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Abstract

Non-random sample selection is a commonplace amongst nrapirieal studies and it appears when an output
variable of interest is available only for a restricted mandom sub-sample of data. An extension of the generalized
additive models for location, scale and shape which acesofortnon-random sample selection by introducing a
selection equation is discussed. The proposed approamhisalbr potentially any parametric distribution for the
outcome variable, any parametric link function for the ettan equation, several dependence structures between the
(outcome and selection) equations through the use of cepatal various types of covariate effects. Using a special
case of the proposed model, it is shown how the score eqgai@ncorrected for the bias deriving from non-random
sample selection. Parameter estimation is carried ouiwdtipenalized likelihood based framework. The empirical
effectiveness of the approach is demonstrated through@ation study and a case study. The models can be easily
employed via the;jrm () function in ther packagesJRM.

Keywords: additive predictor, copula, marginal distribution, n@mdom sample selection, penalized regression

spline, simultaneous equation estimation.

1. Introduction

Non-random sample selection arises when an output varidlgerest is available only for
a restricted non-random sub-sample of the data. This oftearse in sociological, medical and
economic studies where individuals systematically sels®mselves into (or out of) the sample
(e.g., Lennox et al., 2012; Vella, 1998; Collier and Mahori&86, and references therein). If the
aim is to model an outcome of interest in the entire poputediod the link between its availability
in the sub-sample and its observed values is through faatioigh can not be accounted for then
any analysis based on the available sub-sample will madlylikad to biased conclusions. Sam-
ple selection models allow one to use the entire sample whetinot observations on the output
variable were generated. In its classical form, it consi$tsvo equations which model the prob-
ability of inclusion in the sample and the outcome variahi®agh a set of available covariates,
and of a joint bivariate distribution linking the two equats.
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The sample selection model was first discussed by Gronad)(89d Lewis (1974). Heckman
(1976) formulated a unified approach to estimating this rhodeng a simultaneous equation
system. In the classical version, the error terms of the tquaBons are assumed to follow a
bivariate normal distribution where non-zero correlatindicates the presence of non-random
sample selection. Heckman (1979) then translated the wfss@mple selection into an omitted
variable problem and proposed a simple and easy to impleeséintation method known as two-
step procedure.

Various modifications and generalizations of the classiaatple selection model have been
proposed in the literature and here we mention some of themomparametric two-stage ap-
proach, which lifts the normality assumption, can be foum®as et al. (2003). Non-parametric
methods are also considered in Lee (2008) and Chen and Zhd®)(2®Bemi-parametric ap-
proaches can instead be found in Gallant and Nychka (19839, (L994), Powell (1994) and
Newey (2009). In the Bayesian framework, Chib et al. (2009)tde#&h non-linear covariate
effects using Markov chain Monte Carlo estimation technggaled simultaneous equation sys-
tems. Wiesenfarth and Kneib (2010) further extended thisageh by introducing a Bayesian
algorithm based on low rank penalized B-splines for nondirand varying-coefficient effects and
Markov random-field priors for spatial effects. Frequerd@interparts of these Bayesian methods
are given in Marra and Radice (2013b) in the context of binasponses and Marra and Radice
(2013a) for continuous Gaussian outcomes. Zhelonkin €Rall6) introduced a procedure for
robustifying the Heckman'’s two stage estimator by usingd¥reators of Mallows’ type for both
stages. Marchenko and Genton (2012) and Ding (2014) caesi@ebivariate Student-t distribu-
tion for the model’s errors as a way of tackling heavy-taiietia. Several authors proposed using
copulae to model the joint distribution of the selection aatcome equations; see, e.g., Prieger
(2002) who employed a Farlie-Gumbel-Morgenstern (FGMpbate copula. A more general
copula approach, with a focus on Archimedean copulae, cdaura in Smith (2003). As em-
phasized for instance by Genius and Strazzera (2008), aellbw for the use of non-Gaussian
distributions and have the additional benefit of making gpble to specify the marginal distribu-
tions independently of the dependence structure linkiegnthimportantly, while the copula ap-
proach is fully parametric, it is typically computationathore feasible than non/semi-parametric
approaches and it still allows one to assess the sensitivigsults to different modeling assump-
tions. The aim of this work is to continue this stream of reskea

In this paper, we introduce a generalized additive moddbfmation, scale and shape (GAMLSS,

Rigby and Stasinopoulos, 2005) which accounts for non-nanslample selection. First, the clas-



sical GAMLSS is extended by introducing an extra equatiorictvimodels the selection process.
Specifically, the selection and outcome equations are dirike a joint probability distribution
which is expressed in terms of a copula. Moreover, using éveldpments available in the spline
literature (e.g., Ruppert et al., 2003; Wood, 2017), we mtuelkelationship between covariates
and responses by using penalized regression splines, dpisring possibly complex relation-
ships. Second, we show how the score equations are correctdte bias deriving from non-
random sample selection. To the best of our knowledge, 8peda has never been elucidated
in the literature and provides an interesting insight i@ ¢orrection mechanism underlying the
selection approach. Third, we make the new developmentlblavia thegjrm () function
from theRr packagesJgrM (Marra and Radice, 2018).

Note that the approach to estimating sample selection madahg copulae and penalized re-
gression splines has recently been adopted by Wejtywl. (2016), Marra and Wyszynski (2016),
Wyszynski and Marra (2017) and Marra et al. (2017). The foromdy considers a Gaussian out-
come, whereas the latter works deal with the cases of binatydascrete outcome distributions.
This paper is concerned with providing a general modeliaghgwork where any parametric link
function and continuous distribution for the outcome cantiezed.

The remainder of the paper is organized as follows. Sectidis@isses the proposed sample
selection GAMLSS as well as a special case which elucidagesature of the non-random sample
selection correction. Section 3 provides some estimatiohiaferential details. The finite-sample
performance of the approach is investigated in Section &reds a case study is presented in

Section 5.

