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Abstract

In many empirical situations, modelling simultaneously three or more outcomesllas we
as their dependence structure can be of considerable relevancela€gpovide a power-
ful framework to build multivariate distributions and allow one to view the spettifio of
the marginal responses and their dependence as separate but relaésd ig/e propose a
generalisation of the trivariate additive probit model where the link funstcam in princi-
ple be derived from any parametric distribution and the parameters degdtile association
between the responses can be made dependent on several typear@teceffects (such as
linear, nonlinear, random, and spatial effects). All the coefficientsefibdel are estimated
simultaneously within a penalized likelihood framework that uses a trust reggonithm with
integrated automatic multiple smoothing parameter selection. The effectivertbssmodel
is assessed in simulation as well as empirically by modelling jointly three advetisdiniary
outcomes in North Carolina. The approach can be easily employed vigjttre () function

in theRr packagesJrM.
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1 Introduction

When the researcher is interested in modelling more thanesp®nse, univariate regression will
not yield valid inferences if there is residual dependenesvben the outcomes conditional on
covariates. The case of trivariate models has been distussé@erature in various contexts.
For example, Loureiro et al. (2010) assessed the effectreinpal smoking habits on their chil-
dren’s smoking habits by estimating a three-equation pregression model, whereas Zhong et al.
(2012) evaluated the safety of a treatment and identifiedpéimal dose by jointly modelling the
probabilities of toxicity, efficacy, and surrogate efficagiyen a specific dose. Kt et al. (2016)
examined the response to a treatment on patients with raBtasblorectal cancer by analysing si-
multaneously three outcomes: a longitudinal marker, afsetorrent events, and a terminal event.
A mixture of powers copula-based approach to model joirithee binary and discrete outcomes
was employed by Zimmer & Trivedi (2006), whereas Zhang ef2015) developed a Bayesian
algorithm to estimate trivariate probit-ordered modefe@td by double sample selection.

This paper contributes to the literature by introducing magelization of the trivariate additive
probit model. Specifically, we extend and therefore enhémeenodel proposed by Filippou et al.
(2017) by allowing (i) the link functions to be virtually deed from any parametric distribution
and (ii) the model's association parameters to depend ograletypes of covariate effects (such
as linear, nonlinear, random, and spatial effects). The éxtgension allows for the use of link
functions other than probit. In particular, the additiolak functions implemented for this work
are the logit and complementary log-log which are used sitely in numerous disciplines, in-
cluding the medical and social sciences. In clinical rede&ogit models are widely used as they
provide direct information about which treatment has thst lmelds of benefiting a patient, for

instance. Complementary log-log models have importantiegdpns in survival analysis where



they can, for example, provide a clear insight into the nedateduction of risk for death or pro-
gression. Extension (ii) is of some relevance since it cdp teegain insights into the way the
residual association between the responses is modifiedelyyrédsence of covariates. To the best
of our knowledge, the two proposed developments have ndigat considered in the context of
trivariate (or more generally, multivariate) binary respe regression models.

It is worth noting that our proposal can also be regarded &x@msion of the bivariate regres-
sion approaches introduced by Marra & Radice (2017a), Klekn&ib (2016) and Radice et al.
(2016) as well as of the popular generalized additive mo¢lesMs) and GAMs for location,
scale and shape of Wood (2017) and Righy & Stasinopoulos j2@¥spite we have focused on
trivariate binary models, the theoretical results in thpgracan be straightforwardly extended to
the case of more dimensions. Functipfirm () in ther packagesJrM (Marra & Radice, 2017b)
implements various types of joint models and includes tiveld@ments in this article.

The next section introduces the proposed model, Sectiors&itdes the log-likelihood and
Section 4 provides the key details on estimation. The pr@ps®mpirically evaluated in a simu-
lation study, presented in Section 5, and then applied teastady in Section 6, where the interest
is in modelling jointly three adverse birth binary outconmreslorth Carolina. Section 7 concludes

the paper.

2 Model specification

This section introduces an extension of the trivariate priftat is based on copulae, additive
predictors and a modified Cholesky decomposition of the n®defrelation matrix.

