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ABSTRACT
In this paper, we explore for the first time the interactions of the net
downward, time-dependent, γ -pumping overlying an imposed layer
of magnetic fluid, in a polytropic atmosphere. Our calculations show
that an equipartition of energy, between the magnetic and kinetic
components, must be reached for buoyancy-driven magnetic struc-
tures to rise into the pumping region. However, structures do not rise
unhindered, as in a previous investigation. We show that the evolu-
tion and other features of the emerging magnetic flux structures are
significantly affected by the temporal variation of the γ -pumping.
The rate of emerging structures, the strength of magnetic concen-
trations and the extent to how far magnetic field can travel were all
found to depend on the timescale of the γ -pumping.
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1. Introduction

Observed magnetic concentrations in sunspots together with other magnetic phenomena
on, and above, the solar surface have given rise to a series of challenging questions regard-
ing themechanisms responsible for the generation, evolution and escape ofmagnetic fields
from the deep interior to the surface of the Sun (Zwaan 1985; Solanki 2003; Silvers 2008).
Consequently, a number of investigations have been undertaken (see e.g. Parker 1993; Dik-
pati and Gilman 2001; Tobias and Weiss 2007, and references therein) and it is clear that
the tachocline region, which is located at the interface of the convection zone and radia-
tive zone, is important as part of both the dynamo mechanism and also in the formation
of strong structures that emerge to give rise to features at the surface (see e.g. Spiegel and
Zahn 1992; Gilman 2005; Christensen-Dalsgaard and Thompson 2007).

The tachocline is regarded as the seat of large-scale toroidal field in the Sun and is a
region of strong shear (Charbonneau 2010). Structures must be formed in this region and
remain coherent through the inescapable distortion and shredding in the turbulent con-
vection zone, in order to reach the surface and give rise to magnetic features. A key issue
that remains to be understood is how strong structures are formed, and on an appropri-
ate timescale, in the tachocline to give rise to, for example, sunspots at the surface. While a
recent investigation has focused on the formation of solar surface magnetic concentrations
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within the convection zone itself (Perri and Brandenburg 2018), a significant body of liter-
ature has sought to examinemagnetic buoyancy instabilities of a shear-generatedmagnetic
field (see e.g. Cline et al. 2003; Vasil and Brummell 2008; Silvers et al. 2009, and references
therein). For simplicity, many of these calculations examine buoyantmagnetic tubes in iso-
lation, i.e. in the absence of an overlying convective layer.However, to understand the entire
picture of the dynamics, it is important to consider the evolution of magnetic structures in
the presence of convection.

Previous numerical papers, looking at the interaction between buoyant magnetic
flux structures and convection (Nordlund et al. 1992; Brandenburg et al. 1996; Tobias
et al. 1998, 2001), focused on the role of turbulent convection in transporting and storing
the underlying magnetic field. In their models, they establish a radial pumping that arises
naturally from the turbulent convective flow. However, due to the complex interactions in
these frameworks, it is difficult to isolate more general phenomena that permit global fea-
tures, namely the emergence of magnetic flux tubes, to occur. Few studies have considered
the simpler approach of parameterising the pumping effects seen in magnetoconvection
simulations using the basis of mean field electrodynamics (Krause and Rädler 1980; Mof-
fatt 1983), to capture such global features (see, for example, Ossendrijver et al. 2002). This
so-called γ -pumping simply implies a secondary advection term of the mean magnetic
field relative to the flow and can be characterised to describe properties of the turbu-
lent convective flow without the associated complications of full convection calculations
(Moffatt 1983; Tobias et al. 2001).

Recently, Barker et al. (2012) implemented the γ -pumping approach in their model to
simply capture the dynamics of overshooting convection on buoyant magnetic structures
forming in the tachocline. Results from their numerical calculations establish that struc-
tures rise from their initial formation region only when an equipartition relation between
the magnetic field and the γ -pumping is satisfied. This suggested a plausible mechanism
of restraining and intensifying the magnetic field before buoyant structures rise into, and
through the convection zone. However, their calculations were an initial limited investi-
gation in this framework as a number of features were not considered and thus may not
capture the full picture of the dynamics of the magnetic field in the presence of turbulent
convection. Velocities associated with turbulence naturally depend on both time and space
(Toomre et al. 1984;Weiss et al. 1996, 2004), and it is unclear how themagnetic field would
evolve if the static pumping profile in the (Barker et al. 2012) model was replaced with a
time-dependent one. A time-dependent γ -pumping will cause temporal variations in the
mean downward force and hence, the equipartition value. The research presented here will
build on thework of Barker et al. (2012) by exploring the effect of time-dependent pumping
on the formation and evolution of magnetic structures.

