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We investigate the quantum entanglement content of quasiparticle excitations in extended many-body
systems. We show that such excitations give an additive contribution to the bipartite von Neumann and
Rényi entanglement entropies that takes a simple, universal form. It is largely independent of the momenta
and masses of the excitations and of the geometry, dimension, and connectedness of the entanglement
region. The result has a natural quantum information theoretic interpretation as the entanglement of a state
where each quasiparticle is associated with two qubits representing their presence within and without the
entanglement region, taking into account quantum (in)distinguishability. This applies to any excited state
composed of finite numbers of quasiparticles with finite de Broglie wavelengths or finite intrinsic correlation
length. This includes particle excitations in massive quantum field theory and gapped lattice systems, and
certain highly excited states in conformal field theory and gapless models. We derive this result analytically
in one-dimensional massive bosonic and fermionic free field theories and for simple setups in higher
dimensions. We provide numerical evidence for the harmonic chain and the two-dimensional harmonic
lattice in all regimes where the conditions above apply. Finally, we provide supporting calculations for
integrable spin chain models and other interacting cases without particle production. Our results point to new

possibilities for creating entangled states using many-body quantum systems.

DOI: 10.1103/PhysRevLett.121.170602

Introduction.—Measures of entanglement, such as
entanglement entropy (EE) [1] and entanglement negativity
[2-7], have attracted much attention in recent years, both
theoretically [8—10] and experimentally [11,12]. Quantum
entanglement encodes correlations between degrees of
freedom (d.o.f.) associated with independent factors of
the Hilbert space, and as such, it separates quantum
correlations from the particularities of observables. As a
consequence, the entanglement in extended systems enc-
odes, in a natural fashion, universal properties of the state.
For instance, at criticality, the entanglement of ground
states provides an efficient measure of universal properties
of quantum phase transitions, such as the (effective) central
change of the corresponding conformal field theory (CFT)
and the primary operator content [13-22]. Near criticality,
it is universally controlled by the masses of excitations
[23-25]. In states that are highly excited, with finite energy
densities, the entanglement gives rise to local thermal-
ization effects: at the heart of the eigenstate thermalization
hypothesis [26-30], the large entanglement between local
d.o.f. and the rest of the system effectively generates a
Gibbs ensemble (or generalized Gibbs ensemble in inte-
grable systems). The entanglement effects of a finite
number of excitations are less known. Some results are
available in critical systems: using the methods of Holzhey,
Larsen, and Wilczek [14], combining a geometric descrip-
tion with Riemann uniformization techniques in CFT, it
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was shown in [31,32] that certain excitations, with energies
tending to zero in the large volume limit, correct the ground
state entanglement by power laws in the ratio of length
scales. Various few-particle states have also been studied in
special cases of integrable spin chains [33-37].

In this Letter, we propose a universal formula with a
simple quantum information theoretic interpretation for the
entanglement content of states with quasiparticle excita-
tions. We consider the von Neumann and Rényi EEs: these
are measures of the amount of quantum entanglement, in
pure quantum states, between the d.o.f. associated with two
sets of independent observables whose union is complete
on the Hilbert space. We use the setup where the Hilbert
space is factorized as H, ® Hp, according to two com-
plementary spatial regions A and B, of typical length scales
(diameters) £, and ¢, respectively. The regions can be of
generic geometry and connectedness. Let & be the corre-
lation length, and ¢ = max{2z/|p;|}, where p; are the
momenta, be the maximal particles’ de Broglie wavelength.
We find exact formulas in the limit min(¢,¢) <
min(¢,, ), independent of the model studied, of the
connectedness or shape of the entanglement region, and of
the dimension. For instance, this condition includes the
limit of large regions’ diameters £, £ — oo in massive
quantum field theory (QFT) and gapped quantum lattice
systems, where the correlation length & is finite. It also
includes this same limit in certain states of conformal field