In general, a multivariate distribution can be construatsohg a copula function that joins
together marginal distributions which may come from défrfamilies (Joe, 1997). Suppose that
C denotes a joint cumulative distribution function (cdf) kvisupport in[0, 1]*> and whose one-
dimensional margins are uniform. Let algg® : (0,1) — R be a quantile functiorym = 1,2, 3,

Frn(nmi) : R — [0,1] a univariate cdfF (U {Fi ()}, Us " {Fa(n2)}, U {F3(ns:)}) ajoint



cdf, andn,,; an additive predictor (made up of regression coefficientscmvariates as described
in Section 2.2) fori = 1,...,n, wheren denotes the sample size. Then there exists a three-

dimensional copula functio@ : [0, 1}> — [0, 1] defined as

C(Fi(ms), Fa(nai), Fs(nsi)) = F (U {Fu ()} Uy {Fa(n20) b Us  {Fs(n3:)}) (1)

which satisfies: (C.1§ (Fi(m:),1,1) = Fi(ma), C(1, Fa(ne),1) = Fa(nw), C (1,1, F3(ns;)) =
F3(103:), YF (i) € [0,1] @andm < 3; (C.2)C (Fy(n13), Fa(n2), F3(n3:)) = 0 if E,(,ms) = 0 for
anym < 3; and (C.3)C is 3-increasing (Sklar, 1959). Condition (C.1) states that ifrdadizations
of two variables are known each with marginal probabilityog, then the joint probability of the
three outcomes is the same as the probability of the rentaumoertain outcome. Condition (C.2)
is sometimes referred to as the grounded property of a c@maastates that the joint probability
of all outcomes is zero if the marginal probability of any @arne is zero. Condition (C.3) means
that the copula volume of ar8tdimensional interval is non-negative. A copdlds unique on the
cartesian product of the ranges of the marginal &Hsi( 77 (71;)) x Ran(Fy(n2;)) x Ran(F3(ns;))-

The copula is unique if the margins are continuous. Any capiak always in the interval

max {Z Fo(mi) — 2, 0} < C(Fi(mi), Fo(mai), F5(n3:)) < min{F1(n1;), Fa(na:), F3(ns:)},

m=1

the so-calledrréchet—Hoeffdindpounds. A desirable feature of a copula is that it should ctihe
sample space between the lower and upper bounds, and thatassbciation parameters approach
the lower (upper) bound of their permissible ranges, thailzapproaches the &chet—Hoeffding
lower (upper) bound. Knowledge of the&ehet—Hoeffding bounds is therefore important in se-
lecting an appropriate copula. For more details see, faamt®, Trivedi & Zimmer (2007) and
references therein.

In this paper, we employ the trivariate Gaussian copula @éfpendence structure characterized
by coefficients), ;, V13, anddes ; which form the model’s correlation matr®;. Based on (1), we

express the trivariate Gaussian copul@as¢d ! { Fy (n1:)}, D {Fo(n2:) }, @ {F3(n3:) }; 0, X;),



where®~! is the quantile function of a standard normail, (n,,;) is derived in this case from the

standardised normal, logistic or Gumbel univariate cdfohtare defined as

exp(Mmi)

En(mi) = @(hmi)s Fn(imi) = 1+ exp(fmi)

and F,(nmi) =1 —exp{—exp(mi)},
and matrix¥; is equal to

1 v Vs,
Ei = '191271' 1 192371' ) (2)
Vig; Uaz; 1

wheredy, 1, is the correlation coefficient between th& and k% responses for subject for
ky = 1,2, ks = 2,3, with k&1 # ky. The case of non-normal dependence is tricky. In this work,
we have considered several ways of modelling non-Gaussiactsres by reviewing the growing
literature on multivariate models. Supplementary Matekidiscusses five different ways for po-
tentially achieving this aim in our case: Archimedean capuimixtures of powers, pair-copulae
constructions, the trivariate Student-t distributiondahe composite likelihood approach. Al-
though these approaches allow for non-Gaussian deperdetice majority of them make certain
strong assumptions which may be regarded as acceptablen@pgcific applied contexts. In fact,
such methods would limit the generality as well as applidgbof the modelling approach pre-
sented here. The only suitable alternative would appeae tind trivariate Student-t distribution,
however, as shown in the Supplementary Material A, theretismuch to be gained by using such
distribution in our context. In conclusion, the Gaussiapuda seems to be a sensible and tractable
modelling choice for the case of trivariate binary data.