This paperwill proceed as follows: Section 2 outlines themodel, parameter selection and
numerical approach. Section 3 discusses the results and this is followed by the conclusions
in Section 4.

2. TheModel

We consider a localised model in a Cartesian geometry, with x and y corresponding to the
horizontal coordinates. The z-axis is chosen to point vertically downwards, parallel to the
constant gravitational force, g. In a similar vein to Barker et al. (2012), the fluid is assumed
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to obey the perfect gas law with the dynamic viscosity, μ, the magnetic diffusivity, η, the
thermal conductivity, κ , and the specific heats at constant density and pressure, cv and cp,
respectively, all constant. Thus, the set of non-dimensional equations are

∂ρ

∂t
+ ∇·(ρu) = 0, (1)

ρ

(
∂u
∂t

+ (u·∇)u
)

= −∇p − ∇ ( 1
2F|B|2) + F(B·∇)B

+ σCk(∇·τ ) + ρθ(m + 1)ẑ, (2)

ρ

(γs − 1)

(
∂T
∂t

+ (u·∇)T
)

= −p∇·u + γsCk

(γs − 1)
∇· (κ∇T)

+ Ck
(
Fζ0|∇ × B|2 + 1

2στ 2
)
, (3)

∂B
∂t

= ∇ × (u × B − Ckζ0∇ × B) + G, (4)

∇·B = 0, (5)

where

p = ρT, (6)

and

τij = ∂ui
∂xj

+ ∂uj
∂xi

− 2
3

∂uk
∂xk

δij . (7)

Here, ρ is the fluid density, p is the pressure, T is the temperature, B is the magnetic
field and u is the fluid velocity. Following notation and scalings in previously related
papers (e.g. Matthews et al. 1995b; Silvers et al. 2009), the unit of length is scaled by
the depth of the layer, d. Density and temperature are scaled by their initial values at
the upper surface, ρ0 and T0, respectively, and magnetic field is scaled by the magni-
tude of the initial magnetic field, B0. Velocities are scaled by the sound travel-time across
the layer in terms of the isothermal sound speed,

√
(cp − cv)T0. In the above equations,

σ = μcp/κ is the Prandtl number, Ck = κ/ρ0cpd
√

(cp − cv)T0 is the dimensionless ther-
mal diffusivity, ζ0 = ηcpρ0/κ is the ratio of magnetic to thermal diffusivity at the top of
the layer, γs = cp/cv is the ratio of specific heats, θ = �d/T is the temperature gradient,
m = gd/(cp − cv)�T − 1 is the polytropic index and lastly F = B02/(cp − cv)T0ρ0μ0 is
the dimensionless field strength.

As in Barker et al. (2012), the model has been modified to incorporate flux pumping
effects via G = ∇ × (γ × B) in (4). It is to be noted that, this modulation of pumping
only captures the effect of small-scale turbulence on the evolution of the large-scale mag-
netic field. Although thismathematical approach does not consider the scales of convection
which are comparable or larger than the buoyancymodes, it is to provide an understanding
of the underlying physical interactions that influence buoyant magnetic structures.

Unlike in Barker et al. (2012), γ will be time-dependent as its derivation incorpo-
rates spatial but not temporal averaging (see Moffatt 1983, for a discussion of the form
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for γ ). In this paper, the time-dependent, vertical γ -pumping profile is chosen to have the
following form

γ = γ (z, t)ẑ = 1
2γm [1 + sin(kt)]

[
1 + tanh

(
(�zi)−1(zi − z)

)]
ẑ , (8)

where k controls the variation of the pumping in time, and where γ is always greater than,
or equal to, zero. The spatial dependency of the pumping has been selected to represent the
change that occurs between the radiative and convection zones with the pumping gradu-
ally decaying to zero at the interface of the two zones. As this is the first inclusion of a
time-dependent γ -pumping in such a model, the time-dependent nature of the pump-
ing has been chosen to behave in a simple oscillatory pattern to ease our understanding
of the dynamics in a controlled, and well-defined, framework. Figure 1 shows how the
γ -pumping varies in space and time for one of the cases that we will discuss in this paper.

