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Abstract

Non-random sample selection is a commonplace amongst many empirical studies and it appears when an output

variable of interest is available only for a restricted non-random sub-sample of data. An extension of the generalized

additive models for location, scale and shape which accounts for non-random sample selection by introducing a

selection equation is discussed. The proposed approach allows for potentially any parametric distribution for the

outcome variable, any parametric link function for the selection equation, several dependence structures between the

(outcome and selection) equations through the use of copulae, and various types of covariate effects. Using a special

case of the proposed model, it is shown how the score equations are corrected for the bias deriving from non-random

sample selection. Parameter estimation is carried out within a penalized likelihood based framework. The empirical

effectiveness of the approach is demonstrated through a simulation study and a case study. The models can be easily

employed via thegjrm() function in theR packageGJRM.

Keywords: additive predictor, copula, marginal distribution, non-random sample selection, penalized regression

spline, simultaneous equation estimation.

1. Introduction

Non-random sample selection arises when an output variableof interest is available only for

a restricted non-random sub-sample of the data. This often occurs in sociological, medical and

economic studies where individuals systematically selectthemselves into (or out of) the sample

(e.g., Lennox et al., 2012; Vella, 1998; Collier and Mahoney,1996, and references therein). If the

aim is to model an outcome of interest in the entire population and the link between its availability

in the sub-sample and its observed values is through factorswhich can not be accounted for then

any analysis based on the available sub-sample will most likely lead to biased conclusions. Sam-

ple selection models allow one to use the entire sample whether or not observations on the output

variable were generated. In its classical form, it consistsof two equations which model the prob-

ability of inclusion in the sample and the outcome variable through a set of available covariates,

and of a joint bivariate distribution linking the two equations.
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The sample selection model was first discussed by Gronau (1974) and Lewis (1974). Heckman

(1976) formulated a unified approach to estimating this model using a simultaneous equation

system. In the classical version, the error terms of the two equations are assumed to follow a

bivariate normal distribution where non-zero correlationindicates the presence of non-random

sample selection. Heckman (1979) then translated the issueof sample selection into an omitted

variable problem and proposed a simple and easy to implementestimation method known as two-

step procedure.

Various modifications and generalizations of the classicalsample selection model have been

proposed in the literature and here we mention some of them. Anon-parametric two-stage ap-

proach, which lifts the normality assumption, can be found in Das et al. (2003). Non-parametric

methods are also considered in Lee (2008) and Chen and Zhou (2010). Semi-parametric ap-

proaches can instead be found in Gallant and Nychka (1987), Lee (1994), Powell (1994) and

Newey (2009). In the Bayesian framework, Chib et al. (2009) dealt with non-linear covariate

effects using Markov chain Monte Carlo estimation techniques and simultaneous equation sys-

tems. Wiesenfarth and Kneib (2010) further extended this approach by introducing a Bayesian

algorithm based on low rank penalized B-splines for non-linear and varying-coefficient effects and

Markov random-field priors for spatial effects. Frequentist counterparts of these Bayesian methods

are given in Marra and Radice (2013b) in the context of binary responses and Marra and Radice

(2013a) for continuous Gaussian outcomes. Zhelonkin et al.(2016) introduced a procedure for

robustifying the Heckman’s two stage estimator by using M-estimators of Mallows’ type for both

stages. Marchenko and Genton (2012) and Ding (2014) considered a bivariate Student-t distribu-

tion for the model’s errors as a way of tackling heavy-taileddata. Several authors proposed using

copulae to model the joint distribution of the selection andoutcome equations; see, e.g., Prieger

(2002) who employed a Farlie-Gumbel-Morgenstern (FGM) bivariate copula. A more general

copula approach, with a focus on Archimedean copulae, can befound in Smith (2003). As em-

phasized for instance by Genius and Strazzera (2008), copulae allow for the use of non-Gaussian

distributions and have the additional benefit of making it possible to specify the marginal distribu-

tions independently of the dependence structure linking them. Importantly, while the copula ap-

proach is fully parametric, it is typically computationally more feasible than non/semi-parametric

approaches and it still allows one to assess the sensitivityof results to different modeling assump-

tions. The aim of this work is to continue this stream of research.

In this paper, we introduce a generalized additive model forlocation, scale and shape (GAMLSS,

Rigby and Stasinopoulos, 2005) which accounts for non-random sample selection. First, the clas-
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sical GAMLSS is extended by introducing an extra equation which models the selection process.

Specifically, the selection and outcome equations are linked by a joint probability distribution

which is expressed in terms of a copula. Moreover, using the developments available in the spline

literature (e.g., Ruppert et al., 2003; Wood, 2017), we modelthe relationship between covariates

and responses by using penalized regression splines, thus capturing possibly complex relation-

ships. Second, we show how the score equations are correctedfor the bias deriving from non-

random sample selection. To the best of our knowledge, this aspect has never been elucidated

in the literature and provides an interesting insight into the correction mechanism underlying the

selection approach. Third, we make the new developments available via thegjrm() function

from theR packageGJRM (Marra and Radice, 2018).

Note that the approach to estimating sample selection models using copulae and penalized re-

gression splines has recently been adopted by Wojtyś et al. (2016), Marra and Wyszynski (2016),

Wyszynski and Marra (2017) and Marra et al. (2017). The former only considers a Gaussian out-

come, whereas the latter works deal with the cases of binary and discrete outcome distributions.

This paper is concerned with providing a general modeling framework where any parametric link

function and continuous distribution for the outcome can beutilized.

The remainder of the paper is organized as follows. Section 2discusses the proposed sample

selection GAMLSS as well as a special case which elucidates the nature of the non-random sample

selection correction. Section 3 provides some estimation and inferential details. The finite-sample

performance of the approach is investigated in Section 4, whereas a case study is presented in

Section 5.

2. Sample selection GAMLSS

The proposed generalized additive sample selection model for location, scale and shape is

structured as follows. We first assume that the outcome variable of interest can be described by a

GAMLSS (Rigby and Stasinopoulos, 2005). Then, in order to take the selection process into ac-

count, we extend the model by adding the so-called selectionequation, which is specified in terms

of a binary regression that makes use of an arbitrary parametric link function. The two equations

are linked by using a bivariate copula. Finally, all parameters of the marginal distributions as well

as copula are specified as flexible functions of covariates.

2.1. Model definition

Let Y ∗
2 denote the random variable of primary interest whose valuesare observed only for a

subset of the individuals from a random sample. Moreover, let Y ∗
1 be the latent random variable
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that governs the selection process. The observed variablesare

Y1 = (Y ∗
1 > 0),

Y2 = Y ∗
2 Y1,

where symbol (·) denotes throughout an indicator function. Random variableY1 indicates whether

the value ofY ∗
2 is observed. VariableY2 holds the observed value ofY ∗

2 and equals0 if the ob-

served value is missing.

