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ABSTRACT

In this paper, we propose a method for modeling and classify-

ing acoustic scenes using temporally-constrained shift-invariant

probabilistic latent component analysis (SIPLCA). SIPLCA can be

used for extracting time-frequency patches from spectrograms in

an unsupervised manner. Component-wise hidden Markov models

are incorporated to the SIPLCA formulation for enforcing tem-

poral constraints on the activation of each acoustic component.

The time-frequency patches are converted to cepstral coefficients

in order to provide a compact representation of acoustic events

within a scene. Experiments are made using a corpus of train sta-

tion recordings, classified into 6 scene classes. Results show that

the proposed model is able to model salient events within a scene

and outperforms the non-negative matrix factorization algorithm

for the same task. In addition, it is demonstrated that the use of

temporal constraints can lead to improved performance.

1. INTRODUCTION

The problem of modeling acoustic scenes is one of the most chal-

lenging tasks in the computational auditory scene analysis (CASA)

field [1]. It is closely related to the problem of detecting and clas-

sifying acoustic events within a scene, and has numerous appli-

cations in audio processing. In the literature the problem is also

called context recognition [2]. In the case of scene categorisation

or characterization, we are interested in specifying the environ-

ment of the recording, which is informed by the types of events that

are present within the scene of interest. The problem is especially

challenging in the case of a real-world scenario with an unlimited

set of events which could also overlap in time. It should be noted

that event detection and scene categorisation is easily achieved by

humans, even in the case of multiple overlapping events.

The literature in this domain is quite vast and we shall now

describe two references that consider a technical approach that is

close to the one considered in this paper. Mesaros et al. [3] pro-

posed a system for sound event detection which employed proba-

bilistic latent semantic analysis (PLSA) for separating and detect-

ing overlapping events. PLSA (or PLCA, as called in this work)

is a factorization technique closely linked to non-negative matrix

∗ The first author is funded by a Westfield Trust research studentship
(Queen Mary University of London) and performed part of this work while
visiting IRCAM. The second author is partly funded by ANR-11-JS03-
005-01. We acknowledge the support of the MIReS project, supported
by the European Commission, FP7, ICT-2011.1.5 Networked Media and
Search Systems, grant agreement No 287711.

factorization (NMF). The system was tested in a supervised sce-

nario using a dataset of 103 recordings classified into 10 different

scenes, containing events from 61 classes.

In [4], Cotton and Ellis utilised the convolutive NMF algo-

rithm for non-overlapping event detection. A comparison was

made between convolutive NMF (which learns spectro-temporal

basis matrices) with a frame-based approach using Mel-frequency

cepstral coefficients (MFCCs). Experiments performed on a dataset

collected under the CHIL project, consisting of 16 different event

classes, showed that a combination of the convolutive NMF sys-

tem and the frame-based system yielded the best results. It should

be noted that the convolutive non-negative matrix factorization al-

gorithm is closely related to the shift-invariant probabilistic latent

component analysis (SIPLCA) algorithm that is used in the present

paper.

In some cases, the salient events that characterise the scene

are not known a priori, or may be hard to learn from training data

due to the large discrepancy between two acoustic realizations of

the same event. For example, in the last decades a wide range of

scientific projects designed and put into service massive monitor-

ing devices based on hydrophone or microphone arrays1. Among

this vast amount of data, one can seek for known acoustic events

or alternatively try to discover events of unknown type. The latter

leads us to an unsupervised formulation of the scene description

problem, where we have only a few loose assumptions about the

events of interest and we want the algorithm to be able to extract in

an unsupervised manner the events that semantically describe the

scene.

Following this approach, Cauchi [5] proposed a method for

classifying auditory scenes in an unsupervised manner using sparse

non-negative matrix factorization. After extracting spectral basis

vectors from acoustic scenes, each basis is converted into MFCCs

for compactness. A distance metric is defined for measuring the

difference between extracted dictionaries from different scenes.