In the horizontal directions, the system is assumed to satisfy periodic boundary con-
ditions. The imposed boundary conditions at the top and bottom of the domain are

uz = ∂ux
∂z

= ∂uy
∂z

= Bx = By = 0, T = T0 at z = 0, (9a)

uz = ∂ux
∂z

= ∂uy
∂z

= Bx = By = 0,
∂T
∂z

= θ at z = d. (9b)

For all calculations, we begin from a state where u = 0, T = T0(1 + θz/d), ρ = ρ0(1 +
θz/d)m and impose a uniform horizontal magnetic layerB = Byŷ, positioned in the region
bounded by z = z1 and z = z2 and is zero elsewhere. To accommodate the imposed mag-
netic field, upon the existing hydrodynamic state, we choose to adjust the density in the
magnetic layer so that the system is in equilibrium. Simulations start from this initial
state together with small amplitude perturbations of the temperature profile. The equa-
tions are solved numerically using a parallel hybrid finite-difference/pseudo-spectral code
where time is advanced using a third-order Adams-Bashforth scheme. More detail on the
numerical set-up can be found in, for example, Bushby and Houghton (2005).

Table 1 shows the parameter values for our calculations. These are chosen exactly as in
Barker et al. (2012) to allow direct comparison with the results of our current investigation

Figure 1. Apumping profile, γ (z, t) for k= 1, as function of (a) depth at time t= 0 and (b) time at depth
z= 0.2.
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Table 1. Parameter values.

Parameter Description Value

σ Prandtl number 0.005
Ck Thermal diffusivity 0.01
θ Thermal stratification 2.0
γs Ratio of specific heats 5/3
ζ0 Magnetic diffusivity 0.01
F Magnetic field strength 0.01
m Polytropic Index 1.6
γm Magnetic pumping strength 0.1
zi Bottom of pumping layer 0.5
(�zi)−1 Width of transition layer 30.0
z1, z2 Top and bottom of magnetic layer 0.6, 0.8
λx , λy Box horizontal aspect ratio 1.0, 4.0
d Vertical depth of box 1.0
By(t = 0) Initial Horizontal magnetic strength 1.0
k Frequency associated with magnetic pumping Variable

when a time-dependent pumping profile is included. The only variable quantity in the
present simulations is k. To generally explore the effect of k, on the dynamics of the mag-
netic field, we initially discuss three cases: Case 1 where k=1, Case 2 where k=0.1 and
Case 3 where k=0.01, and thereafter discuss the implications of our general investigation
for the Sun. The choice of parameters represent a sub-adiabatic, stratified layer with a com-
putational domain elongated in parallel to the imposed discontinuous field, to allow vortex-
induced instabilities and three-dimensional structures to formMatthews et al. (1995a). The
γ -pumping is subsonic in order to mimic the magnetic effects resulting from compressible
turbulent convection (Tobias et al. 2001). Non-zero diffusion coefficients are incorporated
into the system by explicitly defining the diffusive length scales to be considerably larger
than the scale of the unresolved convection. As in Barker et al. (2012), these diffusivities
should be considered as eddy diffusivities due to the unresolved small-scales of convection,
which is consistent with the spirit of the mean field framework.

3. Results

Here we examine the effects of a time-dependent magnetic flux pumping on the results of
Barker et al. (2012) by considering a selection of different pumping timescales. In Case 1,
the pumping profile is as given in equation (8) where k=1, such that the γ -pumping
evolves in line with the sound-crossing time. Figure 2 shows snapshots of the magnetic
field for this regime. The evolution begins with the uniform magnetic layer embedded in
the lower part of the domain (figure 2(a)). As time evolves, an instability occurs leading to
the formation of buoyancy-driven magnetic structures rising towards the pumping region
(figure 2(b)). Once the magnetic field reaches the base of the γ -pumping region, zi, mag-
netic flux concentrations begin to intensify as a result of the competing effect of magnetic
buoyancy and γ -pumping below the interface. Locally ascending magnetic structures and
descending fluid are known to give rise to three-dimensional arching of the magnetic field
(Matthews et al. 1995a), as seen in figure 2(c). Emerging magnetic flux tubes continue to
rise in figure 2(d) but are soon pushed back down in figure 2(e). This is in contrast with
the earlier findings of Barker et al. (2012), where magnetic structures were observed to
rise continually once the magnetic field achieves the equipartition value determined by
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Figure 2. Snapshots of the y-component of the magnetic field for Case 1 at (a) t= 0.69, (b) t= 156.8,
(c) t= 188.5, (d) t= 206.5, (e) t= 208.6, (f ) t= 210.8, (g) t= 211.5, (h) t= 212.2, (i) t= 212.9, (j) t= 213.6
and (k) t= 214.4, respectively (Colour online).
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the Alfvénic Mach number for the γ -pumping at the interface,