Let F1(y
∗
1|θ1) andF2(y

∗
2|θ2) denote the cumulative distribution functions of the latentselec-

tion variableY ∗
1 and of the output variable of interestY ∗

2 , which depend on vectors of parameters

θ1 ∈ R
p1 andθ2 ∈ R

p2 , respectively, wherep1, p2 ∈ N. Analogically,f1(y∗1|θ1) andf2(y∗2|θ2)

denote the probability (density) functions ofY ∗
1 andY ∗

2 . We specify the dependence structure be-

tween the two variables by taking advantage of Sklar’s theorem (Sklar, 1959). It states that for any

two random variables there exists a two-place function, called copula, which represents the joint

cumulative distribution function of the pair in a manner which makes a clear distinction between

the marginal distributions and the form of dependence between them. An exhaustive introduction

to copula theory can be found in Nelsen (2006) and Schweizer (1991). We use the symbolCθ3(·, ·)

throughout to denote a copula parametrized withθ3 ∈ R
p3 , wherep3 ∈ N.

LetCθ3(·, ·) be the copula such that the joint cdf of(Y ∗
1 , Y

∗
2 ) equals

F (y∗1, y
∗
2 |θ1,θ2,θ3) = Cθ3 (F1(y

∗
1|θ1), F2(y

∗
2|θ2)) . (2.1)

FunctionCθ3 always exists and is unique for every(y∗1, y
∗
2) in the support of the joint distribution

F . It is assumed that the unknown parameter vectorsθ1 ∈ R
p1 , θ2 ∈ R

p2 andθ3 ∈ R
p3 can be

linked to predictors (containing regression coefficients and covariates) via known monotonic link

functionsg1,j(·), g2,j(·) andg3,j(·) such that fork = 1, 2, 3 it holds that

gk,j(θk,j) = η(k,j) for j = 1, . . . , pk,

where theθk,j are the components of the vectorsθk, i.e. θk = (θk,j)j=1,...,pk
. The predictors

η(k,j) are assumed to depend on sets of covariatesx
(k,j), so thatη(k,j) = η(k,j)(x(k,j)), where

x
(k,j) = (x

(k,j)
1 , . . . , x

(k,j)
Dk,j

). More details are given in Section 2.3.

The usual characterization of the GAMLSS model is achieved,for instance, by settingθ1 =

(µ1, σ1, ν1) andθ2 = (µ2, σ2, ν2), whereµk, σk andνk, for k = 1, 2, represent the parameters

of the two marginal distributions. However, in general the marginals may depend on any number
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Copula C(u, v; θ3) Range ofθ3 Link Kendall’sτ

AMH ("AMH") uv
1−θ3(1−u)(1−v)

θ3 ∈ [−1, 1] tanh−1(θ3)
− 2

3θ23

{

θ3 + (1− θ3)2

log(1− θ3)}+ 1

Clayton ("C0")
(

u−θ3 + v−θ3 − 1
)

−1/θ3 θ3 ∈ (0,∞) log(θ3)
θ3

θ3+2

FGM ("FGM") uv {1 + θ3(1− u)(1− v)} θ3 ∈ [−1, 1] tanh−1(θ3)
2
9
θ3

Frank ("F") −θ−1
3 log {1 + (exp {−θ3u} − 1)

(exp {−θ3v} − 1)/(exp {−θ3} − 1)} θ3 ∈ R\ {0} − 1− 4
θ3

[1−D1(θ3)]

Hougaard ("HO") exp

[

−
{

(− log u)
1
θ3 + (− log v)

1
θ3

}θ3
]

θ3 ∈ (0, 1) log
(

θ3
1−θ3

)

1− θ3

Gaussian ("N") Φ2

(

Φ−1(u),Φ−1(v); θ3
)

θ3 ∈ [−1, 1] tanh−1(θ3)
2
π
arcsin(θ3)

Gumbel ("G0")
exp

[

−
{

(− log u)θ3

+(− log v)θ3
}1/θ3

] θ3 ∈ [1,∞) log(θ3 − 1) 1− 1
θ3

Joe ("J0")
1−

{

(1− u)θ3 + (1− v)θ3

−(1− u)θ3 (1− v)θ3
}1/θ3

θ3 ∈ (1,∞) log(θ3 − 1) 1 + 4
θ23

D2(θ3)

Plackett ("PL")
(

Q−
√
R
)

/ {2(θ3 − 1)} θ3 ∈ (0,∞) log(θ3) −
Student-t ("T") t2,ζ

(

t−1
ζ (u), t−1

ζ (v); ζ, θ3
)

θ3 ∈ [−1, 1] tanh−1(θ3)
2
π
arcsin(θ3)

Table 1: Definition of copulae implemented inGJRM, with corresponding parameter range of association parameter θ3, link function of θ3, and
relation between Kendall’sτ andθ3. Φ2(·, ·; θ3) denotes the cumulative distribution function (cdf) of a standard bivariate normal distribution with
correlation coefficientθ3, andΦ(·) the cdf of a univariate standard normal distribution.t2,ζ(·, ·; ζ, θ3) indicates the cdf of a standard bivariate
Student-t distribution with correlationθ3 and fixedζ ∈ (2,∞) degrees of freedom, andtζ(·) denotes the cdf of a univariate Student-t distribution

with ζ degrees of freedom.D1(θ3) =
1
θ3

∫ θ3
0

t
exp(t)−1

dt is the Debye function andD2(θ3) =
∫ 1
0 t log(t)(1− t)

2(1−θ3)
θ3 dt. QuantitiesQ and

R are given by1 + (θ3 − 1)(u+ v) andQ2 − 4θ3(θ3 − 1)uv, respectively. The Kendall’sτ for "PL" is computed numerically as no analytical
expression is available. ArgumentBivD of gjrm() in GJRM allows the user to employ the desired copula function and can be set to any of the
values within brackets next to the copula names in the first column; for example,BivD = "J0". For Clayton, Gumbel and Joe, the number after
the capital letter indicates the degree of rotation required: the possible values are0, 90, 180 and270.

p1 andp2 of population parameters. The distributions forY ∗
2 implemented for this work in the

R packageGJRM are the normal ("N"), log-normal ("LN"), Gumbel ("GU"), reverse Gumbel

("rGU"), logistic ("LO"), Weibull ("WEI"), inverse Gaussian ("iG"), gamma ("GA"), Dagum

("DAGUM"), Singh-Maddala ("SN"), beta ("BE") and Fisk ("FISK"); their definitions can be

found in Stasinopoulos et al. (2017b). For the binary selection variableY1, probit, logit and

cloglog models can be employed. The choice of the link function for modellingY1 determines

the type of the distribution assumed for the latent selection variableY ∗
1 . For example, ifY ∗

1 follows

a normal distribution with meanθ1 = θ1,1 = η1,1 and variance equal to1 then a probit regression

model arises. In this case,p1 = 1.

