically by first labelling each arc of the
underlying (n, l)-dangle and then giving it the following orientation: we let all one element sets
have a downward orientation and all two element sets have a right orientation. An example of an
(m, 7, 3)-dangle for m ≥ 3 is given in Figure 6.

◦

��

◦

��

◦
2
66◦
1
66◦ ◦ ◦

��

Figure 6. An (m, 7, 3) dangle.

We let V (m,n, l) denote the vector space spanned by all (m,n, l)-dangles.

Let Λ(m,n) denote the set of m-partitions of n − 2l for all l ≤ bn/2c. We can extend the
dominance ordering given in Definition 2.3.1 to this set as follows.

Definition 3.1.2. Let λ, µ ∈ Λ(m,n). We set λD µ if and only if either
∑m−1

i=0 |λi| >
∑m−1

i=0 |µi| or∑m−1
i=0 |λi| =

∑m−1
i=0 |µi| = n− 2l (for some l) and µEn−2lλ.
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Each (m,n)-diagram in Bm
n with n − 2l through strands can be decomposed as two (m,n, l)-

dangles, giving the top and bottom of the diagram, and an element of Z/mZ o Σn−2l giving the
through strands. Using this decomposition we get the following result.

Theorem 3.1.3. The cyclotomic Brauer algebra Bm
n (δ) is an iterated inflation with inflation de-

composition

Bm
n (δ) =

bn/2c⊕
l=0

V (m,n, l)⊗ V (m,n, l)⊗Hm
n−2l.

Therefore Bm
n is cellular with respect to the dominance ordering D on Λ(m,n), and the anti-

involution ∗ given by reflection of a diagram through its horizontal axis.

Proof. This follows by standard arguments, see for example [KX01]. �

For any Hm
n -module M , we define an action of the algebra Bm

n on the vector space V (m,n, l)⊗M .
For any (m,n)-diagram X, any (m,n, l)-dangle d and any element x ∈ M we define X(d ⊗ x) as
follows. Place the diagram X above the (m,n, l)-dangle d. Choose a compatible orientation of the
strands and then concatenate to give an (m,n, l + t)-dangle Xd and an element σ ∈ Hm

n acting
on the free n − 2(l + t) nodes. If t > 0 then we set X(d ⊗ x) = 0, and otherwise, we define
X(d⊗ x) = (Xd)⊗ σx.

Corollary 3.1.4. We have that the cell modules for Bm
n (δ) are of the form

∆n(λ) = V (m,n, l)⊗ S(λ)

where S(λ) is the Specht module for Hm
n−2l defined in Section 2.3.

3.2. Tower of algebras, restriction and induction

Let n ≥ 2. Suppose first that δ 6= 0 ∈ km and fix a δr 6= 0 for some 0 ≤ r ≤ m − 1. We
then define the idempotent en−2 = 1

δr
trn−1en−1,n as illustrated in Figure 7. Note that it is a scalar

multiple of a diagram with n − 2 through strands. If δ = 0 and n ≥ 3 then we define en−2 to be
the idempotent en−1,nen−2,n−1, as illustrated in Figure 8.

δ
r

−1

r

Figure 7. The idempotent en−2 when δr 6= 0.

Figure 8. The idempotent en−2 when δ = 0 and n ≥ 3.

It is easy to see that

en−2B
m
n en−2

∼= Bm
n−2 (3.2.1)
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and

Bm
n /B

m
n en−2B

m
n
∼= Hm

n (3.2.2)

just as for the Brauer algebra [CDM09, Lemma 2.1]. In particular, any Hm
n -module can naturally

be viewed as a Bm
n -module.

Via (3.2.1) we define an exact localisation functor through the idempotent en−2.

Fn : Bm
n -mod −→ Bm

n−2-mod

M 7−→ en−2M

and a right exact globalisation functor

Gn : Bm
n -mod −→ Bm

n+2-mod

M 7−→ Bm
n+2en ⊗Bmn M.

Note that Fn+2Gn(M) ∼= M for all M ∈ Bm
n -mod, and hence Gn is a full embedding. It is easy to

check that for any λ ∈ Λ(m,n) we have

Fn(∆n(λ)) ∼=
{

∆n−2(λ) if λ ∈ Λ(m,n− 2)
0 otherwise.

(3.2.3)

We have, for any Hm
n -module, that

Bm
n+2en ⊗Bmn M ∼= V (m,n+ 2, 1)⊗kM

as Bm
n+2-modules where the action on the LHS is given by left multiplication in Bm

n+2 and the
action on the RHS is given in Section 3.1 (see [HHKP10, Proposition 4.1]). In particular, if λ is an
m-partition of n− 2l, we have

∆n(λ) = Gn−2Gn−4 . . . Gn−2lS(λ)

and hence

Gn∆n(λ) = ∆n+2(λ). (3.2.4)

Lemma 3.2.1. For each n ≥ 1, the algebra Bm
n can be identified as a subalgebra of Bm

n+1 via the
homomorphism which takes an (m,n)-diagram X in Bm

n to the (m,n+1)-diagram in Bm
n+1 obtained

by adding two vertices n+ 1 and n+ 1 with a strand between them labelled by zero.

Lemma 3.2.1 implies that we can consider the usual restriction and induction functors. We refine
these functors as a direct sum of signed versions. This refinement is given by inducing via

Bm
n−1 ⊂ Bm

n−1 ⊗Bm
1 ⊂ Bm

n ,

where Bm
1
∼= k(Z/mZ) and corresponds to the rightmost string in the diagrams. Note that for any

Bm
n -module M we have that T rnM is naturally a Bm

n−1-module. In fact, it is given by the summand
of M ↓Bmn−1⊗Bm1 on which Bm

1 acts by ξr. So we can define the following signed induction and
restriction functors.

