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ABSTRACT 

An exact dynamic stiffness matrix for a beam is developed by integrating the Rayleigh-Love 

theory for longitudinal vibration into the Timoshenko theory for bending vibration. In the 

formulation, the Rayleigh-Love theory accounted for the transverse inertia in longitudinal 

vibration whereas the Timoshenko beam theory accounted for the effects of shear deformation 

and rotating inertia in bending vibration. The dynamic stiffness matrix is developed by solving 

the governing differential equations of motion in free vibration of a Rayleigh-Love bar and a 

Timoshenko beam and then imposing the boundary conditions for displacements and forces. 

Next the two dynamic stiffness theories are combined using a unified notation. The ensuing 

dynamic stiffness matrix is subsequently used for free vibration analysis of uniform and 

stepped bars as well as frameworks through the application of the Wittrick-Williams algorithm 

as solution technique. Illustrative examples are given to demonstrate the usefulness of the 

theory and some of the computed results are compared with published ones. The paper closes 

with some concluding remarks. 
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1. Introduction 

Free vibration analysis in the high frequency range is of great importance to assess the flow 

of vibrational energy in structures, particularly when the widely accepted Statistical Energy 

Analysis (SEA) method [1, 2] is used. Research in this area is further motivated by the fact that 

the modal density required for the energy flow analysis in structures is generally very high in 

the high frequency range. To this end there are several research papers in the published 

literature on the energy flow analysis in classical structures such as bars [3], beams [4], 

membranes [5] and plates [6] which emphasize the need for high frequency vibration analysis. 

For accurate and efficient high frequency vibration analysis, these publications highlight the 

inadequacy of the traditional finite element method (FEM) which is somehow limited to low 

and perhaps medium frequency range unless high-precision, good quality finite elements are 

used which may become computationally very expensive. In the particular context of free 

vibration of beams, there are numerous books on mechanical vibration [7-11] which give the 

natural frequencies and mode shapes in longitudinal, torsional and bending vibration through 

the solution of the governing differential equations and imposition of the boundary conditions 

to eliminate the integration constants which eventually lead to the frequency equation. This 

standard and relatively simple procedure is straightforwardly taught in most of the 

undergraduate engineering curriculum across the globe. As the classical results of the free 

vibration analysis come from the solution of the governing differential equation, they are 

generally considered to be exact. Similar and comparable, but somehow approximate results 

for beam vibration problems can also be obtained by applying the FEM which requires 

discretisation of the beam into several elements and assembling the element stiffness and mass 

matrices which ultimately lead to a linear eigenvalue formulation. Clearly the order of the mass 

and stiffness matrices in the FEM decides the number of natural frequencies that can be 

meaningfully computed. The higher order natural frequencies and mode shapes will, of course, 

be considerably less accurate. At this point it should be noted that there is a powerful alternative 

to FEM as well the classical method, which has no restriction on higher order natural frequency 

computation and yet it retains the exactness of results. The alternative is that of the dynamic 

stiffness method (DSM) which is elegant and versatile and hence can be used in a much broader 

context to analyse the free vibration behaviour of complex structures. The DSM is different, 

but in many ways similar to the FEM in that it has analogous procedure for assembling 

structural properties of individual structural elements.  However, a major difference exists 
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between the DSM and the FEM which is that the former is unaffected by the number of 

elements used in the analysis and always gives exact results whereas the latter is mesh 

dependent and the accuracy of results depends on the number of elements used in the analysis. 

For instance, one single structural element can used in the DSM to compute any number of 

natural frequencies without any loss of accuracy which, of course, is impossible in the FEM. 

The DSM was pioneered by Kolousek [12-14] in the early 1940s and it has since been used to 

investigate the free vibration behaviour of beams and frameworks in an exact sense [15-17]. 

The uncompromising accuracy of the DSM stems from the fact that the frequency dependent 

shape function used to derive the element dynamic stiffness matrix of a structural element 

comes from the exact solution of the governing differential equation of motion of the element 

undergoing free natural vibration.  The element dynamic stiffness matrix derived in this way 

contains both the mass and stiffness properties of the element, unlike the FEM for which the 

mass and stiffness matrices are always separate and frequency independent, and they are 

generally derived from assumed shape functions. An outline for the procedure to derive the 

dynamic stiffness matrix of a structural element can be found in the work of Banerjee [18]. The 

overall frequency dependent dynamic stiffness matrix of the final structure is obtained by 

assembling the individual dynamic stiffness matrices of all constituent elements in the 

structure, in the usual way as in the case of the FEM, but the formulation leads to a non-linear 

eigenvalue problem and the natural frequencies are generally extracted by applying the well-

established algorithm of Wittrick and William [19]. Because of the independency of the 

accuracy of results on the number of element used in the analysis, the DSM is ideally suited 

for free vibration analysis in all frequency ranges.  

Following the work of Kolousek [12-14], the DSM has been implemented in computer 

programs published by Akesson [15], Williams and Howson [16] and Howson et al [17] to 

investigate the free vibration characteristics of plane frames, which required the dynamic 

stiffness matrices of both bar and beam elements as building blocks. The bar theory accounts 

for the axial stiffness and the beam theory accounts for the bending stiffness. As the coupling 

between them is generally ignored, the dynamic stiffness matrix of the element used to 

investigate the free vibration behaviour of plane frames [15-17] was obtained by separate 

consideration of axial and bending deformation and then combining the two together in matrix 

form. In these earlier works, when the axial stiffnesses were incorporated into the bending 

stiffnesses to construct the dynamic stiffness matrix of an individual element, only classical 

theory for longitudinal free vibration of bars which ignores the transverse inertia effect was 
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used. This is generally justified, particularly in the low and probably in the medium frequency 

range, but for high frequency vibration, the so-called Rayleigh-Love theory [20, 21] which 

accounts for the effects of transverse inertia during longitudinal vibration and the Timoshenko 

theory [17] which accounts for the effects of shear deformation and rotatory inertia during 

bending vibration need to be considered. This is particularly important when applying the 

widely accepted SEA technique for which the high frequency vibration problem must be 

modelled properly [1-2]. In this respect, the traditional FEM may become inaccurate.  

From a historical perspective, it was Lord Rayleigh [22] who first recognised the 

importance of transverse inertia on the longitudinal free vibration of bars, particularly at high 

frequencies. Many years later, Love [23] shed further lights on Lord Rayleigh’s work which 

eventually took the name Rayleigh-Love theory and the research took significant turn to wave 

propagation and vibrational energy analysis [24-26] of bars in longitudinal motion. No one 

appears to have made any attempt to combine the Rayleigh-Love bar analysis with flexure, 

particularly when investigating the free vibration characteristics of frameworks. This will be 

important within the high frequency range when using the SEA technique. The purpose of this 

paper is to fill this gap in the literature. First, the dynamic stiffness matrix of a Rayleigh-Love 

bar is developed from the fundamental equation of motion in longitudinal free vibration. Then 

the developed dynamic stiffness matrix of the Rayleigh-Love bar is integrated with the dynamic 

stiffness matrix of a Timoshenko beam [27-30] which accounts for the effects of shear 

deformation and rotatory inertia to allow for the free vibration analysis of individual members 

and plane frames in the low, medium and high frequency range through the application of the 

Wittrick-Williams algorithm [19] as solution technique. Using the developed theory, a wide 

range of problems is solved and some of the computed results are compared with published 

literature. The paper draws significant conclusions on the effects of the inclusion of transverse 

inertia arising from the Rayleigh-Love theory and shear deformation and rotatory inertia from 

the Timoshenko theory when investigating the free vibration characteristics of individual 

members, stepped members as well as frameworks. 