Argumentmargins of gjrm() in GJRM allows the user to employ the desired link function

and outcome distribution and can be set to any of the values indicated above within brackets.

For example,margins = c("cloglog", "GU"). The list of possible copulae, which are

implemented inGJRM, is given in Table 1.

2.2. A special case: one-parameter exponential families

In this section, we assume thatY ∗
2 has a density that belongs to the one-parameter exponential

families, which is useful since it allows us to provide an interesting insight into the correction

mechanism underlying the selection approach. In particular, Y ∗
2 is assumed to have a density of
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the form

f2(y
∗
2|η2) = exp {y∗2η2 − b2(η2) + c2(y

∗
2)} (2.2)

for some specific functionsb2(·) andc2(·), whereη2 is the natural parameter. Here,θ2 = η2 and

p2 = 1. It holds thatE(Y ∗
2 ) = b′2(η2) andVar(Y ∗

2 ) = b′′2(η2), whereb′2(·) andb′′2(·) are the first and

second derivatives of functionb2(·), respectively (van der Vaart, 2000, p. 38).

Assume now that(Y ∗
1 , Y

∗
2 ) is an absolutely continuous random vector. Then the joint density

of (Y ∗
1 , Y

∗
2 ) is

f(y∗1, y
∗
2) =

∂2

∂u∂v
Cθ3(u, v)

∣

∣

∣

∣

u=F1(y∗

1 )

v=F2(y∗

2 )

f1(y
∗
1)f2(y

∗
2).

The log-likelihood function for such defined sample selection model can be obtained by condi-

tioning with respect to the value of the selection variableY1 (cf. Smith (2003), p. 108) and equals

ℓ = (1− Y1) logF1(0) + Y1 log

(

f2(Y2)−
∂

∂y∗2
F (0, y∗2)

∣

∣

y∗2=Y2

)

. (2.3)

Using (2.1), we obtain

∂

∂y∗2
F (0, y∗2)

∣

∣

y∗2=Y2
=

∂

∂y∗2
Cθ3(F1(0), F2(y

∗
2))

∣

∣

y∗2=Y2
=

∂

∂v
Cθ3(F1(0), v)

∣

∣

v=F2(Y2)
f2(Y2).

Thus,

ℓ = (1− Y1) logF1(0) + Y1 log (f2(Y2)z(Y2, η1, η2)) ,

wherez(y2, η1, η2) = 1 − ∂
∂v
Cθ3(F1(0), v)

∣

∣

v=F2(y2)
. At the same time,f2(y2)z(y2, η1, η2) =

P (Y ∗
1 > 0, Y ∗

2 = y2), which is implied by the very definition of likelihood. Hence

z(y2, η1, η2) = P (Y ∗
1 > 0 |Y ∗

2 = y2),

which has an intuitive interpretation: the probability of the output being observed given that its

latent value isy2.

Using (2.2), the log-likelihood can be written as

ℓ = (1− Y1) logF1(0) + Y1(η2Y2 − b2(η2) + c2(Y2) + log (z(Y2, η1, η2)) . (2.4)

The fact thatE(Y2) = b′2(η2) implies

∂

∂η2
ℓ = Y1(Y2 − µ2) + Y1

∂

∂η2
log (z(Y2, η1, η2)) ,
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whereµ2 = E(Y2). Note that the first term in the expression above is equal to the score for the

standard model, when the sample selection does not appear and henceY1 always equals 1 and

z(Y2, η1, η2) ≡ 1. The second term corrects the score for sample selection bias. Using the fact that

the expected value of the score is equal to0 when evaluated at the true parametersη1, η2, θ3 or,

more generally, at their values that minimize the Kullback-Leibler loss, we obtain

E

(

Y1
∂

∂η2
log (z(Y2, η1, η2))

)

= −Cov(Y1, Y2).

Thus, the stronger the correlation between outcomes and selection mechanism, the further away

from 0 the second term of the score is expected to be, hence implyinggreater influence on the

estimates ofη2. The Fisher informationI(η2) = −E

(

∂2

∂η22
ℓ
)

for η2 is

I(η2) = −E

(

−Y1b
′′
2(η2) +

∂2

∂η22
log (z(Y2, η1, η2))

)

= Var(Y ∗
2 )P (Y1 = 1)− E

(

∂2

∂η22
log (z(Y2, η1, η2))

)

,

whereas the Fisher information for the model without sampleselection isI(η2) = Var(Y ∗
2 ).

2.3. Additive predictors and penalized regression spline representation

In line with the latest developments in the spline literature (e.g., Wood, 2017), we assume the

additive form for the model’s predictors. That is,

η(k,j)(x(k,j)) = η
(k,j)
1 (x

(k,j)
1 ) + η

(k,j)
2 (x

(k,j)
2 ) + . . .+ η

(k,j)
Dk,j

(x
(k,j)
Dk,j

). (2.5)

To flexibly represent the components in (2.5), we employ the penalized regression spline approach

(Eilers and Marx, 1996). Specifically, for eachv = 1, . . . , Dk,j we approximateη(k,j)v (x) by a

linear combination of basis functionsB(k,j)
v,j (x) and coefficients,

K
(k,j)
v
∑

j=1

β
(k,j)
v,j Bj(x). (2.6)

In the following equations, we drop the superscript ofK
(k,j)
v to avoid an over-complicated display.

However, we have to bear in mind thatKv = K
(k,j)
v still depends onk andj. We define vectors

β
(k,j)
v ∈ R

Kv as

β
(k,j)
v = (β

(k,j)
v,1 , . . . , β

(k,j)
v,Kv

)T for v = 1, . . . , Dk,j,

andβ =
(

β
(k,j)
v

)

v=1,...,Dk,j ; j=1,...,pk; k=1,2,3
∈ R

q whereq =
∑3

k=1

∑pk
j=1

∑Dk,j

v=1 Kv. Thus, equa-
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tion (2.6) implies that the vector of evaluations
(

η
(k,j)
v (x

(k,j)
v )

)

v=1,...,Dk,j ; j=1,...,pk; k=1,2,3
can be

written asxβ where the row vectorx holds the values ofBj(x
(k,j)
v ) for v = 1, . . . , Dk,j, j =

1, . . . , pk, andk = 1, 2, 3. The row vectorsx evaluated for each one ofn observations in the

random sample will form the design matrixX.