© 2018 American Physical Society
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FIG. 1. The functions (3) and (8) fork =1,6andn = 2,3,5, 8,
11, 17 and the limits n — 1 (von Neumann) and n — oo (single-
copy). The outer-most curve is the von Neumann entropy and the
inner-most curve is the single-copy entropy.

theory and gapless models whose energies are finitely
separated from that of the ground state, and which have
well-defined particle content with finite momenta (finite de
Broglie’s wavelengths). The results extend the “semiclass-
ical” form discussed in the context of spin chains in [33].
They have a very natural qubit interpretation where qubits
representing the particles are entangled according to the
particles’ distribution in space, taking into account quantum
indistinguishability in the bosonic case. Quasiparticle
excitations are ubiquitous in many-body quantum systems,
and our results are expected to apply to a large family of
states with well defined quasiparticle content. We give
evidence by studying a variety of clear-cut cases of
different dimensions.

Results.—Consider a bipartition of a system C = A U B
in a state |¥) composed of a number k of quasiparticles. In
infinite volume, the notion of quasiparticles is natural via
the theory of scattering states [38,39], and in finite but large
volumes, there exist corresponding excited states, defined
unambiguously up to exponentially decaying corrections in
the volume. Let the reduced density matrix associated with
subsystem A be p, = Trz(|¥)(¥|). The Rényi EE is the
Rényi entropy of this reduced density matrix

log T
SY(A,B) =28 log Tt}

(1)
From (1) we may compute the von Neumann EE as
SY(A, B) ==1im,_,, S} (A, B) and the so-called single-copy
entropy [40—42] as S (A, B) = lim,,_,.,S)¥ (A, B). For large
system size and fixed entanglement region, one expects the
entanglement entropies to tend to those of the ground state.
Therefore, we concentrate on the nontrivial limit where
both the full system C and the entanglement region A are
large, scaled simultaneously, A +— 1A and B+ AB. Let
r = Vol,(A)/Vol,(C) be the ratio of the d-dimensional
hypervolume of the region to that of the system. We
compute the difference ASY(A, B) = SY (A, B) — S%(A, B)
between the Rényi entropy in the excited state |¥) and in
the ground (vacuum) state |0), in this limit,

1—-n

ASY(r) = }imASZ‘(/IA,/lB). (2)

This is the contribution of the excitations to the entangle-
ment, or “excess entanglement” as named in [31,32].

We find that, for a wide variety of quantum systems, the
results depend only on the proportion r of the system’s
volume occupied by the entanglement region and are
largely independent of the momenta of the quasiparticles.
Suppose the state is formed of k particles of equal
momenta. Denoting ASY (r) = ASX(r), we find

log 3700 f4(r)"

1—n

ASK(r) =

s

k

ASk j{:f%

) log f%(r). (3)

with f(r) = (I;)rq(l — r)¥=4. For a state composed of k

particles divided into groups of k; particles of equal
momenta p;, with i = 1,2, ..., and >_;k; = k, we denote
ASY(r) = AS}*> (r) and have

r) =) _ASi(r). (4)

ASﬁl,kz,...(

In particular, for k particles of distinct momenta, the result
is k times that for a single particle, which is

log(r" + (1 =7r)")
1—-n
ASH(r) = —rlogr— (1 —r)log(1 —r). (5)

AS,(r) =

’

We observe that, in all cases, the entanglement is
maximal at r = 1/2. For k distinct-momenta particles,
the maximum is klog?2, while when some particles have
coinciding momenta, the maximal value is smaller.
Interestingly, single-copy entropies present nonanalytic
features. For distinct momenta, we have

—log(l—=r) for0<r<}

asi() = { = (6)

—logr for 1<r<1.