ξr-resn :Bm
n -mod −→ Bm

n−1-mod

M 7−→ T rnM ↓Bmn−1

and

ξr-indn :Bm
n -mod −→ Bm

n+1-mod

M 7−→ ind
Bmn+1

Bmn ⊗Bm1
(M � kT rn+1).

We can relate these functors to globalisation and localisation, as in [CMPX06, (A4)].
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Lemma 3.2.2. (i) For all n ≥ 2 we have that

Bm
n en−2

∼= Bm
n−1

as a left Bm
n−1, right Bm

n−2-bimodule.
(ii) For all Bm

n -modules M we have

ξr-resn+2(Gn(M)) ∼= ξm−r-indn(M).

Proof. (i) Every diagram in Bm
n en−2 has an edge between n− 1 and n̄. Define a map from Bm

n en−2

to Bm
n−1 by sending a diagram X to the diagram with 2(n−1) vertices obtained from X by removing

the line connecting n− 1 and n̄ and the line from n (labelled by r), and pairing the vertex n− 1 to
the vertex originally paired with n in X (labelling this line with r and preserving the orientation).
It is easy to check that this gives an isomorphism.
(ii) We have to show that

T rn+2B
m
n+2en ⊗Bmn M ∼= Bm

n+1 ⊗Bmn ⊗Bm1 (M � kTm−rn+1 ).

The left hand side is spanned by all elements obtained from diagrams in Bm
n+2en by attaching the

idempotent T r to node n+ 2. Following the map given in (i) gives the required isomorphism. �

Remark 3.2.3. Note that this construction will generalise to any tower of recollement (as in
[CMPX06]) where An−1 ⊗A1 ⊂ An, and A1 admits a (non-trivial) direct sum decomposition.

Given a family of modules Mi we will write
⊎
iMi to denote some module with a filtration whose

quotients are exactly the Mi, each with multiplicity one. This is not uniquely defined as a module,
but the existence of a module with such a filtration will be sufficient for our purposes.

Proposition 3.2.4. (i) For λ ∈ Λ(m,n) we have short exact sequences

0 −→
⊎

�∈ξm−r-rem(λ)

∆n+1(λ−�) −→ ξr-indn ∆n(λ) −→
⊎

�∈ξr-add(λ)

∆n+1(λ+�) −→ 0

and

0 −→
⊎

�∈ξr-rem(λ)

∆n−1(λ−�) −→ ξr-resn ∆n(λ) −→
⊎

�∈ξm−r-add(λ)

∆n−1(λ+�) −→ 0.

(ii) In each of the filtered modules which arise in (i), the filtration can be chosen so that partitions
labelling successive quotients are ordered by dominance (see Definition 3.1.2), with the top quotient
maximal among these. When Hm

n is semisimple the
⊎

all become direct sums.

Proof. We prove the result for the functor ξr-resn. The result for ξr-indn then follows immediately
from Proposition 3.2.2(ii) and (3.2.4).

We let W be the subspace of ξr-resn ∆n(λ) spanned by all elements of the form T rnd ⊗ x with
d ∈ V (m,n, l), x ∈ S(λ) such that the node n is free in d. It is clear that this subspace is a
Bm
n−1(δ)-submodule. We shall prove that W =

⊎
�∈ξr-rem(λ) ∆n−1(λ−�).

By the restriction rules for cyclotomic Hecke algebras (see [Mat09] for details), it will be enough
to show that

W ∼= V (m,n− 1, l)⊗ ξr-resn−2l S(λ)

where ξr-resn−2l S(λ) = T rn−2lS(λ) viewed as a Hm
n−2l−1-module. The map sending T rnd ⊗ x to

φ(d)⊗ T rn−2lx where φ(d) is the (m,n− 1, l)-dangle obtained from d by removing node n is clearly
an isomorphism.

We will now show that

U = ξr-resn ∆(λ)/W ∼= V (m,n− 1, l − 1)⊗ (ind
Hm
n+1−2l

Hm
n−2l⊗H

m
1

(S(λ)� kTm−r))
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which gives the required result using [Mat09]. Let d be an (m,n, l)-dangle which has an arc
from node n to some other node. Number the free vertices of d and the node connected to n in
order from left to right with the integers 1, . . . n + 1 − 2l. Say that the node connected to n is
numbered with i. Define ψ(d) to be the (m,n − 1, l − 1)-dangle obtained from d by removing the
arc {i, n} and deleting the node n (so that i becomes a free node). And define the permutation
σi = (i, n − 2l + 1, n − 2l, n − 2l − 1, . . . i + 1) ∈ Σn−2l+1. This element is obtained by pulling
down node n in d (as in the proof of Proposition 3.2.2(i)), giving the permutation σi of the free
vertices {1, 2, . . . , n − 2l + 1}. An example is given in Figures 9 and 10. In Figure 9 we have a
(m, 13, 3)-dangle with vertices labelled with the numbers 1 to 8 (here i = 5) and we see in Figure
10 that by pulling down the last vertex we obtain an (m, 12, 2)-dangle (ignoring the crossings of
the through-strands) and the permutation σ5 = (5, 8, 7, 6) given on the through-strands.

1
◦

��

2
◦

��

◦ 66 ◦
3
◦

��

4
◦

��

5
◦ 77◦ 88

6
◦

��

◦
7
◦

��

8
◦

��

◦

Figure 9. An (m, 13, 3)-dangle with labelled vertices.

1
◦

��

2
◦

��

◦ 66 ◦
3
◦

��

4
◦

��

5
◦

��

◦ 88
6
◦

��

◦
7
◦

��

8
◦

��
1 2 3 4 5 6 7 8

Figure 10. Pulling down the last vertex in Figure 9 to obtain a (m, 12, 2)-dangle
and the permutation σ5.