It should be noted that there are no specific hard boundaries between the regimes of low, 

medium and high frequencies, but a useful descriptor which gives an indicative guidance to 

frequency range is the vibrational wavelength when compared to the overall length of the 

structure. Thus an engineering judgement can be reasonably made based on the product of the 

wave number and a typical length of the structure, which is essentially the Helmholtz number. 

Large values of this number represent the high frequency range whereas lower values 
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determine the low to medium frequency range. For the type of problems investigated in this 

paper, the low to medium range of frequencies is characterised to be below 1500 HZ whereas 

frequencies above this value constitute the high frequency range. 

2. Dynamic Stiffness Formulation 

 

The dynamic stiffness matrix of a structural element essentially relates the amplitudes of 

the forces to those of the corresponding displacements at the nodes of the harmonically 

vibrating structural element. A general procedure to formulate the dynamic stiffness matrix of 

a structural element is briefly described in following steps: 

(i) Derive the governing differential equation of motion in free vibration of the 

structural element for which the dynamic stiffness matrix is to be developed. This 

can be achieved by applying Newton’s second law or Lagrange’s equation or 

Hamilton’s principle. However, Hamilton’s principle is preferred because unlike 

Newton’s second law and Lagrange’s equation, the variationally based Hamilton’s 

principle provides natural boundary conditions, giving the expressions for forces 

and moments which are required in the dynamic stiffness formulation. 

(ii) For harmonic oscillation, seek a closed form analytical solution of the governing 

differential equation derived in (i) above, in terms of the arbitrary integration 

constants. The number of constants in the general solution will, of course, depend 

on the order of the differential equation. 

(iii) Apply the boundary conditions in algebraic form. The number of boundary 

conditions is generally equal to twice the number of integration constants. The 

boundary conditions are typically the nodal displacements and forces. 

(iv) Eliminate the constants by relating the harmonically varying amplitudes of nodal 

forces to the corresponding displacements at the nodes of the element. This will 

generate the frequency dependent dynamic stiffness matrix connecting dynamically 

the amplitudes of the nodal forces to those of the nodal displacements. 

The axial deformation of a Rayleigh-Love bar and the bending deformations of a Timoshenko 

beam are considered uncoupled and treated independently so that the derivation of the dynamic 

stiffness matrix for each of them can be carried out separately, and later integrated. 
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2.1 Dynamic Stiffness Matrix of a Rayleigh-Love Bar 

A uniform Rayleigh-Love bar of length L is shown in Fig. 1 in a rectangular right 

handed Cartesian co-ordinate system with the X-axis coinciding with the axis of the bar. Note 

that Fig. 1 can also be used to represent a beam which is also a two-noded line element like a 

bar element. The essential difference between a bar and a beam element is that the former can 

sustain only axial load whereas the latter can take bending and shear load, as well as the axial 

load. In other words, in any local coordinate system such as the one shown in Fig. 1, a bar 

element can undergo only axial deformation whereas a beam element can undergo bending 

displacement, bending rotation as well as axial deformation. Now the governing differential 

equation of motion of the Rayleigh-Love bar in free axial (or longitudinal) vibration can be 

derived by using Hamilton’s principle as the first step towards the dynamic stiffness 

formulation. The focus area of the derivation in this section is, of course, on the axial stiffnesses 

only. 

 

 

 

 

 

 

 

 

  Fig. 1. Coordinate system and notation for a Rayleigh-Love bar and a Timoshenko beam. 

 

Referring to Fig. 1 and noting that if u is the axial displacement at a distance x from the origin, 

the kinetic and potential energies of the bar Tbar and Vbar are respectively given by [7, 21] 

                                            𝑇bar =
1

2
∫ [𝜌𝐴 (

𝜕𝑢

𝜕𝑡
)
2

+ 𝜌𝐼𝑃𝜈2 (
𝜕2𝑢

𝜕𝑥𝜕𝑡
)
2

]
𝐿

0
𝑑𝑥                                  (1) 

and 

                                            𝑉bar =
1

2
∫ 𝐸𝐴 (

𝜕𝑢

𝜕𝑥
)
2𝐿

0
dx            (2) 

where  is the density of the bar material, A is the cross-sectional area of the bar so that A 

represents the mass per unit length, IP is the polar second moment of area so that IP represents 

the polar mass moment of inertia per unit length, E is the Young’s modulus of the bar material 

X 

Y 

x 
dx 

L 

O 
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so that EA represents the axial or extensional rigidity of the bar and  is the Poisson’s ratio of 

the bar material. 

Hamilton’s principle states 

                                                      𝛿 ∫ (𝑇bar − 𝑉bar)
𝑡2

𝑡1
𝑑𝑡 = 0        (3) 

where t1 and t2 are the time interval in the dynamic trajectory, and   is the usual variational 

operator.  

The governing differential equations of motion of the Rayleigh-Love bar and the associated 

boundary condition in free vibration can now be derived by substituting the kinetic (Tbar) and 

potential (Vbar) energy expressions of Eqs. (1) and (2) into Eq. (3), using the  operator, 

integrating by parts and then collecting terms. In an earlier publication, the entire procedure to 

generate the governing differential equations of motion and natural boundary conditions for 

bar or beam type structures was automated by Banerjee et al [31] by applying symbolic 

computation. In this way, the governing differential equation of motion of the Rayleigh-Love 

bar is obtained as [7, 21] 

                                                         𝐸𝐴
𝜕2𝑢

𝜕𝑥2 − 𝜌𝐴
𝜕2𝑢

𝜕𝑡2 + 𝜌𝐼𝑃𝜈2 𝜕4𝑢

𝜕𝑥2𝜕𝑡2 = 0      (4) 

As a by-product of the Hamiltonian formulation, the expression for the axial force f(x, t) follows 

from the natural boundary condition to give [7, 21] 

                                                           𝑓(𝑥, 𝑡) = −𝐸𝐴
𝜕𝑢

𝜕𝑥
− 𝜌𝐼𝑃𝜈2 𝜕3𝑢

𝜕𝑥𝜕𝑡2       (5) 

If harmonic oscillation is assumed, then 

                                                             𝑢(𝑥, 𝑡) = 𝑈(𝑥)𝑒𝑖𝜔𝑡   (6) 

where  is the angular or circular frequency, and U(x) are the amplitudes of u. 

Substituting Eq. (6) into Eq. (5) gives 

                                                          (𝐸𝐴 − 𝜌𝐼𝑃𝜈2𝜔2)
𝑑2𝑈

𝑑𝑥2 + 𝜌𝐴𝜔2𝑈 = 0      (7) 

As a result of the harmonic oscillation assumption, the amplitude F(x) of the force f(x, t) in Eq. 