Each coefficient in matrix (2) is allowed to be expressed amatfon of an additive predictor.
The challenge to address here is that the range of eachatared additive predictor has to be
unbounded to avoid constrained optimization and that theetadion matrix3; must be positive

definite with each of its coefficients taking valueg/inl, 1]. This makes the parameter space of



32; somewhat complex with restrictions for each parameter midipg on the values of the others.
To this end, we propose using a modified Cholesky decomposfproach which is described in

the next section.

2.1 Unconstrained parametrization for the correlation matrix

The standard Cholesky decomposition of a positive-defiroteetation matrixX is of the form
3 = CCT, whereC is a unique lower-triangular matrix with positive diagomaitries. Mod-
ifications of the standard Cholesky decomposition can bedanrthe literature. For example,
Pourahmadi (1999, 2000) shows that the modified Choleskynaeasition of X! offers a simple
unconstrained reparametrization of the covariance matimle Chen & Dunson (2003) propose
an alternative modified Cholesky decomposition to factatfieecovariance matrix. As shown by
Pourahmadi (2007), who provides an overview of the two nathestimation of the new parame-
ters in the latter decomposition may be more demanding ctatipoally. In this paper, we employ
a modification of the work by Pourahmadi (1999, 2000), wheeeemploy the modified Cholesky
approach with unit variance constraints to deal with catreh matrices.

Let 37 denote a symmetric positive-definite correlation matvix,defined as

1 M2, M3,
* * vk |
¥, = GG = M2, 1‘“7%2,1' M2,iM3: + M23, | »

M3s The,iMs,: + M3 1+ 77%3,2‘7733,1'

whereny, ,; € R, V&1, ko, andC; is equal to

1 0O 0
C: = M2, 1 0
M3 Me3q 1

)—1/2

Y

By using the variance-correlation decompositon= T,;3! T, with T; = diag (1, (1 + 77%272-



(L4 nis, + 773371.)_1/ 2), we have that the correlation mati; can be expressed as

1 M12,i 713,
2 2 2
vV 1+nis ; vV 1075 ;33,5
. = N12,i 1 M12,iM13,i1+123,i
) - 2 2 2 2
AVARR/C® \/(1+7712,i)(1+n12,i+n23,i)
113,i N12,iM13,i 1123, 1

\/1'1'77%3,1"*‘7753,1' \/(1"'77%2,1')(1"""%2@‘*‘”%3,;‘)

The correlation parameters can therefore be definedxas= 712.:/4/1 + 77%2@’ V13 = M3/

\/1 + N5 + N33, @NAa3; = (M2,its, + 7723,1’)/\/(1 + 0iy.4) (1 + 175, + 135,;). It follows that

2

1912 i 19%3 i (1 + 12 ) A
i = F1a(V12,) = | —=—, i = F3(ths,) = . LA i = Fa3(Va3i) =\ — =,
Mo, 12( 12, ) 1_ 19%277; s, 13( 13, ) \/ 1_ 19%:“ 123, 23( 23, ) 1_A

2

234 2 — i%13,i .

whereA = ( LAY 1\7112;2 12005, ) . Therefore, by construction we have that;,; € [-1,1],
—Uis,

Mieiksi € R, VE1, ko, 7 @and the resulting correlation matrix is positive definiterequired.

2.2 Additive predictor

All the model's parameters are related to covariates anassgn coefficients via additive pre-
dictors. Let us define a generic predictgras a function of parametric components and smooth

functions. That is,

N
mzvinijZs,,(z,,i), i=1,...,n, (3)
v=1

wherev; contains binary and/or categorical predictors, vegtoepresents the effects of the vari-
ables inv;, ands, (z,,;) is a smooth function of covariatg,;, Vv = 1,..., N with N being the
number of smooth terms in (3). The smooth functions are sgpted using the regression spline
approach popularized by Eilers & Marx (1996) because ofotmputational efficiency, theoreti-
cal properties and flexibility in representing several §/pécovariate effects (e.g., Wood, 2017).