Now the map sending T rnd⊗x to ψ(d)⊗ (σi⊗Hm
n−2l⊗H

m
1

(x⊗Tm−rn−2l+1)) gives the required isomor-

phism. �

We have seen that the induction and restriction functors for Bm
n decompose into signed versions.

We saw in Lemma 3.2.2 and Proposition 3.2.4 that when r 6= m − r, the ξr- and ξm−r-functors
‘pair-off’ in a manner reminiscent of those for the walled Brauer algebra (see [CDDM08, Theorem
3.3]). In the case that r = m − r we saw that the ξr-functors behave like those of the classical
Brauer algebra (see [DWH99, Theorem 4.1] and [CDM09, Proposition 2.7]). We will make this
connection explicit in Section 5.

3.3. Quasi-heredity

A cellular algebra is quasi-hereditary if and only if it has the same number of cell modules and
simple modules, up to isomorphism. Using this and standard arguments for iterated inflations
[KX98], we deduce the following.

Theorem 3.3.1. Let k be a field of characteristic p ≥ 0, m,n ∈ N, and δ ∈ km. If n is even
suppose δ 6= 0 ∈ km. The algebra Bm

n (δ) is quasi-hereditary if and only if p > n and p does not
divide m, or p = 0.

Assumption 3.3.2. From now on, we will assume that δ 6= 0 if n is even and that k satisfies the
conditions in Theorem 3.3.1, and so Bm

n (δ) is quasi-hereditary.

The cell modules ∆n(λ) are then the standard modules for this quasi-hereditary algebras, and
we will call them so. Each standard module ∆n(λ) has simple head Ln(λ) and the set

{Ln(λ) : λ ∈ Λ(m,n)}
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form a complete set of non-isomorphic simple Bm
n -modules. We denote by Pn(λ) the projective

cover of Ln(λ).

Note that in this case the first and last term in the exact sequences given in Proposition 3.2.4
(i) are just direct sums of standard modules. In fact the dominance order Dn−2l plays no role
here and the order for the quasi-hereditary structure can simply be taken to be the size of the
multi-partitions. In particular we have that [∆n(λ) : Ln(µ)] 6= 0 implies

∑m−1
i=0 |λi| ≤

∑m−1
i=0 |µi|.

We will see in the next section (see Definition 4.1.4 and Corollary 4.2.2) how this ordering can be
refined.

The results in this Section have shown

Theorem 3.3.3. Under Assumption 3.3.2 the algebras Bm
n (δ) form a tower of recollement.

4. The cyclotomic poset and combinatorics of Bm
n

4.1. The cyclotomic poset

Recall that Λ(m,n) denotes the set of m-partitions of n − 2l for all l ≤ bn/2c. We let Λ|m,n|
denote the set of m-compositions of n−2l for all l ≤ bn/2c. There is a many-to-one map Λ(m,n)→
Λ|m,n| given by

(λ0, . . . , λm−1) 7→ (|λ0|, . . . , |λm−1|).
For example the map Λ(3, 9)→ Λ|3, 9| maps ((12), (2, 1), (2, 2)) to (2, 3, 4).

For a given m,n ∈ N we define a partial ordering � on Λ|m,n| as follows.

Definition 4.1.1. Form-compositions ω = (ω0, ω1, . . . , ωm−1) and ω′ = (ω′0, ω
′
1, . . . , ω

′
m−1) ∈ Λ|m,n|,

we say ω � ω′ if and only if

(i) ωr ≤ ω′r for all 0 ≤ r ≤ m− 1
(ii) ωr − ω′r = ωm−r − ω′m−r for r 6= 0,m/2

(iii) ωr − ω′r ∈ 2Z for r = 0,m/2.

Any irreducible component in the Hasse diagram of this poset has a unique minimal element.

Let ω � ω′, with ar = ωr − ω′r for r 6= m − r and ar = (ωr − ω′r)/2 for r = 0,m/2 (note that
ar = am−r by assumption). We write ω �∑

arξr ω
′ where the sum is over all 0 ≤ r ≤ bm/2c.

Example 4.1.2. The diagram in Figure 11 is an irreducible component of the Hasse diagram of the
poset (Λ|3, 6|,�). We have annotated the edges with the relevant signs. We see that (0, 0, 0) �1+ξ

(2, 1, 1).

(0,3,3)

ξ
LL

LL
(2,2,2)

ξ
LL

LL1r
r

rr

(4,1,1)

ξ
LL

LL1r
r

rr

(6,0,0)

1r
r

rr
(0,2,2)

ξ
LL

LL
(2,1,1)

ξ
LL

LL1r
r

rr

(4,0,0)

1r
r

rr
(0,1,1) (2,0,0)

(0,0,0)

1rr
rrξLL

LL

Figure 11. An irreducible component of the Hasse poset on Λ|3, 6|.

Proposition 4.1.3. If λ, µ ∈ Λ(m,n) are such that [∆n(µ) : Ln(λ)] 6= 0, then we must have that
|µ| � |λ|.



12 C. BOWMAN, A. G. COX, AND M. DE VISSCHER

Proof. We prove this by induction on n. If n = 0 then Bm
0 = k, therefore there is only one simple

module ∆0(∅) = L0(∅) and there is nothing to prove.

Let n ≥ 1 and suppose that [∆n(µ) : Ln(λ)] 6= 0, that is we have a non-zero homomorphism
∆n(λ)→ ∆n(µ)/N for some submodule N of ∆n(µ). By localisation, we may assume that λ is an
m-partition of n, so that L(λ) = ∆(λ), and that µ is an m-partition of n− 2l for some l ≤ bn/2c.

As n ≥ 1, λ has at least one removable box, ε, say in the rth part of the m-partition λ. Then by
Proposition 3.2.4 (and noting that, under our assumption, each term is a direct sum) we have that

ξr- indn−1 ∆n−1(λ− ε)� ∆n(λ).