Mγ = (By(t))−1γm

√
ρ(zi)

/
F . (10)

In our framework,Mγ must be modified to allow for temporal and spatial variations. That
is, to take into account the time-dependent nature of the γ -pumping and to determine the
action of the magnetic field across various depths, i.e.

Mγ = (By(t))−1γ (z, t)
√

ρ(z)
/
F = (By(t))−1Beq(z, t) , (11)

where Beq denotes the equipartition value of the meanmagnetic field with the γ -pumping.
To analyse the behaviour of emerging magnetic flux in greater detail, we examine the

horizontal magnetic component of the field in the y-direction as a function of time and
depth. Figure 3 focuses on an individual magnetic flux tube (see the box in figure 2(f) for a
visualisation of the region of interest) at the particular point x=0.25 and y=0, and study
the changes that are occurring to the magnetic field in relation to the strength of the γ -
pumping. In order to enable a clearer interpretation of the results, the differenceBeq − By is
also plotted; positive values of Beq − By represent changes in the magnetic field and/or the
magnetic flux pumping such that the γ -pumping is able to hold back the upward transport
of the magnetic field.

Figure 3(a) shows that, at the near-interface region zi, the intense magnetic structure is
starting to escape the lower layer where Beq − By < 0. The extent to how far the structure
can travel depends on whether an equipartition-strength mean magnetic field is achieved.
This magnetic structure continues to rise to the upper layer in figure 3(b,c), while the field
generally decreases in magnitude. Eventually, further through the upper domain, the mag-
netic strength, By, becomes insufficient to overcome the threshold equipartition value, and
so Beq − By > 0, where the pumping prevents the magnetic field from rising.

Given the γ -pumping timescale for variation in Case 1, the strength of the pumping
and hence the equipartition value begins to increase in figure 3(d). This can be seen in the
difference Beq − By at the top, i.e. z<0.2, whereBy ≈ 0. Risingmagnetic structures experi-
ence the maximum downward force at the upmost depth achieved, due to the nature of the
pumping profile. Thus, we observe the amplification of the magnetic field, By, just above
z ≈ 0.4, in addition to the field being pushed downwards. This behaviour continues with
the growth of the equipartition value, as a result of the increase in the pumping strength,
in figure 3(e). Finally, figure 3(f) shows that the γ -pumping achieves sufficient strength to
push and maintain the magnetic field below z ≈ 0.5, in addition to the intensification of
the magnetic field.

We find in Case 1 that magnetic structures are regularly pushed down and repelled back
up due to the temporal variation of the magnetic pumping. There is found to be a depen-
dency on the parameterMγ , that controls the ascent of localisedmagnetic structures. In the
phaseMγ � 1, i.e. Beq − By > 0, magnetic field is found to be held down with strong con-
centrations generated below the interface. Transitioning toMγ � 1, these concentrations
become sufficiently stronger than the present equipartition threshold. Hence, rising to the
upper domain until the periodic pumping cycle reaches high levels of strength, returning
background magnetic field to the lower layer. The pumping layer, occupying the region
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Figure 3. The horizontal magnetic field By and Beq − By vs. depth for a magnetic structure in Case 1,
located at x= 0.25 and y= 0, at times (a) t= 210.8, (b) t= 211.5, (c) t= 212.2, (d) t= 212.9, (e) t= 213.6
and (f ) t= 214.4.

above zi, acts as a filter permitting magnetic structures to rise through the upper layer
once the desired strength is attained while maintaining the storage of the magnetic field
at the lower layer. Nevertheless, variations in the pumping timescale play a key role in the
emergence of magnetic structures.
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To explore the behaviour of emerging magnetic structures further, we reduce the fre-
quency of the pumping cycle by setting k=0.1. For this case (Case 2), we find the spreading
of the initial field consistent with Case 1. Once the magnetic field has diffused and reached
the pumping zone, the contribution of different pumping timescales can become evident.