Using this approachs,(z,;) is approximated by a linear combination of known basis fiomst

7



b,;(2,;) and regression parameters;. That is,

Ju
Su(zui) ~ Zau,jbu,j(zui) = LV(ZV’i)aV7 (4)
j=1

wherelL ,(z,;) is a vector containing thd, basis functions evaluated a;, that isL,(z,;) =
{bu1(20i), bua(2ui), - -, by, (2,:) }, @andey, is the corresponding parameter vector defined,as-
(a1, ... ,ozl,Ju)T, Vv. Each term has an associated quadratic penalty] S,«, which
enforces specific properties on thé function (such as smoothness) and that is therefore used
during model fitting. Smoothing paramet&y € [0, c0) controls the trade-off between fit and
smoothness. The overall penalty can be writterad$a, wherear = (o, .. .,aTN)T, S =
diag (05, \Si, ..., AgSx), P denotes the number of parametric components in the adgitee
dictor and theS, are positive definite or semi-definite symmetric known squmatrices. Centering
constrainty _, s,(z,;) = 0 is imposed on all smooth terms in the model for identificaparposes.
The above formulation allows us to represent many types whreate effects depending on the
nature of the covariate(s) considered. These include randpatial and non-linear effects. We
refer the reader to Filippou et al. (2017), and referencexeth, for an overview of some common

examples.

3 Log-likelihood

To avoid over-fitting, simultaneous estimation of all paedens of the trivariate additive binary

model is achieved by solving

A~

0 = arg méin —0,(0) = arg m&in—{log L(Y;8)— %5TS>\5}, (5)

whereY = (y1,¥s....,Yn) With y; = (yu:,y2:. ys:) which denotes the three correlated binary

responsesy = (B',84)",. 8= (8/.8,.85)", By = (,3127,313,,323)T7 B includes the regres-

sion coefficients inn'* equation 3y, denotes the coefficients in additive predictr, ;, Sy =



diag (0;1, St A, S 0%, Az S+ Mgy Soty: 0% - Asuy Siugs - -+ Mg, Sy OB,
MonaSizvsss -+ Aoy Stadas Oy My Staviss -+ Aty Staner Oy Aoy Sosvass -+ sy S )
ST andSkleVkle are defined following a similar construction&s ..., andAklkzyklk2 are de-
fined similarly as\,, A is a vector containing all smoothing parametéts,, denotes the number

of parametric components i, , ; and P,, that in them! equation. For a 3-D binary response
vector we have? trivariate probabilities expressed via the trivariate &ian copula function. The

likelihood is given by the joint density of observed outcame

n 23 n 23
£(v;0) = [T11catw:o =TI %"
=1 j=1 i=1j=1

whereL; is derived from Lemma 1 fod/ = 3. Term)); denotes an indicator variable for th&
combination of the three possible evepts= €1, yo; = €2, y3; = €3 With e, € {0, 1} Vm and¥ ;
is the corresponding trivariate Gaussian copula functiste that for eacl the form of & ; and
V,; is different as their structure depends on kfecombination of the three possible events. The

calculation of the multivariate normal probabilities issdabed in detail in Filippou et al. (2017).

Lemma 1. Quantity £;, evaluated at the vecto3;H,); is equal to the cdf of a multivariate

standardized normal vector with correlation mat(i8,>,;);, that is
Yik i . Vi
Lii(y;;0) = Uk = {0 (BH,);; 0, (B;Z:By);) 1+ = { @y (W) 0, (1))

whereW,; = BH; = Wi,,... . W) Hy = (@ H(Fi(ny))s -, @ (Fau(m)) ' Xi =
B.XBi, Wi = Umi®  (Frn(Mmi))s O Gmi = (2ymi — 1), ymi denotes then' binary response,
F,.(nni) denotes the univariate cdj,,; is an additive predictor an@; denotes a diagonal/ x
M matrix with main diagonal elements,; = (2y,,; — 1), that isB; = diag(2y1; — 1,2y —

L. 2yas — 1),

Proof. See Supplementary Material B. ]