Eachβ(k,j)
v has an associated quadratic penaltyλ

(k,j)
v

(

β
(k,j)
v

)T

D(k,j)
v β

(k,j)
v whose role is to

enforce, during fitting, specific properties of the functionη
(k,j)
v (x), such as smoothness or shrink-

age. MatrixD(k,j)
v depends on the choices made to implement equation (2.6), such asK(k,j)

v

and the definition adopted forBj(x). The smoothing parameterλ(k,j)
v ≥ 0 controls the trade-

off between fit and smoothness, and plays a crucial role in determining the shape of the esti-

mates of smooth functionsη(k,j)v (x). The overall penalty can be defined asβTQ(λ)β, where

Q(λ) = diag(λ
(k,j)
v D(k,j)

v ; v = 1, . . . , Dk,j ; j = 1, . . . , pk; k = 1, 2, 3).

The set up described above can allow one to account for several types of covariate effects such

as linear, non-linear, spatial, random and functional effects. We refer the reader to Wood (2017)

for the exact definitions of the spline bases and penalties for the above mentioned cases.

3. Some estimation and inferential details

For a givenn ∈ N, assume that(Y1i, Y2i)
n
i=1 are independent random variables related to

covariate valuesx(k,j)
i for i = 1, . . . , n such thatY1i = (Y ∗

1i > 0) andY2i = Y ∗
2iY1i, whereY ∗

1i

andY ∗
2i are distributed according to (2.1). LetF1i andF2i denote the distribution functions ofY ∗

1i

andY ∗
2i, and letFi(·, ·) be the joint cdf of the pair(Y ∗

1i, Y
∗
2i).

In order to estimate the overall vector of parametersβ, we employ a penalized likelihood

approach to avoid overfitting. The log-likelihood given theobserved random sample(y1i, y2i)ni=1

is given by

ℓ(β) =
n

∑

i=1

(1− y1i) logF1i(0) +
n

∑

i=1

y1i log {P (Y1i = 1, Y2i = y2i)}

if Y2i is and

ℓ(β) =
n

∑

i=1

(1− y1i) logF1i(0) +
n

∑

i=1

y1i log

(

f2i(y2i)−
∂

∂y∗2
Fi(0, y

∗
2)
∣

∣

y∗2=y2i

)

if the outcome is continuous, based on (2.3). The penalized log-likelihood is given by

ℓp(β) = ℓ(β)−
1

2
βTQ(λ)β.
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Estimation ofβ andλ is achieved by adapting to this context the stable and efficient trust re-

gion algorithm with integrated automatic multiple smoothing parameter selection by Marra et al.

(2017). This required working with first and second order analytical derivatives which have been

tediously derived and verified using numerical derivatives. All relevant quantities have been im-

plemented in a modular way. This means that no substantial programming work will be required

to incorporate copulae and marginal distributions not considered in this article, as long as their

cumulative and probability density functions are known andtheir derivatives with respect to their

parameters exist.

At convergence, reliable point-wise confidence intervals for linear and non-linear functions

of the model coefficients can be obtained using the Bayesian large sample approximationβ
·
∼

N (β̂,−Hp(β̂)
−1), whereHp is the penalized model’s Hessian (Marra et al., 2017). Intervals

derived using this result have good frequentist propertiessince they account for both sampling

variability and smoothing bias. Furthermore, intervals for any non-linear function of the model’s

coefficients can be conveniently obtained by simulation from the posterior distribution ofβ.

The theoretical properties of the proposed estimator couldbe studied by considering a fixed

number of knots for the basis functions, in which casen1/2 asymptotic results can be straightfor-

wardly obtained.

3.1. Software

The models can be employed via thegjrm() function in theR packageGJRM (Marra and Radice,

2018). An example of call is

fl <- list(y1 ~ x1 + s(x2) + s(x3),

y2 ~ x1 + s(x2),

~ x1 + s(x3),

~ x1 + s(x2))

md <- gjrm(fl, margins = c("logit", "WEI"), BivD = "PL", Model = "BSS")

wherefl is a list containing four equations (the first for the selection equation, the second and

third for the two parameters of the response distribution, and the fourth for the copula depen-

dence parameter),margins specifies the marginal distributions andBivD the copula. Argument

Model = "BSS" means that a bivariate model with sample selection will be employed.

4. Simulation study

The aim of this section is to assess the empirical propertiesof the proposed modelling ap-

proach. To this end, we consider three main scenarios. In scenario I, we use logistic and gamma
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margins which are linked via the Clayton copula with parameter θ3 = 3 (equivalently, Kendall’s

τ = 0.6). Here, only the means of the marginal distributions are specified as functions of additive

predictors. Specifically,

µ1 = α0 + α1x1 + s1(x2),

log µ2 = β0 + s2(x2) + β1x3,

whereα0 = −0.8, α1 = −1.3, β0 = 0.1, β1 = −0.9, s1(x) = x + exp(−30(x − 0.5)2) and

s2(x) = sin(2πx).

Scenario II is essentially the same as scenario I but both margins are Gaussian, with identity

link functions, and the copula employed is the Gumbel withθ3 = 2.5 (Kendall’sτ = 0.6).

In scenario III, data are generated using Gaussian and Gumbel margins, and the Joe copula.

In this case, all the parameters of the bivariate distribution depend on additive predictors. That is,

µ1 = α0 + α1x1 + s1(x2) + α2x3,

µ2 = β0 + s2(x2) + β1x3,

log(σ2) = βσ
0 + βσ

1 x3,

log(θ3) = βθ
0 + βθ

1x1 + s3(x2),

whereα0 = −0.8, α1 = −1.3, α2 = 1, β0 = 0.1, β1 = −0.9, βσ
0 = 0.5, βσ

1 = 1, βθ
0 = 1.1,

βθ
1 = −1.4, s1(x) = x+exp(−30(x− 0.5)2), s2(x) = sin(2πx) ands3(x) = 0.6(ex+sin(2.9x)).

Note that the marginal distributions are parametrised according to Stasinopoulos et al. (2017b).

The simulated data-sets consist of two continuous outcomes, one binary covariate and two

continuous regressors. The first continuous response is dichotomised since it refers to the selec-

tion equation. Sample sizes are set to 1000 and 5000, the number of replicates to 1000, and the

models fitted usinggjrm() in GJRM. Each smooth function is represented using a penalized

low rank thin plate spline with second order penalty and 10 basis functions. For each replicate,

smooth function estimates are constructed using 200 equally spaced fixed values in the(0, 1) range

(e.g., Radice et al., 2016). Exact details on the generation of the simulated datasets are given in

Appendix A.