Figure 4. The horizontal magnetic field By and Beq − By vs. depth for a magnetic structure in Case 2,
located at x= 0.25 and y= 0, at times (a) t= 210.8, (b) t= 211.5, (c) t= 212.2, (d) t= 212.9, (e) t= 213.6
and (f ) t= 214.4.
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Figure 5. By vs. depth, for a magnetic structure in Case 2, located at x= 0.25 and y= 0, at regularly-
spaced time intervals. The pumping cycle starts at t= 171.9 and ends at t= 236.8.

Figure 6. Snapshots of the y-component of the magnetic field for Case 2 at (a) t= 210.8, (b) t= 214.4,
(c) t= 222.3, (d) t= 233.9 and (e) t= 254.8, respectively (Colour online).
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To compareCase 2withCase 1, figure 4 shows the evolution of amagnetic structure located
at x=0.25 and y=0 for a period of time, similar to that in figure 3.

In contrast with Case 1, figure 4(a,b) shows that the emergence of a magnetic struc-
ture is delayed to a later stage. This is a result of the pumping strength varying at a slower

Figure 7. Temporal evolution of the total kinetic energy and magnetic energy for (a) Case 1, (b) Case 2
and (c) Case 3. Note that Case 3 is shown for a longer period than Cases 1 and 2 to consider a complete
pumping cycle.
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pace in Case 2. Consequently, the interactions between the γ -pumping and magnetic field
occur over a longer timescale, leading to the generation of stronger magnetic concentra-
tions below z ≈ 0.5 as shown in figure 4( c–f). Within the time period where we have clear
magnetic emergence in Case 1, for Case 2 the magnetic equipartition value is always dom-
inant in the upper domain. Therefore, no flux emergence is observed and so it is useful to
explore the magnetic emergence across a broader time range.

Figure 5 elaborates on the evolution of the particular magnetic structure considered in
figure 4, during one complete pumping cycle. Magnetic flux emergence is consistent with
the equipartition criteria established earlier. However, we notice that the magnetic field
spreads further throughout the pumping region. This is because, for slower temporal vari-
ation in the γ -pumping,magnetic concentrations are able to travel further once emergence
takes place. Additionally, at particular stages, the pumping strength decays, followed by
the equipartition value. Hence, allowing the buoyancy-driven magnetic structure to rise.
Snapshots of the nonlinear evolution of the horizontal magnetic field in Case 2 are shown
in figure 6.

Evolution of the total kinetic andmagnetic energies for Case 1, Case 2 and an additional
Case 3, where k=0.01, are shown in figure 7. The growth of the kinetic and magnetic
energies arise from the mechanisms responsible for the enhancement of the local mag-
netic field. This is followed by the almost periodic release of energies, depending on the
imposed pumping profile, leading to the emergence of magnetic concentrations into the
upper region of our domain. For Case 1, magnetic structures rise frequently, but with
weaker strengths in comparison to Case 2 and Case 3. The intensification process of mag-
netic field in Case 3 is more effective, due to the pumping strength varying over a longer
timescale, hence allowing the magnetic field to interact efficiently with the γ -pumping.

Figure 8. Comparison between the variation of the imposed pumping profile and magnetic energy for
Case 1.
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Figure 9. The location of themaximummagnetic field, zmax, location of centre ofmagnetic field, zB, and
themagnetic flux fraction contained above the initial location ofmagnetic field,Φ , in time, for (a) Case 1,
(b) Case 2 and (c) Case 3 (Colour online).
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The action of buoyant magnetic structures shows a correlation with the temporal varia-
tion of the γ -pumping. This is displayed in figure 8 by comparing a γ -profile evolutionwith
its associated magnetic energy for Case 1. Pumping peaks are shown to be in agreement
with the generation of the strongest magnetic field strength at each cycle of the turbulent
pumping profile. To examine further the differences in the three cases, we apply standard
measures of depth with respect to the maximum value and centre of the magnetic field
(Wissink et al. 2000; Tobias et al. 2001). These quantities are given by

zmax = z
∣∣∣max

z
〈By〉(z), (12)

zB =
∫ 1

0
z〈By〉 dz

/∫ 1

0
〈By〉 dz, (13)

respectively, where 〈By〉 = ∫∫
By dxdy. Additionally, we quantify the fraction of magnetic

flux present in the part of the domain above the initial location of the magnetic field,

Φ =
∫ 0.6

0
〈By〉 dz

/∫ 1

0
〈By〉 dz . (14)

Figure 9 shows zmax, zB, and Φ versus time for Cases 1–3. Generally, an initial decline
in zmax is observed as the magnetic field is subject to diffusion. This is shortly recovered
by the magnetic buoyant force, causing magnetic fields to rise within the lower region
of our computational domain. Interactions between magnetic buoyancy and magnetic
pumping become more effective, after t ≈ 50, once the redistribution of the magnetic
flux reaches the interface region. This competition persists along with the formation of
magnetic concentrations, near zi.