4 Estimation details

To minimize (5), we have extended the efficient and stablkg tiegion algorithm with integrated
automatic multiple smoothing parameter selection desdrliy Filippou et al. (2017) to allow for
the specification of virtually any parametric link functiand for the correlation matrix to depend
on covariate effects as described earlier. The practicaless of these extensions depends on the
availability of the analytical score and Hessian matrix leé model which are fundamental for
a reliable, stable and efficient implementation of the abmesmtioned algorithm. This requires
to amend and generalise the results presented in the worKipgdt et al. (2017). Specifically,
we compute the analytical score functigiié) = Vs¢; (6/), and Hessian matrig{;(6/1) =

VsVal; (6) as

va(s) = (O L O66) _ (om\' [04L(8) i\ _ (omi\' [ 1 0%, 0F, ®)
T 06 oni \ 06 OF, om, |\ 08 U, OF, on; |’

1 0¥ 0F,) 0%*n on:\ " 1 OW.0F, (0%
0(8) = i OF; i (om) ) 7 OF, (0%
VVssl9) {\I'k OF, am} 95057 © (aa) VW OF, on ( o, ) *

1 | 2W.; [(OF\*> 0W. 0°F on;
e (&) + S (%)

V.. |OFF" \ on; OF; onon’
wheren, = (771ia7]2i7773i77712,i77713,i77723,2‘)T1 F, = (Fi(mi), Fo(n2:), Fs(M3i), Fa(ai), F5(054), F6(776i))T
with (F4(T)4z'), F5<7]5i>7 Fﬁ(ﬁﬁz’)) = (1912,1'7 ?913,1'7 ?923,i), 8771’/86 = diag (anli/aﬂla 87721'/8/327 aﬁ3i/aﬂ37
02,1/ OBz, Oms,i/ OB, Ones i/ 0Bs3) andol(d)/0m=(0¢(8)/Omi, OL(8)/Ona;, OL()/Ons;,
(%(5)/(‘)771271»,66(6)/6771372-,86(6)/6n23,i)T. Predictorn; is functionally dependent od, that is

n; = 1;(d). Implementation of (6) and (7) has been a tedious and neiattask, especially be-
cause of the presence of a varying correlation matrix. Thkisresion required, for instance, the
use of the multivariate chain rule which was employed ag¥al As shown in Section 2.1y, ;
may depend omy, r,; andn_x,k,;, Wheren_p i, € M \ Meyksir fOr n; = (7712,i77713,i77723,i)T-

Hence, term9F; /0, for F; = (912, 19137i,19237i)T, is a3 x 3 Jacobian matrix containing all the

10



derivatives ofF; with respect tay,. That is,

0912, OV12; 0V12;

— M12,i 713,i 123,i
OF; , , ,

— 0Y13; 0V13; 0V13,

87_71 12,4 M13,5 123,

0¥23,; Ov¥a3; 023

M2,i 713,i 123,i

The above accounts for the dependencies betwegn, andny, x,; as well asn_y,,... Second-
order derivatives were derived in a similar way. More gesadly, implementation of (6) and (7)

was achieved via Propositions 2 and 3 by setfifig= 3.

Proposition 2. Assume thadV, is a multivariate standardized normal vector with corretati
matrix equal toY';. Then the first-order derivative of th¥ -variate normal cdf®,,(W;;0,Y;)

with respect tg3,,, Vm = 1, ..., M, can be expressed as

Bm

fm(nmz)
¢ (P~ (Fr (1hmi))

= ¢Win,i:0,1)@p—1 (Wi i|Wini; M, OF")

(Qymi - l)xv—rrn‘

where M denotes the total number of equations under a multivariatardy framework,V,, ;
denotes the linear predictor of the'™ equation and is equal t6y,,; — 1)®*(F,.(0mi))s Bm
denotes the parameter vector of covariate veatpr, the vector of linear predictor¥V_,, ; is de-
fined asWi i, ..., Wi—1.4, Wins1,is - - - ,WM,i)T and f,,(nn:) and F,,(n,,;) denote the univariate
pdf and cdf respectively which can be specified via the norogiktic and Gumbel distributions.
The meanM;" and variance-covariance matr@®;" is equal to®z; WV, ; and@y; , — O3 .07 ,,

respectively, witt®7; ;, ©3 ; and ©3; ; defined by re-orderind’; as follows

1x1 1x(M—1)
m ‘ m
Tm @11,z ‘ @12,7,
L =] - === = - - === - -
i
m ‘ m
@21,1 ‘ @22,1

