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Abstract

In many empirical situations, modelling simultaneously three or more outcomes as well

as their dependence structure can be of considerable relevance. Copulae provide a power-

ful framework to build multivariate distributions and allow one to view the specification of

the marginal responses and their dependence as separate but related issues. We propose a

generalisation of the trivariate additive probit model where the link functions can in princi-

ple be derived from any parametric distribution and the parameters describing the association

between the responses can be made dependent on several types of covariate effects (such as

linear, nonlinear, random, and spatial effects). All the coefficients of the model are estimated

simultaneously within a penalized likelihood framework that uses a trust regionalgorithm with

integrated automatic multiple smoothing parameter selection. The effectiveness of the model

is assessed in simulation as well as empirically by modelling jointly three adverse birth binary

outcomes in North Carolina. The approach can be easily employed via thegjrm() function

in theR packageGJRM.
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Germany.
§Department of Statistical Science, University College London, Gower Street, London WC1E 6BT, UK.
¶Department of Economics, Mathematics and Statistics, Birkbeck, University of London, Malet Street, London

WC1E 7HX, UK.



Keywords Additive predictor; Binary response; Cholesky decomposition; Penalized regres-

sion spline; Simultaneous parameter estimation; Trivariate distribution.

1 Introduction

When the researcher is interested in modelling more than one response, univariate regression will

not yield valid inferences if there is residual dependence between the outcomes conditional on

covariates. The case of trivariate models has been discussed in literature in various contexts.

For example, Loureiro et al. (2010) assessed the effect of parental smoking habits on their chil-

dren’s smoking habits by estimating a three-equation probit regression model, whereas Zhong et al.

(2012) evaluated the safety of a treatment and identified an optimal dose by jointly modelling the

probabilities of toxicity, efficacy, and surrogate efficacygiven a specific dose. Król et al. (2016)

examined the response to a treatment on patients with metastatic colorectal cancer by analysing si-

multaneously three outcomes: a longitudinal marker, a set of recurrent events, and a terminal event.

A mixture of powers copula-based approach to model jointly three binary and discrete outcomes

was employed by Zimmer & Trivedi (2006), whereas Zhang et al.(2015) developed a Bayesian

algorithm to estimate trivariate probit-ordered models affected by double sample selection.

This paper contributes to the literature by introducing a generalization of the trivariate additive

probit model. Specifically, we extend and therefore enhancethe model proposed by Filippou et al.

(2017) by allowing (i) the link functions to be virtually derived from any parametric distribution

and (ii) the model’s association parameters to depend on several types of covariate effects (such

as linear, nonlinear, random, and spatial effects). The first extension allows for the use of link

functions other than probit. In particular, the additionallink functions implemented for this work

are the logit and complementary log-log which are used extensively in numerous disciplines, in-

cluding the medical and social sciences. In clinical research logit models are widely used as they

provide direct information about which treatment has the best odds of benefiting a patient, for

instance. Complementary log-log models have important applications in survival analysis where
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they can, for example, provide a clear insight into the relative reduction of risk for death or pro-

gression. Extension (ii) is of some relevance since it can help to gain insights into the way the

residual association between the responses is modified by the presence of covariates. To the best

of our knowledge, the two proposed developments have not yetbeen considered in the context of

trivariate (or more generally, multivariate) binary response regression models.

It is worth noting that our proposal can also be regarded as anextension of the bivariate regres-

sion approaches introduced by Marra & Radice (2017a), Klein &Kneib (2016) and Radice et al.

(2016) as well as of the popular generalized additive models(GAMs) and GAMs for location,

scale and shape of Wood (2017) and Rigby & Stasinopoulos (2005). Despite we have focused on

trivariate binary models, the theoretical results in the paper can be straightforwardly extended to

the case of more dimensions. Functiongjrm() in theR packageGJRM (Marra & Radice, 2017b)

implements various types of joint models and includes the developments in this article.

The next section introduces the proposed model, Section 3 describes the log-likelihood and

Section 4 provides the key details on estimation. The proposal is empirically evaluated in a simu-

lation study, presented in Section 5, and then applied to a case study in Section 6, where the interest

is in modelling jointly three adverse birth binary outcomesin North Carolina. Section 7 concludes

the paper.

2 Model specification

This section introduces an extension of the trivariate probit that is based on copulae, additive

predictors and a modified Cholesky decomposition of the model’s correlation matrix.