2. Sample selection GAMLSS

The proposed generalized additive sample selection moddb¢ation, scale and shape is
structured as follows. We first assume that the outcomehlari interest can be described by a
GAMLSS (Righy and Stasinopoulos, 2005). Then, in order te thle selection process into ac-
count, we extend the model by adding the so-called seleetjoation, which is specified in terms
of a binary regression that makes use of an arbitrary parantiek function. The two equations
are linked by using a bivariate copula. Finally, all paraanebf the marginal distributions as well

as copula are specified as flexible functions of covariates.

2.1. Model definition

Let Y;* denote the random variable of primary interest whose vawe®bserved only for a

subset of the individuals from a random sample. Moreovefyfebe the latent random variable
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that governs the selection process. The observed variatdes

Yi= (¥>0),
Y= YN,

where symbol (-) denotes throughout an indicator function. Random varigbirdicates whether
the value ofY," is observed. Variabl®; holds the observed value &% and equal9) if the ob-
served value is missing.

Let F(y;|6:1) and F,(y5|62) denote the cumulative distribution functions of the latesiec-
tion variableY;* and of the output variable of interesf, which depend on vectors of parameters
0, € R and @, € RP2, respectively, where,, p, € N. Analogically, f;(y;|0:) and f>(y5|62)
denote the probability (density) functions5f andY.'. We specify the dependence structure be-
tween the two variables by taking advantage of Sklar’s theoiSklar, 1959). It states that for any
two random variables there exists a two-place functiorledatopula, which represents the joint
cumulative distribution function of the pair in a manner alhimakes a clear distinction between
the marginal distributions and the form of dependence betvileem. An exhaustive introduction
to copula theory can be found in Nelsen (2006) and Schwel281(). We use the symb6l, (-, -)
throughout to denote a copula parametrized Witke R?3, wherep; € N.

Let Cy, (-, -) be the copula such that the joint cdf(@f", Y5*) equals

F(:yray; ’ 0, 92,93) = Cog (Fl(yﬂel)a F2(y;|92))- (2.1)

FunctionCy, always exists and is unique for evey, ;) in the support of the joint distribution
F. Itis assumed that the unknown parameter vediiprs R?!, 6, € RP2 andf; € RP? can be
linked to predictors (containing regression coefficiemd aovariates) via known monotonic link
functionsg, ;(+), g2;(-) andgs ;(-) such that forc = 1,2, 3 it holds that

9 (Or;) =D forj=1,...,py,

where thed,, ; are the components of the vectdig i.e. 6, = (0;) . The predictors

J=1,...pk
n*7) are assumed to depend on sets of covariated, so thaty*7) = 5k (x(*7)), where
x(k9) = (2" ... 2{;7). More details are given in Section 2.3.

The usual characterization of the GAMLSS model is achief@dnstance, by setting; =
(u1,01,v1) and @y = (2, 09, 12), Wherepy, o, andyy, for k = 1,2, represent the parameters

of the two marginal distributions. However, in general therginals may depend on any number



Copula C(u,v;03) Range ofj3 Link Kendalls-r

Z 105+ (1-0

AMH ("AME") =05 (- w)(1—0) b € [-L1]  tanh™(6s) 1029(1 E ;3)}(+ 1 7
Clayton ("co™) (u=0s 4 y=0s — 1)71/% 05 € (0,00)  log(63) s
FGM ("FGM") wo {14 05(1 — w)(1 - v)} 93 € [~1,1] tanh~1(63) 20,

- —o7t log {1 + (exp{—03u} — 1) _ 4
Frank e (exp {~050} — 1)/ (exp {~05} 1)) 2 €D Pt D)

1 1 )93
Hougaard fHO™)  exp { {(f logu) % + (—log v)ﬁ} } 03 € (0,1) log (1 93> 1—1063
Gaussian'(n") @3 (271 (u), <I>_1(v);c93) A3 € [-1,1] tanh™%(63) %arcsin(@g)
Xp | — 1
Gumbel ¢Go") e : loi(v) Off‘/)gg 0 € [1,00)  log(fs — 1) g
1—{(1—uw)f +(1—v)s

Joe ("Jo™) (1{£ )P uzl ; }11}/)93 03 € (1,00)  log(f3 — 1) 1+ D2(93)
Plackett ¢ pL") ( R) /{2065 — 1)} 05 € (0,00)  log(fs) -
Student-t ¢ T") toc ( RORIONe 93) 95 € [~1,1] tanh—!(63) 2 arcsin(63)

Table 1: Definition of copulae implemented @URM, with corresponding parameter range of association paramgtdink function of 63, and
relation between Kendall’s andfs. @2 (-, -; 03) denotes the cumulative distribution function (cdf) of a sl bivariate normal distribution with
correlation coefficients, and®(-) the cdf of a univariate standard normal distributia@;g(-, -; ¢, 03) indicates the cdf of a standard bivariate
Student-t distribution with correlatiofy and fixed( € (2, o) degrees of freedom, and(-) denotes the cdf of a univariate Student-t distribution

2(1—63)
with ¢ degrees of freedonD; (03) = s 093 Wdt is the Debye function anfd; (63) fo tlog(t)(1—t) %  dt. Quantitiesy and

R are given byl + (65 — 1) (u + v) and@? — 403 (03 — 1)uw, respectively. The Kendall’s for "pPL." is computed numerically as no analytical
expression is available. ArgumeBivD of gjrm () in GJRM allows the user to employ the desired copula function and easebto any of the
values within brackets next to the copula names in the firstron| for exampleBivD = "Jo". For Clayton, Gumbel and Joe, the number after
the capital letter indicates the degree of rotation reguitiee possible values ate 90, 180 and270.

p1 andp, of population parameters. The distributions #gf implemented for this work in the
R packagecJrM are the normal'(N"), log-normal ¢LN"), Gumbel ¢ Gu"), reverse Gumbel
("rGU"), logistic ("Lo"), Weibull ("WEI"), inverse Gaussiar'¢G"), gamma (GA"), Dagum
("DAGUM"), Singh-Maddala'(sn"), beta ¢BE") and Fisk ('F1SK"); their definitions can be
found in Stasinopoulos et al. (2017b). For the binary selactariableY;, probit, logit and
cloglog models can be employed. The choice of the link function fodetiing Y; determines
the type of the distribution assumed for the latent selactaviableY;*. For example, it’}* follows
a normal distribution with meaé, = 60, ; = 7, ; and variance equal tbthen a probit regression
model arises. In this casg, = 1.

