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Fiber Beam Analysis of Reinforced 
Concrete Members with Cyclic Constitutive 
and Material Laws
T. Ravi Mullapudi1 and Ashraf Ayoub2* 

Abstract 

This paper presents a non-linear Timoshenko beam element with axial, bending, and shear force interaction for 
nonlinear analysis of reinforced concrete structures. The structural material tangent stiffness matrix, which relates the 
increments of load to corresponding increments of displacement, is properly formulated. Appropriate simplified cyclic 
uniaxial constitutive laws are developed for cracked concrete in compression and tension. The model also includes 
the softening effect of the concrete due to lateral tensile strain. To establish the validity of the proposed model, cor-
relation studies with experimentally-tested concrete specimens have been conducted.
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1  Background
The response of reinforced concrete (RC) structures is 
affected by the combined effect of bending, shear, and 
axial loads. Accurate constitutive model of RC elements 
for combined loadings is essential for reliably predict-
ing structural behavior. In the past decades constitutive 
models have markedly improved, thereby improving the 
accuracy and efficiency of modeling complex RC struc-
tures. Efficient constitutive models for concrete and rein-
forcing bars are typically established from large-scale 
panel testing, and assuming a smeared cracked behavior. 
Belarbi and Hsu (1995) developed the Rotating-Angle 
Softened-Truss Model (RA-STM). They assumed that 
shear stresses exist along the crack direction, and pro-
posed a tension stiffening function to account for this 
effect. This model was further improved by Pang and Hsu 
(1996), who developed the Fixed-Angle Softened-Truss 
Model (FA-STM). In this model, cracks were assumed 
to be oriented at a fixed angle. Zhu et al. (2001) derived 
a proper shear modulus compatible with the FA-STM 
model and proposed a robust solution algorithm for 

analysis of shear-critical concrete elements. Later, the 
authors evaluated the Hsu/Zhu Poisson’s Ratio (Poisson’s 
ratio for cracked concrete) (Zhu and Hsu 2002), which 
resulted in the Softened Membrane Model (SMM). The 
SMM proved to be able to simulate both the pre-peak 
and post-peak behavior of concrete elements.

Accurate modeling of the complex behavior of RC 
structures is typically performed with two-dimen-
sional membrane elements. However, these elements 
are computationally very expensive, which renders the 
analysis time-consuming. Unlike membrane elements, 
fiber beam elements proved to provide a good balance 
between accuracy and numerical efficiency (Belarbi and 
Hsu 1995). In fiber-based beam elements, the spread of 
inelasticity along the depth is evaluated through discre-
tization of the section into a large number of fibers with 
appropriate material models. Typical fiber elements 
account for the axial-flexural interaction effect owing to 
the assumption that plane sections remain plane after 
deformation. Lately, Mullapudi and Ayoub (Mullapudi 
and Ayoub 2010) developed a fiber-based beam element 
that accounts for shear-axial-flexure interaction effects 
and further improved the element to account for full 
three-dimensional effects, including the combined bend-
ing, axial, shear and torsional interaction (Mullapudi and 
Ayoub 2013).
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2  Research Objective
The main objective of this paper is to derive an appro-
priate material tangent stiffness matrix for fiber beam-
column element formulation of shear-critical concrete 
members (Fig.  1). The developed stiffness matrix does 
not account for material nonlinearity. Simplified cyclic 
uniaxial constitutive laws are developed for concrete 
in both compression and tension. The formulation of 
the proposed element is based on the flexibility method 
of analysis. Flexibility-based formulations (Mullapudi 
and Ayoub 2009; Labib et  al. 2013) are used to over-
come most of the locking difficulties associated with the 
standard displacement model. Shear effects is simulated 
through a Timoshenko-based approach (Mullapudi and 
Ayoub 2009). The concrete constitutive law is based on 
the aforementioned SMM model with Hsu/Zhu ratios. 
The work also attempts to improve the development of 
the concrete uni-axial constitutive relations. The model 
is added to the library of the finite element program 
FEAPpv (Taylor 2005).

3  Concrete Constitutive Model
The ACI 318 (American Concrete Institute 2008) build-
ing code suggests that the shear strength of an RC mem-
ber is the combination of concrete strength (VC) and 
transverse reinforcement strength (VS). The value of VC 
cannot be calculated in the RA-STM model, because the 
crack angle is assumed to be rotating. However, the FA-
STM and SMM theories are capable of accounting for 

the effect of VC; because the cracks are assumed to be 
oriented at a fixed angle and the proper concrete shear 
stress term (τc) is accounted for.

To formulate the SMM model with the inclusion of 
FRP, three coordinate systems are defined as shown in 
Fig.  2: the first (x, y) represents the local coordinate of 
the fiber; the second (1, 2) defines the principal stresses; 
while the third system (r, d) defines the concrete princi-
pal coordinate system in which the concrete shear stress 
τ c12 = 0 . In the figure, α1 is the angle between the x- and 
1-axes, and αr is the angle between the x- and r-axes 
(Fig. 2).
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To following matrix R(θ) is used to rotate the stress and 
strain vectors from one coordinate system to another:

where θ is the angle between the two coordinate systems.
The compatibility equations in the x–y system are:

Similar to the strain transformations, stress transfor-
mation equations in the x–y system are:

The transformation equations are graphically repre-
sented by Mohr’s stress and strain circles in Fig. 3.

For a fiber Timoshenko-type beam element formula-
tion, the state determination at the fiber level uses the 
strain state {ɛx, ɛy, γxy} to evaluate the fiber stresses {σx, 
σy, τxy}. In this case, the values of ɛx, γxy are given, but the 
lateral strain ɛy value is unknown and has to be calculated 
from the equilibrium equations as described next.