Evaluation is performed on a corpus of 66 recordings taken from

several train stations [6], originally created for a perceptual study

on acoustic scene categorisation, resulting in six acoustic scene

classes. Experiments made by comparing the sparse NMF with

a bag-of-features approach from [7] showed that the non-negative

matrix factorization algorithm is able to successfully extract salient

events within an acoustic scene.

In the present paper, we build upon this work and propose a

method for modeling and classifying acoustic scenes in an unsu-

pervised manner using shift-invariant probabilistic models. The

shift-invariant probabilistic latent component analysis (SIPLCA)

1See for an example: http://www.neptunecanada.ca
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algorithm [8] is used in order to extract time-frequency basis ma-

trices from log-frequency spectrograms. In addition, an algorithm

is proposed for incorporating temporal constraints to the SIPLCA

algorithm using component-wise hiddenMarkov models (HMMs).

These temporal constraints control the occurrence of each acous-

tic event within a scene using on/off HMMs. The extracted time-

frequency basis matrices are afterwards converted to a compact

representation using cepstral coefficients. A distance metric is de-

fined for comparing the extracted dictionaries between different

acoustic scenes. Evaluation is performed on the same dataset of

train station recordings as in [5]. Results using ranking and clas-

sification measures show that the proposed SIPLCA models out-

perform state-of-the art approaches for the same experiment, such

as non-negative matrix factorization [5] and a bag-of-frames ap-

proach with Gaussian mixture models [7]. In addition, it is shown

that incorporating temporal constraints regarding the activation of

acoustic scenes, as well as incorporating sparsity constraints on

the same activation can lead to more informative basis vectors and

thus to improved performance.

The outline of the paper is as follows. The shift-invariant prob-

abilistic latent component analysis method is presented in Section

2. Section 3 presents the proposed temporally-constrained model

and the computation of the distance between acoustic scenes. The

employed dataset of train station soundscapes, the utilised met-

rics, and the experimental results compared to other state-of-the-

art methods are shown in Section 4. Finally, conclusions are drawn

and future directions are indicated in Section 5.

2. SHIFT-INVARIANT PLCA

Shift-invariant probabilistic latent component analysis (SIPLCA)

was proposed in [8] for extracting shifted structures from non-

negative data. It is a convolutive extension of the probabilistic

latent component analysis (PLCA) algorithm, that was proposed

by Smaragdis et al. [9]. As PLCA can be viewed as a probabilistic

formulation of the non-negative matrix factorization (NMF) algo-

rithm, SIPLCA can be viewed as a probabilistic formulation of

the convolutive NMF algorithm [10] using the Kullback-Leibler

divergence as a cost function. SIPLCA has been used in the past

for pitch tracking [11] and automatic transcription of polyphonic

music [12].

The SIPLCA algorithm can support the extraction of a one-

dimensional basis from a spectrogram or the extraction of a time-

frequency patch. In the present work, we will employ the lat-

ter SIPLCA model for extracting 2-dimensional time-frequency

patches. The model takes as an input a normalized spectrogram

Vω,t and approximates it as a bivariate distribution P (ω, t), where
P (·) denotes probability, ω is the frequency index and t the time

index. P (ω, t) is decomposed as a series of time-frequency patches

convolved over time. The model is formulated as follows:

Vω,t ≈ P (ω, t) =
∑

z

P (z)P (ω, τ |z) ∗τ P (t|z)

=
∑

z

P (z)
∑

τ

P (ω, τ |z)P (t− τ |z) (1)

where P (ω, τ |z) is the time-frequency patch for the z-th compo-

nent, P (z) is the component prior, and P (t|z) is the activation

for each component. The unknown model parameters can be esti-

mated using the expectation-maximization algorithm [13]:

P
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Figure 1: SIPLCA applied to a sequence of footsteps (Z = 2).
Top left: input constant-Q transform spectrogram, right: extracted

time-frequency patches, bottom: extracted component activations.