Argumentmargins of gjrm () in GIJRM allows the user to employ the desired link function
and outcome distribution and can be set to any of the valutisated above within brackets.
For examplemargins = c("cloglog", "GU"). The list of possible copulae, which are

implemented irGJRM, is given in Table 1.

2.2. A special case: one-parameter exponential families
In this section, we assume that has a density that belongs to the one-parameter exponential
families, which is useful since it allows us to provide arenaisting insight into the correction

mechanism underlying the selection approach. In partictlais assumed to have a density of



the form

fo(y51n2) = exp {yzn2 — b2(m2) + ca(y3) } (2.2)

for some specific functions(-) andc,(-), wheren, is the natural parameter. He, = 7, and
po = 1. Itholds thatE(Y5") = by (n2) andVar(Ys") = b3 (n9), wherebl,(-) andbi(-) are the first and
second derivatives of functidn(-), respectively (van der Vaart, 2000, p. 38).
Assume now thatY;", Y5") is an absolutely continuous random vector. Then the joinsitig
of (Y7, Y5) is
P = s Colw)| - AORA05)

The log-likelihood function for such defined sample setattmodel can be obtained by condi-

tioning with respect to the value of the selection variajlécf. Smith (2003), p. 108) and equals

0
2
Using (2.1), we obtain
0 . 0 . 0
ay; F(O7y2) Y=Yz - a_yékC%(Fl(O)’FQ(y?))‘y;:Yg = %Ces(Fl(O)aU)|UZF2(Y2)f2(}/2)'

Thus,
(= (1—=Y1)log F1(0) + Y1 log (fa(Y2)2z(Ya, mi,m2)),

Wherez(yz,m,ng) =1- %093(F1<0)’v)‘v At the same timefg(yz)Z(yg,ﬁl,ng) =

=Fa(y2)’
P(Y7 > 0,Y5 = y2), which is implied by the very definition of likelihood. Hence

2(y2,m,me2) = P(Y)" > 0]Yy = up),

which has an intuitive interpretation: the probability betoutput being observed given that its
latent value ig.

Using (2.2), the log-likelihood can be written as
t=(1—-Y1)log F1(0) + Y1(n2Y2 — ba(n2) + c2(Y2) + log (2(Y2, m1,72)) - (2.4)

The fact thatE(Y;) = b (n,) implies

0 0
—40V =Y;(Yy — Yi—1 Y5
87726 1(Ye — o) + 18172 og (2(Ya,m,m2)),



whereu, = E(Y2). Note that the first term in the expression above is equaldcstore for the
standard model, when the sample selection does not appedremceY; always equals 1 and
z(Ya,m,m2) = 1. The second term corrects the score for sample selectisnbgng the fact that
the expected value of the score is equal tohen evaluated at the true parametersn,, 65 or,

more generally, at their values that minimize the Kullbaekbler loss, we obtain

0
B (Vi g (2 ) ) = ~Con(Yi, Y
2

Thus, the stronger the correlation between outcomes ardtgel mechanism, the further away
from 0 the second term of the score is expected to be, hence implyeaer influence on the
estimates ofj,. The Fisher informatiod (r;) = —E (5—%6) for ny is

2

1) = —E (=Yit§(m) + 2510 (=2, m,)))
= Var(¥3)P(Yi = 1) — E (25 log (=(Y2,m.70)))

whereas the Fisher information for the model without sarsplection is/ (1;) = Var(Y5").

2.3. Additive predictors and penalized regression splepresentation

In line with the latest developments in the spline literat(e.g., Wood, 2017), we assume the

additive form for the model’s predictors. That is,

P ) = gD £ D) ). @)

k.j k,j

To flexibly represent the components in (2.5), we employ #reafized regression spline approach
(Eilers and Marx, 1996). Specifically, for each= 1,...,D; ; we approximatengk’j)(x) by a

linear combination of basis functiorﬁf’ff)(x) and coefficients,

K

> B8 B;(w). (2.6)
j=1

In the following equations, we drop the superscripf(df”j) to avoid an over-complicated display.

However, we have to bear in mind that, = K" still depends ork andj. We define vectors
(57 ¢ RE as
(59 = (ﬁ (kd) 6('” )T forv=1,..., Dy,

€ R? whereq = 330 _, l £ 2Pk K,. Thus, equa-



(k.4)

tion (2.6) implies that the vector of evaluatio@f,’“’j) (2 can be

written asx3 where the row vectok holds the values ij(:rff;’j)) forv =1,...,Dy;, j =
1,...,pr, andk = 1,2,3. The row vectors evaluated for each one af observations in the
random sample will form the design matd&

Each3{"" has an associated quadratic penalfy”’ ( ff“’j))T D) 8" whose role is to
enforce, during fitting, specific properties of the functiyiﬁj)(x), such as smoothness or shrink-
age. Matring’“j) depends on the choices made to implement equation (2.6, aui )
and the definition adopted fd8,(x). The smoothing paramete\t(f’j) > 0 controls the trade-
off between fit and smoothness, and plays a crucial role iardehing the shape of the esti-
mates of smooth functionﬁﬂk’j)(x). The overall penalty can be defined A5Q(\)3, where
Q(A) = diagAWF'DED: v = 1. Dyjij=1,....p: k=1,2,3).

The set up described above can allow one to account for déypes of covariate effects such
as linear, non-linear, spatial, random and functionalot$ieWe refer the reader to Wood (2017)

for the exact definitions of the spline bases and penaltiethéabove mentioned cases.

3. Some estimation and inferential details

For a givenn € N, assume thatYy;, Y2;)!, are independent random variables related to
covariate valuexgk’j) fori = 1,...,n such that}, = (Y5 > 0) andYs; = Y5iY);, whereY:
andY5: are distributed according to (2.1). LEt;, and F,; denote the distribution functions &f}
andYy:, and letF;(-, -) be the joint cdf of the paifY;, Y5:).