Again, the result is just multiplied by & for a state consisting
of k distinct-momentum particles. For equal momenta, it is
a function which is nondifferentiable at k points in the
interval € (0, 1) [generalizing (6)]. The positions of these
cusps are given by the values

1
r:% forg=0,....k—1, (7)

and the single copy entropy is given by

q l+gq
ASE (r) = —log fi(r) for 1+k§r Tk (8)
and ¢ =0, ..., k. See Fig. 1 for a numerical evaluation.
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The results take their full meaning under a quantum
information theoretic interpretation that combines a “semi-
classical” picture of particles with quantum indistinguish-
ability. Consider a bipartite Hilbert space H = Hy @ Hex-
Each factor Hj, ~ Hey is a tensor product ®; H* of
Hilbert spaces % ~ Ckt! for k; indistinguishable qubits,
with, as above, > ;k; = k. We associate H;, with the
interior of the region A and H,, with its exterior, and we
identify the qubit state 1 with the presence of a particle and
0 with its absence. We construct the state [¥,) € H under
the picture according to which equal-momenta particles are
indistinguishable, and a particle can lie anywhere in the full
volume of the system with flat probability. That is, any
given particle has probability r of lying within A, and 1 — r
of lying outside of it. We make a linear combination of
qubit states following this picture, with coefficients that are
square roots of the total probability of a given qubit
configuration, taking proper care of (in)distinguishability.
For instance, for a single particle,

Pn) = V(1) ® [0) + VI-r{0) @ [1).  (9)

as either the particle is in the region, with probability r, or
outside of it, with probability 1 —r. If two particles of
coinciding momenta are present, then we have

We) = V712) ® 0) + /2r(T = )[1) @ |1)
+/(1=r20) ® [2), (10)

as either the two particles are in the region, with probability
r?, or one is in the region and one outside of it (no matter
which one), with probability 2r(1 — r), or both are outside
the region, with probability (1 — r). For two particles of

different momenta,

W) = VA11) @ [00) + /(1 = 7)2(00) @ |11)
+/r(1 =r)([10) ® |01) + |01) ® [10)), (11)

counting the various ways two distinct particles can be
distributed inside or outside the region. Higher-particle
states can be constructed similarly. The results stated above

. e 7
are then equivalent to the identification AS)Y (r) = S, (r),
where

¥ _log Trpjy,,

Sn qb(r) ’ Pint = Trext|q’qb> <qub|' (12)

1-n

Methods.—The quantity ASY can be computed using the
replica method [13,14]. In this context, one evaluates traces
of powers of the reduced density matrix p,. This boils
down to ratios of expectation values of a twist operator,
acting on a replica model composed of n independent
copies of the original theory. The operator T(A, B) acts as a

cyclic permutation of the copies i — i + 1 mod n on Hj?”,
and as the identity on H$", and (2) is expressed as

op (LUTOAIDIELY

ASY =1
Su(r) = Jim \(O[T(A.4B)[0),

mol—n

where |0),, is the vacuum state. Both |0}, and the state |V},
have the structure

W), =¥)' ®@¥)’® - ®[¥)" (14)

Here, |W)' ~ |W) is the k-particle excited state of interest,
implemented in the ith copy.

First, in one dimension, A is a union of segments, and
T(A, B) becomes a product of branch-point twist fields [23]
on the boundary points of these segments. Let us consider
the case A = [0, 7] in a periodic system of length L. Then,
T(A,B) = T(0)7(¢), where T is the branch point twist
field and 7 is its Hermitian conjugate. In expression (13),
one may then expand in a basis {|®@)} of quasiparticles

AEITOT(O)E), =Y e ™|, (¥|T(0)|)

Lo (19

where Pg, are the momentum eigenvalues (in finite volume,
they are quantized, and the set of states is discrete). The
evaluation of (13) using (15) is, in principle, feasible in
integrable (1 4 1)-dimensional QFT, but this presents a
number of challenges. Although matrix elements of branch-
point twist fields in infinite volume are known [23,43,44],
they cannot be used in order to evaluate the limit L — oo in
(13): divergencies occur whenever momenta of intermedi-
ate particles in |®) coincide with those in |¥),. One must
first evaluate finite-volume matrix elements, resum the
series (15), and take the limit. Finite-volume matrix
elements of generic fields are related [45,46] to their
infinite-volume counterpart up to exponentially decaying
terms in L, but for twist fields, the theory has not been
developed yet. We have solved these problems for the
massive free real boson and the massive free Majorana
fermion. By performing the summation over intermediate
states at large L, noting that the so-called ‘kinematic
singularities” of infinite-volume matrix elements provide
the leading contribution, we have derived the full results (3)
and (4). The details are technical, and presented in a
separate paper [47].