(M=1)x1 (M—1)x(M—1)

11



The elemen®7; ; is equal tol, the off-diagonal block®7; ; and ©%; ; consist of the correlations
Pmei = tmm,itwmiOmei(2Umi — 1)(2ywi — 1), Wheret,,, ; and t.; denote thgm,m)™ and
(w,w)™ element of matrixT';, respectively¥ @ € {1 : M} \ m,m # w, ando;},_, is the
(m, )™ element of matriXt; (matricesT; and X; are defined in Supplementary Material C).
The symmetric sub-matr@®3;, ; has main diagonal elements equal to 1 and off-diagonals ltqua

Towi = t@@,itww,iangi@y@i — 1) (2Ywi — 1), Vp,w € {1 : M} \ m, for ¢ # w.
Proof. See Supplementary Material D.1. [

Proposition 3. Assume thadV, is a multivariate standardized normal vector with corretati
matrix equal toY';. Then the first-order derivative of the -variate normal cdf,,(W;;0,Y;)

with respect tq3,,, Vk1 = 1,..., M — 1, ky = ky +1,... M, can be expressed as

8<I>M(Wz, 0, TZ)

(p2(W12,1:0,02) @y s(W_15;[Wiai; M 2,0712), .,

aIBkle
M—1,M '
Ga(Whi-1.14; 0, 0; VP r—oW -1 mi Wi—1, 04
—~M—-1,M N—-M-1,M 87"12,i 37’M—1,M,i ’ T
M, , 0, )) % 3 g Xy kg s
nklkg,i nk‘1k2,i

where M denotes the total number of equations under a multivariatary framework, 3y, ,
denotes the parameter vector of covariate veeior, ;, Wheik,i = Wey.is WkQ,i)T, W _kiki =
Wi oo s Wi 1.6 Wer1is -+ Wi 16s Wit 1 - War) | Yk, k2, Wiy and W, ; refer to
the linear predictors of thét" andki" equations respectively and are equal2g,,;—1)® 1 (F,, (7mi)),
VYm = ky, ko, and f,,,(n,,;) and F,,,(n,,;) denote the univariate pdf and cdf respectively which can
be specified via the normal, logistic and Gumbel distribngio The variance-covariance matrix
©}'*2 is equal to®}1"?, while the mear;"**> and variance-covariance matr®; **** is equal

to ©41% (©41%) Wy, and ©ht'z — @k (@4%) T @4k, respectivelyk, ky. The sub-

matrices®%1%2 @Mk @%* and @%L* are defined by re-orderind’; as follows

12



2%x2 2xX(M—-2)

kika ! ki1k
OF1k2 @F1k2
Tflb — ,7,1}’3,:,,,,1,2’1,,,
k‘1k2 I k1k2
@m¢ ! C&m
—— ——

(M=2)x2 (M—2)x(M-2)

The sub-matriX-)’ﬁf? has unit diagonals and off-diagonals defined as, ; = tr,k,.itkoks ik, 5y (2Ukyi—
1)(2yx,i — 1), wheret,,,,, ; denotes thém, m)™ element of matrixt;, Vim = ki, ks, andoy, ;, ; is

the (ki, ko)™ element of matri®! (matricesT; and X} are defined in Supplementary Material C).
The first row (column) 0’3" (©41") contains the correlations,, ;;, for o € {1 : M} \ k;, while

the second row (column) @71 (©5:*2) contains the correlations;;, ;, for o € {1 : M} \ k..