In order to estimate the overall vector of paramei@rsve employ a penalized likelihood
approach to avoid overfitting. The log-likelihood given thteserved random sample,;, y2;)",
is given by

n

UpB) = Z(l — y1:) log F1:(0) + Zyu log {P(Y1; = 1, Y2 = y2)}

=1 =1
if Y5, is and

n

Up) = Z(l — y1:) log F1:(0) + Zyu log (fQi(yZi) - aiy;Fi(O, Ys)
i=1

=1

y§=y2i)

if the outcome is continuous, based on (2.3). The penalagdikelihood is given by

6(8) = (B) - 38TQNB.



Estimation of3 and X is achieved by adapting to this context the stable and efti¢reist re-
gion algorithm with integrated automatic multiple smoathparameter selection by Marra et al.
(2017). This required working with first and second ordenyieal derivatives which have been
tediously derived and verified using numerical derivativ&l relevant quantities have been im-
plemented in a modular way. This means that no substanbgr@mming work will be required
to incorporate copulae and marginal distributions not wered in this article, as long as their
cumulative and probability density functions are known #relr derivatives with respect to their
parameters exist.

At convergence, reliable point-wise confidence intervalslihear and non-linear functions
of the model coefficients can be obtained using the Bayesige lsample approximatio@ ~
N(B,—H,(B8)"!), whereH,, is the penalized model's Hessian (Marra et al., 2017). Valer
derived using this result have good frequentist propediese they account for both sampling
variability and smoothing bias. Furthermore, intervalsdny non-linear function of the model’s
coefficients can be conveniently obtained by simulatiomftbe posterior distribution g8.

The theoretical properties of the proposed estimator cbaldtudied by considering a fixed
number of knots for the basis functions, in which cas€ asymptotic results can be straightfor-

wardly obtained.

3.1. Software
The models can be employed via thérm () function in ther packagesJRM (Marra and Radice,

2018). An example of call is

fl <- list(yl ~ x1 + s(x2) + s(x3),
y2 ~ x1 + s(x2),
~ x1 + s(x3),
~ x1 + s(x2))

md <- gjrm(fl, margins = c("logit", "WEI"), BivD = "PL", Model = "BSS")

wheref1 is a list containing four equations (the first for the selattequation, the second and
third for the two parameters of the response distributiord #he fourth for the copula depen-
dence parameterpargins specifies the marginal distributions ardvD the copula. Argument

Model = "BSS" means that a bivariate model with sample selection will bpleyed.

4. Simulation study

The aim of this section is to assess the empirical propeofi¢se proposed modelling ap-

proach. To this end, we consider three main scenarios. Imasicel, we use logistic and gamma



margins which are linked via the Clayton copula with parameje= 3 (equivalently, Kendall’s
7 = 0.6). Here, only the means of the marginal distributions areifipe as functions of additive
predictors. Specifically,

p1 = o + oz + 51(v2),

log p1a = Bo + sa2(x2) + Przs,

whereay = —0.8, a; = —1.3, By = 0.1, 81 = —0.9, s1(z) = z + exp(—30(z — 0.5)?) and
So(x) = sin(27x).

Scenario Il is essentially the same as scenario | but botlyinsaare Gaussian, with identity
link functions, and the copula employed is the Gumbel With- 2.5 (Kendall'sT = 0.6).

In scenario Ill, data are generated using Gaussian and Gunargins, and the Joe copula.

In this case, all the parameters of the bivariate distrdsutlepend on additive predictors. That is,

1 = ap + a1 + $1(x2) + aows,
2 = Bo + s2(x2) + Bias,

log(0?) = B3 + B3,

log(03) = B4 + a1 + s3(x9),

whereay = —0.8, oy = —1.3, a5 = 1, By = 0.1, B, = —0.9, 85 = 0.5, 87 = 1, ¢ = 1.1,
B9 = —1.4,s,(x) = z+exp(—=30(x —0.5)?), so(x) = sin(27z) andsz(z) = 0.6(e” +sin(2.92)).
Note that the marginal distributions are parametrisedraeg to Stasinopoulos et al. (2017b).
The simulated data-sets consist of two continuous outcoores binary covariate and two
continuous regressors. The first continuous responsehgtimised since it refers to the selec-
tion equation. Sample sizes are set to 1000 and 5000, thearurhbeplicates to 1000, and the
models fitted usingyjrm () in GJRM. Each smooth function is represented using a penalized
low rank thin plate spline with second order penalty and 1€ibfunctions. For each replicate,
smooth function estimates are constructed using 200 gegpced fixed values in th{e, 1) range
(e.g., Radice et al., 2016). Exact details on the generafitineosimulated datasets are given in

Appendix A.

4.1. Results

In this section we focus on the results obtained for the ougcequation, which is the one of
interest, as well as for the Kendallis Figure 1 displays the findings for case of data generated

according to scenario I. In this case, estimates are shomthéanodels based on:

¢ logit and gamma margins with a Clayton copula (the correctet)od
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e logit and inverse Gaussian margins with a Clayton copuladtiieome distribution is mis-

specified);

¢ logit and gamma margins with the classic Gaussian coputad@pendence structure is mis-

specified).

We chose the inverse Gaussian since it has the same meanafghleagamma (Stasinopoulos et al.,
2017b), hence facilitating the comparison of estimates. Mthe model is correctly specified,
all mean estimates are very close to the true values and,pastexi, their variability decreases
as the sample size increases. Misspecifying the margirtabme distribution has a substantial
detrimental impact on all the parameter estimates, hemessatg the importance of choosing a
suitable outcome distribution in practical situations.iigsthe incorrect dependence also affects
the estimates (although in a less pronounced manner), lempbasizing the potential benefits
of allowing for non-Gaussian structures. We also fitted no8ased on other copulae (such as
Frank, FGM, AMH and Joe available tn7RM) and the findings were similar. Moreover, the cor-
rect model was always selected by criteria such as AIC and Bi€spécifying the link function
(using probit and cloglog links) for the selection equatibe not significantly affect the results.
Perhaps this is not surprising given that all links produeeny similar predicted probabilities for
the selection response variable. Nevertheless, the bilaylaof different link functions allowed
us to assess the impact of this misspecification on the paessnef interest. Using a 2.20-GHz
Intel(R) Core(TM) computer running Windows 7, model fittingokoon average 2 seconds for
n = 1000, and 7 seconds fat = 5000. Increasing the number of basis functions to 20 did not
have a noticeable impact on the results but increased camgptirne by abouR0% on average.
Moreover, using other spline definitions (such as penaltzdxc regression splines and P-splines)
virtually led to identical results. These findings were soinat expected and have also been
documented in similar contexts by (Wood, 2017).