Second, we performed a numerical evaluation of the
quantity ASY(r) using wave functional methods in the
harmonic chain and the two-dimensional harmonic lattice,
see Fig. 2 and the Supplemental Material (SM) [48]. In the
finite-volume Klein-Gordon theory, the vacuum wave
functional takes the Gaussian form

W) wexp -3 [ datyKE -S| (10
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—~log[log 2-AS}(1/2)]
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FIG. 2. Numerical results for the case n = 2 on the toric lattice
[0, L]? with L = 50 and lattice spacing Ax = 1. Left: Two-particle
states |¥) = |p;, P»). Squares are for mass m =1 and small
momenta, crosses are for mass m = 0.001 and large momenta.
The upper curve is formula (4) for AS}!, with numerical results
for distinct momenta p; = (0,0), p, = (0.26,0) = (4x/L,0)
(squares) and p; = (2.51,1.26) = (40x/L,20x/L), P, =
(3.14,0) = (50z/L,0) (crosses). The lower curve is formu-
la (3) for AS?, with numerical results for equal momenta
p1 = P> =(0.13,0) = (2z/L,0) (squares) and p; = p, =
(2.51,1.26) (crosses). Right: Approach of AS}(1/2) to the ana-
lytical value log 2 for the one-particle state |¥) = |p) with p =
(0, 0) as a function of L. This shows a linear approach for large mL.
The solid line is the fit 0.527 — 1.783 log(mL) on the last eight data
points (mL € [6.5, 10]).

where K(X) = Z;VOIJ(C)‘IEﬁeiﬁ"?. Excited state wave
functionals have extra polynomial-functional factors,
obtained by applying the operator

_ Jed'xe P (Epp(F) - im ()
2EﬁVOld (C)

AT(p) . A5

with the representation of the canonical momentum
w(X) = —i8/5¢p(X) satisfying [p(X), @ ()] = i8(xX = ).
Implementing the permutation T(A, B) on the space of
field configurations, the ratio (13) becomes a Gaussian
average of polynomial functionals of the fields. With finite
lattice spacing Ax, the dispersion relation is E% =
m? 4434 | sin®(p;Ax/2)/(Ax)?. Numerical results in
the one-dimensional case are discussed in more detail in
[47], where both QFT and nonuniversal parameter regimes
are seen to agree with our predictions, for connected and
disconnected regions. Here, we concentrate on the two-
dimensional periodic square lattice on C = [0, L]*>. We
choose a set of subregions A = [0,]? for values of r =
£?/L? ranging between 0 and 1. In order to establish the
validity of the requirements on the correlation length & and
the de Broglie wavelength {, we explore two distinct
regimes: that of small £ but large {, and that of small ¢
but large ¢, in both cases looking at two-particle states with
equal and with distinct rapidities. We find excellent agree-
ment with formulas (4) for AS L1 and (3) for ASZ,
respectively, see Fig. 2. Note that the configuration we

have chosen is not symmetric: regions A and B have
different shapes. Nevertheless, the symmetry r — 1 — r is
correctly recovered in the regime of validity of formulas (3)
and (4). We have explored other shapes of the region A,
obtaining similar accuracy, and have analyzed regimes
where both £ and { are small, finding even greater accuracy.
We have also analyzed the breaking of formulas (3) and (4)
away from their regime of validity. The approach to the
maximum log 2 in the case of a single particle with r = 1/2
(this maximal value is supported by general arguments
[34]) is shown in Fig. 2, where the correlation length is
varied; we observe an algebraic approach at large mL.
Third, for particular choices of the region A, it is possible
to show, analytically, the results (3)—(8) in free models of
any higher dimension, by dimensional reduction [49].
Consider the slablike regions A =1[0,7]xC, in C=
[0,L] x C; where C, is some (d — 1)-dimensional space.
Construct the canonically normalized one-dimensional
Klein-Gordon fields ¢(x;,1) = [[o d*'x1p(x1, X1, 1)]/