(5) becomes 

                                                                 𝐹(𝑥) = −(𝐸𝐴 − 𝜌𝐼𝑃𝜈2𝜔2)
𝑑𝑈

𝑑𝑥
       (8) 

Introducing the differential operator  and the non-dimensional length   as 

                                                                     𝜉 =
𝑥

𝐿
         (9) 



ddD /
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Eq. (7) becomes 

                                                                      (𝐷2 + 𝛾2)𝑈 = 0                  (10) 

where  

                                                                      𝛾2 =
𝛼2

1−𝛽2                  (11) 

with 

                                             𝛼2 =
𝜌𝐴𝜔2𝐿2

𝐸𝐴
;              𝛽2 =

𝜌𝐼𝑃𝜈2𝜔2

𝐸𝐴
                (12) 

The expression for the amplitude of the axial force in Eq. (8) using Eqs. (9) and (12) becomes 

                                                           𝐹(𝜉) = −
𝐸𝐴

𝐿
(1 − 𝛽2)

𝑑𝑈

𝑑𝜉
                 (13) 

The solution of the differential equation, Eq. (10) is given by 

                                                             𝑈(𝜉) = 𝐶1 sin 𝛾𝜉 + 𝐶2 cos 𝛾𝜉   (14) 

where C1 and C2 are constants. 

The expression for axial force F() can now be expressed by substituting Eq. (14) into Eq. (13) 

to give 

𝐹(𝑥) = 𝐹(𝜉) = −
𝐸𝐴

𝐿
(1 − 𝛽2)𝛾(𝐶1 cos 𝛾𝜉 − 𝐶2 sin 𝛾𝜉)   (15) 

Now referring to Fig. 2, the boundary conditions for displacements and forces can be applied 

as follows. 

At x = 0 (i.e. 0 U = x1 and F = Fx1  (16) 

At x=L (i.e. = 1), U = x2 and F = Fx2  (17) 

 

 

 

 

                              x = 0 (                                                 x = L (=1) 

 

Fig. 2. Boundary conditions for displacements and forces in axial vibration for a Rayleigh-

Love bar 

 

Substituting Eqs. (16) and (17) into Eqs. (14) and (15), the following matrix relationships can 

be obtained 

                                                  [
Δ𝑥1

Δ𝑥2
] = [

0 1
sin 𝛾 cos 𝛾

] [
𝐶1

𝐶2
]   (18) 

1 2 

x1,  Fx1 x2,  Fx2 
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and 

                                                 [
𝐹𝑥1

𝐹𝑥2
] =

𝐸𝐴

𝐿
𝛾(1 − 𝛽2) [

−1 0
cos 𝛾 − sin 𝛾

] [
𝐶1

𝐶2
]   (19) 

The constants C1 and C2 can now be eliminated from Eqs. (18) and (19) to give the dynamic 

stiffness matrix of an axially vibrating Rayleigh-Love bar relating amplitudes of the forces and 

displacements at its ends as follows: 

                                                                       [
𝐹𝑥1

𝐹𝑥2
] = [

𝑎1 𝑎2

𝑎2 𝑎1
] [

Δ𝑥1

Δ𝑥2
]   (20) 

where the elements of the 22 dynamic stiffness matrix are given by 

                          𝑎1 =
𝐸𝐴

𝐿
𝛾(1 − 𝛽2) cot 𝛾 ,        𝑎2 = −

𝐸𝐴

𝐿
𝛾(1 − 𝛽2) cosec 𝛾   (21) 

It should be noted that the Rayleigh-Love theory has a limitation that 𝛽2 in Eqs. (11) and (12) 

must be less than one which is usually the case, otherwise, the solution of Eq. (10) would not 

be harmonic and hence no oscillatory motion will take place. This limitation has been pointed 

out in the literature, e.g. see Eq. (13) of [32]. 

 

2.2 Dynamic Stiffness Matrix of a Timoshenko Beam 

The dynamic stiffness matrix of a Timoshenko beam has already been published in the 

literature [27-30] in a rather longwinded and complicated manner, the details of which are not 

repeated here. However, for clarity, completeness and importantly to make this paper self-

contained, the existing literature is concisely congregated and simplified. The procedure is 

briefly summarised below. 

Considering Fig. 1 to be the Timoshenko beam under investigation with bending 

rigidity EI, mass per unit length A and length L, undergoing bending displacement w and 

bending rotation , the expressions for kinetic and potential energies Tbeam and Vbeam are 

respectively given by [33] 

                                       𝑇beam =
1

2
∫ 𝜌𝐴 (

𝜕𝑤

𝜕𝑡
)
2𝐿

0
𝑑𝑥 +

1

2
∫ 𝜌𝐼 (

𝜕𝜃

𝜕𝑡
)
2𝐿

0
𝑑𝑥               (22) 

                                       𝑉beam =
1

2
∫ 𝐸𝐼 (

𝜕𝜃

𝜕𝑥
)
2

𝑑𝑥 +
1

2

𝐿

0
∫ 𝑘𝐴𝐺𝛾2𝐿

0
𝑑𝑥                (23) 

In Eqs. (22) and (23),  is the rotatory inertia per unit length about the bending axis, kAG is, 

the shear rigidity of the beam with k being the shear correction (also known as the shape factor) 

and  is the angle of shear deformation which is essentially the shearing strain. It should be 
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noted that in the Timoshenko beam formulation the total slope 
𝜕𝑤

𝜕𝑥
 is the sum of both bending 

slope  and the slope due to shear  [33] so that  

                                                            
𝜕𝑤

𝜕𝑥
= 𝜃 + 𝛾                  (24) 

or 

                                                                𝛾 =
𝜕𝑤

𝜕𝑥
− 𝜃                  (25) 

Thus, the potential energy Vbeam of Eq. (22) becomes 

                                            𝑉beam =
1

2
∫ 𝐸𝐼 (

𝜕𝜃

𝜕𝑥
)
2

𝑑𝑥 +
1

2

𝐿

0
∫ 𝑘𝐴𝐺 (

𝜕𝑤

𝜕𝑥
− 𝜃)

2𝐿

0
𝑑𝑥              (26) 

Substituting the expressions for the kinetic and potential energies Tbeam and Vbeam from Eqs. 

(22) and (26) into Hamilton’s principle expressed in Eq. (3) and then integrating by parts and 

collecting terms yield the governing differential equations of motion and the associated 

boundary conditions providing the expressions for bending moment (M) and shear force (S) as 

follows [33]. 

Governing differential equations 

                                           −𝜌𝐴
𝜕2𝑤

𝜕𝑡2 + 𝑘𝐴𝐺
𝜕

𝜕𝑥
(
𝜕𝑤

𝜕𝑥
− 𝜃) = 0                 (27) 

                                             −𝜌𝐼
𝜕2𝜃

𝜕𝑡2 + 𝐸𝐼
𝜕2𝜃

𝜕𝑥2 + 𝑘𝐴𝐺 (
𝜕𝑤

𝜕𝑥
− 𝜃)                (28) 

Natural boundary conditions 

Shear Force:                           𝑣 = −𝑘𝐴𝐺 (
𝜕𝑤

𝜕𝑥
− 𝜃) = 𝐸𝐼

𝜕2𝜃

𝜕𝑥2
− 𝜌𝐼

𝜕2𝜃

𝜕𝑡2
                (29) 

Bending Moment:                 𝑚 = −𝐸𝐼
𝜕𝜃

𝜕𝑥
                   (30) 

Introducing the non-dimensional length  = x/L and assuming harmonic oscillation so that  

                                                    𝑤(𝑥, 𝑡) = 𝑊(𝜉)𝑒𝑖𝜔𝑡                  (31) 

                                                     𝜃(𝑥, 𝑡) = Θ(𝜉)𝑒𝑖𝜔𝑡                  (32) 

where W(𝜉) and () are the amplitudes of the bending displacement and bending rotation of 

the harmonically vibrating Timoshenko beam. 