The results for scenario Il are given in Figure 2. Estimatesshown for the models based

on:
e probit and Gaussian margins with a Gumbel copula (the comedel);

e probit and Gaussian margins with the classic Gaussian adth# dependence structure is

misspecified).

The conclusions are similar to those obtained for scena8pécifically, for the correctly specified
model the mean estimates are close to the true values andribbility of the estimates decreases

as the sample size grows large, whereas using the incogpenhdence structure affects negatively

11



all the parameter estimates. Using various copulae theciomodel was always picked by AIC
and BIC, link function misspecification did not really alteethstimates, computing times were
similar to those found for scenario I, and increasing the Imemof basis functions and using
different spline’s definitions did not have a tangible imipaw the results. We have not reported
the results obtained when misspecifying the marginal audistribution as these were nearly
identical to those obtained for scenario I.

The results for scenario Il are given in Figure 3 and are éhaseprobit and Gumbel margins
with a Joe copula (the correct model). This scenario is moneptex than the previous ones in
that all distributional parameters are specified as funstiaf covariates. The findings show that
the approach can estimate all the model components failly avel that the estimates improve as
the sample size increases. The components in the addigdicpor of the dependence parameter
are estimated less precisely than those of the others. fthisaites that the effects of covariates
on the association between the selection and outcome egaatiay be more difficult to estimate.
This is reasonable given that the likelihood contributitordhe association parameter come from
the selected sample of observations only. Average congptitimes were about 16 seconds for
n = 1000, and 42 seconds for = 5000. We also tested the models under misspecification of
the dependence structure and marginal outcome distributiche former case, the findings were
similar to those for scenarios | and II; using the incorrempula affects adversely the parame-
ter estimates in terms of bias and efficiency. In the latteecthe models failed to converge in
many of the iterationss6% for n = 1000 and43% for n = 5000) and for the converged models
computing times were between 20 and 30 times those repdrteaeaThis highlighted the impor-
tance of choosing an appropriate distribution for the omewariable, especially when the model
specification is complex.
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5. Empirical application

As a real world application, we consider the study of theatff®f insurance status and man-
aged care on hospitalization spells previously analyseBrigger (2002). The data set is based
on a nationally representative survey of US medical cared{téd Expenditure Panel Survey) and
it contains information about the length of individuals'dpital stays in 1996 along with factors
such as membership in health maintenance organizatioe,dymsurance, health status, demo-
graphic variables, sex, race, marriage, employment séaidisjuantitative variables including age,
years of education, number of self-reported medical caditand number of conditions on the
priority list. A detailed description of the variables caa tound in Table 3 given in Appendix
B. The sample used in the analysis consistd4H46 observations. The response variable for
the selection equation is whether an individual had a hakpiay. If the link between hospital
admittance and the spell of hospital stay is not through mhbées alone then sample selection
bias arises and using a univariate regression approach alaquate.

These data were studied by Prieger (2002) who motivatessb@itthe gamma distribution
to model the length of hospital stay, uses a probit sele@gration, and fits three models based
on the assumption of independence, and on the Gaussian didcB@ulae. All the covariates
entered the selection and outcome equations parametriPaikger found, for instance, that non-
random sample selection was present and, based on varitargacchose the FGM copula which
produced a negative and significant estimated dependetheedrethe two equations.

We re-analyse these data by considering a wider set of nargiricome distributions, link
functions and copulae. We also employ smooth functions efaagl years of education (using
the same set up described in the simulation study), andfgpatiparameters of the marginal
distributions as functions of additive predictors.

Regarding the marginals, we chose the probit link and fouad tte inverse Gaussian in-
stead of the gamma distribution provides the best fit as gidgethe plots of normalised quantile
residuals (Stasinopoulos et al., 2017b) and informatidara (see Figure 4). Using the logit and
cloglog links for the selection equation did not affect tlesults. As for the choice of copula,
we started off with the Gaussian, Frank, FGM, AMH, Studeati! Plackett (since they allow
for both positive and negative dependence) and then emplalyef the remaining copulae that
were consistent with the sign of dependence found. For thigirecal application, we tried all
copulae available as there was not a clear indication otigesir negative dependence. In all
cases, the values farwere very close to zero as well as non significantly diffefesrn zero for

those copulae admitting both positive and negative assmciaThe AIC and BIC values across
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Figure 4: Histograms and Q-Q plots of normalized quantiledress for length of hospital stay produced after fitting dapuodels based on the
inverse Gaussian (top) and gamma (bottom) distributions. T@eQts also exhibit reference bands for judging the reieeeof departures from
the red reference lines. AIC and BIC values are 15413.15 8261104 for the model with inverse Gaussian outcome distabwtnd 15616.74

and 16351.86 for the model with gamma distribution.
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Copula AlC BIC

N 15413.15 16101.04
F 15413.02 16101.95
FGM 15412.96 16101.96
AMH 15412.94 16101.96

T 15469.05 16222.56
PL 15413.04 16101.94
HO 15414.38 16091.43
co 15412.53 16100.63
Jo 15414.40 16090.91
GO 1541451 16100.78

C90 15413.36 16101.37
J90 15411.32 16092.09
G90 15411.32 16092.09
C180  15418.19 16093.86
J180  15413.31 16101.55
G180  15411.32 16092.09
C270  15411.32 16092.09
J270  15412.86 16102.81
G270  15414.87 16103.51

Table 2: Comparison of AIC and BIC values under different damssumptions, and probit and inverse Gaussian margins.

copulae were fairly close in most cases (see Table 2). Thessemewhat expected given that no
significant association between the equations was detedtiedll copulae.