4.1. Results

In this section we focus on the results obtained for the outcome equation, which is the one of

interest, as well as for the Kendall’sτ . Figure 1 displays the findings for case of data generated

according to scenario I. In this case, estimates are shown for the models based on:

• logit and gamma margins with a Clayton copula (the correct model);
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• logit and inverse Gaussian margins with a Clayton copula (theoutcome distribution is mis-

specified);

• logit and gamma margins with the classic Gaussian copula (the dependence structure is mis-

specified).

We chose the inverse Gaussian since it has the same mean as that of the gamma (Stasinopoulos et al.,

2017b), hence facilitating the comparison of estimates. When the model is correctly specified,

all mean estimates are very close to the true values and, as expected, their variability decreases

as the sample size increases. Misspecifying the marginal outcome distribution has a substantial

detrimental impact on all the parameter estimates, hence stressing the importance of choosing a

suitable outcome distribution in practical situations. Using the incorrect dependence also affects

the estimates (although in a less pronounced manner), henceemphasizing the potential benefits

of allowing for non-Gaussian structures. We also fitted models based on other copulae (such as

Frank, FGM, AMH and Joe available inGJRM) and the findings were similar. Moreover, the cor-

rect model was always selected by criteria such as AIC and BIC. Misspecifying the link function

(using probit and cloglog links) for the selection equationdid not significantly affect the results.

Perhaps this is not surprising given that all links producedvery similar predicted probabilities for

the selection response variable. Nevertheless, the availability of different link functions allowed

us to assess the impact of this misspecification on the parameters of interest. Using a 2.20-GHz

Intel(R) Core(TM) computer running Windows 7, model fitting took on average 2 seconds for

n = 1000, and 7 seconds forn = 5000. Increasing the number of basis functions to 20 did not

have a noticeable impact on the results but increased computing time by about20% on average.

Moreover, using other spline definitions (such as penalizedcubic regression splines and P-splines)

virtually led to identical results. These findings were somewhat expected and have also been

documented in similar contexts by (Wood, 2017).

The results for scenario II are given in Figure 2. Estimates are shown for the models based

on:

• probit and Gaussian margins with a Gumbel copula (the correct model);

• probit and Gaussian margins with the classic Gaussian copula (the dependence structure is

misspecified).

The conclusions are similar to those obtained for scenario I. Specifically, for the correctly specified

model the mean estimates are close to the true values and the variability of the estimates decreases

as the sample size grows large, whereas using the incorrect dependence structure affects negatively

11



all the parameter estimates. Using various copulae the correct model was always picked by AIC

and BIC, link function misspecification did not really alter the estimates, computing times were

similar to those found for scenario I, and increasing the number of basis functions and using

different spline’s definitions did not have a tangible impact on the results. We have not reported

the results obtained when misspecifying the marginal outcome distribution as these were nearly

identical to those obtained for scenario I.

The results for scenario III are given in Figure 3 and are based on probit and Gumbel margins

with a Joe copula (the correct model). This scenario is more complex than the previous ones in

that all distributional parameters are specified as functions of covariates. The findings show that

the approach can estimate all the model components fairly well, and that the estimates improve as

the sample size increases. The components in the additive predictor of the dependence parameter

are estimated less precisely than those of the others. This indicates that the effects of covariates

on the association between the selection and outcome equations may be more difficult to estimate.

This is reasonable given that the likelihood contributionsfor the association parameter come from

the selected sample of observations only. Average computing times were about 16 seconds for

n = 1000, and 42 seconds forn = 5000. We also tested the models under misspecification of

the dependence structure and marginal outcome distribution. In the former case, the findings were

similar to those for scenarios I and II; using the incorrect copula affects adversely the parame-

ter estimates in terms of bias and efficiency. In the latter case, the models failed to converge in

many of the iterations (55% for n = 1000 and43% for n = 5000) and for the converged models

computing times were between 20 and 30 times those reported above. This highlighted the impor-

tance of choosing an appropriate distribution for the outcome variable, especially when the model

specification is complex.
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Figure 1: Scenario I. In Figures (a) and (b), black circles and vertical bars refer to the results obtained under the correct model, dark grey circles
and bars to those obtained when misspecifying the outcome distribution, and light grey circles and bars to those obtained when the dependence
structure is misspecified. Circles indicate mean estimates while bars represent the estimates’ ranges resulting from5% and95% quantiles. In
Figure (c), mean estimates are represented by dashed lines andpoint-wise ranges resulting from5% and95% quantiles by shaded areas. The top
plots refer ton = 1000 and the bottom ones ton = 5000. In all figures, true values are given by the black solid lines.
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Figure 2: Scenario II. In Figures (a) and (b), black circles and vertical bars refer to the results obtained under the correct model, and grey circles and
bars to those obtained when the dependence structure is misspecified. Circles indicate mean estimates while bars representthe estimates’ ranges
resulting from5% and95% quantiles. In Figure (c), mean estimates are represented by dashed lines and point-wise ranges resulting from5% and
95% quantiles by shaded areas. The top plots are obtained from the correct model and bottom ones from the misspecified model. In all figures,
true values are given by the black solid lines.
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Figure 3: Scenario III. In Figure (a), black circles and vertical bars refer to the results obtained whenn = 1000, and grey circles and bars to those
obtained whenn = 5000. Circles indicate mean estimates while bars represent the estimates’ ranges resulting from5% and95% quantiles. In
Figure (b), mean estimates are represented by dashed lines andpoint-wise ranges resulting from5% and95% quantiles by shaded areas. The top
plots are obtained whenn = 1000 and bottom ones whenn = 5000. In all figures, true values are given by the black solid lines.
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5. Empirical application

As a real world application, we consider the study of the effects of insurance status and man-

aged care on hospitalization spells previously analysed byPrieger (2002). The data set is based

on a nationally representative survey of US medical care (Medical Expenditure Panel Survey) and

it contains information about the length of individuals’ hospital stays in 1996 along with factors

such as membership in health maintenance organization, type of insurance, health status, demo-

graphic variables, sex, race, marriage, employment statusand quantitative variables including age,

years of education, number of self-reported medical conditions and number of conditions on the

priority list. A detailed description of the variables can be found in Table 3 given in Appendix

B. The sample used in the analysis consists of14, 946 observations. The response variable for

the selection equation is whether an individual had a hospital stay. If the link between hospital

admittance and the spell of hospital stay is not through observables alone then sample selection

bias arises and using a univariate regression approach is not adequate.

These data were studied by Prieger (2002) who motivates the use of the gamma distribution

to model the length of hospital stay, uses a probit selectionequation, and fits three models based

on the assumption of independence, and on the Gaussian and FGM copulae. All the covariates

entered the selection and outcome equations parametrically. Prieger found, for instance, that non-

random sample selection was present and, based on various criteria, chose the FGM copula which

produced a negative and significant estimated dependence between the two equations.