Eqs. (27) and (28) can now be combined to give a fourth order ordinary differential equation 

as follows which is identically satisfied by both W(𝜉) and () 

                                              [𝐷4 + 𝑏2(𝑟2 + 𝑠2)𝐷2 − 𝑏2(1 − 𝑏2𝑟2𝑠2)]𝐻 = 0              (33) 

where  

                                                        𝐷 =
𝑑

𝑑𝜉
=

1

𝐿

𝑑

𝑑𝑥
                  (34) 

                                               𝑏2 =
𝜌𝐴𝜔2𝐿4

𝐸𝐼
;     𝑟2 =

𝐼

𝐴𝐿2
;      𝑠2 =

𝐸𝐼

𝑘𝐴𝐺𝐿2
                (35) 
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and  

                                                H = W or       

If a trial solution 𝐻 = 𝑒𝜆𝜉  is assumed where  is a constant, yet to be known, the auxiliary or 

characteristic equation of the differential Eq. (33) is given by  

                                                     𝜆4 + 𝑏2(𝑟2 + 𝑠2)𝜆2 − 𝑏2(1 − 𝑏2𝑟2𝑠2) = 0               (37) 

Eq. (37) is quartic in , but quadratic in 2 so that  

         𝜆2 =
−𝑏2(𝑟2+𝑠2)±√{𝑏2(𝑟2+𝑠2)}2+4𝑏2(1−𝑏2𝑟2𝑠2)

2
=

−𝑏2(𝑟2+𝑠2)±√{𝑏2(𝑟2−𝑠2)}2+4𝑏2

2
               (38) 

Clearly 2 will be always real and for the negative value of the expression under the square 

root sign of Eq. (38), one of the two values of 2 will be always negative, resulting in two 

imaginary roots of  which will lead to part of the solution of Eq. (33) in terms of trigonometric 

functions whereas the other value of 2 when using the positive value before the square root 

sign can be either positive or negative depending on whether the square root expression in Eq. 

(38) is bigger than or smaller than 𝑏2(𝑟2 + 𝑠2). If this second value of 2 is positive which is 

usually the case, the two roots of 2 will be real, yielding the remaining solution of Eq. (33) in 

terms of hyperbolic functions so that the two of the four integration constants in the solution 

will be connected to trigonometric functions and the other two to hyperbolic functions. 

However, for exceptionally high frequencies or for exceptionally squat beams, the second 

value of 2 can be negative like the first one which will give the entire solution of Eq. (33) in 

terms of trigonometric functions only. The two sets of solutions and their conditionality are 

explained below. 

The expression for 2 in Eq. (38) can be expressed in the following alternative form 

                               𝜆2 =
𝑏2

2
{−(𝑟2 + 𝑠2) ± √(𝑟2 + 𝑠2)2 +

4

𝑏2
(1 − 𝑏2𝑟2𝑠2)}              (39) 

It is clear from Eq. (39) that if 𝑏2𝑟2𝑠2 < 1,  one of the values of 2 will be negative and the 

other value will be positive whereas if 𝑏2𝑟2𝑠2 > 1, they both will be negative. Thus the 

solutions for bending displacement W and bending rotation  for these two cases resulting 

from the differential equation of Eq. (33) are given by 

(i) 𝑏2𝑟2𝑠2 < 1 

                        𝑊(𝜉) = 𝐴1 cosΦ + 𝐴2 sinΦ + 𝐴3 coshΛ + 𝐴4 sinhΛ              (40) 

                        Θ(𝜉) = 𝐵1 cosΦ + 𝐵2 sinΦ + 𝐵3 coshΛ + 𝐵4 sinhΛ              (41) 
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(ii) 𝑏2𝑟2𝑠2 > 1 

                         𝑊(𝜉) = 𝐴1 cosΦ + 𝐴2 sin Φ + 𝐴3 cos Λ +𝐴4 sin Λ              (42) 

                         Θ(𝜉) = 𝐵1 cosΦ + 𝐵2 sinΦ + 𝐵3 cos Λ + 𝐵4 sin Λ              (43) 

where 

                                              Φ2 =
𝑏2(𝑟2+𝑠2)

2
+

𝑏2

2
√(𝑟2 + 𝑠2)2 +

4

𝑏2
(1 − 𝑏2𝑟2𝑠2)              (44) 

and  

                                             𝑗Λ2 = −
𝑏2(𝑟2+𝑠2)

2
+

𝑏2

2
√(𝑟2 + 𝑠2)2 +

4

𝑏2
(1 − 𝑏2𝑟2𝑠2)              (45) 

with  

                        j = 1 for 𝑏2𝑟2𝑠2 < 1 ;    j = 1 for 𝑏2𝑟2𝑠2 > 1                          (46) 

and A1 - A4 and B1 - B4 are two different sets of constants. 

It should be noted from Eq. (35) that 

                                                      𝑏2𝑟2𝑠2 =
𝜌𝐼𝜔2

𝑘𝐴𝐺
                  (47) 

For most of the practical problems, b2r2s2 will be less than one unless  is exceptionally large. 

This is because the shear rigidity kAG is generally much bigger than the rotatory inertia per 

unit length I for any realistic cross-section and beam material, but nevertheless, the solutions 

given by Eqs. (42) and (43) are included in the theory to cover the exceptional case when b2r2s2 

is greater than one. 

With the help of Eq. (27) or (28) and the solution given by Eqs. (40)-(43), it can be shown that 

the two sets of constants A1 - A4 and B1 - B4 are related. Using Eq. (27), the following 

relationships between B1 - B4 and A1 - A4 are obtained. 

                                       𝐵1 =
𝑘Φ

𝐿
𝐴2;     𝐵2 = −

𝑘Φ

𝐿
𝐴1;     𝐵3 =

𝑘Λ

𝐿
𝐴4;      𝐵4 = 𝑗

𝑘Λ

𝐿
𝐴3                  (48) 

where 

                                                  𝑘Φ = (
Φ2−𝑏2𝑠2

Φ
) ;        𝑘Λ = (

Λ2+𝑗𝑏2𝑠2

Λ
)               (49) 

Because of the harmonic oscillation hypothesis adopted for the freely vibrating Timoshenko 

beam as indicated by Eqs. (31) and (32) and also by the introduction of the non-dimensional 

length  = x/L, the expressions for the amplitudes of the shear force (V) and bending moment 

(M) arising from Eqs. (29), (30) and (48) will take the following form. 