Appendix B shows the summary output obtained from the finadl@hwhich is based on the
270° Clayton copula and probit and inverse Gaussian margins. @nmg other copulae (for in-
stance180, G90, J90) produced nearly identical results. The main findings casumemarised

as follows:

e As argued by Prieger (2002), the association (positive gatiee) between admittance and
length of stay may suggest the presence of specific selegtemhanisms. He also states
that there is no a priori expectation on the sign of the depeoel. As opposed to Prieger’s
finding of a negative association between the selection atuwbme equations, we found that
non-random sample selection is not present when using tlees@ Gaussian (the distribu-
tion supported by the data). However, when using the gamnaoaitaeme distribution and
the FGM copula (as well as other copulae such as Gaussiamnk,FBtudent-t and Plackett)
we found that the association parameter is negative andisatt (e.g.,7 = —0.514 with
(—0.589, —0.428) as95% confidence interval for), which is line with Prieger’s result. Our
simulations show that misspecifying the outcome distrdsutan have a severe detrimental
impact on the parameter estimates including the KendallBhis all suggests that Prieger’s

finding is biased by the choice of gamma distribution for thecome equation.
e Selection equation: from the summary output for equatiorefiprted in Appendix B, we
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observe for instance that the insurance variaple$vins, medicare andmedicaid
increase the probability of hospital admittance, that sftdcts are either reinforced or tem-
pered byprivmcare, privmcaid andmcaremcaid, and that covariateemopriv,
hmomcare, hmomcaid have no significant effect on hospital admittance. Moreovei-
ablescondn, priolist, adlhelp andpoorhlth increase the probability of hospital
admittance. These findings are consistent with those ofj@ri&002) to which the reader is

referred to for a more through discussion.

The estimated smooth functions for age and years of educat® displayed in Figure 6,
Appendix B. The effect of education is not significant and helanear (see also respective
p-value reported in the summary output). On the other hdredeffect of age is non-linear
and significant; its shape suggests that age decreasesttabpity of hospital admittance
up to about 45 years and then increases such probabilityaité. This may be due to the
fact that age embodies productivity and life-cycle effelots are likely to affect the responses

considered in this study non-linearly.

Outcome equation: from the summary output for equation 2 baerve for example that
poorhlth andadlhelp significantly lengthen the stay in hospitalnopriv decreases
the stay, thapbrivins does not influence the outcome, and thatii care decreases the
duration of stay. Our findings are in agreement with thoserigger (2002). Note, however,
that different distributions and parametrizations are leygal in two analyses, hence an exact

comparison is not possible.

The estimated smooth function for years of education (notvshhere) is linear and non-
significant (as also supported by the respective p-valubeanstmmary output). Figure 5
shows the effect of age on the average hospital stay durdtisnggests that as age increases
the average length of hospital stay increases up to 35, aseseand then increases again
after 45. It may be argued that, given the width of the configeintervals, a straight line
relationship is also suitable here. In the absence of a flotesa of linearity of a smooth
function for the current modelling framework, an informadication of whether a simpler
model would be appropriate can be obtained using informatrderia. Specifically, AIC
and BIC values aré5411.32 and16092.09 for the model with non-linear effect for age, and
15420.02 and16064.05 for the model with linear effect; the conclusions reachedhgytwo

criteria are discordant and a definitive answer can not béqgbed in this case.

A univariate analysis using the selected sample of obgensbnly led to the same results
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Figure 5: Effect of age on the the mean of hospital stays (ldackinuous line). The dashed lines represent 95% confidater@als.

as those for the copula model’s outcome equation. This isuqdrising given that, as dis-

cussed previously, no significant association betweendheetion and outcome equations

was found.

e Copula models where dependence parantgteras specified as a function of various com-
binations of covariates were also fitted. This allowed usdptare potential heterogeneity
in the selection process, hence possibly justifying theall/aon significance of the depen-
dence parameter potentially due to compensating effeatsvelfer, the results consistently

pointed to the lack of significant association between thecien and outcome equations.

The analysis presented in this section has extended Ps&ger by considering a wider set
of marginal distributions and copulae as well as non-lireesariate effects. Using the proposed
modeling framework we found evidence of non-linearity fome covariate effects and that non-
random sample selection does not seem to be present whenyaéngpihe outcome distribution
that is most supported by the data (inverse Gaussian indkes)cAlthough the absence of selec-
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tion bias may be regarded as a ‘non-finding’ at first, we arg¢pa¢ our result still has important
implications for the study of selection bias since using aanmestrictive set of modelling choices

may lead to unfounded speculations on the presence ofrceghaction mechanisms.

6. Discussion

We have introduced an extension of GAMLSS which accountadorrandom sample selec-
tion. The proposed approach is flexible in that it allows fiffedent parametric distributions of
the selection and outcome variables, several types of depee structures between the model’s
equations, and for various types of covariate effects. ¢J#e special case of one-parameter
exponential families, we have elucidated the nature of titeection mechanism underlying the
selection approach. Parameter estimation is carried dbtrwa penalized likelihood framework
based on a trust region algorithm with integrated smootpigagmeter selection. The approach
has been illustrated in simulation and through a case stédlynew developments have been
incorporated in th& packagesJRM (Marra and Radice, 2018).

Many marginal distributions and copulae have been consibigr this work and we plan on
extending the set of choices available. Future researdHomk into generalising the proposed
sample selection GAMLSS framework to empirical situatiovizere rules of double selection

exist (e.g., Smith, 2003; Zhang et al., 2015), exploitingifstance C- and D-Vine constructions.
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Appendix A: R codesto generate data for scenariosl, Il and |11

For the first two scenarios, data were generated using tlusvio R code.