In general, a multivariate distribution can be constructedusing a copula function that joins

together marginal distributions which may come from different families (Joe, 1997). Suppose that

C denotes a joint cumulative distribution function (cdf) with support in[0, 1]3 and whose one-

dimensional margins are uniform. Let alsoU−1
m : (0, 1) → R be a quantile function,∀m = 1, 2, 3,

Fm(ηmi) : R → [0, 1] a univariate cdf,F
(
U−1
1 {F1(η1i)} ,U−1

2 {F2(η2i)} ,U−1
3 {F3(η3i)}

)
a joint
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cdf, andηmi an additive predictor (made up of regression coefficients and covariates as described

in Section 2.2) fori = 1, . . . , n, wheren denotes the sample size. Then there exists a three-

dimensional copula functionC : [0, 1]3 → [0, 1] defined as

C(F1(η1i), F2(η2i), F3(η3i)) = F
(
U−1
1 {F1(η1i)} ,U−1

2 {F2(η2i)} ,U−1
3 {F3(η3i)}

)
, (1)

which satisfies: (C.1)C (F1(η1i), 1, 1) = F1(η1i), C (1, F2(η2i), 1) = F2(η2i), C (1, 1, F3(η3i)) =

F3(η3i), ∀Fm(ηmi) ∈ [0, 1] andm ≤ 3; (C.2)C (F1(η1i), F2(η2i), F3(η3i)) = 0 if Fm(ηmi) = 0 for

anym ≤ 3; and (C.3)C is 3-increasing (Sklar, 1959). Condition (C.1) states that if therealizations

of two variables are known each with marginal probability ofone, then the joint probability of the

three outcomes is the same as the probability of the remaining uncertain outcome. Condition (C.2)

is sometimes referred to as the grounded property of a copulaand states that the joint probability

of all outcomes is zero if the marginal probability of any outcome is zero. Condition (C.3) means

that the copula volume of any3-dimensional interval is non-negative. A copulaC is unique on the

cartesian product of the ranges of the marginal cdfsRan(F1(η1i))×Ran(F2(η2i))×Ran(F3(η3i)).

The copula is unique if the margins are continuous. Any copula lies always in the interval

max

{
3∑

m=1

Fm(ηmi)− 2, 0

}

≤ C (F1(η1i), F2(η2i), F3(η3i)) ≤ min {F1(η1i), F2(η2i), F3(η3i)} ,

the so-calledFréchet–Hoeffdingbounds. A desirable feature of a copula is that it should cover the

sample space between the lower and upper bounds, and that as the association parameters approach

the lower (upper) bound of their permissible ranges, the copula approaches the Fréchet–Hoeffding

lower (upper) bound. Knowledge of the Fréchet–Hoeffding bounds is therefore important in se-

lecting an appropriate copula. For more details see, for instance, Trivedi & Zimmer (2007) and

references therein.

In this paper, we employ the trivariate Gaussian copula withdependence structure characterized

by coefficientsϑ12,i, ϑ13,i andϑ23,i which form the model’s correlation matrixΣi. Based on (1), we

express the trivariate Gaussian copula asΦ3 (Φ
−1 {F1(η1i)} ,Φ−1 {F2(η2i)} ,Φ−1 {F3(η3i)} ;0,Σi),
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whereΦ−1 is the quantile function of a standard normal,Fm(ηmi) is derived in this case from the

standardised normal, logistic or Gumbel univariate cdf which are defined as

Fm(ηmi) = Φ(ηmi), Fm(ηmi) =
exp(ηmi)

1 + exp(ηmi)
and Fm(ηmi) = 1− exp {− exp(ηmi)} ,

and matrixΣi is equal to

Σi =









1 ϑ12,i ϑ13,i

ϑ12,i 1 ϑ23,i

ϑ13,i ϑ23,i 1









, (2)

whereϑk1k2,i is the correlation coefficient between thekth1 andkth2 responses for subjecti, for

k1 = 1, 2, k2 = 2, 3, with k1 6= k2. The case of non-normal dependence is tricky. In this work,

we have considered several ways of modelling non-Gaussian structures by reviewing the growing

literature on multivariate models. Supplementary Material A discusses five different ways for po-

tentially achieving this aim in our case: Archimedean copulae, mixtures of powers, pair-copulae

constructions, the trivariate Student-t distribution, and the composite likelihood approach. Al-

though these approaches allow for non-Gaussian dependencies, the majority of them make certain

strong assumptions which may be regarded as acceptable onlyin specific applied contexts. In fact,

such methods would limit the generality as well as applicability of the modelling approach pre-

sented here. The only suitable alternative would appear to be the trivariate Student-t distribution,

however, as shown in the Supplementary Material A, there is not much to be gained by using such

distribution in our context. In conclusion, the Gaussian copula seems to be a sensible and tractable

modelling choice for the case of trivariate binary data.

Each coefficient in matrix (2) is allowed to be expressed as a function of an additive predictor.

The challenge to address here is that the range of each correlation’s additive predictor has to be

unbounded to avoid constrained optimization and that the correlation matrixΣi must be positive

definite with each of its coefficients taking values in[−1, 1]. This makes the parameter space of
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Σi somewhat complex with restrictions for each parameter depending on the values of the others.

To this end, we propose using a modified Cholesky decomposition approach which is described in

the next section.