           𝑉 =
𝐸𝐼

𝐿2
(
𝑑2Θ

𝑑𝜉2
− 𝑏2𝑟2Θ) 

= 
𝐸𝐼

𝐿3
(𝐴1𝑒Φ sinΦ𝜉 − 𝐴2𝑒Φ cosΦ + 𝑗𝐴3𝑒Λ sin Λ𝜉 + 𝐴4𝑒Λ cos Λ𝜉)             (50) 
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        𝑀 = −
𝐸𝐼

𝐿2

𝑑Θ

𝑑𝜉
 

             = −
𝐸𝐼

𝐿2
(−𝐴1Φ𝑘Φ cosΦ𝜉 − 𝐴2 Φ𝑘Φ sinΦ𝜉 + 𝑗𝐴3 Λ𝑘Λ cos Λ𝜉 + 𝑗𝐴4Λ𝑘Λ sin Λ𝜉)   (51) 

where  

                                               𝑒Φ = (Φ2 − 𝑏2𝑟2)𝑘Φ;          𝑒Λ = 𝑗(Λ2 + 𝑗𝑏2𝑟2)𝑘Λ            (52) 

and j and  k, k have already been defined in Eqs. (46) and (49), respectively. 

Now from the expressions for the amplitudes of displacements W and  given by Eqs. (40) -

(43) and the corresponding forces V and M given by Eqs. (50) and (51), the dynamic stiffness 

matrix of the Timoshenko beam can be formulated by applying the boundary conditions in 

algebraic form relating the amplitudes of forces and displacements. 

Referring to Fig. 3, the boundary conditions for the displacements and forces can be applied as 

follows 

At x = 0 (i.e. = 0), W = y1,  = 1, V = Fy1 and M = M1  (53) 

At x = L (i.e.  = 1), W = y2,  = 2, V = Fy2 and M = M2  (54) 

 

 

                                     y1, Fy1                                                y2, Fy2 

 

 

 

 

                                    1                                                              2 

                                           M1                                          M2 

                             x = 0 (                                               x = L (=1) 

 

Fig. 3. Boundary conditions for displacements and forces for a Timoshenko beam 

 

Substituting Eqs. (53) and (54) into Eqs. (40)-(43) and Eqs. (50) and (51), the following two 

matrix equations are obtained for displacements and forces, respectively, in terms of the 

constants A1A4. 

                              

[
 
 
 
Δ𝑦1

Θ1

Δ𝑦2

Θ2 ]
 
 
 
= [

1 0 1 0
0 𝑘Φ/𝐿 0 𝑘Λ/𝐿

𝐶 𝑆 𝐶̅ 𝑆̅

−𝑘Φ𝑆/𝐿 𝑘Φ𝐶/𝐿 𝑗𝑘Λ𝑆/𝐿 𝑘Λ𝐶/𝐿

] [

𝐴1

𝐴2

𝐴3

𝐴4

]   (55) 

or  

                                                              𝚫 = 𝐐A  (56) 
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and 

                              

[
 
 
 
𝐹𝑦1

𝑀1

𝐹𝑦2

𝑀2 ]
 
 
 
=

[
 
 
 

0 −𝑊3𝑒Φ 0   𝑊3𝑒Λ

𝑊2Φ𝑘Φ 0 −𝑗𝑊2Λ𝑘Λ 0

−𝑊3𝑒Φ𝑆 𝑊3𝑒Φ𝐶 −𝑗𝑊3𝑒Λ𝑆̅ −𝑊3𝑒Λ𝐶̅

−𝑊2Φ𝑘Φ𝐶 −𝑊2Φ𝑘Φ𝑆 𝑗𝑊2Λ𝑘Λ𝐶̅ 𝑗𝑊2Λ𝑘Λ𝑆̅]
 
 
 

[

𝐴1

𝐴2

𝐴3

𝐴4

]   (57) 

or 

                                                                 𝐅 = 𝐑𝐀  (58) 

where  

                            𝑆 = sinΦ;      𝐶 = cosΦ   (59) 

                           𝑆̅ = sinhΛ;   𝐶̅ =  cosh Λ                𝑏2𝑟2𝑠2 < 1  (j = 1) 

                                                                                                                                               (60) 

                         𝑆̅ = sin Λ;   𝐶̅ =  cos Λ                   𝑏2𝑟2𝑠2 > 1  (j = 1) 

and 

W1, W2 and W3 are defined as follows 

                             𝑊1 =
𝐸𝐼

𝐿
;               𝑊2 =

𝐸𝐼

𝐿2 ;         𝑊3 =
𝐸𝐼

𝐿3   (61) 

The constants A1-A4 can now be eliminated from Eqs. (55) and (57) to give the 4×4 dynamic 

stiffness matrix of the Timoshenko beam. This can be achieved by inverting the square matrix 

of Eq. (55), i.e. Q matrix of Eq. (56) and pre-multiplying it with the square matrix of Eq. (57), 

i.e. R matrix and performing the matrix operation RQ-1 numerically to give the dynamic 

stiffness matrix. Alternatively, the matrix inversion and matrix multiplication procedures can 

be carried out symbolically (algebraically) to generate explicit expressions for each of the 

stiffness elements of the dynamic stiffness matrix to give. 

                                             

[
 
 
 
𝐹𝑦1

𝑀1

𝐹𝑦2

𝑀2 ]
 
 
 
= [

𝑑1 𝑑2 𝑑4 𝑑5

𝑑2 𝑑3 −𝑑5 𝑑6

𝑑4 𝑑5 𝑑1 −𝑑2

−𝑑5 𝑑6 −𝑑2 𝑑3

]

[
 
 
 
∆𝑦1

Θ1

Δ𝑦2

Θ2 ]
 
 
 
   (62) 

where 

                 𝑑1 = 𝑊3𝑏
2Γ(𝐶𝑆̅ + 𝜂𝑆𝐶̅)/(ΛΦ) 

                 𝑑2 = 𝑊2𝑍Γ{(Φ + 𝑗𝜂Λ)𝑆𝑆̅ − (Λ − 𝜂Φ)(1 − 𝐶𝐶̅)}/(Λ + 𝜂Φ) 

                 𝑑3 = 𝑊1Γ(𝑆𝐶̅ − 𝑗𝜂𝐶𝑆̅)                             

                 𝑑4 = −𝑊3𝑏
2Γ(𝑆̅ + 𝜂𝑆)/(ΛΦ)                                                                    (63) 

                 𝑑5 = 𝑊2𝑍Γ(𝐶̅ − 𝐶) 

                  𝑑6 = 𝑊1Γ(𝑗𝜂𝑆̅ − 𝑆) 
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with 

              𝑍 = Φ − 𝑏2𝑠2/Φ;     𝜂 = Z/(𝑗Λ + 𝑏2𝑠2/Λ);  

 (64) 

              Γ = (Λ + ηΦ)/{2𝜂(1 − 𝐶𝐶̅) + (1 − 𝑗𝜂2)𝑆𝑆̅} 
 

2.3 Combination of Axial and Bending Stiffnesses  

 

A simple superposition is now possible to put the axial and bending dynamic stiffnesses 

together in order to express the force-displacement relationship of the combination of a 

Rayleigh-Love bar and a Timoshenko beam. Superposing Figs. 2 and 3 to give Fig. 4 and then 

using Eqs. (20) and (62), one obtains the dynamic stiffness matrix of the combination of a 

Rayleigh-Love bar incorporating the axial stiffnesses, and a Timoshenko beam incorporating 

the bending stiffness to enable the free vibration analysis of plane frames to be made. 