4  Process to Evaluate Lateral Strains
To evaluate the lateral strain, the equilibrium equations 
between concrete and steel are given below:

(1)

[R(θ)] =





cos2 θ sin2 θ 2 cos θ sin θ

sin2 θ cos2 θ −2 cos θ sin θ

− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ





(2)
{

εx εy 0.5γxy
}T = [R(−α1)]

{

ε1 ε2 0.5γ12
}T

(3)
{

σx σy τxy
}T = [R(−α1)]

{

σ c
1 σ c

2 τ c12
}T

(4)






σx
σy
τxy







=





cos2 α1 sin2 α1 −2 cosα1 sin α1
sin2 α1 cos2 α1 2 cosα1 sin α1

cosα1 sin α1 − cosα1 sin α1 cos2 α1 − sin2 α1











σ c
1

σ c
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τ c12







+







ρsxfsx
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0







where fsx and fsy are the reinforcing bar stresses in the x 
and y directions respectively, and ρsx, ρsy are the smeared 
steel ratios in the x and y directions respectively.

The lateral strain ɛy in fiber i is calculated from the 
second of Equations in (4), knowing that the value of σy 
equals zero. In order to evaluate the value of the lateral 
strain ɛy, an iterative procedure is needed owing to the 
nonlinear behavior of the materials used (Mullapudi 
and Ayoub 2010).

5  Uni‑Axial Constitutive Relationships 
of the Materials

The biaxial strains in the x–y direction 
{

εx εy γxy
}T 

need to be converted to equivalent uniaxial strains in 
the principal 1–2 direction 

{

ε̄1 ε̄2 γ12
}T  in order to 

evaluate the concrete stresses as explained in (Mul-
lapudi and Ayoub 2010).

To evaluate the rotating crack angle, αr corresponding 
to a concrete shear stress τ c12 = 0 (Fig. 3) the following 
expression is used:

The calculation of the rotating angle, αr is dependent 
on the strain state. The calculation of the trial rotating 
angle, α∗

r  from the Mohr circle (Fig. 3) is based on the 
strain values
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Fig. 3 Mohr Circle representation of stresses and strains a Stress, b strain.
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If the value of the difference between the axial and 
transverse strains |ɛx − ɛy| = 0, then the value of the rotat-
ing angle αr depends upon the value of the shear strain 
γxy as follows.

Rotating angle αr = 45° when the value of γxy > 0, and 
αr = 135° when the value of the γxy < 0.

If the value of the shear strain γxy = 0 then the rotating 
angle depends upon the value of the ɛx and ɛy as follows.

The rotating angle αr = 0° when the value of ɛx > ɛy and, 
αr = 90° when the value of ɛx < ɛy.

If both the shear strain and the difference of the axial 
and transverse strains are non-zero numbers, then the 
following laws will be applied.

  • If the value of ɛx > ɛy and the shear strain γxy > 0, then 
the value of the rotating angle αr becomes the value 
of the α∗

r .
  • If the value of ɛx > ɛy and the shear strain γxy < 0, then 

the value of the rotating angle αr = 180° − α∗
r .

  • If the value of ɛx < ɛy and the shear strain γxy > 0, then 
the value of the rotating angle αr = 90° − α∗

r .
  • If the value of ɛx < ɛy and the shear strain γxy < 0, then 

the value of the rotating angle αr = 90° + α∗
r .

After evaluating theɛyterm that satisfies the equilibrium 
condition (Eq. 4), the principal angle α1 is evaluated as:

Similar to Eq. (2), the biaxial principal strains are calcu-
lated as follow:

(6)α∗
r = 0.5 tan−1

(∣

∣

∣

∣

γxy

εx − εy

∣

∣

∣

∣

)

(7)tan 2α1 =
2τxy

σx − σy

The biaxial strains in the x–y direction 
{

εx εy γxy
}T 

need to be converted to equivalent uniaxial strains in the 
principal 1–2 direction 

{

ε̄1 ε̄2 γ12
}T in order to evalu-

ate the concrete stresses as explained in (Mullapudi and 
Ayoub 2010). This is done using the Hsu/Zhu ratios (μ12, 
μ21) (Zhu and Hsu 2002). μ12 is the ratio of the tensile 
strain increment in direction 1 to the compressive strain 
increment in direction 2, and μ21 is the ratio of the com-
pressive strain increment in direction 2 to the tensile 
strain increment in direction 1. Based on test data the fol-
lowing expressions are proposed by Zhu and Hsu (2002).

where ɛsf is the strain in the steel bar that yields first and 
ɛy is the yield strain.

After cracking, the value of the Hsu/Zhu ratio μ12 is 
larger than maximum value of 0.5 for Poisson ratios of 
continuous materials. Before cracking, the Hsu/Zhu 
ratio μ21 = 0.2 and, after cracking, μ21 = 0, meaning the 
tensile strain does not affect the compressive strain.

The Hsu/Zhu ratio is used to elate the uni-axial 
strains to the biaxial principal strains:

where

The longitudinal and transverse reinforcement uni-
axial principal strains are then:

(8)
{

ε1 ε2 0.5γ12
}T = [R(α1)]

{

εx εy 0.5γxy
}T

(9)µ12 = 0.2+ 850εsf εsf ≤ εy,

(10)µ12 = 1.9 εsf > εy

(11)

{

ε̄sx ε̄sy 0.5γxy
}T = [µ][R(−α1)]

{

ε1 ε2 0.5γ12
}T

(12)[µ] =





1
1−µ12µ21

µ12
1−µ12µ21

0
µ21

1−µ12µ21

1
1−µ12µ21

0

0 0 1





(13)

ε̄sx =
(

1

1− µ12µ21
ε1 +

µ12

1− µ12µ21
ε2

)

cos2(α1)+
(

µ21

1− µ12µ21
ε1 +

1

1− µ12µ21
ε2

)

sin2(α1)−γ12 sin(α1) cos(α1)

(14)

ε̄sy =
(

1

1− µ12µ21
ε1 +

µ12

1− µ12µ21
ε2

)

sin2(α1)+
(

µ21

1− µ12µ21
ε1 +

1

1− µ12µ21
ε2

)

cos2(α1) +′ γ12 sin(α1) cos(α1)
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The equivalent uniaxial longitudinal and transverse 
steel stresses, fsx and fsy respectively are evaluated from 
the corresponding steel strains ε̄sx and ε̄sy through a 
proper steel constitutive model. The equivalent uni-
axial strains ε̄1 and ε̄2 are also used to evaluate the con-
crete stresses σ c

1 and σ c
2.