[v/Vol,_1(C)] and similarly for @(x,t). This dimen-
sional reduction map preserves the vacuum [49], and
the many-particle states when all momenta point in the
x; direction (with p = (p,0,...,0) the expression (17)
gives AT(p) = A"(p)). Therefore, the quantity
2(P|T(AA, AB)|¥), in d dimensions, is proportional to
LA®|T(0)T(¢)|¥), in 1 dimension. The singularity as
¢ — 0 is dimension dependent, but in the ratio (13), this
cancels out, and there is exact equality. This analysis
extends to other quasi-one-dimensional configurations.
Finally, we establish that our results hold beyond free
theories. We analyze the quantity ASY (r) ininteracting states
of the Bethe ansatz form. Previous analyses exist [33,37],
which, however, concentrated on less universal regimes. In
the ferromagnetic Heisenberg chain, two-particle states with
respect to the ferromagnetic vacuum have the simple form
Zx,yEZeiPXJriqusgn(x—y)(p’ Q)lT e *Lx e T e \Ly T T>’
where S.(p, q) is the Bethe ansatz scattering matrix. More
generally, for the purpose of evaluating large-distance
quantities, these are abstract states representing two-particle
asymptotic states, with S.(p, q) the two-body scattering
matrix of the field theory (see the thermodynamic Bethe
ansatz formalism of integrable QFT [50,51]). Thus, states of
the Bethe ansatz form are expected to provide large-distance
results of great generality in integrable models. We have
analyzed such one- and two-particle states, and found that
formulas (3) and (4) hold, see the SM [48]. Thereis noneed to
fix the momenta via the Bethe ansatz; with equal momenta,
S2(r) is, indeed, reproduced, extending previous results.
Bound states of the Heisenberg chains (Bethe strings) have
been studied [33]; these have an intrinsic length scale &
(inversely proportional to the bounding energy), and one can
see that, in the regimes discussed above, S,ll(r) is, indeed,
reproduced. Going beyond integrability, we expect the
results to hold, at least, when no particle production occurs,
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for instance in QFT one-particle states, and two-particle
states below the particle production threshold. Any one- and
two-particle excitations of Bethe-ansatz form will have EE
described by (3)—(8), such as in spin-preserving quantum
chains, integrable or not.

Discussion.—It is remarkable that the entanglement of a
wide variety of many-body quantum systems admits such a
simple and universal “qubit” interpretation. This combines
a semiclassical picture of localized particles controlled by
correlation lengths and de Broglie wavelengths with the
quantum effect of (in)distinguishability. The applicability
of Egs. (3)—(8) to higher dimensions is particularly sig-
nificant, showing that a large amount of geometric infor-
mation is irrelevant. Their application to QFT is also
interesting: QFT locality is formally based on the vanishing
of spacelike commutation relations, not on particles, yet our
results show how quantum entanglement clearly “sees”
localized particles. This suggests that entanglement entropy
could be used as a diagnostic tool for determining whether
excitations are of a quasiparticle type. The relation (12)
suggests that quasiparticle excitations in extended systems
of any dimension can be used to create simple entangled
states with controllable entanglement, where the control
parameter is the region-to-system volume ratio r. It would
be interesting to investigate the possible applications of
such a result in the area of quantum information.

We are grateful to EPSRC for funding through the
standard proposal “Entanglement Measures, Twist Fields,
and Partition Functions in Quantum Field Theory” under
Grants No. EP/P006108/1 and No. EP/P006132/1. We
would also like to thank Vincenzo Alba for discussions
and for bringing Ref. [33] to our attention.