We re-analyse these data by considering a wider set of marginal outcome distributions, link

functions and copulae. We also employ smooth functions of age and years of education (using

the same set up described in the simulation study), and specify all parameters of the marginal

distributions as functions of additive predictors.

Regarding the marginals, we chose the probit link and found that the inverse Gaussian in-

stead of the gamma distribution provides the best fit as judged by the plots of normalised quantile

residuals (Stasinopoulos et al., 2017b) and information criteria (see Figure 4). Using the logit and

cloglog links for the selection equation did not affect the results. As for the choice of copula,

we started off with the Gaussian, Frank, FGM, AMH, Student-tand Plackett (since they allow

for both positive and negative dependence) and then employed all of the remaining copulae that

were consistent with the sign of dependence found. For this empirical application, we tried all

copulae available as there was not a clear indication of positive or negative dependence. In all

cases, the values forτ were very close to zero as well as non significantly differentfrom zero for

those copulae admitting both positive and negative association. The AIC and BIC values across
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Figure 4: Histograms and Q-Q plots of normalized quantile residuals for length of hospital stay produced after fitting copula models based on the
inverse Gaussian (top) and gamma (bottom) distributions. The QQ-plots also exhibit reference bands for judging the relevance of departures from
the red reference lines. AIC and BIC values are 15413.15 and 16101.04 for the model with inverse Gaussian outcome distribution and 15616.74
and 16351.86 for the model with gamma distribution.
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Copula AIC BIC
N 15413.15 16101.04
F 15413.02 16101.95
FGM 15412.96 16101.96
AMH 15412.94 16101.96
T 15469.05 16222.56
PL 15413.04 16101.94
HO 15414.38 16091.43
C0 15412.53 16100.63
J0 15414.40 16090.91
G0 15414.51 16100.78
C90 15413.36 16101.37
J90 15411.32 16092.09
G90 15411.32 16092.09
C180 15418.19 16093.86
J180 15413.31 16101.55
G180 15411.32 16092.09
C270 15411.32 16092.09
J270 15412.86 16102.81
G270 15414.87 16103.51

Table 2: Comparison of AIC and BIC values under different copula assumptions, and probit and inverse Gaussian margins.

copulae were fairly close in most cases (see Table 2). This was somewhat expected given that no

significant association between the equations was detectedwith all copulae.

Appendix B shows the summary output obtained from the final model which is based on the

270◦ Clayton copula and probit and inverse Gaussian margins. Employing other copulae (for in-

stance,G180, G90, J90) produced nearly identical results. The main findings can besummarised

as follows:

• As argued by Prieger (2002), the association (positive or negative) between admittance and

length of stay may suggest the presence of specific selectionmechanisms. He also states

that there is no a priori expectation on the sign of the dependence. As opposed to Prieger’s

finding of a negative association between the selection and outcome equations, we found that

non-random sample selection is not present when using the inverse Gaussian (the distribu-

tion supported by the data). However, when using the gamma asoutcome distribution and

the FGM copula (as well as other copulae such as Gaussian, Frank, Student-t and Plackett)

we found that the association parameter is negative and significant (e.g.,τ̂ = −0.514 with

(−0.589,−0.428) as95% confidence interval forτ ), which is line with Prieger’s result. Our

simulations show that misspecifying the outcome distribution can have a severe detrimental

impact on the parameter estimates including the Kendall’sτ . This all suggests that Prieger’s

finding is biased by the choice of gamma distribution for the outcome equation.

• Selection equation: from the summary output for equation 1,reported in Appendix B, we
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observe for instance that the insurance variablesprivins, medicare andmedicaid

increase the probability of hospital admittance, that sucheffects are either reinforced or tem-

pered byprivmcare, privmcaid andmcaremcaid, and that covariateshmopriv,

hmomcare, hmomcaid have no significant effect on hospital admittance. Moreover, vari-

ablescondn, priolist, adlhelp andpoorhlth increase the probability of hospital

admittance. These findings are consistent with those of Prieger (2002) to which the reader is

referred to for a more through discussion.

The estimated smooth functions for age and years of education are displayed in Figure 6,

Appendix B. The effect of education is not significant and nearly linear (see also respective

p-value reported in the summary output). On the other hand, the effect of age is non-linear

and significant; its shape suggests that age decreases the probability of hospital admittance

up to about 45 years and then increases such probability afterward. This may be due to the

fact that age embodies productivity and life-cycle effectsthat are likely to affect the responses

considered in this study non-linearly.

• Outcome equation: from the summary output for equation 2 we observe for example that

poorhlth andadlhelp significantly lengthen the stay in hospital,hmopriv decreases

the stay, thatprivins does not influence the outcome, and thatmedicare decreases the

duration of stay. Our findings are in agreement with those by Prieger (2002). Note, however,

that different distributions and parametrizations are employed in two analyses, hence an exact

comparison is not possible.

The estimated smooth function for years of education (not shown here) is linear and non-

significant (as also supported by the respective p-value in the summary output). Figure 5

shows the effect of age on the average hospital stay duration. It suggests that as age increases

the average length of hospital stay increases up to 35, decreases and then increases again

after 45. It may be argued that, given the width of the confidence intervals, a straight line

relationship is also suitable here. In the absence of a formal test of linearity of a smooth

function for the current modelling framework, an informal indication of whether a simpler

model would be appropriate can be obtained using information criteria. Specifically, AIC

and BIC values are15411.32 and16092.09 for the model with non-linear effect for age, and

15420.02 and16064.05 for the model with linear effect; the conclusions reached bythe two

criteria are discordant and a definitive answer can not be provided in this case.

A univariate analysis using the selected sample of observations only led to the same results
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Figure 5: Effect of age on the the mean of hospital stays (blackcontinuous line). The dashed lines represent 95% confidenceintervals.

as those for the copula model’s outcome equation. This is notsurprising given that, as dis-

cussed previously, no significant association between the selection and outcome equations

was found.

• Copula models where dependence parameterθ3 was specified as a function of various com-

binations of covariates were also fitted. This allowed us to capture potential heterogeneity

in the selection process, hence possibly justifying the overall non significance of the depen-

dence parameter potentially due to compensating effects. However, the results consistently

pointed to the lack of significant association between the selection and outcome equations.

The analysis presented in this section has extended Prieger’s one by considering a wider set

of marginal distributions and copulae as well as non-linearcovariate effects. Using the proposed

modeling framework we found evidence of non-linearity for some covariate effects and that non-

random sample selection does not seem to be present when employing the outcome distribution

that is most supported by the data (inverse Gaussian in this case). Although the absence of selec-
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tion bias may be regarded as a ‘non-finding’ at first, we argue that our result still has important

implications for the study of selection bias since using a more restrictive set of modelling choices

may lead to unfounded speculations on the presence of certain selection mechanisms.