5.1  Concrete Model
The uniaxial concrete material model adopted follows 
the well-established modified Kent and Park model 
(Park et al. 1982). However, the model was modified to 
account for the following effects:

  • First, the softening effect for both, the stresses and 
strains, is accounted for.

  • Second, the cyclic stiffness degradation for both, 
the unloading and reloading branches, is intro-
duced.

  • Third, the tension-stiffening effect is accounted for 
(Belarbi and Hsu 1994).

According to Kent and Park (Park et  al. 1982), the 
monotonic stress–strain envelope of concrete follows a 
parabolic curve (Fig. 4):

It was observed from experimental tests of con-
crete panels that the compressive stress–strain curve 
is reduced due to the effect of perpendicular tensile 
stresses. This effect is accounted for through a softening 
coefficient ς . When the softened stress–strain curve is 
developed, it is assumed that the lines that connect the 
origin to the peak stress of the softened and non-sof-
tened curve have the same slope as shown in Fig. 4. Simi-
larly, the pre-peak and post-peak curves of the softened 

(15)fc = f
′
c

[

2

(

εc

ε0

)

−
(

εc

ε0

)2
]

member are assumed to follow a parabolic shape. The 
descending branch of the softened envelope is gently 
sloped until the stress reaches a value that equals 20% 
of the maximum stress ς f ′c  at a strain of ɛ20. The residual 
concrete compressive strength is assumed to be 20% of 
the softened concrete compressive strength ( ς f ′c  ). The sse 
of this value in the model is very common and has accu-
rately predicted the experimental results (Mullapudi and 
Ayoub 2013).

For the softened behavior, the following relationships 
are adopted:

(16)

RegionOA, εc ≤ ςε0, fc = ς f
′
c

[

2

(

εc

ςε0

)

−
(

εc

ςε0

)2
]

(17)

Region OA, εc ≤ ςε0, Tangent modulusEt =
2f

′
c

ε0

(

1−
εc

ςε0

)

(18)

Region AB, ςε0 < εc ≤ ε20, fc = ς f
′
c

[

1− 0.8

(

εc − ςε0

ε20 − ςε0

)2
]

(19)
Region AB, ςε0 < εc ≤ ε20,

Tangent modulusEt = −1.6ς f
′
c

(

εc − ςε0

(ε20 − ςε0)
2

)

(20)Region BC, εc > ε20, fc = 0.2ς f ′c

(21)Region BC, εc > ε20, Tangent modulusEt = 0.
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The cyclic model (Fig. 5) considers the concrete dam-
age and accounts for the crack opening and closing. 
The envelope for the cyclic stress–strain curves of con-
crete adheres to the monotonic stress–strain curve. The 
unloading and reloading path of the compressive side is 
simplified, as all the loading paths start from a common 
point R, which determines the degradation stiffness 
(i.e. the ratio between the slope of any given loading 
path and that of the monotonic envelope at the origin), 
which limit is provided by the slope of the path RB.

The unloading modulus E20 at point B of the mono-
tonic envelope curve is 0.2ς f

′
c −fr

ε20−εr
 . E20 and must be deter-

mined experimentally. The stress and strain at the 
intersection of point R and the origin are given by the 
following expressions:

in which Ec is the initial tangent modulus at origin in 
compression; in the current model, it is assumed to equal 
2f

′
c

ε0
 . The unloading stress f 1m and strain ε1m values at point 

D on the compressive monotonic envelope are used to 
calculate the reloading modulus and strain ε1t  at zero 
stress point H from the following expressions:

From any unloading point D, the stress will reach the 
zero stress axis at point H after completing two smaller 
cycles that are defined by these expressions:

The loading and unloading cycles are carried out with 
the assumption that the model follows a linear behavior 
with modulus Ec. The trial stress f Tc  and tangent modulus 
Et are based on a linear elastic behavior with initial tan-
gent modulus Ec; later this assumption is corrected to fall 
under the line HD and line HE.

(22)εr =
0.2ς f

′
c − E20ε20

Ec − E20

(23)fr = Ecεr

(24)E1
r =

fm − fr

εm − εr

(25)
ε1t = ε1m −

f 1m
E1
r

(26)

Maximum stress (line HD) f 1max

= f 1m + E1
r

(

εc − ε1m

)

, ε1t ≤ εc ≤ ε1m

(27)

Minimum stress (line HE) f 1min

= 0.5E1
r

(

εc − ε1t

)

, ε1t ≤ εc ≤ ε1m.

(28)f Tc = f Pc + Ec�εc

Here, f Pc  is the previous stress and Δɛc is the strain 
increment.

The actual stress fc and tangent modulus Et are calcu-
lated based on the trial stress state

When the unloading begins from points D to E, the 
reloading will follow the same path back to D. When 
the unloading reaches point F, then reloading will result 
in the loop DEFGD. If unloading reaches point H, then 
reloading will follow loop DEHD. The reloading path will 
always rejoin the compression envelope at the point of 
initial unloading, D. If unloading continues below point 
H, then reloading begins in tension. After the start of the 
reloading in compression, the model will re-enter the 
compression branch at point H. Subsequent loading in 
the tension branch will not affect the behavior once the 
model returns back to the compression branch.