• Expectation step:

P (z, τ |ω, t) =
P (z)P (ω, τ |z)P (t− τ |z)

∑

z

∑

τ
P (z)P (ω, τ |z)P (t− τ |z)

(2)

• Maximization step:

P (z) =

∑

ω,t,τ
Vω,tP (z, τ |ω, t)

∑

z,ω,t,τ
Vω,tP (z, τ |ω, t)

(3)

P (ω, τ |z) =

∑

t
Vω,tP (z, τ |ω, t)

∑

ω,τ,t
Vω,tP (z, τ |ω, t)

(4)

P (t|z) =

∑

ω,τ
Vω,t+τP (z, τ |ω, t+ τ)

∑

t,ω,τ
Vω,t+τP (z, τ |ω, t+ τ)

(5)

Equation (2) is computed through the model of (1) using Bayes’

theorem and expresses the posterior of the unknown variables over

the known data. The unknownmatrices are initialized with random

values. The update rules of (2)-(5) are iterated until convergence.

Fig. 1 gives an example of the SIPLCA algorithm, where SIPLCA

is applied to a recording of footsteps with z = 2. The activations
P (t|z) of the footsteps are clearly seen as spikes.

In [14], sparsity constraints are applied to the model in or-

der to provide as meaningful solutions as possible. The sparsity

constraints are applied using an entropic prior, by modifying the

update equations in the maximization step. In the present work,

we will encourage sparsity on the component activation P (t|z) in
order to derive informative time-frequency patches.

3. PROPOSED METHOD

3.1. Motivation

The motivation behind the model proposed in this paper is to in-

clude another level of temporality, which controls the appearance

of the time-frequency patches in a recording. These temporal con-

straints can be supported by incorporating HMMs in the SIPLCA

model. Ideally, the component activation function would con-

sist of zeros in case of inactivity and ones at the time instants

DAFX-2
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where an event would appear. Each HMM can represent a cer-

tain component, which would be represented using a two-state,

on/off model. This on/off model would serve as an event indi-

cator function, which would enforce temporal constraints in the

auditory scene activation matrix. Thus, in this case we propose a

novel model which supports time-frequency patches for auditory

scene characterization and also controls the temporal succession

of events within the scenes.

This work will extend the temporally-constrained convolutive

probabilistic model for pitch detection presented in [15], which

utilised shift-invariance over log-frequency for spectra instead of

performing shift-invariance over time for time-frequency basis as

in this work. These models which combine spectral factorization

techniques with HMMs were first introduced in [16], where the

non-negative HMM algorithm was proposed. Fig. 2 shows the

diagram for the proposed system.

3.2. HMM-constrained Shift-invariant PLCA

This proposed temporally-constrained model takes as input a nor-

malized spectrogram Vω,t and decomposes it as a series of time-

frequency patches. Also produced is a component activation ma-

trix, as well as component priors. The activation of a each acoustic

component is controlled via a 2-state HMM. The model can be

formulated as:

Vω,t ≈ P (ω, t) =
∑

z

P (z)
∑

q
(z)
t

P (ω, τ |z) ∗τ P (t|z)P (q
(z)
t |t)

(6)

where q
(z)
t is the state sequence for the z-th component, z =

1, . . . , Z. Since
∑

q
(z)
t

P (q
(z)
t |t) = 1, we can revert to the non-

temporally constrained model of the previous section. Thus in the

model, the desired source activation is given by P (z|t)P (q
(z)
t =

1|t).

The activation sequence for each component is constrained us-

ing a corresponding HMM, which is based on the produced source

activation P (z, t) = P (z)P (t|z). In terms of the activations, the

component-wise HMMs can be expressed as:

P (z̄) =
∑

q̄(z)

P (q
(z)
1 )

∏

t

P (q
(z)
t+1|q

(z)
t )

∏

t

Pt(zt|q
(z)
t ) (7)

where z̄ refers to the sequence of activations for a given compo-

nent z, P (q
(z)
1 ) is the prior probability, P (q

(z)
t+1|q

(z)
t ) is the tran-

sition matrix for the z-th component, and Pt(zt|q
(z)
t ) is the ob-

servation probability (zt refers to the activation at frame t). The

observation probability for an active component is defined using a

sigmoid curve:

Pt(zt|q
(z)
t = 1) =

1

1 + e−P (z,t)−λ
(8)

where λ is a parameter that controls the component activation (a

high value will lead to a low observation probability, leading to an

‘off’ state). The formulation of the observation function is similar

to the one used for multiple note tracking in [17].