Therefore we have

ξr- indn−1 ∆n−1(λ− ε)→ ∆n(µ)/N.

By adjointness of ξr- indn−1 and ξr- resn we have

HomBmn (ξr- indn−1 ∆n−1(λ− ε),∆n(µ)/N) ∼= HomBmn−1
(∆n−1(λ− ε), ξr- resn ∆n(µ)/N)

By Proposition 3.2.4 we can conclude that either:

[∆n−1(µ− ε′) : Ln−1(λ− ε)] 6= 0

and ε′ ∈ ξr- rem(µ) or

[∆n−1(µ+ ε′′) : Ln−1(λ− ε)] 6= 0.

and ε′′ ∈ ξm−r- add(µ).

In the first case we have by our inductive assumption that

|µ− ε′| �(
∑
i aiξ

i) |λ− ε|

for some ai ≥ 0. We have that ε′ ∈ ξr- rem(µ) and ε ∈ ξr- rem(µ) and so

|µ| �(
∑
i aiξ

i) |λ|

as required. In the second case we have by our inductive assumption that

|µ+ ε′′| �(
∑
i aiξ

i) |λ− ε|

for some ai ≥ 0. We have that ε′′ ∈ ξm−r- add(µ) and ε ∈ ξr- rem(µ) and so

|µ| �(
∑
i biξ

i) |λ|

where ai = bi for all i 6= r, and ar = br − 1. �

Definition 4.1.4. We define a partial order, ≤, on Λ(m,n) by taking λ ≤ µ if λi ⊆ µi for all
0 ≤ i ≤ m− 1 and |λ| � |µ|.

4.2. The restriction of standard modules to Hm
n

Here we calculate the multiplicities

[∆n(λ)↓Hm
n

: S(µ)]

for λ ` n− 2l and µ ` n. The case l = 1 was already done in [RX07, Proposition 2.5], where they
remark (see [RX07, Remark 2.6]) that the general case given in [RY04, Section 4.4] is incorrect.

Recall that we have ∆n(λ) = V (m,n, l)⊗ S(λ). From the explicit action of Bm
n given in Section

3.1, it is easy to see that we have

∆n(λ)↓Hm
n

= (V (m,n, l)⊗ S(λ))↓Hm
n

∼= Hm
n ⊗Hm

2l⊗H
m
n−2l

(V (m, 2l, l)⊗ S(λ)).

So the first step is to understand the structure of V (m, 2l, l)↓Hm
2l

.



CYCLOTOMIC BRAUER ALGEBRAS 13

Each (m, 2l, l)-dangle has l arcs denoted by (ip, jp) (for p = 1, . . . , l) where ip (resp. jp) is the
left (resp. right) vertex of the arc. Note that for any arc (ip, jp) in v and any r ∈ Z/mZ we have

T ripv = Tm−rjp
v. (4.2.1)

It follows that as a (Z/mZ)2l-module, V (m, 2l, l) decomposes as

V (m, 2l, l)↓(Z/mZ)2l=
⊕
v

(r1,...,rl)

k(T r1i1 T
r2
i2
. . . T rlil v)

where the sum is over all (m, 2l, l)-dangles v with all arcs labelled by 0 and over all l-tuples
(r1, r2, . . . , rl) ∈ (Z/mZ)l. The generators of Σ2l act as follows: For each p 6= q ∈ {1, 2, . . . l} we
have

tip,jpT
r1
i1
T r2i2 . . . T

rp
ip
. . . T rlil v = T r1i1 T

r2
i2
. . . T

m−rp
ip

. . . T rlil v, (4.2.2)

tip,iqT
r1
i1
T r2i2 . . . T

rp
ip
. . . T

rq
iq
. . . T rlil v = T r1i1 T

r2
i2
. . . T

rq
ip
. . . T

rp
iq
. . . T rlil (tip,iqv). (4.2.3)

For (r1, r2, . . . , rl) ∈ (Z/mZ)l define the weight wt(r1, r2, . . . , rl) to be ϕ = (ϕ0, ϕ1, . . . , ϕbm/2c)
where

ϕi = |{p : rp = i orm− i}|.
It follows from (4.2.2) and (4.2.3) that

V (m, 2l, l)↓Hm
2l

= ⊕ϕV (m, 2l, l)ϕ (4.2.4)

where
V (m, 2l, l)ϕ =

⊕
v

wt(r1,...,rl)=ϕ

k(T r1i1 T
r2
i2
. . . T

rp
ip
. . . T rlil v)

and the sum is over all (m, 2l, l)-dangles v with all arcs labelled by 0. Now, it follows again from
(4.2.2) and (4.2.3) that V (m, 2l, l)ϕ is a cyclic Hm

2l -module. We now construct an explicit generator
for this module. Let vϕ be the (m, 2l, l)-dangle with all arcs labelled by 0 and with set of arcs given
by

∪0≤i≤bm/2cArc(i)

where we have
Arc(0) = {(1, 2), (3, 4), . . . , (2ϕ0 − 1, 2ϕ0)}

and for 0 < i < m/2

Arc(i) = {(2(ϕ0 + . . .+ ϕi−1) + 1, 2(ϕ0 + . . . ϕi)),

(2(ϕ0 + . . .+ ϕi−1) + 2, 2(ϕ0 + . . . ϕi)− 1), . . .

(2(ϕ0 + . . .+ ϕi−1) + φi, 2(ϕ0 + . . . ϕi−1) + ϕi + 1)},
and if i = m/2 we have

Arc(m/2) = {(2(ϕ0 + . . .+ ϕm/2−1) + 1, 2(ϕ0 + . . .+ ϕm/2−1) + 2), . . . , (2l − 1, 2l)}.
The (m, 2l, l)-dangle vϕ is depicted in Figure 12.