5.2  Steel Model
The smeared stress–strain relationship of steel embed-
ded in concrete under uni-axial loading has been devel-
oped by Belarbi and Hsu (1994, 1995). The steel strain 
at cracked sections typically increases rapidly compared 
to adjacent regions because part of the stress is resisted 
by the concrete. Steel stresses are averaged along the 
reinforcing bar crossing several cracks, and the result-
ing smeared steel stress at first yield is reduced com-
pared to the local yield stress of a bare bar. The smeared 

(29)f 1min ≤ f Tc ≤ f 1max then fc = f Tc and Et = Ec

(30)f Tc < f 1min then fc = f 1min and Et = 0.5E1
r

(31)f Tc > f 1max then fc = f 1max and Et = E1
r .
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stress–strain relationship of embedded steel bars (solid 
curves), as well as that of bare bar (dotted curve) are plot-
ted in Fig. 6.

The difference between the bare bar yield stress fy and 
smeared steel bar yield stress f ′y  depends on the param-
eter B defined by Belarbi and Hsu (1994, 1995). The 
parameter Bis derived to be a function of three variables 
such as percentage of steel (ρ), cracking strength of con-
crete (fcr), and yield stress of the bare bar (fy). The param-
eter B depends on the crack width, crack spacing and 
interface bond slip behavior of steel bar and concrete. 
It can be seen that when the steel ratio ρ is decreased 
or when fcr is increased, then the smeared yield stress 
f ′y  decreases and the smeared stress–strain plot moves 
downward.

As shown in Fig. 6, the shape of both, the bare bar and 
the smeared steel bar, curves of mild steel follow two 
straight lines. These two straight lines have slopes of Es 
before yielding and E′

p after yielding for smeared steel, 
and slope of Ep after yielding for bare steel bar as illus-
trated in Fig. 6. The slope of the strain-hardening branch 
of the bare steel bar is assumed to equal 0.025 Es. The 
stress value at which the two straight lines of smeared 
steel intersect is the smeared yield stress f ′y  and the cor-
responding strain is the smeared yield strain ε′y.

The equations of the pre yield and post yield lines are 
given as:

The vertical intercept of the post yield line f ′
o
 is evalu-

ated as:

Belarbi and Hsu (1994, 1995) defined the parameter 
Bas:

where fcr = 0.31 
√

f
′
c (MPa) and ρ ≥ 0.15%.

The smeared yield stress of steel bar is calculated as:

The smeared steel bar yield strain is calculated as:

(32)fs = Esεs when fs ≤ f
′
y

(33)fs = f
′
o + E

′
pεs when fs > f

′
y .

(34)f
′
o =

Es − E
′
p

Es
f
′
y

(35)B =
1

ρ

(

fcr

fy

)1.5

,

(36)f
′
y = (0.93− 2B)fy

The slope of the strain hardening branch of the smeared 
steel bar is calculated as

The smeared steel stress before yielding can be calcu-
lated as:

When the steel stress fs reaches a value of fp and begins 
to unload, then the unloading branch follows a straight 
line with a slope of Es. The unloading stress is expressed 
as:

The cyclic response of the smeared steel bar is formu-
lated according to the Filippou et al. (1983) model which 
accounts for isotropic strain hardening and Bauschinger 
effect.

6  Tangent Material Constitutive Relations
The concrete constitutive law is simplified as an ortho-
tropic material with two perpendicular planes of elastic 
symmetry. Directions one and two are the local princi-
pal material axes that are normal to the planes of sym-
metry. With the equivalent uni-axial strains, the stiffness 
values Ēc

1 and Ēc
2 are determined from a material uni-

axial stress–strain relationship. The material behavior is 
expressed as:

In this equation, 
{

σ c
12

}

 is the concrete stress vector, 
{ɛ12} is the principal strain vector, and [Dlo]c is the prin-
cipal local uni-axial concrete material tangent stiffness 
matrix.

The tangent stiffness matrix of an RC element is 
defined as:

(37)ε
′
y =

f
′
y

Es
.

(38)E
′
p = 0.02+ B.

(39)fs = Es when εs ≤ ε
′
y

(40)

fs = (0.91− 2B)fy + (0.02+ 0.25B)Esε̄s when εs > ε
′
y.

(41)fs = fp − Es
(

εp − εs
)

where εs < εp

(42)
{

σ c
12

}

= [Dlo]
c{ε12}

(43)
�

Dgl

�c+s =

d







σx
σy
τxy







d







εx
εy

1
2γxy







,
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where ρsi is the reinforcement ratio in the ith direc-
tion; and [R(− α1)] and [R(− αsi)] are the transformation 
matrices from the local 1–2 coordinate and the  xsi − ysi 
reinforcement coordinate system, to the x–y coordinate 
system, respectively (Fig. 7).

Substituting Eq. (44) into Eq. (43) gives:

Equation (45) is split into a concrete stiffness [Dgl]c and 
a reinforcement stiffness [Dgl]s as:

and

Thus the total stiffness becomes:

(44)







σx
σy
τxy







= [R(−α1)]







σ c
1

σ c
2

τ c12







+
�

i

[R(−αsi)]







ρsifsi
0
0







,

(45)

�

Dgl

�c+s =

∂



[R(−α1)]







σ c
1

σ c
2

τ c12







+
�

i [R(−αsi)]







ρsifsi
0
0











∂







εx
εy

1
2γxy







.

(46)
�

Dgl

�c =

∂



[R(−α1)]







σ c
1

σ c
2

τ c12











∂







εx
εy

1
2γxy







,

(47)
�

Dgl

�s =

∂





�

i [R(−αsi)]







ρsifsi
0
0











∂







εx
εy

1
2γxy







.