2.1 Unconstrained parametrization for the correlation matrix

The standard Cholesky decomposition of a positive-definite correlation matrixΣ is of the form

Σ = CC
⊤, whereC is a unique lower-triangular matrix with positive diagonalentries. Mod-

ifications of the standard Cholesky decomposition can be found in the literature. For example,

Pourahmadi (1999, 2000) shows that the modified Cholesky decomposition ofΣ−1 offers a simple

unconstrained reparametrization of the covariance matrix, while Chen & Dunson (2003) propose

an alternative modified Cholesky decomposition to factorizethe covariance matrix. As shown by

Pourahmadi (2007), who provides an overview of the two methods, estimation of the new parame-

ters in the latter decomposition may be more demanding computationally. In this paper, we employ

a modification of the work by Pourahmadi (1999, 2000), where we employ the modified Cholesky

approach with unit variance constraints to deal with correlation matrices.

LetΣ∗
i denote a symmetric positive-definite correlation matrix,∀i, defined as

Σ
∗
i = C

∗
iC

∗⊤
i =









1 η12,i η13,i

η12,i 1 + η212,i η12,iη13,i + η23,i

η13,i η12,iη13,i + η23,i 1 + η213,iη
2
23,i









,

whereηk1k2,i ∈ R, ∀k1, k2, andC∗
i is equal to

C
∗
i =









1 0 0

η12,i 1 0

η13,i η23,i 1









.

By using the variance-correlation decompositionΣi = TiΣ
∗
iTi withTi = diag

(

1,
(
1 + η212,i

)−1/2
,
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(
1 + η213,i + η223,i

)−1/2
)

, we have that the correlation matrixΣi can be expressed as

Σi =










1
η12,i√
1+η2

12,i

η13,i√
1+η2

13,i+η
2

23,i

η12,i√
1+η2

12,i

1
η12,iη13,i+η23,i√

(1+η2
12,i)(1+η

2

12,i+η
2

23,i)

η13,i√
1+η2

13,i+η
2

23,i

η12,iη13,i+η23,i√
(1+η2

12,i)(1+η
2

12,i+η
2

23,i)
1










.

The correlation parameters can therefore be defined asϑ12,i = η12,i/
√

1 + η212,i, ϑ13,i = η13,i/
√

1 + η213,i + η223,i andϑ23,i = (η12,iη13,i + η23,i)/
√

(1 + η212,i)(1 + η212,i + η223,i). It follows that

η12,i = F12(ϑ12,i) =

√

ϑ2
12,i

1− ϑ2
12,i

, η13,i = F13(ϑ13,i) =

√

ϑ2
13,i

(
1 + A

1−A

)

1− ϑ2
13,i

, η23,i = F23(ϑ23,i) =

√

A

1− A
,

whereA =

(
ϑ23,i

√
1+η2

12,i−η12,iϑ13,i√
1−ϑ2

13,i

)2

. Therefore, by construction we have thatϑk1k2,i ∈ [−1, 1],

ηk1k2,i ∈ R, ∀k1, k2, i and the resulting correlation matrix is positive definite, as required.

2.2 Additive predictor

All the model’s parameters are related to covariates and regression coefficients via additive pre-

dictors. Let us define a generic predictorηi as a function of parametric components and smooth

functions. That is,

ηi = v
⊤
i γ +

Ñ∑

ν=1

sν(zνi), i = 1, . . . , n, (3)

wherevi contains binary and/or categorical predictors, vectorγ represents the effects of the vari-

ables invi, andsν(zνi) is a smooth function of covariatezνi, ∀ν = 1, . . . , Ñ with Ñ being the

number of smooth terms in (3). The smooth functions are represented using the regression spline

approach popularized by Eilers & Marx (1996) because of its computational efficiency, theoreti-

cal properties and flexibility in representing several types of covariate effects (e.g., Wood, 2017).

Using this approach,sν(zνi) is approximated by a linear combination of known basis functions
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bνj(zνi) and regression parametersανj. That is,

sν(zνi) ≈
Jν∑

j=1

αν,jbν,j(zνi) = L ν(zνi)αν , (4)

whereL ν(zνi) is a vector containing theJν basis functions evaluated atzνi, that isL ν(zνi) =

{bν,1(zνi), bν,2(zνi), . . . , bν,Jν (zνi)}, andαν is the corresponding parameter vector defined asαν =

(αν,1, αν,2, . . . , αν,Jν )
⊤, ∀ν. Each term has an associated quadratic penaltyλνα

⊤
ν Sναν which

enforces specific properties on theνth function (such as smoothness) and that is therefore used

during model fitting. Smoothing parameterλν ∈ [0,∞) controls the trade-off between fit and

smoothness. The overall penalty can be written asα⊤Sα, whereα =
(
α⊤

1 , . . . ,α
⊤

Ñ

)⊤
, S =

diag
(
0
⊤

P̃
, λ1S1, . . . , λÑSÑ

)
, P̃ denotes the number of parametric components in the additivepre-

dictor and theSν are positive definite or semi-definite symmetric known square matrices. Centering

constraint
∑

i sν(zνi) = 0 is imposed on all smooth terms in the model for identificationpurposes.

The above formulation allows us to represent many types of covariate effects depending on the

nature of the covariate(s) considered. These include random, spatial and non-linear effects. We

refer the reader to Filippou et al. (2017), and references therein, for an overview of some common

examples.