6. Discussion

We have introduced an extension of GAMLSS which accounts fornon-random sample selec-

tion. The proposed approach is flexible in that it allows for different parametric distributions of

the selection and outcome variables, several types of dependence structures between the model’s

equations, and for various types of covariate effects. Using the special case of one-parameter

exponential families, we have elucidated the nature of the correction mechanism underlying the

selection approach. Parameter estimation is carried out within a penalized likelihood framework

based on a trust region algorithm with integrated smoothingparameter selection. The approach

has been illustrated in simulation and through a case study.All new developments have been

incorporated in theR packageGJRM (Marra and Radice, 2018).

Many marginal distributions and copulae have been considered in this work and we plan on

extending the set of choices available. Future research will look into generalising the proposed

sample selection GAMLSS framework to empirical situationswhere rules of double selection

exist (e.g., Smith, 2003; Zhang et al., 2015), exploiting for instance C- and D-Vine constructions.
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Appendix A: R codes to generate data for scenarios I, II and III

For the first two scenarios, data were generated using the following R code.

library(copula); library(gamlss.dist)

library(GJRM)

cor.cov <- matrix(0.5, 3, 3); diag(cor.cov) <- 1

s1 <- function(x) x + exp(-30*(x - 0.5)^2)

s2 <- function(x) sin(2*pi*x)

datagen12 <- function(cor.cov, s1, s2, scen = 1){
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cov <- rMVN(1, rep(0,3), cor.cov)

cov <- pnorm(cov)

x1 <- cov[, 1]

x2 <- cov[, 2]

x3 <- round(cov[, 3])

eta_mu1 <- -0.8 - 1.3*x1 + s1(x2) + x3

eta_mu2 <- 0.1 + s2(x2) - 0.9*x3

speclist1 <- list( mu = eta_mu1, sigma = 1)

if(scen == 1){

speclist2 <- list( mu = exp(eta_mu2), sigma = 3)

spec <- mvdc(copula = Cop, c("LO", "GA"), list(speclist1, speclist2) )

Cop <- archmCopula(family = "clayton", dim = 2, param = 3)

}else{

speclist2 <- list( mu = eta_mu2, sigma = 2)

spec <- mvdc(copula = Cop, c("NO", "NO"), list(speclist1, speclist2) )

Cop <- archmCopula(family = "gumbel", dim = 2, param = 2.5)

}

resp <- rMvdc(1, spec)

resp[1] <- resp[1] > 0

c(resp, x1, x2, x3)

}

Packagecopula (Yan, 2007) contains functionsarchmCopula(),mvdc() andrMvdc()

which allow one to simulate from the desired copula. Packagegamlss.dist (Stasinopoulos et al.,

2017a) contains all the functions required to simulate the marginals adopted here, andrMVN()

(from GJRM) allows one to simulate Gaussian correlated variables. Thecorrelation matrix used to

associate the three simulated Gaussian covariates iscor.cov, whereascov <- pnorm(cov)

allows one to obtain Uniform(0,1) correlated covariates (e.g., Gentle, 2003). A balanced binary

regressor is created usinground(cov[, 3]). Functionss1 ands2 produce curves with differ-

ent degrees of complexity. The variouseta refer to the model’s additive predictors. If necessary,
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these are transformed inspeclist1 andspeclist2 (and alsoarchmCopula for scenario

III below) to ensure that the restrictions on the parameters’ spaces of the bivariate distributions are

maintained. In the first two scenarios the copula dependenceparameters are set to 3 and 2.5 which

correspond to a Kendall’sτ of 0.6.

The code used to generate data for scenario III is given below.

datagen3 <- function(cor.cov, s1, s2, s3){

cov <- rMVN(1, rep(0,3), cor.cov)

cov <- pnorm(cov)

z1 <- cov[, 1]

z2 <- cov[, 2]

z3 <- round(cov[, 3])

eta_mu1 <- -.8 - 1.3*z1 + s1(z2) + z3

eta_mu2 <- 0.1 + s2(z2) - 0.9*z3

eta_si2 <- 0.5 + z3

eta_the <- 1.1 - 1.4*z1 + s3(z2)

Cop <- archmCopula(family = "joe", dim = 2,

param = exp(eta_the) + 1 + 1e-07)

speclist1 <- list( mu = eta_mu1, sigma = 1)

speclist2 <- list( mu = eta_mu2, sigma = sqrt(exp(eta_si2)))

spec <- mvdc(copula = Cop, c("NO", "GU"), list(speclist1, speclist2) )

resp <- rMvdc(1, spec)

resp[1] <- resp[1] > 0

c(resp, z1, z2, z3)

}
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Variable Description Mean SD
hospstay Binary variable: 1 = individual had hospital stay 0.09 0.29
hospdur Length of all hospitalizations, given HOSPSTAY = 1 7.43 11.36
hospnum Number of hospital stays, given HOSPSTAY = 1 1.42 0.85
adlhelp 1 = requires assistance with daily living tasks 0.04 0.20
age Age 44.40 17.31
Black 1 = black (not hispanic) 0.12 0.33
condn Number of self-reported medical conditions 1.68 1.91
educ Years of education 12.38 3.16
employed Employment status: 1 = currently employed 0.65 0.48
exclhlth 1 = individual reports health to be ‘excellent’ 0.29 0.45
female 1 = female 0.54 0.50
Hispanic 1 = of hispanic ethnicity 0.18 0.38
hmomcaid 1 = enrolled in a HMO and covered by Medicaid 0.03 0.18
hmomcare 1 = enrolled in a HMO and covered by Medicare 0.04 0.19
hmopriv 1 = enrolled in a HMO and covered by private insurance 0.33 0.47
married Marital status: 1 = currently married 0.57 0.49
mcaremcaid 1 = currently covered by Medicaid and Medicare 0.02 0.16
medicaid 1 = currently covered by Medicaid 0.09 0.28
medicare 1 = currently covered by Medicare 0.17 0.38
MidWest Regional indicator (EAST is the excluded dummy) 0.22 0.42
poorhlth 1 = individual reports health to be ‘poor’ 0.04 0.20
priolist Number of conditions on the priority list 0.54 1.00
privins 1 = covered by private insurance of any type 0.66 0.47
privmcaid 1 = covered by private insurance and Medicaid 0.01 0.08
privmcare 1 = covered by private insurance and Medicare 0.10 0.29
South Regional indicator (EAST is the excluded dummy) 0.35 0.48
West Regional indicator (EAST is the excluded dummy) 0.23 0.42

Table 3: MEPS data: variable definitions and summary statistics. All hospitalization variables are for 1996. This table isfrom Prieger (2002).