[1] C.H. Bennett, H.J. Bernstein, S. Popescu, and B.
Schumacher, Concentrating partial entanglement by local
operations, Phys. Rev. A 53, 2046 (1996).

[2] G. Vidal and R. F. Werner, Computable measure of entan-
glement, Phys. Rev. A 65, 032314 (2002).

[3] K. Zyczkowski, P. Horodecki, A. Sanpera, and M.
Lewenstein, Volume of the set of separable states, Phys.
Rev. A 58, 883 (1998).

[4] M. B. Plenio, Logarithmic Negativity: A Full Entanglement
Monotone that is Not Convex, Phys. Rev. Lett. 95, 090503
(2005).

[5] M.B. Plenio, Erratum: Logarithmic Negativity: A Full
Entanglement Monotone That Is Not Convex, Phys. Rev.
Lett. 95, 119902(E) (2005).

[6] K. Audenaert, J. Eisert, M. B. Plenio, and R.F. Werner,
Entanglement properties of the harmonic chain, Phys. Rev.
A 66, 042327 (2002).

[7]1 J. Eisert, Entanglement in quantum information theory,
Ph.D. thesis, University of Potsdam, 2001.

[8] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Entangle-
ment in many-body systems, Rev. Mod. Phys. 80, 517
(2008).

[9] P. Calabrese, J. Cardy, and B. Doyon, Entanglement entropy
in extended quantum systems, J. Phys. A 42, 500301
(2009).

[10] J. Eisert, M. Cramer, and M. B. Plenio, Colloquium: Area
laws for the entanglement entropy, Rev. Mod. Phys. 82, 277
(2010).

[11] R. Islam, R. Ma, P. M. Preiss, M. E. Tai, A. Lukin, M.
Rispoli, and M. Greiner, Measuring entanglement entropy
in a quantum many-body system, Nature (London) 528, 77
(2015).

[12] A.M. Kaufman, M.E. Tai, A. Lukin, M. Rispoli, R.
Schittko, P. M. Preiss, and M. Greiner, Quantum therma-
lization through entanglement in an isolated many-body
system, Science 353, 794 (2016).

[13] C.J. Callan and F. Wilczek, On geometric entropy, Phys.
Lett. B 333, 55 (1994).

[14] C. Holzhey, F. Larsen, and F. Wilczek, Geometric and
renormalized entropy in conformal field theory, Nucl. Phys.
B424, 443 (1994).

[15] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement
in Quantum Critical Phenomena, Phys. Rev. Lett. 90,
227902 (2003).

[16] J.I. Latorre, E. Rico, and G. Vidal, Ground state entangle-
ment in quantum spin chains, Quantum Inf. Comput. 4, 48
(2004).

[17] P. Calabrese and J.L. Cardy, Entanglement entropy and
quantum field theory, J. Stat. Mech. (2004) P0O6002.

[18] P. Calabrese and J.L. Cardy, Evolution of entanglement
entropy in one-dimensional systems, J. Stat. Mech. (2005)
P04010.

[19] P. Calabrese, J. Cardy, and E. Tonni, Entanglement entropy
of two disjoint intervals in conformal field theory, J. Stat.
Mech. (2009) P11001.

[20] P. Calabrese, J. Cardy, and E. Tonni, Entanglement
Negativity in Quantum Field Theory, Phys. Rev. Lett.
109, 130502 (2012).

[21] P. Calabrese, J. Cardy, and E. Tonni, Entanglement neg-
ativity in extended systems: A field theoretical approach,
J. Stat. Mech. (2013) P02008.

[22] D. Bianchini, O. Castro-Alvaredo, B. Doyon, E. Levi, and F.
Ravanini, Entanglement entropy of non-unitary conformal
field theory, J. Phys. A 48, 04FTO1 (2015).

[23] J.L. Cardy, O. A. Castro-Alvaredo, and B. Doyon, Form
factors of branch-point twist fields in quantum integrable
models and entanglement entropy, J. Stat. Phys. 130, 129
(2008).