3 Log-likelihood

To avoid over-fitting, simultaneous estimation of all parameters of the trivariate additive binary

model is achieved by solving

δ̂ := argmin
δ

−ℓp(δ) = argmin
δ

−{logL(Y; δ)− 1

2
δ⊤Sλδ}, (5)

whereY = (y1,y2, . . . ,yn)
⊤ with yi = (y1i, y2i, y3i)

⊤ which denotes the three correlated binary

responses,δ = (β⊤,β⊤
ϑ
)⊤, β = (β⊤

1 ,β
⊤
2 ,β

⊤
3 )

⊤, βϑ = (β12,β13,β23)
⊤, βm includes the regres-

sion coefficients inmth equation,βk1k2 denotes the coefficients in additive predictorηk1k2,i, Sλ =
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diag
(

0
⊤

P̃1

, λ1ν1S1ν1 , . . . , λ1Ñ1
S1Ñ1

,0⊤

P̃2

, λ2ν2S2ν2 , . . . , λ2Ñ2
S2Ñ2

,0⊤

P̃3

, λ3ν3S3ν3 , . . . , λ3Ñ3
S3Ñ3

,0⊤

P̃12

,

λ12ν12S12ν12 , . . . , λ12Ñ12
S12Ñ12

,0⊤

P̃13

, λ13ν13S13ν13 , . . . , λ13Ñ13
S13Ñ13

,0⊤

P̃23

, λ23ν23S23ν23 , . . . , λ23Ñ23
S23Ñ23

)

,

Smνm andSk1k2νk1k2 are defined following a similar construction asSν , λmνm andλk1k2νk1k2 are de-

fined similarly asλν , λ is a vector containing all smoothing parameters,P̃k1k2 denotes the number

of parametric components inηk1k2,i andP̃m that in themth equation. For a 3-D binary response

vector we have23 trivariate probabilities expressed via the trivariate Gaussian copula function. The

likelihood is given by the joint density of observed outcomes

L(Y; δ) =
n∏

i=1

23∏

k̃=1

Lik̃(yi; δ) =
n∏

i=1

23∏

k̃=1

Ψ
Y
ik̃

ik̃
,

whereLik̃ is derived from Lemma 1 forM = 3. TermYik̃ denotes an indicator variable for thek̃th

combination of the three possible eventsy1i = ē1, y2i = ē2, y3i = ē3 with ēm ∈ {0, 1} ∀m andΨik̃

is the corresponding trivariate Gaussian copula function.Note that for each̃k the form ofΨik̃ and

Yik̃ is different as their structure depends on thek̃th combination of the three possible events. The

calculation of the multivariate normal probabilities is described in detail in Filippou et al. (2017).

Lemma 1. QuantityLik̃, evaluated at the vector (BiHi)k̃ is equal to the cdf of a multivariate

standardized normal vector with correlation matrix(BiΣiBi)k̃, that is

Lik̃(yi; δ) = Ψ
Y
ik̃

ik̃
= {ΦM((BiHi)k̃;0, (BiΣiBi)k̃)}

Y
ik̃ = {ΦM((W i)k̃;0, (Υi)k̃)}

Y
ik̃ ,

whereW i = BiHi = (W1,i, . . . ,WM,i)
⊤, Hi = (Φ−1(F1(η1i)), . . . ,Φ

−1(FM(ηMi)))
⊤, Υi =

BiΣiBi, Wm,i = ỹmiΦ
−1(Fm(ηmi)), for ỹmi = (2ymi − 1), ymi denotes themth binary response,

Fm(ηmi) denotes the univariate cdf,ηmi is an additive predictor andBi denotes a diagonalM ×

M matrix with main diagonal elements̃ymi = (2ymi − 1), that isBi = diag(2y1i − 1, 2y2i −

1, . . . , 2yMi − 1).

Proof. See Supplementary Material B.
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4 Estimation details

To minimize (5), we have extended the efficient and stable trust region algorithm with integrated

automatic multiple smoothing parameter selection described by Filippou et al. (2017) to allow for

the specification of virtually any parametric link function, and for the correlation matrix to depend

on covariate effects as described earlier. The practical success of these extensions depends on the

availability of the analytical score and Hessian matrix of the model which are fundamental for

a reliable, stable and efficient implementation of the abovementioned algorithm. This requires

to amend and generalise the results presented in the work by Filippou et al. (2017). Specifically,

we compute the analytical score functiongi(δ[κ]) = ∇δℓi
(
δ[κ]

)
, and Hessian matrixHi(δ

[κ]) =

∇δ∇⊤
δ
ℓi
(
δ[κ]

)
as

∇δℓi(δ) =

(
∂ηi
∂δ

)⊤
∂ℓi(δ)

∂ηi
=

(
∂ηi
∂δ

)⊤{
∂ℓi(δ)

∂Fi

Fi

∂ηi

}

=

(
∂ηi
∂δ

)⊤{
1

Ψik̃

∂Ψik̃

∂Fi

∂Fi
∂ηi

}

, (6)