(48)
[

Dgl

]c+s =
[

Dgl

]c +
[

Dgl

]s
,

where [Dgl]c is the tangent material constitutive matrix of 
concrete; and [Dgl]s is the tangent material constitutive 
matrix of the steel bars.

The equivalent uni-axial strains can be calculated from 
the global strains using:

where [μ] is the Hsu/Zhu ratio matrix as shown in Eq. 12.
After substituting Eq. (49) into Eq. (46):

From Eq.  (50), the concrete local tangential stiffness 
can be written as:

After substituting Eq. (51) into Eq. (50):

The diagonal terms in Eq.  (64) matrix can be found 
directly from the uni-axial stresses and strains in the 
respective directions. The first diagonal term ∂σ

c
1

∂ε̄1
= Ēc

1 
is the tangential uni-axial modulus of concrete in the 
1-direction, the second diagonal term ∂σ

c
2

∂ε̄2
= Ēc

2 is the 
tangential uni-axial modulus of concrete in the 2-direc-
tion, and the third diagonal term ∂τ c12

∂

(

1
2 γ12

) = σ c
1−σ c

2
ε1−ε2

= Gc
12 

is the shear modulus. The off-diagonal terms ∂σ
c
1

∂ε̄2
 and ∂σ

c
2

∂ε̄1
 

are obtained using the uni-axial stresses and the uni-
axial strains in the orthogonal direction. These off-diag-
onal terms are not zero because the stress and strains of 
the concrete in compression is softened by the perpen-
dicular tensile strains.

Therefore, [Dlo]c can be written as:

(49)







ε̄1
ε̄2

1
2γ12







= [µ] · [R(α1)] ·







εx
εy

1
2γxy







,

(50)

�

Dgl

�c = [R(−α1)] ·















∂σ c
1

∂ε̄1

∂σ c
1

∂ε̄2

∂σ c
1

∂

�

1
2 γ12

�

∂σ c
2

∂ε̄1

∂σ c
2

∂ε̄2

∂σ c
2

∂

�

1
2 γ12

�

∂τ c12
∂ε̄1

∂τ c12
∂ε̄2

∂τ c12

∂

�

1
2 γ12

�















· [µ] · [R(α1)].

(51)[Dlo]
c =















∂σ c
1

∂ε̄1

∂σ c
1

∂ε̄2

∂σ c
1

∂

�

1
2 γ12

�

∂σ c
2

∂ε̄1

∂σ c
2

∂ε̄2

∂σ c
2

∂

�

1
2 γ12

�

∂τ c12
∂ε̄1

∂τ c12
∂ε̄2

∂τ c12

∂

�

1
2 γ12

�















.

(52)
[

Dgl

]c = [R(−α1)] · [Dlo]
c · [µ] · [R(α1)].

(53)[Dlo]
c =







Ēc
1

∂σ c
1

∂ε̄2
0

∂σ c
2

∂ε̄1
Ēc
2 0

0 0 Gc
12






.

steel

x

y

2

1αsiα

1siα α− 1

xsi

ysi

steel

x

y

2

1αsiα

1siα α− 1

xsi

ysi

Fig. 7 Coordinate system for reinforced concrete element.
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The off-diagonal terms can be determined with three 
cases as described below.

6.1  Equivalent uni‑axial strains ε̄1 > 0 and ε̄2 > 0

When ε̄1 > 0 and ε̄2 > 0 then the uni-axial concrete 
stresses σ c

1 and σ c
2 are calculated only from uni-axial 

strains ε̄1 and ε̄2 , respectively.
Therefore,

6.2  Equivalent uni‑axial strains ε̄1 > 0 and ε̄2 < 0

When the uni-axial strain is ε̄1 > 0 then the uni-axial 
compressive stress σ c

1 is calculated directly from the ε̄1 , 
and σ c

1 is not a function of the orthogonal concrete strain 
ε̄2 . Therefore, ∂σ

C
1

∂ε̄2
= 0.

To obtain ∂σ
C
2

∂ε̄1
 , the constitutive law of the concrete strut 

in compression is needed.
In order to obtain ∂σ

C
2

∂ε1
 , the constitutive law of con-

crete in compression is needed.

where the softening coefficient ζ (Hsu and Zhu 2002)

(54)
∂σC

1

∂ε̄2
= 0 and

∂σC
2

∂ε̄1
= 0.

(55)

σC
2 = ζ · f

′
C ·

[

2

(

ε̄2

ζε0

)

−
(

ε̄2

ζε0

)2
]

,
ε̄2

ζε0
≤ 1,

(56)

σC
2 = ζ · f

′
C ·



1−

�

ε̄2
�

(ζ ε0)− 1

4
�

ζ − 1

�2


,
ε̄2

ζε0
> 1,

In Eq. (57), αr1 is in degrees. If the value of the αr1 is 
in radians then the value of the 24° should be converted 
into radians. From panel tests up to 100  MPa of con-
crete compressive strength, the deviation angle αr1 is 
equal to or less than 24° (Wang 2006)

After making the required changes, Eq. (57) becomes

where ɛ1 and ɛ2 are the biaxial strains in the 1–2 coor-
dinate system and ε̄1 and ε̄2 are the equivalent uni-axial 
strains in the 1–2 coordinate system.

From Eqs. 59 and 60:

where μ12 and μ21 are the Hsu/Zhu ratios (Zhu and Hsu 
2002)

∂ζ
∂ε̄1

 can be derived after substituting Eq. (61) into Eq. (58):

(57)

ζ =

(

5.8
√

f
′
c (MPa)

≤ 0.9

)

(

1
√
1+ 400ε̄1

)

(

1−
∣

∣α0
r1

∣

∣

240

)

.