 

 

                               y1, Fy1                                                     y2, Fy2 

 

 

 

 

                                    1                                                                 2 

                                      1, M1                                                

 

 

                                                                   L 

 

Fig. 4. Amplitudes of displacements and forces at the ends of a combined Rayleigh-Love bar 

and a Timoshenko beam 

 

 Referring to Fig. 4 and Eqs. (20) and (62) the resulting dynamic stiffness matrix is given by   

                          

[
 
 
 
 
 
𝐹𝑥1

𝐹𝑦1

𝑀1

𝐹𝑥2

𝐹𝑦2

𝑀2 ]
 
 
 
 
 

=

[
 
 
 
 
 
𝑎1 0 0 𝑎2 0 0
0 𝑑1 𝑑2 0 𝑑4 𝑑5

0 𝑑2 𝑑3 0 −𝑑5 𝑑6

𝑎2 0 0 𝑎1 0 0
0 𝑑4 −𝑑5 0 𝑑1 −𝑑2

0 𝑑5 𝑑6 0 −𝑑2 𝑑3 ]
 
 
 
 
 

[
 
 
 
 
 
∆𝑥1

∆𝑦1

Θ1

∆𝑥2

∆𝑦2

Θ2 ]
 
 
 
 
 

                                           (65) 

or  

                                    𝐅 = 𝐊 𝚫  

where F and  are respectively the force and displacement vectors and K is the frequency 

dependent 6  6 dynamic stiffness matrix whose elements k(i, j) (i = 1,2…6; j = 1,2,…6) are 

given by a1, a2 and d1-d6 defined in Eqs. (21) and (63), respectively. Note that K is symmetric 

as expected. 

x1, Fx1 x2, Fx2 
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3.   Application of the Dynamic Stiffness Matrix 

3.1 The Wittrick-Williams Algorithm 

The developed dynamic stiffness matrix can now be used to compute the natural frequencies 

and mode shapes of either an individual Rayleigh-Love bar or a Timoshenko beam or a 

framework comprising beam elements whose axial stiffnesses are characterized by the 

Rayleigh-Love bar theory and the bending stiffnesses are characterised by the Timoshenko 

beam theory. The assembly procedure to obtain the overall dynamic stiffness matrix of the 

final structure in the global or datum coordinates is similar to the finite element method. For a 

frame, the standard procedure to create the transformation matrix comprising the sine and 

cosine of the angle made by the global and local x-axis of each individual bar or beam element 

are usually used to assemble the overall dynamic stiffness matrix of the frame.   A reliable and 

accurate method of solving the free vibration problem is to apply the Wittrick-Williams 

algorithm [19] which is well suited for the dynamic stiffness method. The algorithm uses the 

Sturm sequence property of the dynamic stiffness matrix and ensures that no natural 

frequencies of the structure analysed are missed. Essentially the algorithm gives the number 

of natural frequencies that lie below an arbitrarily chosen trial frequency in a straightforward 

and computationally efficient manner. As successive trial frequencies can be chosen, it is 

possible to bracket any natural frequency within any desired accuracy.  

Before applying the algorithm the dynamic stiffness matrices of all individual elements in a 

structure are to be assembled to form the overall dynamic stiffness matrix Kf of the final 

(complete) structure, which may, of course, consist of a single element. The main features of 

the Wittrick-Williams algorithm and its basic working principles are briefly summarised as 

follows.  

Suppose that  denotes the circular (or angular) frequency of a vibrating structure, then 

according to the Wittrick-Williams algorithm [19], j, the number of natural frequencies passed, 

as  is increased from zero to  *, is given by 

                j = j0 + s{Kf}                (67) 

where Kf, the overall dynamic stiffness matrix of the final structure whose elements all depend 

on  is evaluated at 𝜔 = 𝜔∗; s{Kf} is the number of negative elements on the leading diagonal 

of  𝑲𝑓
Δ, 𝑲𝑓

Δis the upper triangular matrix obtained by applying the usual form of Gauss 

elimination to Kf , and j0 is the number of natural frequencies of the structure still lying between 
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0 and 𝜔 = 𝜔∗when the displacement components to which Kf corresponds are all zeros. 

(Note that the structure can still have natural frequencies when all its nodes are clamped, 

because exact member equations allow each individual member to displace between nodes with 

an infinite number of degrees of freedom, and hence infinite number of natural frequencies 

between nodes.) Thus 

   mjj 0                              (68) 

where jm is the number of natural frequencies between  0 and 𝜔 = 𝜔∗ for a component 

member with its ends fully clamped, while the summation extends over all members of the 

structure. Thus, with the knowledge of Eqs. (67) and (68), it is possible to ascertain how many 

natural frequencies of a structure lie below an arbitrarily chosen trial frequency. This simple 

feature of the algorithm (coupled with the fact that successive trial frequencies can be chosen 

by the user to bracket a natural frequency) can be used to converge on any required natural 

frequency to any desired (or specified) accuracy.  

3.2 The significance of the j0 count in the Wittrick-Williams algorithm 

As explained in section 3.1, one of the requirements for the application of the Wittrick-

Williams algorithm is to acquire the needed information about the Clamped-Clamped natural 

frequencies of individual elements in a structures (the so-called j0 count) so as to enable the 

free vibration analysis to be carried out in a flawless and robust manner. However, the 

determination of the natural frequencies using the Wittrick-Williams algorithm is 

predominantly based on the sign count s{Kf} described in section 3.1. The j0 count of Eq. (68) 

is not always needed, particularly if the clamped-clamped natural frequency of none of the 

constituent members in the structure is exceeded within the frequency range of interest. One 

way of avoiding the computation of j0 is to split the structure into large number of elements so 

that the clamped-clamped natural frequencies of all individual elements become exceptionally 

high and thus will not be exceeded by any frequency of practical interest. Nevertheless, j0 count 

of the algorithm is not really a peripheral issue, particularly for achieving computational 

efficiency and avoiding further unnecessary discretisation of the structure. The need to compute 

j0 stems from the fact that the DSM allows infinite number of natural frequencies to be 

accounted for when all the nodes of the structure are fully restrained and yet one or more 

structural members can vibrate freely on their own between the nodes resulting in = 0 modes 

in the eigenvalue equation [𝐊𝐃]{ } = 𝟎. 
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3.3 Clamped-Clamped natural frequencies of a Rayleigh-Love bar 

The clamped-clamped natural frequencies of a Rayleigh-Love bar can be obtained from Eqs. 