∇∇δδ⊤ℓi(δ) =

{
1

Ψik̃

∂Ψik̃

∂Fi

∂Fi
∂ηi

}
∂2ηi
∂δ∂δ⊤

+

(
∂ηi
∂δ

)⊤
{

− 1

Ψik̃Ψ
⊤

ik̃

∂Ψik̃

∂Fi

∂Fi
∂ηi

(
∂Ψik̃

∂ηi

)⊤

+

1

Ψik̃

[

∂2Ψik̃

∂FiF⊤
i

(
∂Fi
∂ηi

)2

+
∂Ψik̃

∂Fi

∂2Fi
∂η∂η⊤

]}(
∂ηi
∂δ

)

, (7)

where,ηi = (η1i, η2i, η3i, η12,i, η13,i, η23,i)
⊤,Fi = (F1(η1i), F2(η2i), F3(η3i), F4(η4i), F5(η5i), F6(η6i))

⊤

with (F4(η4i), F5(η5i), F6(η6i)) = (ϑ12,i, ϑ13,i, ϑ23,i), ∂ηi/∂δ = diag (∂η1i/∂β1, ∂η2i/∂β2, ∂η3i/∂β3,

∂η12,i/∂β12, ∂η13,i/∂β13, ∂η23,i/∂β23) and∂ℓ(δ)/∂ηi=(∂ℓ(δ)/∂η1i, ∂ℓ(δ)/∂η2i, ∂ℓ(δ)/∂η3i,

∂ℓ(δ)/∂η12,i, ∂ℓ(δ)/∂η13,i, ∂ℓ(δ)/∂η23,i)
⊤. Predictorηi is functionally dependent onδ, that is

ηi = ηi(δ). Implementation of (6) and (7) has been a tedious and non-trivial task, especially be-

cause of the presence of a varying correlation matrix. This extension required, for instance, the

use of the multivariate chain rule which was employed as follows. As shown in Section 2.1,ϑk1k2,i

may depend onηk1k2,i andη−k1k2,i, whereη−k1k2,i ∈ η̄i \ ηk1k2,i, for η̄i = (η12,i, η13,i, η23,i)
⊤.

Hence, term∂F̄i/∂η̄i, for F̄i = (ϑ12,i, ϑ13,i, ϑ23,i)
⊤, is a3 × 3 Jacobian matrix containing all the
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derivatives ofF̄i with respect tōηi. That is,

∂F̄i
∂η̄i

=









∂ϑ12,i
η12,i

∂ϑ12,i
η13,i

∂ϑ12,i
η23,i

∂ϑ13,i
η12,i

∂ϑ13,i
η13,i

∂ϑ13,i
η23,i

∂ϑ23,i
η12,i

∂ϑ23,i
η13,i

∂ϑ23,i
η23,i









.

The above accounts for the dependencies betweenϑk1k2,i andηk1k2,i as well asη−k1k2,i. Second-

order derivatives were derived in a similar way. More generically, implementation of (6) and (7)

was achieved via Propositions 2 and 3 by settingM = 3.

Proposition 2. Assume thatW i is a multivariate standardized normal vector with correlation

matrix equal toΥi. Then the first-order derivative of theM -variate normal cdfΦM(W i;0,Υi)

with respect toβm, ∀m = 1, . . . ,M , can be expressed as

∂ΦM(W i;0,Υi)

∂βm
= φ(Wm,i; 0, 1)ΦM−1(W−m,i|Wm,i;M

m
i ,Θ

m
i )

fm(ηmi)

φ (Φ−1(Fm(ηmi))

(2ymi − 1)x⊤
mi

whereM denotes the total number of equations under a multivariate binary framework,Wm,i

denotes the linear predictor of themth equation and is equal to(2ymi − 1)Φ−1(Fm(ηmi)), βm

denotes the parameter vector of covariate vectorxmi, the vector of linear predictorsW−m,i is de-

fined as(W1,i, . . . ,Wm−1,i,Wm+1,i, . . . ,WM,i)
⊤ andfm(ηmi) andFm(ηmi) denote the univariate

pdf and cdf respectively which can be specified via the normal,logistic and Gumbel distributions.

The meanMm
i and variance-covariance matrixΘm

i is equal toΘm
21,iWm,i andΘm

22,i−Θ
m
21,iΘ

m
12,i,

respectively, withΘm
12,i, Θ

m
21,i andΘm

22,i defined by re-orderingΥi as follows

Υ
m
i =






1×1
︷︸︸︷

Θm
11,i

1×(M−1)
︷︸︸︷

Θ
m
12,i

Θ
m
21,i

︸︷︷︸

(M−1)×1

Θ
m
22,i

︸︷︷︸

(M−1)×(M−1)




 .
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The elementΘm
11,i is equal to1, the off-diagonal blocksΘm

12,i andΘm
21,i consist of the correlations

rm̟,i = tmm,it̟̟,iσ
∗
m̟,i(2ymi − 1)(2y̟i − 1), wheretmm,i and t̟̟,i denote the(m,m)th and

(̟,̟)th element of matrixTi, respectively,∀ ̟ ∈ {1 : M} \ m,m 6= ̟, and σ∗
m̟,i is the

(m,̟)th element of matrixΣ∗
i (matricesTi andΣ

∗
i are defined in Supplementary Material C).