[24] B. Doyon, Bi-Partite Entanglement Entropy in Massive
Two-Dimensional Quantum Field Theory, Phys. Rev. Lett.
102, 031602 (2009).

[25] O. Blondeau-Fournier, O.A. Castro-Alvaredo, and B.
Doyon, Universal scaling of the logarithmic negativity in
massive quantum field theory, J. Phys. A 49, 125401 (2016).

[26] R. V. Jensen and R. Shankar, Statistical Behavior in
Deterministic Quantum Systems with Few Degrees of
Freedom, Phys. Rev. Lett. 54, 1879 (1985).

[27] J. M. Deutsch, Quantum statistical mechanics in a closed
system, Phys. Rev. A 43, 2046 (1991).

[28] M. Srednicki, Chaos and quantum thermalization, Phys.
Rev. E 50, 888 (1994).

170602-5


https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.58.883
https://doi.org/10.1103/PhysRevA.58.883
https://doi.org/10.1103/PhysRevLett.95.090503
https://doi.org/10.1103/PhysRevLett.95.090503
https://doi.org/10.1103/PhysRevLett.95.119902
https://doi.org/10.1103/PhysRevLett.95.119902
https://doi.org/10.1103/PhysRevA.66.042327
https://doi.org/10.1103/PhysRevA.66.042327
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1088/1751-8121/42/50/500301
https://doi.org/10.1088/1751-8121/42/50/500301
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
https://doi.org/10.1126/science.aaf6725
https://doi.org/10.1016/0370-2693(94)91007-3
https://doi.org/10.1016/0370-2693(94)91007-3
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1088/1742-5468/2009/11/P11001
https://doi.org/10.1088/1742-5468/2009/11/P11001
https://doi.org/10.1103/PhysRevLett.109.130502
https://doi.org/10.1103/PhysRevLett.109.130502
https://doi.org/10.1088/1742-5468/2013/02/P02008
https://doi.org/10.1088/1751-8113/48/4/04FT01
https://doi.org/10.1007/s10955-007-9422-x
https://doi.org/10.1007/s10955-007-9422-x
https://doi.org/10.1103/PhysRevLett.102.031602
https://doi.org/10.1103/PhysRevLett.102.031602
https://doi.org/10.1088/1751-8113/49/12/125401
https://doi.org/10.1103/PhysRevLett.54.1879
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888

PHYSICAL REVIEW LETTERS 121, 170602 (2018)

[29] H. Tasaki, From Quantum Dynamics to the Canonical
Distribution: General Picture and a Rigorous Example,
Phys. Rev. Lett. 80, 1373 (1998).

[30] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and
its mechanism for generic isolated quantum systems, Nature
(London) 452, 854 (2008).

[31] E. C. Alcaraz, M. I. Berganza, and G. Sierra, Entanglement
of Low-Energy Excitations in Conformal Field Theory,
Phys. Rev. Lett. 106, 201601 (2011).

[32] M. 1. Berganza, F. C. Alcaraz, and G. Sierra, Entanglement
of excited states in critical spin chains, J. Stat. Mech. (2012)
PO1016.

[33] J. Molter, T. Barthel, U. Schollwock, and V. Alba, Bound
states and entanglement in the excited states of quantum
spin chains, J. Stat. Mech. (2014) P10029.

[34] 1. Pizorn, Universality in entanglement of quasiparticle
excitations, arXiv:1202.3336.

[35] M. Storms and R. R. P. Singh, Entanglement in ground and
excited states of gapped free-fermion systems and their
relationship with Fermi surface and thermodynamic equi-
librium properties, Phys. Rev. E 89, 012125 (2014).

[36] R. Berkovits, Two-particle excited states entanglement
entropy in a one-dimensional ring, Phys. Rev. B 87,
075141 (2013).

[37] V. Alba, M. Fagotti, and P. Calabrese, Entanglement entropy
of excited states, J. Stat. Mech. (2009) P10020.

[38] R. Eden, P. Landshoff, D. Olive, and J. C. Polkinghorne, The
Analytic S-Matrix (Cambridge University Press, Cambridge,
England, 1966).