library (copula); library(gamlss.dist)

library (GJRM)
cor.cov <—- matrix (0.5, 3, 3); diag(cor.cov) <- 1

sl <- function(x) x + exp(-30x(x — 0.5)"2)

s2 <- function(x) sin(2*pix*x)

datagenl2 <- function(cor.cov, sl, s2, scen = 1){

21



cov <- rMVN(l, rep(0,3), cor.cov)

cov <- pnorm(cov)

x1 <= cov[, 1]

x2 <-= covl[, 2]

x3 <— round(cov([, 3])

eta_mul <- -0.8 - 1.3*x1 + sl (x2) + x3

eta_mu2 <- 0.1 + s2(x2) — 0.9%x3
speclistl <- list( mu = eta_mul, sigma = 1)
if(scen == 1) {
speclist2 <- list( mu = exp(eta_mu2), sigma = 3)
spec <- mvdc (copula = Cop, c("LO", "GA"), list(speclistl, speclist2) )
Cop <- archmCopula (family = "clayton", dim = 2, param = 3)
lelse{
speclist2 <- list( mu = eta_mu2, sigma = 2)
spec <- mvdc (copula = Cop, c("NO", "NO"), list(speclistl, speclist2) )
Cop <- archmCopula (family = "gumbel", dim = 2, param = 2.5)
}
resp <- rMvdc (1, spec)

resp[l] <- resp[l] > O

c(resp, x1, x2, x3)

}

Package-opula (Yan, 2007) contains functiorsrchmCopula () ,mvdc () andrMvdc ()
which allow one to simulate from the desired copula. Packagel ss . dist (Stasinopoulos et al.,
2017a) contains all the functions required to simulate tilaegmnals adopted here, arthvN ()
(from GJRM) allows one to simulate Gaussian correlated variables.cohrelation matrix used to
associate the three simulated Gaussian covariatesdscov, whereasov <- pnorm(cov)
allows one to obtain Uniform(0,1) correlated covariateg.(eGentle, 2003). A balanced binary
regressor is created usimgund (cov [, 3]).Functionss1 ands2 produce curves with differ-

ent degrees of complexity. The variosisa refer to the model’s additive predictors. If necessary,
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these are transformed #peclistl andspeclist2 (and alscarchmCopula for scenario

[l below) to ensure that the restrictions on the paraméspaces of the bivariate distributions are
maintained. In the first two scenarios the copula dependesa@aneters are set to 3 and 2.5 which
correspond to a Kendall’s of 0.6.

The code used to generate data for scenario Il is given below

datagen3 <- function(cor.cov, sl, s2, s3){

cov <- rMVN(l, rep(0,3), cor.cov)

cov <—- pnorm(cov)

zl <= cov([, 1]
z2 <—- cov/[, 2]

z3 <— round(cov[, 31)

eta_mul <—- -.8 — 1.3%z1 + sl(z2) + z3
eta_mu2 <- 0.1 + s2(z2) — 0.9%z3
eta_si2 <- 0.5 + z3

eta_the <= 1.1 - 1.4xz1 + s3(z2)

Cop <- archmCopula (family = "joe", dim = 2,

param = exp(eta_the) + 1 + 1e-07)

speclistl <- list( mu eta_mul, sigma 1)

speclist2 <- list ( mu eta_mu2, sigma = sqrt(exp(eta_si2)))

spec <- mvdc (copula = Cop, c("NO", "GU"), list (speclistl, speclist2)

resp <— rMvdc (1, spec)

resp[l] <- resp[l] > O

c(resp, zl, z2, z3)
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Variable Description Mean SD

hospstay Binary variable: 1 = individual had hospital stay 0.09 0.29
hospdur Length of all hospitalizations, given HOSPSTAY =1 743 HL.3
hospnum Number of hospital stays, given HOSPSTAY =1 1.42 0.85
adlhelp 1 =requires assistance with daily living tasks 0.04 0.20
age Age 4440 17.31
Black 1 = black (not hispanic) 0.12 0.33
condn Number of self-reported medical conditions 168 191
educ Years of education 12.38 3.16
employed Employment status: 1 = currently employed 0.65 0.48
exclhlth 1 =individual reports health to be ‘excellent’ 029 045
female 1 =female 0.54 0.50
Hispanic 1 = of hispanic ethnicity 0.18 0.38
hmomcaid 1 =enrolled in a HMO and covered by Medicaid 0.03 0.18
hmomcare 1 =enrolled in a HMO and covered by Medicare 0.04 0.19
hmopriv 1 =enrolled in a HMO and covered by private insurance 0.33 70.4
married Marital status: 1 = currently married 0.57 0.49
mcaremcaid 1 = currently covered by Medicaid and Medicare 0.02 0.16
medicaid 1 = currently covered by Medicaid 0.09 0.28
medicare 1 = currently covered by Medicare 0.17 0.38
MidWest Regional indicator (EAST is the excluded dummy) 0.22 042
poorhlth 1 =individual reports health to be ‘poor’ 0.04 0.20
priolist Number of conditions on the priority list 0.54 1.00
privins 1 = covered by private insurance of any type 0.66  0.47
privmcaid 1 = covered by private insurance and Medicaid 0.01 0.08
privmcare 1 = covered by private insurance and Medicare 0.10 0.29
South Regional indicator (EAST is the excluded dummy) 035 048
West Regional indicator (EAST is the excluded dummy) 0.23 042

Table 3: MEPS data: variable definitions and summary stagistit hospitalization variables are for 1996. This tablé&dn Prieger (2002).

Appendix B: summary results from model selected in empirical application

COPULA: 270 Clayton
MARGIN 1: Bernoulli

MARGIN 2: inverse Gaussian

EQUATION 1

Link function for mu.l: probit

Formula: yl ~ privins + medicare + medicaid + hmopriv + hmomcare + hmomcaid +
privmcare + privmcaid + mcaremcaid + condn + priolist + exclhlth +
poorhlth + adlhelp + MidWest + South + West + female + s (age) +