The diagonal bIocI@’géﬁ2 is a symmetric matrix with unit diagonals and off-diagonarakents

equal tory;;, V X, € {1: M} \ {ki, ko} for x # ¢.
Proof. See Supplementary Material D.2. n

The construction of confidence intervals, p-values andrimé&dion criteria, for instance, are not
essentially changed by the extensions introduced in tipspand we refer the reader to the sup-

plementary material of Filippou et al. (2017) for such detai

5 Simulation Study

To gain some insights into the practical performance of tlepg@sed approach, we conducted a

simulation study. We considered three binary outcomesporay covariate and one continuous

regressor. The chosen link functions were logit, cloglod probit. Exact simulation settings are

given in the Supplementary Material E. The syntax to fit treppsed trivariate binary model is

out <- gjrm(formula = f.1l, data = dat, Chol = TRUE, Model = "T",
margins = c("logit", "cloglog", "probit"))

wheref . 1 consists of a list of six equations

eql <- yl1 7 vl + s(zl)
eq2 <- y2 7 vl + s(zl)
eq3 <- y3 7 vl + s(zl)
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eql2 <- T vl + s(zl)

eql3 <- vl + s(zl)

eqg23 <- vl + s(zl)
2,

f.1 <- list(egqnl, egn

eqn3, eql2, eql3, eg23)

v1 andz1 denote the binary and continuous covariates, respectivgly represents a smooth
function that is set up using a penalised thin plate regvasspline with 10 bases and penalty
based on second order derivatives, the last three equatiansL refer to the additive predictors
for the correlation parametets,, ;3 andv,3, data is a data frame containing the variables in
the modelchol = TRUE indicates that the modified Cholesky decomposition apprbashto
be employedyode1l indicates the type of modef ¢ " for trivariate binary model) anglargins
the three the link functions.

Figures 1 and 2 depict linear and non-linear estimates rmddaivhen applying the proposed
approach. Overall, the mean estimates are close to the aluesvand, as expected, their vari-
ability decreases as the sample size grows large. The maeép&an is perhaps the parametric
component of the additive predictor relatedig, where atn = 1000 the estimates exhibit some
bias and a larger variability as compared to the other paemeAlso note that the uncertainty
of the estimates for all the components in the correlatiadiglitive predictors is higher than that
of the estimates for the three marginal equations. This isa®urprising given the complexity
of the proposed model and the fact that the correlation petens are usually more difficult to
estimate in a flexible regression setting when the outcomeelsimary. Overall, the results improve

considerably as increases.

6 Empirical illustration

We illustrate the potential of the proposed model using 22008 birth data from the North Car-
olina Center for Health Statistich{tp://www.schs.state.nc.us/). The data contain
information on64, 690 male newborns and builds upon the analysis conducted ippeili et al.

(2017). The choice of variables included in the model wasniyiariven by previous work on

the subject (e.g., South et al., 2012; Neelon et al., 2013),the responses are pluralityd{, a
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n = 1000

T T T
Yi2 Y22 Ya2 6127 0132 6232

n = 3000

T T T

T T T
Y12 Y22 Y32 6120 0132 6232

Figure 1: Linear coefficient estimates obtained by applythe proposed model to data simulated from a trivariate
Gaussian copula model with logistic, Gumbel and normal margCircles indicate mean estimates while bars repre-
sent the estimates’ ranges resulting fr¥h and95% quantiles. True values are indicated by gray horizontaklin
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Figure 2: Smooth function estimates obtained by applyirggfoposed model to data simulated from a trivariate
Gaussian copula model with logistic, Gumbel and normal margTrue functions are represented by black solid
lines, mean estimates by dashed lines and point-wise raageking from5% and95% quantiles by shaded areas.
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binary variable that takes valuefor singleton birth and otherwise), infant’s birth weightifow,
which takes valué when weight is less tha2b00 grams and otherwise) and preterm birtip{b
that takes valud if the number of gestation weeks is less tl#hand 0 otherwise). The co-
variates are maternal race categorized as non-white arté Whihite), smoking status with 1
indicating a mother smoking during pregnaneyfker), weight gained by mother during preg-
nancy in poundsqained), age of mother in yearsmége) and county in which the birth occurred
(county).