Appendix B: summary results from model selected in empirical application

COPULA: 270 Clayton

MARGIN 1: Bernoulli

MARGIN 2: inverse Gaussian

EQUATION 1

Link function for mu.1: probit

Formula: y1 ~ privins + medicare + medicaid + hmopriv + hmomcare + hmomcaid +

privmcare + privmcaid + mcaremcaid + condn + priolist + exclhlth +

poorhlth + adlhelp + MidWest + South + West + female + s(age) +

Black + Hispanic + s(educ) + married + employed

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.850351 0.069180 -26.747 < 2e-16 ***

privins 0.188455 0.054576 3.453 0.000554 ***

medicare 0.301470 0.092851 3.247 0.001167 **

medicaid 0.470590 0.078475 5.997 2.01e-09 ***
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hmopriv 0.030331 0.042296 0.717 0.473299

hmomcare 0.026591 0.076898 0.346 0.729490

hmomcaid -0.037339 0.092341 -0.404 0.685947

privmcare -0.208284 0.080720 -2.580 0.009870 **

privmcaid 0.355882 0.157468 2.260 0.023820 *

mcaremcaid -0.493067 0.111832 -4.409 1.04e-05 ***

condn 0.082802 0.010335 8.012 1.13e-15 ***

priolist 0.065037 0.019043 3.415 0.000637 ***

exclhlth -0.149980 0.039539 -3.793 0.000149 ***

poorhlth 0.219394 0.064518 3.400 0.000673 ***

adlhelp 0.338518 0.064002 5.289 1.23e-07 ***

MidWest 0.020925 0.047101 0.444 0.656850

South 0.009535 0.043418 0.220 0.826183

West -0.085877 0.048660 -1.765 0.077589 .

female 0.149305 0.032633 4.575 4.76e-06 ***

Black -0.028681 0.049880 -0.575 0.565286

Hispanic 0.084497 0.046239 1.827 0.067643 .

married 0.105973 0.034991 3.029 0.002457 **

employed -0.163872 0.040729 -4.023 5.74e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 6.008 7.176 37.165 5.33e-06 ***

s(educ) 1.785 2.236 1.369 0.496

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 2

Link function for mu.2: log

Formula: y2 ~ privins + medicare + medicaid + hmopriv + hmomcare + hmomcaid +

privmcare + privmcaid + mcaremcaid + condn + priolist + exclhlth +

poorhlth + adlhelp + MidWest + South + West + female + s(age) +

Black + Hispanic + s(educ) + married + employed

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.244987 0.169074 13.278 < 2e-16 ***

privins 0.167173 0.129127 1.295 0.195444

medicare -0.331687 0.185638 -1.787 0.073979 .
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medicaid -0.015643 0.156081 -0.100 0.920165

hmopriv -0.443685 0.106618 -4.161 3.16e-05 ***

hmomcare 0.523395 0.216804 2.414 0.015772 *

hmomcaid -0.080578 0.186132 -0.433 0.665082

privmcare -0.096168 0.177819 -0.541 0.588631

privmcaid 0.509183 0.242352 2.101 0.035640 *

mcaremcaid 0.143036 0.220478 0.649 0.516496

condn 0.004007 0.022184 0.181 0.856672

priolist 0.082884 0.043742 1.895 0.058118 .

exclhlth -0.047858 0.089880 -0.532 0.594402

poorhlth 0.434519 0.143721 3.023 0.002500 **

adlhelp 0.355209 0.145970 2.433 0.014956 *

MidWest -0.188903 0.111958 -1.687 0.091552 .

South -0.096852 0.105099 -0.922 0.356777

West -0.383978 0.112817 -3.404 0.000665 ***

female -0.484550 0.092887 -5.217 1.82e-07 ***

Black 0.366785 0.114616 3.200 0.001374 **

Hispanic 0.067553 0.093491 0.723 0.469948

married -0.123221 0.078603 -1.568 0.116966

employed -0.113859 0.081580 -1.396 0.162810

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 6.791 7.908 52.609 1.16e-08 ***

s(educ) 1.000 1.000 0.007 0.934

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

EQUATION 3

Link function for sigma2: log

Formula: ~privins + medicare + medicaid + hmopriv + hmomcare + hmomcaid +

privmcare + privmcaid + mcaremcaid + condn + priolist + exclhlth +

poorhlth + adlhelp + MidWest + South + West + female + s(age) +

Black + Hispanic + s(educ) + married + employed

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.437645 0.198799 -7.232 4.77e-13 ***

privins 0.412330 0.156008 2.643 0.00822 **
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medicare 0.004227 0.207456 0.020 0.98375

medicaid 0.365449 0.207283 1.763 0.07789 .

hmopriv -0.270515 0.118284 -2.287 0.02220 *

hmomcare 0.505104 0.190237 2.655 0.00793 **

hmomcaid 0.218626 0.215001 1.017 0.30922

privmcare 0.049511 0.198518 0.249 0.80305

privmcaid -0.845025 0.326819 -2.586 0.00972 **

mcaremcaid -0.460742 0.261357 -1.763 0.07792 .

condn 0.032792 0.022851 1.435 0.15128

priolist -0.072283 0.039988 -1.808 0.07067 .

exclhlth 0.047090 0.116003 0.406 0.68479

poorhlth -0.088651 0.143464 -0.618 0.53662

adlhelp -0.223425 0.132612 -1.685 0.09203 .

MidWest -0.159945 0.124918 -1.280 0.20040

South -0.167665 0.114324 -1.467 0.14249

West -0.039339 0.127541 -0.308 0.75774

female -0.100680 0.092344 -1.090 0.27559

Black -0.235727 0.134401 -1.754 0.07945 .

Hispanic 0.018131 0.124514 0.146 0.88423

married -0.045687 0.092462 -0.494 0.62123

employed 0.136274 0.109383 1.246 0.21282

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Smooth components’ approximate significance:

edf Ref.df Chi.sq p-value

s(age) 2.255 2.868 4.803 0.156

s(educ) 1.000 1.000 0.322 0.570

EQUATION 4

Link function for theta: log(- .)

Formula: ~1

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -20.68 348.64 -0.059 0.953

n = 14946 n.sel = 1346

sigma2 = 0.293(0.207,0.42)

theta = -4.14e-08(-100,-4.14e-08) tau = -2.07e-08(-0.98,-2.07e-08)
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total edf = 87.8
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Figure 6: Selection equation: smooth effects for age and years of education and associated95% point-wise intervals obtained from the final model
which is based on the270◦ Clayton copula and probit and inverse Gaussian margins. The rug plot, at the bottom of each graph, shows the covariate
values. The number in brackets in the y-axis of each plot’s caption represents the effective degrees of freedom of the respective smooth curve.
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