[39] M. Peskin and D. Schroder, An Introduction to Quantum
Field Theory (Addison-Wesley, Reading, MA, 1995).

[40] J. Eisert and M. Cramer, Single-copy entanglement in
critical quantum spin chains, Phys. Rev. A 72, 042112
(2005).

[41] I. Peschel and J. Zhao, On single-copy entanglement, J. Stat.
Mech. (2005) P11002.

[42] A. Dimic and B. Dakic, Single-copy entanglement detec-
tion, Nat. Quantum Info. 1, 11 (2018).

[43] M. Karowski and P. Weisz, Exact S matrices and form-
factors in (1 + 1)-dimensional field theoretic models with
soliton behavior, Nucl. Phys. B139, 455 (1978).

[44] F. Smirnov, Form Factors in Completely Integrable
Models of Quantum Field Theory, Advanced Series in
Mathematical Physics (World Scientific, Singapore,
1992), Vol. 14.

[45] B. Pozsgay and G. Takacs, Form-factors in finite volume I:
Form-factor bootstrap and truncated conformal space, Nucl.
Phys. B788, 167 (2008).

[46] B. Pozsgay and G. Takacs, Form factors in finite volume. II:
Disconnected terms and finite temperature correlators, Nucl.
Phys. B788, 209 (2008).

[47] O. A. Castro-Alvaredo, C. De Fazio, B. Doyon, and 1. M.
Szécsényi, Entanglement content of quantum particle ex-
citations 1. Free field theory, J. High Energ. Phys. 10
(2018) 39.

[48] See  Supplemental Material at  http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.170602 for
numerical results in the harmonic chain, and for a derivation
of the Rényi entropy for one- and two-magnon states.

[49] B. Doyon, A. Lucas, K. Schalm, and M. J. Bhaseen, Non-
equilibrium steady states in the Klein-Gordon theory,
J. Phys. A 48, 095002 (2015).

[50] A. Zamolodchikov, Thermodynamic Bethe ansatz in rela-
tivistic models: Scaling three state Potts and Lee-Yang
models, Nucl. Phys. B342, 695 (1990).

[51] T.R. Klassen and E. Melzer, The thermodynamics of purely
elastic scattering theories and conformal perturbation
theory, Nucl. Phys. B350, 635 (1991).

170602-6


https://doi.org/10.1103/PhysRevLett.80.1373
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevLett.106.201601
https://doi.org/10.1088/1742-5468/2012/01/P01016
https://doi.org/10.1088/1742-5468/2012/01/P01016
https://doi.org/10.1088/1742-5468/2014/10/P10029
http://arXiv.org/abs/1202.3336
https://doi.org/10.1103/PhysRevE.89.012125
https://doi.org/10.1103/PhysRevB.87.075141
https://doi.org/10.1103/PhysRevB.87.075141
https://doi.org/10.1088/1742-5468/2009/10/P10020
https://doi.org/10.1103/PhysRevA.72.042112
https://doi.org/10.1103/PhysRevA.72.042112
https://doi.org/10.1088/1742-5468/2005/11/P11002
https://doi.org/10.1088/1742-5468/2005/11/P11002
https://doi.org/10.1038/s41534-017-0055-x
https://doi.org/10.1016/0550-3213(78)90362-0
https://doi.org/10.1016/j.nuclphysb.2007.06.027
https://doi.org/10.1016/j.nuclphysb.2007.06.027
https://doi.org/10.1016/j.nuclphysb.2007.07.008
https://doi.org/10.1016/j.nuclphysb.2007.07.008
https://doi.org/10.1007/JHEP10(2018)039
https://doi.org/10.1007/JHEP10(2018)039
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.170602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.170602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.170602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.170602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.170602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.170602
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.170602
https://doi.org/10.1088/1751-8113/48/9/095002
https://doi.org/10.1016/0550-3213(90)90333-9
https://doi.org/10.1016/0550-3213(91)90159-U