The symmetric sub-matrixΘm
22,i has main diagonal elements equal to 1 and off-diagonals equal to

rϕ̟̄,i = tϕ̄ϕ̄,it̟̟,iσ
∗
ϕ̟̄,i(2yϕ̄i − 1)(2y̟i − 1), ∀ϕ̄, ̟ ∈ {1 :M} \m, for ϕ̄ 6= ̟.

Proof. See Supplementary Material D.1.

Proposition 3. Assume thatW i is a multivariate standardized normal vector with correlation

matrix equal toΥi. Then the first-order derivative of theM -variate normal cdfΦM(W i;0,Υi)

with respect toβk1k2 , ∀k1 = 1, . . . ,M − 1, k2 = k1 + 1, . . .M , can be expressed as

∂ΦM(W i;0,Υi)

∂βk1k2
=

(
φ2(W12,i;0,Θ

12
i )ΦM−2(W−12,i|W12,i;M

−12
i ,Θ−12

i ), . . . ,

φ2(WM−1,M,i;0,Θ
M−1,M
i )ΦM−2(W−M−1,M,i|WM−1,M,i;

M
−M−1,M
i ,Θ−M−1,M

i )
)

×
(
∂r12,i
∂ηk1k2,i

, . . . ,
∂rM−1,M,i

∂ηk1k2,i

)⊤

x⊤
k1k2,i

,

whereM denotes the total number of equations under a multivariate binary framework,βk1k2

denotes the parameter vector of covariate vectorxk1k2,i, Wk1k2,i = (Wk1,i,Wk2,i)
⊤, W−k1k2,i =

(W1,i, . . . ,Wk1−1,i,Wk1+1,i, . . . ,Wk2−1,i,Wk2+1,i, . . . ,WM,i)
⊤, ∀k1, k2, Wk1,i andWk2,i refer to

the linear predictors of thekth1 andkth2 equations respectively and are equal to(2ymi−1)Φ−1(Fm(ηmi)),

∀m = k1, k2, andfm(ηmi) andFm(ηmi) denote the univariate pdf and cdf respectively which can

be specified via the normal, logistic and Gumbel distributions. The variance-covariance matrix

Θ
k1k2
i is equal toΘk1k2

11,i , while the meanM−k1k2
i and variance-covariance matrixΘ−k1k2

i is equal

to Θ
k1k2
21,i

(
Θ
k1k2
11,i

)−1
Wk1k2 andΘ

k1k2
22,i − Θ

k1k2
21,i

(
Θ
k1k2
11,i

)−1
Θ
k1k2
12,i , respectively,∀k1, k2. The sub-

matricesΘk1k2
11,i , Θk1k2

12,i , Θk1k2
21,i andΘk1k2

22,i are defined by re-orderingΥi as follows

12



Υ
k1k2
i =






2×2
︷ ︸︸ ︷

Θ
k1k2
11,i

2×(M−2)
︷ ︸︸ ︷

Θ
k1k2
12,i

Θ
k1k2
21,i

︸ ︷︷ ︸

(M−2)×2

Θ
k1k2
22,i

︸ ︷︷ ︸

(M−2)×(M−2)




 .

The sub-matrixΘk1k2
11,i has unit diagonals and off-diagonals defined asrk1k2,i = tk1k1,itk2k2,iσ

∗
k1k2,i

(2yk1i−

1)(2yk2i − 1), wheretmm,i denotes the(m,m)th element of matrixTi, ∀m = k1, k2, andσ∗
k1k2,i

is

the(k1, k2)th element of matrixΣ∗
i (matricesTi andΣ∗

i are defined in Supplementary Material C).

The first row (column) ofΘk1k2
12,i (Θk1k2

21,i ) contains the correlationsrk1 ¯̺,i, for ¯̺ ∈ {1 :M}\k1, while

the second row (column) ofΘk1k2
12,i (Θk1k2

21,i ) contains the correlationsrῡk2,i, for ῡ ∈ {1 : M} \ k2.

The diagonal blockΘk1k2
22,i is a symmetric matrix with unit diagonals and off-diagonal elements

equal torχ̄ψ̄,i, ∀ χ̄, ψ̄ ∈ {1 :M} \ {k1, k2} for χ̄ 6= ψ̄.

Proof. See Supplementary Material D.2.

The construction of confidence intervals, p-values and information criteria, for instance, are not

essentially changed by the extensions introduced in this paper and we refer the reader to the sup-

plementary material of Filippou et al. (2017) for such details.