As in the model of Section 2, the unknown parameters in the

model can be estimated using the expectation maximization algo-

rithm [13]. For the Expectation step, we compute the posterior for

all the hidden variables:

P (z, τ, q
(1)
t , . . . , q

(Z)
t |z̄, ω, t) =

P (q
(1)
t , . . . , q

(Z)
t |z̄)P (z, τ |q

(1)
t , . . . , q

(Z)
t , ω, t) (9)

Since we are utilising independent HMMs, the joint probability for

all hidden source states is given by:

Pt(q
(1)
t , . . . , q

(Z)
t |z̄) =

Z
∏

z=1

Pt(q
(z)
t |z̄) (10)

where

Pt(q
(z)
t |z̄) =

Pt(z̄, q
(z)
t )

∑

q
(z)
t

Pt(z̄, q
(z)
t )

=
αt(q

(z)
t )βt(q

(z)
t )

∑

q
(z)
t

αt(q
(z)
t )βt(q

(z)
t )

(11)

and αt(q
(z)
t ), βt(q

(z)
t ) are the forward and backward variables for

the z-th HMM [18], which can be computed recursively:

α1(q1) = P (z1|q1)P (q1)

αt+1(qt+1) =

(

∑

qt

P (qt+1|qt)αt(qt)

)

·Pt+1(zt+1|qt+1)

(12)

βT (qT ) = 1

βt(qt) =
∑

qt+1

βt+1(qt+1)P (qt+1|qt)Pt+1(zt+1|qt+1)

(13)

The second term of (9) can be computed using Bayes’ theorem:

P (z, τ |q
(1)
t , . . . , q

(Z)
t , ω, t) = P (z, τ |ω, t) =

P (z)P (ω, τ |z)P (t− τ |z)
∑

z

∑

τ
P (z)P (ω, τ |z)P (t− τ |z)|t)

(14)

Finally, the posterior for the component transition matrix is given

by:

Pt(qt, qt+1|z̄) =

αt(qt)P (qt+1|qt)βt+1(qt+1)Pt(zt+1|qt+1)
∑

qt,qt+1
αt(qt)P (qt+1|qt)βt+1(qt+1)Pt(zt+1|qt+1)

(15)

For the Maximization step, the update rules for estimating the

unknown parameters are:

P (z) =

∑

ω,τ,t

∑

q
(z)
t

Vω,tP (z, τ, q
(1)
t , . . . , q

(Z)
t |ω, t)

∑

z,ω,τ,t

∑

q
(z)
t

Vω,tP (z, τ, q
(1)
t , . . . , q

(Z)
t |ω, t)

(16)

P (ω, τ |z) =

∑

t

∑

q
(z)
t

Vω,tP (z, τ, q
(1)
t , . . . , q

(Z)
t |ω, t)

∑

ω,τ,t

∑

q
(z)
t

Vω,tP (z, τ, q
(1)
t , . . . , q

(Z)
t |ω, t)

(17)

P (t|z) =

∑

ω,τ

∑

q
(z)
t

Vω,t+τP (z, τ, q
(1)
t , . . . , q

(Z)
t |ω, t+ τ)

∑

t,ω,τ

∑

q
(z)
t

Vω,t+τP (z, τ, q
(1)
t , . . . , q

(Z)
t |ω, t+ τ)

(18)
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Figure 2: Diagram for the proposed acoustic scene classification system.

54321

Figure 3: Extracted time-frequency patches using the proposed

model. The recording is part of the dataset by [6], explained in

Section 4.