The depth to which maximal magnetic concentrations are attained, zmax, in time vary
based on the particular choice of k. In Case 3, for example, since the pumping evolves
slowly, the intensification and breakout of the field occurs on a longer timescale. The
dynamics is more varied for Case 1, where local field amplification occurs more frequently.
In all cases, the bulk of the field is maintained at the lower fraction of the domain, as shown
by the global measure zB. The measure Φ highlights the general effect of the γ -pumping
on the spread of the magnetic field above where it is initially located. The fraction of mag-
netic flux is shown to be greater for Case 3, reaching approximately 40% of the total initial
flux, which indicates thatmagnetic structures are able to spread further for slower temporal
variations in the γ -pumping.

4. Conclusions

We have examined how the time-dependent γ -pumping impacts on the formation and
evolution of buoyant structures using an idealised mathematical framework. All simu-
lations began with an initial state, thermally perturbed, giving rise to buoyant magnetic
structures at the surface of the discontinuous magnetic layer. As in the earlier work of
Barker et al. (2012), the bulk of the magnetic field was found to be maintained below
the interface in all cases with only locally intense concentrations of magnetic flux rising
against the γ -pumping, i.e. only structures where themagnetic field strength is comparable
to equipartition strength. However, we found that in all of our cases, the time-dependent
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nature of the γ -pumping profile gave rise to a more complex evolution to what was seen
in Barker et al. (2012), where structures continue to rise once the equipartition threshold
was achieved. In the cases we considered, magnetic structures were found to rise into the
upper half of the domain but, as time progressed, were then pushed back down towards
the lower domain. This behaviour is a result of the competing effects of buoyant magnetic
structures and downward, time-dependent pumping velocity.

To understand the effect of time-dependent γ -pumping, we considered three different
pumping timescales. Properties including the rate of emergence, strength and spread of
magnetic field were all found to depend on the characteristics of the γ -pumping profile.
The degree of flux emergence was found to correlate with the frequency of the imposed
magnetic pumping. Further, the intensity of magnetic structures was found to vary as the
pumping timescale varied. Emerging structures obtained higher magnetic strength and
travelled further into the pumping layer when slower temporal variations in the pumping
profile were imposed.

In our model, we sought to focus on the general effect of time-dependent pump-
ing, on the action of rising magnetic structures. However, based on theoretically derived
timescale estimates of convection turnover, Kim and Demarque (1996) expressed two
different convective timescales: a global, large-scale, convective turnover time for the com-
plete convection zone and a local, smaller-scale, convective turnover time near the base of
the convection zone. Approximate measurements of the local solar convective timescale,
in terms of the variable k, fall within k<0.001. This is not easily accessible in our current
model framework. However, by gradually decreasing the value of k, we were able to extract
meaningful patterns of the rising magnetic structures. Additionally, our simplified model
assumes a regular periodicity in the pumping, which is unlikely to occur in the Sun, but
it does show that the evolution of buoyant structures is very dependent on changes to the
convection. Structures of sufficient strength, relative to the downward motions, will rise
and can reach the solar surface. Weaker structures will be halted in the ascent and then
will interact with the turbulence, forming part of the interface dynamo model.

Finally, while this mathematical model was principally constructed to help understand
interactions that occur near the base of the solar convection zone, the solar photospheric
layer also displays variation in the timescale of convectivemotions as well as in the scales of
emerging magnetic flux through, for instance, granulation patterns (Priest 2014). There-
fore, the work here also gives a little insight into the dynamics of convective turbulence and
emergence of magnetic structures in the photospheric region. The γ -pumping we consid-
ered with the fastest time variation showed frequent rise of relatively weak, compared to
the other cases considered, magnetic structures. This is clearly not the situation deep in the
convection zone, but it is very likely in the near surface region of the Sun, where granular
magnetic loops are observed to appear very frequently in small magnetic concentrations.
Further commentary on the dynamics of both the solar surface region and deep interior
are to be considered via a more complex model.
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