(14) and (15) by substituting the boundary conditions of displacements to zero at both ends or 

alternatively by putting the determinant of the square matrix of Eq. (18) to zero, yielding the 

frequency equation as  

                               sin 𝛾 = 0 = sin 𝑛𝜋   (69) 

Thus, proceeding in the same way as in the case of classical Bernoulli-Euler bar [16] the 

number of clamped-clamped natural frequencies jR of a Rayleigh-Love bar lying below an 

arbitrarily chosen trial frequency  * is given by  

                               jR = highest integer < 
𝛾

𝜋
  (70) 

3.4 Clamped-Clamped natural frequencies of a Timoshenko beam 

For a Timoshenko beam, the number of clamped-clamped natural frequencies exceeded by the 

trial frequency  * can be established using the procedure described in [17] to give  

                            𝑗𝑇 = 𝑗𝑐 − [2 − 𝑠𝑔{𝑑3} − 𝑠𝑔 {𝑑3 −
𝑑6

2

𝑑3
}] /2 (71) 

where sg{ } is +1 or -1 depending on the sign of the quantity within the curly bracket, d3 and 

d6 have already been defined in Eq. (63) and jc is given by  

                                    jc = jd  for b2r2s2 < 1 

  (72) 

                                   jc = jd+je for b2r2s2 ≥ 1 

with 

                                 jd = highest integer < 
Φ

𝜋
 

 (73) 

                                 je = highest integer < 
Λ

𝜋
+ 1 

In Eq. (73), Φ and Λ have already been defined in Eqs. (44) and (45) respectively. Thus the 

number of clamped-clamped natural frequencies jm exceeded by an individual member by the 

trial frequency  * with the inclusion of the Rayleigh-Love bar and the Timoshenko beam 

theories is given by  

                                              jm = jR+jT (74) 

Now the root count j0 of Eq. (68) can be computed using the Eq. (68) where the summation Σ 

over m is extended to include all elements in the structure. 
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4.  Results and Discussion 

Numerical examples are given for three different types of problems. Example-1 is focused on 

the natural frequencies of a freely vibrating uniform Rayleigh-Love bar in longitudinal motion 

with clamped-clamped and cantilever boundary conditions. This is followed by example-2 

which is that of a stepped bar taken from the literature. This problem is analysed using both the 

classical Bernoulli Euler and the Rayleigh-Love theories. Finally example-3 demonstrates the 

free vibration characteristics of a plane frame for which the dynamic stiffness matrix for each 

constituent element is based on both Rayleigh-Love and Timoshenko theories as well as 

classical Bernoulli Euler theories. 

 

4.1 Free longitudinal vibration of a uniform bar  

Using the notations given in section 2.1, the natural frequencies of a Rayleigh-Love bar with 

both ends clamped can be obtained from Eq. (14) by substituting U() to zero at both  = 0 and 

 = 1 and making appropriate substitution for  to give the nth natural frequency n as 

                                       𝜔𝑛 = √
𝑛2𝜋2

(1+
𝜈2𝐼𝑝𝑛2𝜋2

𝐴𝐿2 )
(

𝐸𝐴

𝜌𝐴𝐿2) (75) 

where n = 1, 2, 3, …. 

The corresponding natural frequencies for the classical Bernoulli-Euler with clamped-clamped 

boundary conditions can be found in standard texts [7] given by  

                                        𝜔𝑛0
= 𝑛𝜋√𝐸𝐴/(𝜌𝐴𝐿2) (76) 

The ratio between the natural frequencies for the clamped-clamped bar obtained from the 

Rayleigh-Love and classical Bernoulli-Euler theories can be expressed with the help of Eqs. 

(75) and (76) to give  

                                      
𝜔𝑛

 𝜔𝑛0

=
1

√1+
𝜈2𝑛2𝜋2

(
𝐿
𝑟
)
2

 (77) 

where r is defined as the radius of gyration expressed as  

                                      𝑟 = √
𝐼𝑝

𝐴
 (78) 

Proceeding in a similar way and imposing appropriate boundary conditions, the natural 

frequency ratio for a cantilever bar using the Rayleigh-Love and classical Bernoulli-Euler 

theories can be expressed as  
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𝜔𝑛

 𝜔𝑛0

=
1

√1+
(2𝑛−1)2𝜋2𝜈2

4(
𝐿
𝑟
)
2

 (79) 

The validity of the Eqs. (77) and (79) has been further confirmed by using the developed 

dynamic stiffness matrix of a Rayleigh-Love bar shown in Eq. (20). 

  Clearly Eqs. (77) and (79) indicate that the natural frequency ratio 
𝜔𝑛

 𝜔𝑛0

 is dependent on the 

Poisson’s ratio  of the bar material as well as the slenderness ratio L/r of the bar. The Poisson’s 

ratio  for an isotropic material is generally constant and maybe assumed to be 0.3 which is 

used here in the analysis. 

  Figures. 5 and 6 show the variation of the ratio of the first five natural frequencies using the 

Rayleigh-Love and classical Bernoulli-Euler theories against the slenderness ratio L/r for the 

clamped-clamped and cantilever bar respectively. Clearly for smaller values of slenderness 

ratios and for higher natural frequencies, the classical Bernoulli-Euler theory is considerably 

less accurate. The errors incurred in the fifth natural frequency when using the classical 

Bernoulli-Euler theory are 27% and 24% for the clamped-clamped and cantilever bar 

respectively when the slenderness ratio is 5. It should be noted that in the Statistical Energy 

Analysis (SEA) for which modal density in the high frequency range is required, the classical 

Bernoulli-Euler theory can be inadequate.  

 

Fig. 5. The first five natural frequency ratios using the Rayleigh-Love and classical Bernoulli-

Euler theories for a clamped-clamped bar. n = natural frequency using Rayleigh-Love theory; 

n0 = natural frequency using classical Bernoulli-Euler theory. 
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Fig. 6. The first five natural frequency ratios using the Rayleigh-Love and classical Bernoulli-

Euler theories for a cantilever bar. n = natural frequency using Rayleigh-Love theory; n0 = 

natural frequency using classical Bernoulli-Euler theory. 

4.2 Free longitudinal vibration of a stepped bar 

A stepped bar (example-2) which is taken from [34] and shown in Fig. 7. is analysed for its 

free vibration characteristics in longitudinal motion using the developed dynamic stiffness 

matrix. The stepped bar is cantilevered at the left hand end as shown and consists of three 

individual bars of solid circular cross-section with different geometrical dimensions and 

material properties for each. The essential data required for the analysis are: radius of cross-

section (ri), length (li), Young’s modulus (Ei), density (i) and Poisson’s ratio (i) (i 

representing the segment or element number).  

                   

                 Fig. 7. A three-stepped bar for free vibration analysis. 
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The numerical values for the data taken from [34] are:  

r1 = 0.05m, r2 = 0.03m, r3 = 0.075m, 

l1 = 0.05m, l2 = 0.17m, l3 = 0.13m, 

E1 = 200×109 Pa, E2 = 70×109 Pa, E3=100×109 Pa,  

1 = 7.85×103 kg/m3, 2 = 2.7×103 kg/m3,  = 8.4×103 kg/m3,  

= 0.30,  = 0.33,  = 0.34. 