P (q
(z)
t+1|q

(z)
t ) =

∑

t
P (q

(z)
t , q

(z)
t+1|z̄)

∑

q
(z)
t+1

∑

t
P (q

(z)
t , q

(z)
t+1|z̄)

(19)

P (q
(z)
1 ) = P1(q

(z)
1 |z̄) (20)

where
∑

q
(z)
t

=
∑

q
(1)
t

· · ·
∑

q
(Z)
t

. Eq. (20) updates the compo-

nent prior using the posterior of eq. (11). Thus, the update equa-

tions of the proposed model are a combination of the SIPLCA

update rules and the forward-backward HMM algorithm. The fi-

nal event activation is given by the activation for each component

given by the model and the probability for an active state for the

corresponding component:

P (z, t, q
(z)
t = 1) = P (z)P (t|z)P (q

(z)
t = 1|t) (21)

As in the SIPLCA model of Section 2, sparsity constraints are

applied to P (t|z) using the entropic prior of [14] in order to obtain
a sparse component activation. In Fig. 3, extracted time-frequency

patches can be seen, from a recording employed for evaluation

(described in Section 4) using the proposed method with Z = 5.
Components corresponding to different acoustic events can be seen

in the figure. For all the experiments performed in this paper, the

length of each basis has been set to 400ms.

3.3. Acoustic Scene Distance

For computing the distance between acoustic scenes, we first com-

pute the constant-Q transform [19] of each 44.1 kHz recording

with a log-frequency resolution of 5 bins per octave and an 8-

octave span with 27.5 Hz set as the lowest frequency. The step size

is set to 40 ms. Afterwards, time-frequency patches are extracted

using the proposed HMM-constrained SIPLCA algorithm of Sec-

tion 3.2 with Z = {10, 25, 50} bases and λ = 0.005 (the value

was set after experimentation). Sparsity was enforced to P (t|z)
using an entropic prior method of [14] with sparsity parameter val-

ues sH = {0, 0.1, 0.2, 0.5}. In all cases the length of each basis

is set to 400 ms.

For each basisW = P (ω, τ |z), very small values are replaced

by the median value ofW . Afterwards, a vector of 13 cepstral co-

efficients is computed for each basis framew[k], (k = 1, . . . ,K),
in order to result in a compact representation for computational

speed purposes. In order to convert a vector w[k] into cepstral

coefficients, we employ the formula presented in [20]:

ci =
K
∑

k=1

log(w[k]) cos

(

i

(

k −
1

2

)

π

K

)

(22)

where i = 1, . . . , 13. Each vector of cepstral coefficients is then

normalized to the range [0,1] region. Thus, the first coefficient

that corresponds to the DC component of the signal is dropped.

Finally, for each time-frequency basis, the coefficients are summed

together over time, thus resulting in a single vector representing a

basis. This compressed basis vector is denoted as W (z), where z
denotes the component index.

For computing the distance between a scene l and a scene m,

we employ the same steps as in [5]. Firstly, we compute the ele-

ment wise distance between a basis Wl(z), z = 1, . . . , Z and the

nearest basis of dictionary Wm:

dr(l,m) = min
j∈[1,Z]

||Wl(z)−Wm(j)|| (23)

The final distance between two acoustic scenes is defined as:

D(l,m) =

Z
∑

z=1

dz(l,m) + dz(m, l) (24)

Equation (24) is formulated in order for the distance measure be-

tween two scenes to be symmetric. In the end, the acoustic scene

distance matrixD is used for evaluation.

We acknowledge that quantifying the distance between two

basis vectors by considering the Euclidean distance of their time

average most probably leads to a loss of descriptive power of our

model. This choice is made for tractability purposes. Indeed, for

the corpus used in this study and 50 bases per item, building the

matrixD involves comparing about 106 bases. Finding an efficient
way of considering the time axis during the distance computation

is left for future research.

DAFX-4



Proc. of the 15th Int. Conference on Digital Audio Effects (DAFx-12), York, UK , September 17-21, 2012

Scene Platform Hall Corridor Waiting Ticket Office Shop

No. Samples 10 16 12 13 10 5

Table 1: Class distribution in the employed dataset of acoustic

scenes.