(58)

ζ =

(

5.8
√

f
′
c (MPa)

≤ 0.9

)

(

1
√
1+ 400ε̄1

)

(

1−
15

∣

∣αc
r1

∣

∣

2π

)

,

(59)αc
r1 = 0.5 tan−1

(

γ12

ε1 − ε2

)

and

(60)ε1 = ε̄1 − µ12ε̄2 and ε2 = ε̄2 − µ21ε̄1,

(61)αc
r1 = 0.5 tan−1

(

γ12

ε̄1(1+ µ21)− ε̄2(1+ µ12)

)

,

(62)
∂σC

2

∂ε̄1
can be written as

∂σC
2

∂ε̄1
=

∂σC
2

∂ζ
·
∂ζ

∂ε̄1
.

(63)∂ζ

∂ε̄1
=

∂

((

5.8√
f
′
c (MPa)

)

(

1√
1+ 400ε̄1

)(

1− 15
4π tan−1

(

γ12
ε̄1(1+µ21)−ε̄2(1+µ12)

))

)

∂ε̄1

(64)=

�

5.8
�

f
′
c (MPa)

�

























−200

(1 + 400ε̄1)
1.5

+

15

4π















200tan−1
�

γ12
ε̄1(1+µ21)−ε̄2(1+µ12)

�

(1 + 400ε̄1)
1.5

+
γ12(1+ µ21)

(1 + 400ε̄1)
0.5
�

γ12
ε̄1(1+µ21)−ε̄2(1+µ12)

�2�

1+ (γ12)
2

(ε̄1(1+µ21)−ε̄2(1+µ12))
2

�






































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where ∂σ
C
2

∂ζ
 can be derived as follow when ε̄2

ζε0
≤ 1:

when ε̄2
ζε0

> 1:

Let

Equation (67) can be written as:

where

Let

(65)

∂σC
2

∂ζ
=

∂

(

ζ · f ′C ·
[

2

(

ε̄2
ζε0

)

−
(

ε̄2
ζε0

)2
])

∂ζ

= f
′
C ·

∂

(

2

(

ε̄2
ε0

)

− (ε̄2)
2

ζε2
0

)

∂ζ

(66)

= −f
′
C ·

(ε̄2)
2

ε2
0

·
∂

(

1

ζ

)

∂ζ

= −f
′
C ·

(ε̄2)
2

ε2
0

·
(

−
1

ζ 2

)

= f
′
C ·

(

ε̄2

ζε0

)2

(67)

∂σC
2

∂ζ
=

∂

∂ζ



ζ · f
′
C ·



1−

�

ε̄2
�

(ζ ε0)− 1

4
�

ζ − 1

�2








(68)= f
′
C ·



1−
∂

∂ζ



ζ ·

�

ε̄2
�

(ζ ε0)− 1

4
�

ζ − 1

�2






.

(69)
∂

∂ζ



ζ ·

�

ε̄2
�

(ζ ε0)− 1

4
�

ζ − 1

�2


 = A,

(70)
∂σC

2

∂ζ
= f

′
C · (1− A),

(71)

A =

(

ε̄2
/

(ζ ε0)− 1

4
/

ζ − 1

)2

+ ζ · 2 ·

(

ε̄2
/

(ζ ε0)− 1

4
/

ζ − 1

)

·
∂

∂ζ

(

ε̄2
/

(ζ ε0)− 1

4
/

ζ − 1

)

.

(72)B =
∂

∂ζ

(

ε̄2
/

(ζ ε0)− 1

4
/

ζ − 1

)

,

Equation (71) can be written as:

where

Substituting Eq. (74) into Eq. (73) gives:

Substituting Eq. (75) into Eq. (70) gives:

Substituting Eqs. (66) and (64) into Eq. (62) gives:When 

Substituting Eqs. (76) and (64) into Eq. (62) gives:When 

When the equivalent uni-axial strains ε̄1 < 0 and 
ε̄2 > 0 , then the same procedure should be followed.

6.3  Equivalent uni‑axial strains ε̄1 < 0 and ε̄2 < 0

When ε̄1 < 0 and ε̄2 < 0 then concrete will not sof-
ten; instead it increases its compressive strength in 
one direction depending on the confining stress in the 
orthogonal direction. Because of this reason, the value 

(73)

A =

(

ε̄2
/

(ζ ε0)− 1

4
/

ζ − 1

)2

+ ζ · 2 ·

(

ε̄2
/

(ζ ε0)− 1

4
/

ζ − 1

)

· B,

(74)B =
∂

∂ζ

(

ε̄2
/

(ζ ε0)− 1

4
/

ζ − 1

)

=
ε̄2
/

ε0 − 4

(4 − ζ )2
.

(75)

A =
ε̄2
/

(ζ ε0)− 1

(

4
/

ζ − 1
)3

·
(

1− 12
/

ζ +
(

4
/

ζ + 1
) ε̄2

ζε0

)

,

(

ε̄2

ζε0
> 1

)

.

(76)

∂σC
2

∂ζ
= f

′
C ·

(

1−
ε̄2
/

(ζ ε0)− 1
(

4
/

ζ − 1
)3

·
(

1− 12
/

ζ +
(

4
/

ζ + 1
) ε̄2

ζε0

))

.

(77)
ε̄2

ζε0
≤ 1,

∂σC
2

∂ε̄1
= f

′
C ·

(

ε̄2

ζε0

)2

·
∂ζ

∂ε̄1
.