◦ ◦ ··· ◦ ◦ ◦ ··· ◦ ◦ ··· ◦ ··· ◦ ··· ◦ ◦ ··· ◦ ◦ ◦ ··· ◦ ◦

Figure 12. The (m, 2l, l)-dangle vϕ.

Now we define
Tϕ =

∏
0≤i≤bm/2c

∏
(ip,jp)∈Arc(i)

T iip .
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It follows from (4.2.2) and (4.2.3) that Tϕvϕ is a generator for the Hm
2l -module V (m, 2l, l)ϕ. The

stabiliser of k(Tϕvϕ) is given by

Stab(k(Tϕvϕ)) = k((Z/mZ) o (Σ2 oΣϕ0))⊗

 ⊗
0<i<m/2

k((Z/mZ) o Σϕi)

⊗ k((Z/mZ) o (Σ2 oΣϕm/2))

where we ignore the last term if m is odd, and the group Σϕi is viewed as a subgroup of Σϕi ×Σϕi

via the diagonal embedding. As a module for its stabiliser, we have

k(Tϕvϕ) = (kΣ2oΣϕ0 )(0) ⊗

 ⊗
0<i<m/2

((k ⊗ k)Σϕi
)(i)⊗(m−i)

⊗ (kΣ2oΣϕm/2 )(m/2).

Thus we have

V (m, 2l, l)ϕ ∼= [(kΣ2oΣϕ0 )(0) ⊗

 ⊗
0<i<m/2

((k ⊗ k)Σϕi
)(i)⊗(m−i)

⊗ (kΣ2oΣϕm/2 )(m/2))]↑H
m
2l

Stab(k(Tϕvϕ)) .

(4.2.5)

We can now prove the main result of this section.

Theorem 4.2.1. Let λ, µ ∈ Λ(m,n). If λ 6≤ µ, then [∆n(λ) ↓Hm
n

: S(µ)] = 0. Otherwise, we have
that |λ| �∑

arξr |µ|, and

[∆n(λ)↓Hm
n

: S(µ)] =
∏

i 6=0,m/2

∑
τ`ai

cµ
i

λi,τ
cµ

m−i

λm−i,τ

 ∏
j=0,m/2

 ∑
η`2aj
η even

cµ
j

λj ,η


Proof. Using the decomposition of V (m, 2l, l) given in (4.2.4) and (4.2.5) and the construction of
the Specht modules given in Section 2.2 we have

∆n(λ)↓Hm
n
∼= (V (m, 2l, l)⊗ S(λ))↑H

m
n

Hm
2l⊗Hm

n

∼= ⊕ϕ(V (m, 2l, l)ϕ ⊗ S(λ))↑H
m
n

Hm
2l⊗Hm

n

∼= ⊕ϕ[(kΣ2oΣϕ0 )(0) ⊗

 ⊗
0<i<m/2

((k ⊗ k)Σϕi
)(i)⊗(m−i)

⊗ (kΣ2oΣϕm/2 )(m/2)

⊗
⊗

1≤i≤m
S(λi)(i)]↑H

m
n

Stab(Tϕvϕ)⊗Hm
|λ|
.

Rearranging according to the action of (Z/mZ)n and using transitivity of induction we get

∆n(λ)↓Hm
n
∼= ⊕ϕ[((k↑Σ2ϕ0

Σ2oΣϕ0
⊗S(λ0))↑

Σ2ϕ0+|λ0|
Σ2ϕ0×Σ|λ0|

)(0)

⊗

 ⊗
0<i<m/2

(((k ⊗ k)↑Σϕi×Σϕi
Σϕi

⊗S(λi)⊗ S(λm−i)↑
Σϕi+|λi|

×Σϕi+|λm−i|
Σϕi×Σϕi×Σ|λi|×Σ|λm−i|

)(i)⊗(m−i)


⊗((k↑

Σ2ϕm/2

Σ2oΣϕm/2
⊗S(λm/2))↑

Σ
2ϕm/2+|λ

m/2|

Σ2ϕm/2
×Σ|λm/2|

)(m/2)]↑H
m
n

Hm
ϕ+|λ|

,

where

Hm
ϕ+|λ| = Hm

2ϕ0+|λ0| ⊗

 ⊗
0<i<m/2

(Hm
ϕi+|λi| ⊗H

m
ϕi+|λm−i|)

⊗Hm
2ϕm/2+|λm/2|.
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Note that

(k↑Σ2ϕ0
Σ2oΣϕ0

⊗S(λ0))↑
Σ2ϕ0+|λ0|
Σ2ϕ0×Σ|λ0|

is exactly the restriction to Σ2ϕ0+|λ0| of the standard module labelled by λ0 for the classical Brauer

algebra B(2ϕ0 + |λ0|, δ′) (any parameter δ′). And similarly for the last term. Note also that

((k ⊗ k)↑Σϕi×Σϕi
Σϕi

⊗S(λi)⊗ S(λm−i))↑
Σϕi+|λi|

×Σϕi+|λm−i|
Σϕi×Σϕi×Σ|λi|×Σ|λm−i|

is exactly the restriction to Σϕi+|λi| ×Σϕi+|λm−i| of the standard module labelled by (λi, λm−i) for

the walled Brauer algebra WB(ϕi+ |λi|, ϕi+ |λm−i|, δ′) (any parameter δ′). The result now follows
from [HW90, Theorem 4.1] and [Hal96, Corollary 7.24] (by replacing ϕi by ai in the statement). �

Corollary 4.2.2. Let λ, µ ∈ Λ(m,n). If [∆n(λ) : Ln(µ)] 6= 0 then λ ≤ µ.

5. Truncation to idempotent subalgebras

In this section we show that maximal co-saturated idempotent subalgebras of Bm
n are isomorphic

to a tensor product of classical and walled Brauer algebras. Hence we determine the space of
homomorphisms between standard modules and the decomposition numbers for Bm

n .