5 Simulation Study

To gain some insights into the practical performance of the proposed approach, we conducted a

simulation study. We considered three binary outcomes, onebinary covariate and one continuous

regressor. The chosen link functions were logit, cloglog and probit. Exact simulation settings are

given in the Supplementary Material E. The syntax to fit the proposed trivariate binary model is

out <- gjrm(formula = f.l, data = dat, Chol = TRUE, Model = "T",

margins = c("logit", "cloglog", "probit"))

wheref.l consists of a list of six equations

eq1 <- y1 ˜ v1 + s(z1)

eq2 <- y2 ˜ v1 + s(z1)

eq3 <- y3 ˜ v1 + s(z1)

13



eq12 <- ˜ v1 + s(z1)

eq13 <- ˜ v1 + s(z1)

eq23 <- ˜ v1 + s(z1)

f.l <- list(eqn1, eqn2, eqn3, eq12, eq13, eq23)

v1 andz1 denote the binary and continuous covariates, respectively, s() represents a smooth

function that is set up using a penalised thin plate regression spline with 10 bases and penalty

based on second order derivatives, the last three equationsin f.l refer to the additive predictors

for the correlation parametersϑ12, ϑ13 andϑ23, data is a data frame containing the variables in

the model,Chol = TRUE indicates that the modified Cholesky decomposition approachhas to

be employed,Model indicates the type of model ("T" for trivariate binary model) andmargins

the three the link functions.

Figures 1 and 2 depict linear and non-linear estimates obtained when applying the proposed

approach. Overall, the mean estimates are close to the true values and, as expected, their vari-

ability decreases as the sample size grows large. The main exception is perhaps the parametric

component of the additive predictor related toϑ23, where atn = 1000 the estimates exhibit some

bias and a larger variability as compared to the other parameters. Also note that the uncertainty

of the estimates for all the components in the correlations’additive predictors is higher than that

of the estimates for the three marginal equations. This is not so surprising given the complexity

of the proposed model and the fact that the correlation parameters are usually more difficult to

estimate in a flexible regression setting when the outcomes are binary. Overall, the results improve

considerably asn increases.

6 Empirical illustration

We illustrate the potential of the proposed model using 2007-2008 birth data from the North Car-

olina Center for Health Statistics (http://www.schs.state.nc.us/). The data contain

information on64, 690 male newborns and builds upon the analysis conducted in Filippou et al.

(2017). The choice of variables included in the model was mainly driven by previous work on

the subject (e.g., South et al., 2012; Neelon et al., 2014), and the responses are plurality (mb, a
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Figure 1: Linear coefficient estimates obtained by applyingthe proposed model to data simulated from a trivariate
Gaussian copula model with logistic, Gumbel and normal margins. Circles indicate mean estimates while bars repre-
sent the estimates’ ranges resulting from5% and95% quantiles. True values are indicated by gray horizontal lines.
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Figure 2: Smooth function estimates obtained by applying the proposed model to data simulated from a trivariate
Gaussian copula model with logistic, Gumbel and normal margins. True functions are represented by black solid
lines, mean estimates by dashed lines and point-wise rangesresulting from5% and95% quantiles by shaded areas.
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binary variable that takes value1 for singleton birth and0 otherwise), infant’s birth weight (lbw,

which takes value1 when weight is less than2500 grams and0 otherwise) and preterm birth (ptb

that takes value1 if the number of gestation weeks is less than37 and 0 otherwise). The co-

variates are maternal race categorized as non-white and white (nwhite), smoking status with 1

indicating a mother smoking during pregnancy (smoker), weight gained by mother during preg-

nancy in pounds (gained), age of mother in years (mage) and county in which the birth occurred

(county).

Filippou et al. (2017) built a model for the joint analysis ofmb, lbw andptb, and showed the

impacts that the model’s covariates have on the responses aswell as some joint probabilities of

interest. Here, the focus is on alternative specifications for the link functions and on understand-

ing how the association between the three outcomes is modified by the presence of covariates.

We started off with the specification adopted by Filippou et al. (2017) where all model’s additive

predictors contained all the covariates available in the data. That is, all additive predictors in-

cludednwhitei, smokeri, s(gainedi), s(magei) andsspatial(countyi), where the smooth

functions ofgainedi andmagei were represented using penalized thin plate regression splines,

and the spatial smooth for the regional effects was set up using a Markov random field approach

(Wood, 2017). To simplify the model building process we usedthe fact that the specification for

the marginal models and their dependence can be addressed separately. For each margin we fit-

ted three univariate GAMs based on the probit, logit and cloglog links. For each margin and link

the covariate effects were always all significant. The linkschosen were logit, logit and cloglog

for mb, lbw andptb. We then focused on the correlations’ additive predictors and viewed all

of their covariates effects as being part of a unique equation. We employed the classic backward

selection procedure and also looked at the significance of the effects to favor more parsimonious
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specifications. The additive predictors for the six equations of the final model are:

η1i = γ11 + γ12nwhitei + γ13smokeri + s11(gainedi) + s12(magei) + s1spatial(countyi),

η2i = γ21 + γ22nwhitei + γ23smokeri + s21(gainedi) + s22(magei) + s2spatial(countyi),

η3i = γ31 + γ32nwhitei + γ33smokeri + s31(gainedi) + s32(magei) + s3spatial(countyi),

η12i = γ12,1 + γ12,2nwhitei + s12(gainedi) + s12spatial(countyi),

η13i = γ13,1 + γ13,2nwhitei + γ13,3smokeri + s13,1(gainedi) + s13,2(magei) + s13spatial(countyi),