(78)

ε̄2

ζε0
> 1,

∂σC
2

∂ε̄1

= f
′
C ·

(

1−
ε̄2
/

(ζ ε0)− 1
(

4
/

ζ − 1
)3

·
(

1− 12
/

ζ +
(

4
/

ζ + 1
) ε̄2

ζε0

))

·
∂ζ

∂ε̄1
.
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of ζ should be greater than or equal to 1. The current 
research uses the Vecchio’s (Vecchio 1992) simpli-
fied version of Kupfer et al. (1969) biaxial compression 
strength envelope. These equations are strength-based; 
strain-based equations are not available in the literature 
and need to be investigated in future. Accordingly: 

The global tangential constitutive matrix of steel 
[Dgl]scan be derived From Fig. 7 as:

where ε̄si is the equivalent uni-axial longitudinal strain of 
the reinforcement, ε̄si∗ is the equivalent uni-axial trans-
verse or dowel strain of the reinforcement and γsi is the 
equivalent uni-axial shear strain of the reinforcement.

Substituting Eq. (82) into Eq. (47) gives:

(79)
∂ζ

∂ε̄1
= 0 and

∂ζ

∂ε̄2
= 0

(80)
∂σC

1

∂ε̄2
=

∂σC
1

∂ζ
·
∂ζ

∂ε̄2
= 0

(81)
∂σC

2

∂ε̄1
=

∂σC
2

∂ζ
·
∂ζ

∂ε̄1
= 0

(82)







εx
εy

1
2γxy







= [R(α1)]
−1 · [µ]−1 · [R(αsi − α1)]

−1







ε̄si
ε̄si∗
1
2γsi







.

(83)

�

Dgl

�s =

∂





�

i [R(−αsi)]







ρsifsi
0
0











∂



[R(α1)]
−1 · [µ]−1 · [R(αsi − α1)]

−1







ε̄si
ε̄si∗
1
2γsi











,

(84)
=

�

i [R(−αsi)] · ρsi ·







∂fsi
∂ε̄si

∂fsi
∂ε̄si∗

∂fsi

∂

�

1
2 γsi

�

0 0 0
0 0 0







[R(α1)]
−1 · [µ]−1 · [R(αsi − α1)]

−1
,

(85)

=
�

i

[R(−αsi)] · ρsi ·







∂fsi
∂ε̄si

∂fsi
∂ε̄si∗

∂fsi

∂

�

1

2
γsi

�

0 0 0

0 0 0







[R(αsi − α1)] · [µ] · [R(α1)],

Let

where ∂fsi
∂ε̄si

= Ēsi , which is the equivalent uni-axial tangen-
tial modulus in the longitudinal direction of the rein-
forcement. The dowel action of the reinforcement is 
neglected, thus ∂fsi

ε̄si∗
= 0 , and also the shear deformation 

in the reinforcing bar is neglected, thus ∂fsi

∂

(

1
2 γsi

) = 0.

With these simplifications Eq. (86) can be written as:

Equation (85) can be written as:

After substituting Eqs.  (88) and (51) into Eq.  (48) the 
global tangent material constitutive matrix [Dgl]c+s can be 
evaluated as:

The total section stiffness is evaluated from the sum of 
concrete and steel stiffness:

The total section force is evaluated from the sum of 
concrete and steel forces in their respective directions:

where n is the number of concrete and steel fibers in a 
section.

The element stiffness and forces are calculated with 
numerical integration of section stiffness and section 
forces at different section points along the length of the 
element.

(86)[Dlo]
s = ρsi ·







∂fsi
∂ε̄si

∂fsi
∂ε̄si∗

∂fsi

∂

�

1
2 γsi

�

0 0 0
0 0 0






,

(87)[Dlo]
s =





ρsi · Ēsi 0 0
0 0 0
0 0 0



.

(88)

[

Dgl

]s =
∑

i

[R(−αsi)] · [Dlo]
s · [R(αsi − α1)] · [µ] · [R(α1)].

(89)

kfiber =
[

Dgl

]c+s = [R(−α1)] · [Dlo]
c · [µ]

· [R(α1)]+
∑

i

[T (−αsi)]

· [Dlo]
s · [R(αsi − α1)] · [µ] · [R(α1)]

(90)[KSection] =
n

∑

1

kfiber ,

(91){FSection} =
n

∑

1

Ffiber .
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7  Numerical Correlations with Experiments
The simplified uni-axial material and constitutive laws 
are implemented in the developed fiber beam element 
and analyzed the structural members under cyclic load-
ing. Model predicted the experimental results through-
out the loading history and could be used to simulate the 
behavior of RC structures under seismic loading.

7.1  Comparison of Concrete Model with the experimental 
1‑D Cyclic Stress–Strain Curves

The uni-axial material models developed in this paper 
are compared with the experimental results of Mansour 
(2001).

Mansour (2001) tested three panels of the CVE3—
series. The steel grids in these panels are set parallel to 
the applied principal stresses in horizontal and verti-
cal directions. The three panels of this series CVE3-1, 
CVE3-2 and CVE3-3 are subjected to 1-D cyclic loading 
in the horizontal direction, while maintaining a constant 
lateral tensile strain (εt) of 0.0044, 0.012 and 0.030.

Each panel has the following dimensions: length 
1397 mm, height 1397 mm, and thickness 178 mm. The 
panels are reinforced in each direction with No. 6 bars at 
267 mm spacing. The concrete compressive strengths of 
CVE3-1, CVE3-2, and CVE3-3 are 48, 41, and 43  MPa. 
The yield stress of longitudinal and transverse steel of 
panels CVE3-1, CVE3-2, and CVE3-3 are 425.4  MPa 
respectively.

The analytical result of the three panels CVE3-1, 
CVE3-2, and CVE3-3 with the current model and corre-
sponding experimental results are presented in Figs. 8, 9, 
and 10. In these figures, the horizontal axes represent the 
smeared concrete strain in the longitudinal direction, and 
the vertical axes represent the smeared concrete stress in 
the longitudinal direction.