5.1. Co-saturated sets

For ω ∈ Λ|m,n| an m-composition of n, we define (� ω) ⊆ Λ|m,n| to be the subset of all m-
compositions less than or equal to ω with respect to �. We define Λω to be the pre-image of (� ω)
in Λ(m,n), that is the set of all m-partitions λ with |λ| � ω.

Example 5.1.1. The diagram in Figure 13 is the Hasse diagram of the poset (� (4, 1, 1)) ⊂ Λ|3, 6|.
We have again annotated the edges with the signed partial ordering.

(4,1,1)

ξ
LL

LL1r
r

rr
(2,1,1)

ξ
LL

LL1r
r

rr

(4,0,0)

1r
r

rr
(0,1,1) (2,0,0)

(0,0,0)

1rr
rrξLL

LL

Figure 13. A sub-poset of the Hasse poset in Figure 11.

We have chosen to work with the partial order ≤ on Λ(m,n) as it is a refinement of the natural
partial ordering given by inclusion on the set of multipartitions. Note, however, that Bm

n (δ) is
quasi-hereditary with respect to the opposite partial order ≤opp on Λ(m,n), and we have that
Λω ⊆ (Λ(m,n),≤opp) is a co-saturated subset. So we can apply the results from [Don98, Appendix]
on idempotent subalgebras corresponding to co-saturated subsets for quasi-hereditary algebras. The
first thing we need is an idempotent corresponding to Λω.

5.2. Idempotents and standard modules

In this section we consider the effect of applying the idempotents πω defined in Section 2.2 to
standard modules.

Recall that an (m,n, l)-dangle v can be described as a set of l disjoint pairs (ip < jp) ∈ {1, . . . , n}2,
called arcs, where each arc is labelled by an element of Z/mZ. We say that v belongs to ω if every
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arc (ip, jp) (for p = 1, . . . , l) satisfies ip ∈ [ωrp ] and jp ∈ [ωm−rp ] for some 0 ≤ rp ≤ bm/2c (where
we set [ωm] = [ω0]). In this case we define ω \ v by

ω \ v = ω −
l∑

p=1

(εrp + εm−rp) ∈ Λ|m,n|

where εrp = (0, . . . , 0, 1, 0, . . . , 0) with a 1 in position rp (and similarly for εm−rp).

Proposition 5.2.1. Let v be an (m,n, l)-tangle, λ ∈ Λ(m,n) and x ∈ S(λ). Then we have

πω(v ⊗ x) =

{
T r1i1 T

r2
i2
. . . T rlil v ⊗ πω\vx if v belongs to ω

0 otherwise.

In particular, we have that πω∆n(λ) 6= 0 if and only if λ ∈ Λω.

Proof. Note that for each arc (ip, jp) of v we have

T ripv = Tm−rjp
v.

Now as {T ri : 0 ≤ r ≤ m− 1} form a set of orthogonal idempotents we have

T ripT
s
jpv = T ripT

m−s
ip

v =

{
T ripv if s = m− r
0 otherwise.

Thus we have that πω(v ⊗ x) = 0 unless v belongs to ω. Now it is easy to see that πω acts on the
free vertices of v by πω\v. So if v belongs to ω we get

πω(v ⊗ x) = T r1i1 T
r2
i2
. . . T rlil v ⊗ πω\vx

as required. Now using equation (2.3.1) we have that

πω\vS(λ) ∼=
{
S(λ0)⊗ S(λ1)⊗ . . .⊗ S(λm−1) if |λ| = ω \ v
0 otherwise.

Finally note that λ ∈ Λω if and only if |λ| = ω \ v for some v belonging to ω. This proves the last
part of the proposition. �

5.3. Truncation functors

We now consider the truncation functor defined by the idempotent πω. From now on we shall
denote πωB

m
n πω by Bm

ω . The truncation functor is defined by

fω :Bm
n -mod→ Bm

ω -mod

M 7−→ πωM.

Using the last part of Proposition 5.2.1 and [Don98, A3.11] we have the following result.

Proposition 5.3.1. (i) A complete set of non-isomorphic simple Bm
ω -modules is given by

{fωLn(λ) : λ ∈ Λω}.

(ii) A complete set of non-isomorphic indecomposable projective Bm
ω -modules is given by

{fωPn(λ) : λ ∈ Λω}.

(iii) The algebra Bm
ω is a quasi-hereditary algebra with respect to the partial order ≤opp on Λω. Its

standard modules are given by fω∆n(λ) for all λ ∈ Λω.

For M ∈ Bm
n -mod we write M ∈ Fω(∆) to indicate that M has a filtration with subquotients

belonging to {∆n(λ) : λ ∈ Λω}.
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Proposition 5.3.2 (A3.13 [Don98]). Let X,Y ∈ Bm
n -mod with X ∈ Fω(∆). For all i ≥ 0 we have

ExtiBmn (X,Y ) ∼= ExtiBmω (fωX, fωY ).

As Pn(λ) ∈ Fω(∆) for all λ ∈ Λω and [∆n(µ) : Ln(λ)] = dim Hom(Pn(λ),∆n(µ)) we have the
following corollary.

Corollary 5.3.3. For all λ, µ ∈ Λω we have

[∆n(µ) : Ln(λ)] = [fω∆n(µ) : fωLn(λ)].

5.4. The idempotent subalgebras Bm
ω

We now wish to understand the structure of these idempotent subalgebras. Therefore we start
by considering the image, in Bm

ω , of the generators of the cyclotomic Brauer algebra Bm
n .

Lemma 5.4.1. Let 1 ≤ i, j ≤ n and let ω be an m-composition of n. Then we have
(i) πωt

k
i πω = ξ−krπω if i ∈ [ωr] for some 0 ≤ r ≤ m− 1.