The first four natural frequencies computed using the Rayleigh-Love dynamic stiffness theory 

are shown in column 2 of Table1 alongside the results reported in [34] shown in column 3. The 

corresponding natural frequencies computed using classical Bernoulli-Euler dynamic stiffness 

theory [16] are also shown in the parenthesis in column 2. Although the agreement of the results 

between the present theory and those of [34] are good for the second and fourth natural 

frequencies (the differences are well within 3%), but for the first and third natural frequencies 

there are some discrepancies which are around 13% and 15% respectively. The fundamental 

natural frequency of the bar quoted in [34] is well above the corresponding natural frequency 

obtained from the classical Bernoulli-Euler theory. This is surely in error because the effect of 

the transverse inertia presumably accounted for in [34] is expected to diminish the natural 

frequency and not increase it. The mode shapes corresponding to the four natural frequencies 

using the present theory are shown in Fig. 8 by solid lines which are in broad agreement with 

the ones reported in [34]. The mode shapes shown by dash lines are those computed using the 

classical Bernoulli-Euler theory. Clearly, the first three mode shapes have undergone very little 

changes as a result of using the present theory as opposed to the classical Bernoulli-Euler 

theory, but the fourth mode being a higher order mode has turned out to be significantly 

different, as expected. The authors were unable to pinpoint the exact reason for the 

discrepancies in the first and third natural frequencies, when they compared their results with 

those of [34], but it should be recognised that the series solution approach used in [34] is 

different from the dynamic stiffness methodology developed in this paper. It is to be noted that 

both the Rayleigh-Love and the classical Bernoulli-Euler theories give almost the same results 

for the fundamental natural frequency, but the differences in the second, third and fourth 

frequencies are 7%, 4% and 21% respectively. Understandably, the classical Bernoulli-Euler 

theory overestimates the natural frequencies whereas the more refined Rayleigh-Love theory 

which accounts for the added transverse and lateral inertia of the bar yields lower values of the 

natural frequencies which is apparently contradicted by the result for the fundamental natural 

frequency reported in [34]. 
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Table 1: Natural frequencies of a stepped bar in longitudinal vibration (results from the 

conventional classical theory are shown in the parenthesis in column 2). 

Frequency 

Number 

Natural Frequency (Hz) 

Current 

Theory 
Ref. [34] 

1 
1184.312  

(1184.39) 
1362.79 

2 
11732.86  

(12509.42) 
11679.6 

3 
14503.42 

(15002.56) 
12640.5 

4 
20014.45 

(24187.29) 
19461.9 

  

             

Fig. 8.  Natural frequencies and mode shapes of the three-stepped bar of Fig 7. 

                         Present theory;          ------------------------- Classical theory. 
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4.3 Free vibration of a plane frame 

The final set of results was obtained using example-3 which is that of a plane frame shown in 

Fig. 9. Each element of the frame has the same uniform geometrical, cross sectional and 

material properties and the data used in the analysis are as follows:  

EI = 4.0×106 Nm2,  EA = 8.0×108 N, kAG = 2.0×108 N, 

A = 30 kg/m, Ip = 0.157 kgm, = 1/3, k = 2/3  

 

           

  

Fig. 9. A plane frame for free vibration analysis using Rayleigh-Love and Timoshenko 

theories. 

 

A wide range of the natural frequencies of the frame was computed using the present theory as 

well as the classical Bernoulli-Euler theory. Apart from the computation of the first five natural 

frequencies which were sequentially chosen, the higher order natural frequencies were 

sparingly and sparsely chosen so as to cover the order of the natural frequencies between 50th 

and 400th. The results are shown in Table 2. Clearly, higher the order of the frequency, higher 

the incurred error due to using the classical Bernoulli-Euler theory. The first five natural 

frequencies of the frame are virtually unaltered. As expected, the classical Bernoulli-Euler 

theory overestimates the natural frequencies. 
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Table 2: Natural frequencies of plane frame 

 

 

Frequency 

Range 

 

Natural 

Frequency 

Number (i) 

 

Natural Frequency fi (Hz) 

 

Rayleigh-Love and 

Timoshenko theory 

Classical Bernoulli-

Euler theory 

 

 

 

Low  

1 35.38 35.77 

2 38.56 39.10 

3 41.98 42.56 

4 50.73 51.39 

5 53.14 53.94 

 

 

Medium  

50 565.54 600.97 

60 635.28 709.09 

70 828.95 934.39 

80 964.48 1136.00 

90 1108.90 1301.20 

100 1306.80 1521.40 

 

 

High  

150 2151.10 2732.30 

200 3047.50 4089.50 

250 3940.30 5585.00 

300 4859.70 7152.20 

350 5767.40 8744.80 

400 6112.80 10495.00 

 

One of the potential application areas of the theory developed in this paper is the Statistical 

Energy Analysis (SEA) for which accurate natural frequency predictions in the low, medium 

and high frequency range are essential. To this end, the uncompromising accuracy of the 

dynamic stiffness method developed in this paper by applying the Rayleigh-Love and 

Timoshenko theories is further demonstrated by computing the number of natural frequencies 

of the frame (see Fig. 10) which lies within the frequency ranges of 0 < 𝑓𝑖 ≤ 1𝑘𝐻𝑧, 0 < 𝑓𝑖 ≤

2𝑘𝐻𝑧, 0 < 𝑓𝑖 ≤ 3𝑘𝐻𝑧 and up to 0 < 𝑓𝑖 ≤ 10𝑘𝐻𝑧 which cover low, medium and high 

frequency bands. Figure 10 shows the frequency distribution, i.e. the modal density of the 

frame. It will be difficult to obtain these results with such accuracy using conventional Finite 

Element Method. 
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Fig. 10. Modal density of plane frame. 

5.  Limitations and Scope for Further Developments of the Theory 

The dynamic stiffness theory presented in this paper deals with Rayleigh-Love bars and 

Timoshenko beams made of homogenous and isotropic materials for which the essential 

properties are Young’s modulus (E), shear modulus (G), Poisson’s ratio () and density (). 

Further development of the theory and its future applications to include laminated composites 

will be a challenge, and indeed, a major task mainly because of the fibrous nature of such 

anisotropic materials, which require more elastic constants to define their properties. Also the 

introduction of a fictitious shape factor or shear correction factor as demanded by the 

assumption in the Timoshenko beam theory to account for the non-uniform shear stress 

distribution through the thickness of the beam cross-section, is no-doubt a limitation. In this 

respect, the current theory can be extended by incorporating higher order shear deformation 

theories [35, 36] in the analysis. To overcome the limitations of the theory presented in this 

paper, particularly for its extension to anisotropic fibrous composites, interested readers are 

referred to the review papers of Sayyad and Ghugal [37, 38] for necessary background 

information. 
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6.  Conclusions 

Starting from the derivations of the governing differential equations of motion in free vibration, 

the dynamic stiffness matrix of a beam using both the Rayleigh-Love and Timoshenko theories 

has been developed. With the help of the Wittrick-Williams algorithm as solution technique, 

the theory is applied to investigate the free vibration behaviour of a uniform Rayleigh-Love 

bar, a stepped Rayleigh-Love bar, and a framework for which the modal density distribution is 

presented by capturing its natural frequencies in the low, medium and high frequency range. 

Some representative mode shapes of the stepped bar are also illustrated. The theory developed 

is particularly helpful when carrying out high frequency free vibration analysis of skeletal 

structures. A potential application of the research described in this paper falls within the area 

of statistical energy analysis for which the knowledge of modal density distributions in the high 

frequency range is essential.  
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