4. EVALUATION

4.1. Dataset

For the acoustic scene classification experiments we employed the

dataset created by J. Tardieu [6]. The dataset was originally cre-

ated for a perceptual study on free- and forced-choice recogni-

tion of acoustic scenes by humans. It contains 66 44.1 kHz files

recorded in 6 different train stations (Avignon, Bordeaux, Lille

Flandres, Nantes, Paris Est, Rennes). Each file is classified into

a ‘space’, which corresponds to the location this file was recorded:

platforms, halls, corridors, waiting room, ticket offices, shops. The

recordings contain numerous overlapping acoustic events, making

even human scene classification a nontrivial task. In Table 1, the

class distribution for the employed dataset can be seen. In addition

to the ground truth included for each recording, an additional scene

label is included as a result of the forced-categorisation perceptual

study performed in [6].

4.2. Evaluation metrics

For evaluation, we employed the same set of metrics that were

used in [5] for the same experiment, namely the mean average pre-

cision (MAP), the 5-precision, and the classification accuracy of a

nearest neighbour classifier. The MAP and 5-precision metrics are

utilised for ranked retrieval results, where in this case the ranking

is given by the values of the distance matrix D. MAP is able to

provide a single-figure metric across recall levels and can describe

the global behaviour of the system. It is computed using the av-

erage precision, which is the average of the precision obtained for

the set of top n documents existing after each relevant document

is retrieved. The 5-precision is the precision at rank 5, i.e. when

the number of relevant samples is equal to 5. It corresponds to

the number of samples in the smallest class, which describes the

system performance at a local scale.

Regarding the classification accuracy metric, for each row of

D we apply the k-nearest neighbour classifier with 11 neighbours,

which corresponds to the average number of samples per class.

4.3. Results

Acoustic scene classification experiments were performed using

the SIPLCA algorithm of [8] and the proposed SIPLCA algorithm

with temporal constraints (TCSIPLCA). Comparative results are

also reported using a bag-of-frames (BOF) approach of [7] re-

ported in [5]. The bag-of-frames method computes several audio

features which are fed to a Gaussian mixture model classifier. The

NMF method of [5] was also implemented and tested. Results are

also compared with the human perception experiment reported in

[6]. Experiments were performed using different dictionary sizes

Z and sparsity parameters sH (details on the range of values can

be seen in Section 3.3).

The best results using each employed classifier are presented

in Table 2. The proposed temporally-constrained SIPLCA model

outperforms all other classifiers using both metrics, apart from the

Model MAP 5-Precision

Human Perception [6] 0.62 0.73

Random 0.25 0.18

BOF [7] 0.24 0.18

NMF (Z = 50, sH = 0.99) 0.32 0.29

SIPLCA (Z = 25, sH = 0.2) 0.33 0.35

TCSIPLCA (Z = 25, sH = 0.2) 0.34 0.36

Table 2: Best MAP and 5-precision results for each model.

human forced categorisation experiment. The proposed method

slightly outperforms the standard SIPLCA algorithm, which in

turn outperforms the NMF algorithm. It can also be seen that the

BOF method is clearly not suitable for such experiment, since the

audio features employed in this method are more appropriate for

non-overlapping events, whereas the dataset that is utilised con-

tains concurrent events and a significant level of background noise.

However, the human categorisation experiment from [6] outper-

forms all other approaches.

More detailed results for the SIPLCA algorithm using differ-

ent sparsity parameter values and a different number of extracted

bases (Z) can be seen in Fig. 4 (a). In all cases, enforcing sparsity

improves performance. It can also be seen that the best perfor-

mance is reported for Z = 25, although the performance of the

system using Z = 50 improves when greater sparsity on P (t|z) is
encouraged. Detailed results for the proposed TCSIPLCA method

can be seen in Fig. 4 (b), using different dictionary sizes and spar-

sity values. It can be seen that the performance reaches a peak

when sH = 0.2, for the case of Z = 25. When using a dictio-

nary size of Z = 50, the performance of the proposed method is

slightly decreased. Thus, selecting the appropriate number of com-

ponents is important in the performance of the proposed method,

since using too many components will lead to a parts-based rep-

resentation which in the unsupervised case will lead to non repre-

sentative dictionaries. Likewise, selecting too few bases will lead

to a less descriptive model of the input signal.