(ii) πωti,jπω 6= 0 if and only if i, j ∈ [ωr] for some 0 ≤ r ≤ m− 1.
(iii) πωei,jπω 6= 0 if and only if i ∈ [ωr] and j ∈ [ωm−r] for some 0 ≤ r ≤ m− 1.

Proof. This follows from the definition of πω, equation (4.2.1) and the fact that the T ri ’s for 0 ≤
r ≤ m− 1 (and fixed i) are orthogonal idempotents. �

We now state the main result of this section.

Theorem 5.4.2. Let ω be an m-composition of n. The algebra Bm
ω is isomorphic to a product of

Brauer and walled Brauer algebras with parameters δr for 0 ≤ r ≤ bm/2c. More specifically

Bm
ω
∼= B(ω0, δ0)⊗

bm/2c⊗
r=1

WB(ωr, ωm−r, δr)

if m is odd, and

Bm
ω
∼= B(ω0, δ0)⊗

(m/2)−1⊗
r=1

WB(ωr, ωm−r, δr)

⊗B(ωm/2, δm/2)

if m is even.

Remark 5.4.3. In our definition of multiplication for Bm
n we chose one of two possible orientations

of the closed loops. Had we favoured the alternative orientation, the above proposition would
be stated in terms of the conjugate parameters δr such that m/2 ≤ r ≤ m − 1. This makes no
difference to the representation theory as we obtain non-semisimple specialisations only when these
parameters are integral — in which case δr = δm−r.

Proof. We will assume that m is even in the proof. The case m odd is obtained by ignoring all the
terms corresponding to m/2.

We view the tensor product of Brauer and walled Brauer algebras as a diagram algebra spanned
by certain Brauer diagrams with n northern and n southern nodes. More precisely, as vector spaces,

we embed B(ω0, δ0)⊗
(⊗

0<r<m/2WB(ωr, ωm−r, δr)
)
⊗B(ωm/2, δm/2) into B(n), the vector space

spanned by Brauer diagrams on 2n nodes, by partitioning the n northern and n southern nodes
according to ω, that is we draw a wall after the first ω0 nodes, then another wall after the next ω1

nodes, etc. We embed the diagrams in B(ω0, δ0) using the first ω0 northern and southern nodes.
For 0 < r < m/2 we embed the diagrams in B(ωr, ωm−r, δr) using all nodes i, ī ∈ [ωr] or [ωm−r].
Finally, we embed B(ωm/2, δm/2) using all nodes i, ī ∈ [ωm/2]. An example of such a diagram is
given in Figure 14.
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Figure 14. An example of the embedding of

B(3, δ0)⊗WB(2, 3, δ1)⊗WB(3, 1, δ2)⊗B(2, δ3)

into B(14) corresponding to the 6-composition ω of 14 given by ω = (3, 2, 3, 2, 1, 3).

Now the multiplication is given by concatenation. Note that each closed loop obtained by
concatenation only contains nodes i ∈ [ωr] or [ωm−r] for some 0 ≤ r ≤ bm/2c; we then remove this
closed loop and multiply by the scalar δr.

We denote by σi,j , resp. ui,j , the unoriented version of ti,j , resp. ei,j . So the algebra B(ω0, δ0)⊗(⊗
0<r<m/2WB(ωr, ωm−r, δr)

)
⊗ B(ωm/2, δm/2) is generated by the σi,j for all i < j ∈ [ωr] with

0 ≤ r ≤ m − 1, and the ui,j for all i < j with i ∈ [ωr] and j ∈ [ωm−r] for some 0 ≤ r ≤ bm/2c
(where we set [ωm] = [ω0]). The relations satisfied by these generators can be found in [BW89,
Section 5] and [N07, Theorem 4.1]. Now define the map

φ : B(ω0, δ0)⊗

 ⊗
0<r<m/2

WB(ωr, ωm−r, δr)

⊗B(ωm/2, δm/2) → Bm
ω

on generators by setting φ(1) = πω, φ(σi,j) = πωti,jπω for all i < j ∈ [ωr] for some 0 ≤ r ≤ m− 1,
and φ(ui,j) = πωei,jπω for all i < j with i ∈ [ωr] and j ∈ [ωm−r] for some 0 ≤ r ≤ bm/2c (where we
set [ωm] = [ω0]). It is clear from the description in terms of diagrams that φ gives a bijection and
that all the relations involving only the σi,j ’s, or the σi,j ’s and the ui,j ’s are satisfied. It remains

to show that for i ∈ [ωr] and j ∈ [ωm−r] we have (πωei,jπω)2 = δr(πωei,jπω). Now we have

(πωei,jπω)2 = πωei,jπωei,jπω

= πωei,jT
r
i T

m−r
j ei,jπω

= πωei,j(T
r
i )2ei,jπω

= πωei,jT
r
i ei,jπω

=
1

m

m−1∑
a=0

ξarπωei,jt
a
i ei,jπω =

1

m

m−1∑
a=0

ξarδaπωei,jπω = δr(πωei,jπω).

�

5.5. Homomorphisms and decomposition numbers

Recall that the standard modules for the classical Brauer algebraB(n, δ) are indexed by partitions
λ of n− 2l for 0 ≤ l ≤ bn/2c. For each partition λ of n− 2l, the standard B(n, δ)-module ∆B(n)(λ)
can be constructed by inflating the Specht module S(λ) along V (1, n, l), and it has simple head
LB(n)(λ). In particular, when λ ` n we have ∆B(n)(λ) = S(λ). The standard modules for the walled
Brauer algebra WB(r, s, δ) are indexed by bi-partitions (λ, µ) of (r− l, s− l) for 0 ≤ l ≤ min{r, s}.
For each bi-partition (λ, µ), the standard WB(r, s, δ)-module ∆WB(r,s)(λ, µ) can be constructed
similarly by inflating the tensor product of Specht modules S(λ) ⊗ S(µ) along the corresponding
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subspace of dangles, and it has simple head LWB(r,s)(λ, µ). In particular, when λ ` r and µ ` s we
have ∆WB(r,s)(λ, µ) = S(λ)⊗ S(µ).