Comparison of the current model results for the three 
panels in the CVE3 series showed an increase in lateral 
tensile strain; the ultimate value of the horizontal com-
pression stress decreases because of the softening behav-
ior of the concrete. Figures 8, 9, 10, 11, 12, 13 show that 
the current model predicts fairly well the experimental 
behavior at both the compression and tension regions.

7.2  Simulation of Columns
Three hollow, rectangular prototype bridge piers PI1, PI2, 
and PS1 are tested under reverse cyclical loading at the 
National Center for Research on Earthquake Engineer-
ing in Taiwan (Yeh and Mo 1999). These prototypes are 
analyzed using the fiber beam element. The specimens 
dimensions along with the material properties of con-
crete and reinforcement as given in Table  1. Figure  11 
shows the details of the specimens’ cross section dimen-
sions and reinforcement details. The columns are tested 
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under displacement control with cyclically-reversed hori-
zontal load.

The specimens are modeled with only one force based 
element and five Gauss–Lobatto integration points. 
The cross section is divided into 28 fiber sections. The 
boundary condition at the bottom is assumed to be 
fixed while the lateral load is applied to the top of the 
column. The longitudinal and transverse steel ratios are 
calculated based on the dimensions and spacing of the 

reinforcements. Concrete enveloped by the stirrups is 
modeled as confined concrete, while the remaining con-
crete (mostly in the cover) is considered as unconfined. 
The horizontal forces are increased based on the cyclic 
displacement control scheme.

The analytical shear force versus displacement relation-
ships of the specimens are predicted with the 2-D fiber 
beam element as shown in Figs. 12, 13, 14; the results are 
then compared to the experimental data.

The moment arms for specimens PS1, PI1, and PI2 
are 6.5, 4.5, and 3.5 m respectively. The reinforcement of 
the columns is designed such that column PS1 is domi-
nated by a flexural failure, column PI1 is dominated by 
a flexure-shear failure, and column PI2 is dominated 
by shear failure. The experimental results (Yeh and Mo 
1999) showed that specimens PS1 and PI1 failed in a 
flexure mode with the formation of plastic hinges at the 
bottom of the column and specimen PI2 failed under 
shear failure mode without rupturing the longitudinal 
reinforcement. The failure modes and ductility levels are 
reflected in the shape of the load displacement plots. The 
rebar yielded significantly prior to crushing of the con-
crete in specimens PS1 and PI1 (Figs. 12 and 13), which 
resulted in a long yield plateau and higher energy dissi-
pation. Specimen PI2 (Fig.  14) showed a much shorter 
yield plateau and pinching with less energy dissipation 

Fig. 12 Comparison of load–displacement behavior of specimen PS1 
with fiber beam element, and experiment (Yeh and Mo 1999).

Fig. 13 Comparison of load–displacement behavior of specimen PI1 
with fiber beam element, and experiment (Yeh and Mo 1999).

Table 1 Properties of bridge piers (Yeh and Mo 1999).

f
′
c , Concrete compressive strength; fy, Steel yielding strength; fsu, Steel ultimate strength; Dia., Diameter of steel bar.

Specimen 
name

f
′

c (MPa) Length (mm) Longitudinal reinforcement Transverse reinforcement

Dia. (mm) fy (MPa) fsu (MPa) Dia. (mm) fy (MPa) Spacing (mm)

PS1 34.0 6500 22 460.0 647.0 13 343.0 80

PI1 4500 10 510.0 120

PI2 32.0 3500 418.2 626.5 10 420.0 200

Fig. 14 Comparison of load–displacement behavior of specimen PI2 
with fiber beam element, and experiment (Yeh and Mo 1999).
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than specimens PS1 and PI1. Specimen PS1 developed a 
displacement ductility of 10.8, specimen PI1 developed 
a displacement ductility of 7.8, and specimen PI2 devel-
oped a displacement ductility of only 3.7.

The analytical load–displacement relationships with 
the fiber beam element accurately captured the differ-
ent behaviors of each of the three specimens. The fiber 
beam element predicted the initial stiffness, yield point, 
ultimate strength, and ductility of specimens PS1 and PI1 
very well. The predicted cyclic load–displacement curve 
of symmetric specimen PI1 (Fig. 13) showed less ultimate 
strength in the negative cycles compared to experimental 
results. The fiber beam element also predicted the behav-
ior of specimen PI2 (Fig. 14) to a degree in the positive 
direction, including the ultimate strength and strength 
degradation in the descending branch. The predicted 
ultimate strength of specimen PI2 in the negative direc-
tion is slightly higher than the test result, while the ulti-
mate strength is slightly less with the plane stress element 
analysis. The predicted hysteresis loops of specimen PI2 
with fiber beam element showed much less energy dis-
sipation and predicted the experimental results. Table 2 
summarizes the specimens’ strength values for both the 
experimental results and analytical predictions.

8  Conclusions
This paper represents a new element for cyclic analysis of 
reinforced concrete structures. A fiber-based beam ele-
ment is developed to analyze reinforced concrete struc-
tures with the incorporation of mechanisms of shear 
deformation and strength. Simplified cyclic uni-axial 
constitutive relations are developed and checked with 
the 1-D cyclic test panels of Mansour (2001). The tan-
gent stiffness is formulated with the inclusion of the sof-
tening and dilatation effects. The reverse cyclic analyses 
of different columns with rectangular cross-sections are 
analyzed with the 2-D fiber beam element. The cyclic 
analysis of columns tested by Yeh and Mo (1999) are 
analyzed with the 2-D fiber beam element. The columns 
with different aspect ratio exhibit different behaviors. 
The numerical results concerning the columns agree with 
the experimental data throughout the entire loading his-
tory. The finite element analysis using the generalized 

Softened Membrane Model predicted the experimen-
tal results throughout the loading history, including the 
initial stiffness, yield point, ultimate strength, and failure 
mode; and could therefore be used to simulate the behav-
ior of RC structures under seismic loading.
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