Regarding classification accuracy using 11-nearest neighbours,

results are shown in Table 3. Again, the TCSIPLCA method out-

performs all the other automatic approaches. In this case however,

the non-negative matrix factorization approach from [5] outper-

forms the SIPLCA algorithm by 0.5%. For the TCSIPLCA al-

gorithm, the best performance is again reported for sH = 0.2,
while for the NMF approach the best performance is reported for

sH = 0. Regarding dictionary size, the best results are reported

for Z = 50. Detailed classification results using the SIPLCA and

TCSIPLCAmethods can be seen in Figures 4 (c) and 4 (d), respec-

tively.

Some experiments were performed by selecting only basis vec-

tors that correspond to a sparse activation P (t|z). In the PLCA

domain, the sparseness criterion can be given by maximizing the

l2 norm as in [21], due to the fact that all elements of the acti-

vation matrix take values between 0 and 1. However, the per-

formance of the SIPLCA and TCSIPLCA algorithms in fact de-

creased slightly when selecting only the basis vectors that corre-

sponded to the sparsest activations. This issue may be addressed

in the future by enforcing sparsity only to certain components that

represent salient events and keeping the rest of the components

(which could represent noise) without enforcing sparsity.
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Figure 4: Acoustic scene classification results (MAP) using the (a) SIPLCA and (b) TCSIPLCA algorithm with different sparsity parameters

and dictionary size (Z). Classification accuracy (%) using the (c) SIPLCA and (d) TCSIPLCA algorithm with different sparsity parameters

and dictionary size (Z).

Classifier Accuracy %

Human Perception [6] 54.8%

Random 16.6%

BOF [7] 19.7%

NMF (Z = 50, sH = 0) 34.1%

SIPLCA (Z = 25, sH = 0.5) 33.6%

TCSIPLCA (Z = 50, sH = 0.2) 35.0%

Table 3: Best classification accuracy for each model.

5. CONCLUSIONS

In this work we proposed a method for modeling and classifying

acoustic scenes using shift-invariant probabilistic methods. The

shift-invariant probabilistic latent component analysis algorithm

was utilised for learning time-frequency patches from an input

acoustic signal in an unsupervised manner. An algorithm was pro-

posed for incorporating temporal constraints to the SIPLCAmodel

using hidden Markov models, in order to constrain the activation

of each event in the signal. In the classification stage, each ex-

tracted time-frequency basis is converted into a compact vector of

cepstral coefficients for computational speed purposes. The em-

ployed dataset consisted of recordings taken from six types of

scenes at different train stations. Comparative experiments were

performed using a standard non-negative matrix factorization ap-

proach, as well as a bag-of-frames algorithm which is based on

computing audio features. Results show that using shift-invariant

models for learning time-frequency patches improves classifica-

tion performance. Moreover, incorporating temporal constraints

in the SIPLCA model as well as enforcing sparsity constraints in

the component activation resulted in improved classification per-

formance.

However, the classification performance of the proposed com-

putational methods is still significantly lower than the human forced

categorisation task presented in [6]. We acknowledge that this

performance is in our case an upper bound that may not even be

reached by purely data-driven methods since humans most proba-

bly make extensive use of prior knowledge but the significant gap

between the human and computational performances indicates that

there is potentially room for improvement on the computational

side.

In order to improve spectrogram factorization techniques such

as NMF and SIPLCA, additional constraints and knowledge need

to be incorporated into the models. A hierarchical model which

would consist of event classes and component subclasses would

result in a richer model, but would also require prior information
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on the shape of each event in order to result in meaningful time-

frequency patches. Prior information can be provided by utilising

training samples of non-overlapping acoustic events. Also, an ad-

ditional sparseness constraint could be imposed in the activation

matrix, in order to control the number of overlapping components

present in the signal (instead of enforcing sparsity as in the present

work). In addition, instead of using a first-order Markov model for

imposing temporal constraints, a more complex algorithm which

would be able to model the duration of each event, such as a semi-

Markov model [22] can be employed. Finally, finding an efficient

way of comparing extracted time frequency patches is also impor-

tant. In this respect, we believe that lower bounding approaches to

the dynamic time warping technique are of interest [23].
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