Filippou et al. (2017) built a model for the joint analysisngd, 1bw andptb, and showed the
impacts that the model’s covariates have on the responseslhas some joint probabilities of
interest. Here, the focus is on alternative specificationghe link functions and on understand-
ing how the association between the three outcomes is modifiehe presence of covariates.
We started off with the specification adopted by Filippoule{2017) where all model’s additive
predictors contained all the covariates available in th@.d& hat is, all additive predictors in-
cludednwhite;, smoker;, s(gained;), s(mage;) andsgparia1(county;), where the smooth
functions ofgained; andmage; were represented using penalized thin plate regressiorespl
and the spatial smooth for the regional effects was set umgwsiMarkov random field approach
(Wood, 2017). To simplify the model building process we udexlfact that the specification for
the marginal models and their dependence can be addregsm@tedy. For each margin we fit-
ted three univariate GAMs based on the probit, logit andlolpdjinks. For each margin and link
the covariate effects were always all significant. The linkesen were logit, logit and cloglog
for mb, 1bw andptb. We then focused on the correlations’ additive predictord aewed all
of their covariates effects as being part of a unique egonatde employed the classic backward

selection procedure and also looked at the significanceeoéffiects to favor more parsimonious
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specifications. The additive predictors for the six equettiof the final model are:

i

M2i

13i

M12i

M13i

M23i

711 + 7enwhite; + yi3smoker; + s11(gained;) + sia(mage;) + Sisparial(countyy),

Va1 + Y2enwhite; 4+ Ya3smoker; + so;(gained;) + sea(mage;) + Sasparial(countyy),

V31 + Ysenwhite; + vs3smoker; + s31(gained;) + ssa(mage;) + S3sparial(countyy),

Y21 + T22nwhite; + si2(gained;) + Si2spatial (county;),

131 + Yi32nwhite; + v13 3smoker; + s131(gained;) + s132(mage;) + S13spacial(county;),

Yo3.1 + S23.1(gained;) + sa32(mage;),

Some results are presented below.

-0.7 -06 -05

-0.8

-0.60

-0.65

-0.70

0.82

0.78

0.74

Figure 3: Spatially varying estimates of correlatiahs 9,5 and.3 obtained by applying the proposed approach to
North Carolina data.
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1
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Figure 4: Estimates of correlatiods: ¥13 andd.3 by gained obtained by applying the proposed approach to North
Carolina data. Point-wis@5% confidence intervals were obtained using the posteriorlsition approach described
in Filippou et al. (2017).
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Figure 3 shows the estimated model’s correlations by coimtyorth Carolina. Here, the
effects for two binary predictors in the model were set tmZsmce the majority of individuals are
white and non smokers) while the continuous regressors sedrat their average values. Figure
4 displays the estimated correlations d¢yined where the two binary predictors were set at O,
mage at its average value antcbunty was randomly chosen (although results were very similar
across counties).

Generally, the three binary outcomes are strongly coedlatith each other even after ac-
counting for covariates at marginal level. Interestingly,shown in Figure 3, there is a good deal
of spatial variation in the strength of the correlationse@8fcally, the three responses seem to be
more strongly related in the west and central areas of Northli@a than they are otherwise. Fig-
ure 4 suggests that the absolute association betwiee@md 1bw increases for values efained
up to 50 and then decreases, the correlation betweeandptb overall increases, and the de-
pendence betweenow andptb decreases for values gkhined between 50 and 60 and then
increases. These are new findings which open up questiorigrtber research to elucidate the

nature of such dependencies in North Carolina.

7 Conclusions

We have proposed a generalisation of the trivariate agédgrobit model which allows for virtu-
ally any parametric link function and for the model’s coatén coefficients to depend on flexible
additive predictors. The parameters of the model can bmatdd simultaneously within a penal-
ized likelihood framework based on a trust region algorithitih automatic smoothing parameter
selection, and the model can be easily employed vigithen () function in ther packagesJrM.
The potential of the approach has been demonstrated usimgesed and real data.

The proposed extensions are of some applied relevancekasitiotions other than probit are
often used in medical studies and understanding how thduasassociation between response
variables is related to covariates can help to model morergéforms of multivariate dependence.

We plan to extend the trivariate model to other types of nmaigbutcomes (e.g., continuous, dis-
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crete). This will considerably extend to scope and applitgalbf the trivariate modelling approach

introduced in this article.
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