η23i = γ23,1 + s23,1(gainedi) + s23,2(magei),

Some results are presented below.
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Figure 3: Spatially varying estimates of correlationsϑ12 ϑ13 andϑ23 obtained by applying the proposed approach to
North Carolina data.
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Figure 4: Estimates of correlationsϑ12 ϑ13 andϑ23 bygained obtained by applying the proposed approach to North
Carolina data. Point-wise95% confidence intervals were obtained using the posterior simulation approach described
in Filippou et al. (2017).
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Figure 3 shows the estimated model’s correlations by countyin North Carolina. Here, the

effects for two binary predictors in the model were set to zero (since the majority of individuals are

white and non smokers) while the continuous regressors wereset at their average values. Figure

4 displays the estimated correlations bygained where the two binary predictors were set at 0,

mage at its average value andcounty was randomly chosen (although results were very similar

across counties).

Generally, the three binary outcomes are strongly correlated with each other even after ac-

counting for covariates at marginal level. Interestingly,as shown in Figure 3, there is a good deal

of spatial variation in the strength of the correlations. Specifically, the three responses seem to be

more strongly related in the west and central areas of North Carolina than they are otherwise. Fig-

ure 4 suggests that the absolute association betweenmb andlbw increases for values ofgained

up to 50 and then decreases, the correlation betweenmb andptb overall increases, and the de-

pendence betweenlbw andptb decreases for values ofgained between 50 and 60 and then

increases. These are new findings which open up questions forfurther research to elucidate the

nature of such dependencies in North Carolina.

7 Conclusions

We have proposed a generalisation of the trivariate additive probit model which allows for virtu-

ally any parametric link function and for the model’s correlation coefficients to depend on flexible

additive predictors. The parameters of the model can be estimated simultaneously within a penal-

ized likelihood framework based on a trust region algorithmwith automatic smoothing parameter

selection, and the model can be easily employed via thegjrm() function in theR packageGJRM.

The potential of the approach has been demonstrated using simulated and real data.

The proposed extensions are of some applied relevance as link functions other than probit are

often used in medical studies and understanding how the residual association between response

variables is related to covariates can help to model more general forms of multivariate dependence.

We plan to extend the trivariate model to other types of marginal outcomes (e.g., continuous, dis-
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crete). This will considerably extend to scope and applicability of the trivariate modelling approach

introduced in this article.

Acknowledgement

We would like to thank Nadja Klein for the useful discussionson the modified Cholesky decom-

position proposed in this paper.

References

Chen, Z. & Dunson, D. B. (2003). Random effects selection in linear mixed models.Biometrics,

59(4), 762–769.

Eilers, P. H. & Marx, B. D. (1996). Flexible smoothing with b-splines and penalties.Statistical

science, 11(2), 89–102.

Filippou, P., Marra, G., & Radice, R. (2017). Penalized likelihood estimation of a trivariate additive

probit model.Biostatistics, 18(3), 569–585.

Joe, H. (1997).Multivariate models and multivariate dependence concepts. CRC Press.

Klein, N. & Kneib, T. (2016). Simultaneous inference in structured additive conditional copula

regression models: a unifying bayesian approach.Statistics and Computing, 26(4), 841–860.

Król, A., Ferrer, L., Pignon, J.-P., Proust-Lima, C., Ducreux,M., Bouch́e, O., Michiels, S., &

Rondeau, V. (2016). Joint model for left-censored longitudinal data, recurrent events and termi-

nal event: Predictive abilities of tumor burden for cancer evolution with application to the ffcd

2000–05 trial.Biometrics.

Loureiro, M. L., Sanz-de Galdeano, A., & Vuri, D. (2010). Smoking habits: like father, like son,

like mother, like daughter?Oxford Bulletin of Economics and Statistics, 72(6), 717–743.

21



Marra, G. & Radice, R. (2017a). Bivariate copula additive models for location, scale and shape.

Computational Statistics & Data Analysis, 112, 99–113.

Marra, G. & Radice, R. (2017b).GJRM: Generalised Joint Regression Modelling. R package

version 0.1-1.

Neelon, B., Anthopolos, R., & Miranda, M. L. (2014). A spatial bivariate probit model for cor-

related binary data with application to adverse birth outcomes. Statistical Methods in Medical

Research, 23(2), 119–133.

Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data:

Unconstrained parameterisation.Biometrika, 86(3), 677–690.

Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models for multi-

variate normal covariance matrix.Biometrika, 87(2), 425–435.

Pourahmadi, M. (2007). Cholesky decompositions and estimation of a covariance matrix: orthog-

onality of variance–correlation parameters.Biometrika, 94(4), 1006–1013.

Radice, R., Marra, G., & Wojtýs, M. (2016). Copula regression spline models for binary outcomes.

Statistics and Computing, 26(5), 981–995.

Rigby, R. A. & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and

shape.Journal of the Royal Statistical Society: Series C (AppliedStatistics), 54(3), 507–554.
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