Proposition 5.5.1. For λ ∈ Λω the module ∆ω
n(λ) = fω∆n(λ) is isomorphic to

∆B(ω0)(λ
0)⊗

⊗
1≤r≤bm/2c

∆WB(ωr,ωm−r)(λ
r, λm−r)⊗∆B(ωm/2)(λ

m/2)

(under the isomorphism given in Theorem 5.4.2) where we ignore the last term when m is odd.

Proof. Let N = ∆B(ω0)(λ
0) ⊗

⊗
1≤r≤bm/2c∆WB(ωr,ωm−r)(λ

r, λm−r) ⊗ ∆B(ωm/2)(λ
m/2). By Propo-

sition 5.3.1(iii), we know that fω∆n(λ) is a standard module. So we only need to show that it
is labelled by the same multi-partition as N . Now N is characterised by the fact that when we
localise it to

B(|λ0|)⊗

 ⊗
1≤r≤bm/2c

WB(|λr|, |λm−r|)

⊗B(|λm/2|)

we get a module isomorphic to

S(λ0)⊗

 ⊗
1≤r≤bm/2c

(S(λr)⊗ S(λm−r))

⊗ S(λm/2).

But it is clear that fω∆n(λ) satisfies this condition using Proposition 5.2.1 and Section 2.3. �

Corollary 5.5.2. Let λ, µ ∈ Λ(m,n) and define ω = |λ|. Then (i) HomBmn (∆n(λ),∆n(µ)) is
isomorphic to

HomB(ω0,δ0)(∆B(λ0),∆B(µ0))⊗
⊗

0<r<m/2

HomWB(ωr,ωm−r,δr)
(∆WB(λr, λm−r),∆WB(µr, µm−r))

⊗HomB(ωm/2,δm/2)(∆B(λm/2),∆B(µm/2)).

(ii) The decomposition numbers [∆n(µ) : Ln(λ)] factorise as

[∆B(µ0) : LB(λ0)]×
∏

0<r<m/2

[∆WB(µr, µm−r) : LWB(λr, λm−r)]× [∆B(µm/2) : LB(λm/2)].

(We ignore the last term in (i) and (ii) when m is odd).

Proof. By localisation (3.2.3), we can always assume that λ is an m-partition of n. Now, we have
seen in Corollary 4.2.2 that a necessary condition for a non-zero homomorphism (or decomposition
number) is that λ ≥ µ. Thus we have λ, µ ∈ Λω where ω = |λ|. We then obtain the results using
Propositions 5.5.1 and 5.3.2 and Corollary 5.3.3. �

Remark 5.5.3. Let ω be an m-composition of n and let λ, µ ∈ Λω. Then, using Proposition 5.3.2,
we have more generally that

ExtiBmn (∆n(λ),∆n(µ)) ∼= ExtiBmω (∆ω
n(λ),∆ω

n(µ))

for all i ≥ 0.

Remark 5.5.4. (i) With this factorisation of the decomposition numbers at hand, one can easily
deduce the block structure of Bm

n (in terms of that of the walled and classical Brauer algebras).

(ii) The decomposition numbers for the Brauer and walled Brauer algebras in characteristic zero
are known by [Mar] and [CD11], and so we have determined the decomposition numbers for the
cyclotomic Brauer algebra in characteristic zero.
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6. Appendix: The unoriented cyclotomic Brauer algebra

There is another version of the cyclotomic Brauer algebra, which we will denote by B̃m
n (δ),

spanned by unoriented reduced (m,n)-diagrams. As a vector space, it coincides with Bm
n but the

multiplication is simply given by concatenation, addition (in Z/mZ) of the labels on each strands,
and replacing any closed loop labelled by r with scalar multiplication by δr.

All the arguments in this paper apply to the unoriented cyclotomic Brauer algebra as well, and
it turns out that the corresponding idempotent subalgebras are isomorphic to a tensor product of
classical Brauer algebras in this case. Hence this gives a factorisation of the decomposition numbers
of B̃m

n as a product of decomposition numbers for the classical Brauer algebras. We will now briefly
sketch the modifications required.

The algebra B̃m
n is still an iterated inflation of the algebras Hm

n but along the spaces of unoriented
dangles. All the results in Section 3 hold as before if we replace m − r by r in Lemma 3.2.2(ii)
and Proposition 3.2.4. In Section 4, note that in equation (4.2.1) and equation (4.2.2) we have to
replace m− r with r again. Now following the argument in Section 4.2 we obtain

[∆n(λ)↓Hm
n

: S(µ)] =
∏

0≤j≤m−1

∑
η`2aj
η even

cµ
j

λj ,η
.

We modify the partial ordering � and ≤ accordingly. For ω, ω′ ∈ Λ|m,n| we set ω � ω′ if and only
if ωr − ω′r ≥ 0 and ωr − ω′r is even for all 0 ≤ r ≤ m− 1. We then define ≤ on Λ(m,n) by setting
λ ≤ µ if and only if |λ| � |µ| and λr ⊆ µr for all 0 ≤ r ≤ m− 1. We then have that Corollary 4.2.2
holds with respect to this new partial order. In Section 5 we can define the co-saturated subset
Λω as before (using the new partial order). Replacing m− r with r throughout the arguments we
obtain that

B̃m
ω
∼=

⊗
0≤r≤m−1

B(ωr, δr),

and hence we get the required factorisation of homomorphisms between standard modules and of
decomposition numbers.
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