Black + Hispanic + s(educ) + married + employed

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.850351 0.069180 -26.747 < 2e-16 *x*x*

privins 0.188455 0.054576 3.453 0.000554 xxx
medicare 0.301470 0.092851 3.247 0.001167 *=*
medicaid 0.470590 0.078475 5.997 2.01e-09 *xxx
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hmopriv 0.030331 0.042296 0.717 0.473299
hmomcare 0.026591 0.076898 0.346 0.729490
hmomcaid -0.037339 0.092341 -0.404 0.685947
privmcare -0.208284 0.080720 -2.580 0.009870 =*x*
privmcaid 0.355882 0.157468 2.260 0.023820 =
mcaremcaid -0.493067 0.111832 -4.409 1.04e-05 **x*
condn 0.082802 0.010335 8.012 1.13e-15 *x*x*
priolist 0.065037 0.019043 3.415 0.000637 xxx*
exclhlth -0.149980 0.039539 -3.793 0.000149 =xxx*
poorhlth 0.219394 0.064518 3.400 0.000673 xxx*
adlhelp 0.338518 0.064002 5.289 1.23e-07 xxx*
MidWest 0.020925 0.047101 0.444 0.656850
South 0.009535 0.043418 0.220 0.826183
West -0.085877 0.048660 -1.765 0.077589
female 0.149305 0.032633 4.575 4.76e-06 xxx
Black -0.028681 0.049880 -0.575 0.565286
Hispanic 0.084497 0.046239 1.827 0.067643
married 0.105973 0.034991 3.029 0.002457 =%
employed -0.163872 0.040729 -4.023 5.74e-05 =xxx*

Signif. codes: 0 ‘x%x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘. 0.1 " 1

Smooth components’ approximate significance:
edf Ref.df Chi.sqg p-value

s(age) 6.008 7.176 37.165 5.33e-06 x*x

s(educ) 1.785 2.236 1.369 0.496

Signif. codes: 0 ‘xxx’ 0.001 ‘xx’ 0.01 ‘%’ 0.05 . 0.1 Y’ 1

EQUATION 2

Link function for mu.2: log

Formula: y2 ~ privins + medicare + medicaid + hmopriv + hmomcare + hmomcaid +
privmcare + privmcaid + mcaremcaid + condn + priolist + exclhlth +
poorhlth + adlhelp + MidWest + South + West + female + s (age) +

Black + Hispanic + s(educ) + married + employed

Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.244987 0.169074 13.278 < 2e-16 #*x%*
privins 0.167173 0.129127 1.295 0.195444

medicare -0.331687 0.185638 -1.787 0.073979
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medicaid -0.015643 0.156081 -0.100 0.920165
hmopriv -0.443685 0.106618 -4.161 3.16e-05 =xxx*
hmomcare 0.523395 0.216804 2.414 0.015772 =
hmomcaid -0.080578 0.186132 -0.433 0.665082
privmcare -0.096168 0.177819 -0.541 0.588631
privmcaid 0.509183 0.242352 2.101 0.035640 =*
mcaremcaid 0.143036 0.220478 0.649 0.516496
condn 0.004007 0.022184 0.181 0.856672
priolist 0.082884 0.043742 1.895 0.058118
exclhlth -0.047858 0.089880 -0.532 0.594402
poorhlth 0.434519 0.143721 3.023 0.002500 ==
adlhelp 0.355209 0.145970 2.433 0.014956 =
MidWest -0.188903 0.111958 -1.687 0.091552
South -0.096852 0.105099 -0.922 0.356777
West -0.383978 0.112817 -3.404 0.000665 =xxx*
female -0.484550 0.092887 =5.217 1.82e-07 =xxx*
Black 0.366785 0.114616 3.200 0.001374 =%
Hispanic 0.067553 0.093491 0.723 0.469948
married -0.123221 0.078603 -1.568 0.116966
employed -0.113859 0.081580 -1.396 0.162810

Signif. codes: 0 ‘“xx%x’ 0.001 ‘%%’ 0.01 ‘%’ 0.05 ‘.7 0.1 ' 1

Smooth components’ approximate significance:
edf Ref.df Chi.sg p-value

s(age) 6.791 7.908 52.609 1.16e-08 =xx*x

s(educ) 1.000 1.000 0.007 0.934

Signif. codes: 0 ‘x%x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘. 0.1 " 1

EQUATION 3

Link function for sigma2: log

Formula: ~privins + medicare + medicaid + hmopriv + hmomcare + hmomcaid +
privmcare + privmcaid + mcaremcaid + condn + priolist + exclhlth +
poorhlth + adlhelp + MidWest + South + West + female + s (age) +

Black + Hispanic + s(educ) + married + employed

Parametric coefficients:
Estimate Std. Error z value Pr(>]|z])
(Intercept) -1.437645 0.198799 —=7.232 4.77e-13 *x#*x*

privins 0.412330 0.156008 2.643 0.00822 =xx
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medicare 0.004227 0.207456 0.020 0.98375
medicaid 0.365449 0.207283 1.763 0.07789
hmopriv -0.270515 0.118284 -2.287 0.02220 =
hmomcare 0.505104 0.190237 2.655 0.00793 ==
hmomcaid 0.218626 0.215001 1.017 0.30922
privmcare 0.049511 0.198518 0.249 0.80305
privmcaid -0.845025 0.326819 -2.586 0.00972 *x
mcaremcaid -0.460742 0.261357 -1.763 0.07792
condn 0.032792 0.022851 1.435 0.15128
priolist -0.072283 0.039988 -1.808 0.07067
exclhlth 0.047090 0.116003 0.406 0.68479
poorhlth -0.088651 0.143464 -0.618 0.53662
adlhelp -0.223425 0.132612 -1.685 0.09203
MidWest -0.159945 0.124918 -1.280 0.20040
South -0.167665 0.114324 -1.467 0.14249
West -0.039339 0.127541 -0.308 0.75774
female -0.100680 0.092344 -1.090 0.27559
Black -0.235727 0.134401 -1.754 0.07945
Hispanic 0.018131 0.124514 0.146 0.88423
married -0.045687 0.092462 -0.494 0.62123
employed 0.136274 0.109383 1.246 0.21282

Signif. codes: 0 ‘x%x’ 0.001 ‘%%’ 0.01 ‘x’ 0.05 ‘. 0.1 '’ 1

Smooth components’ approximate significance:
edf Ref.df Chi.sqg p-value
s(age) 2.255 2.868 4.803 0.156

s (educ) 1.000 1.000 0.322 0.570

EQUATION 4
Link function for theta: log(- .)

Formula: ~1

Parametric coefficients:
Estimate Std. Error z value Pr(>]|z])

(Intercept) -20.68 348.64 -0.059 0.953

n = 14946 n.sel = 1346
sigma2 = 0.293(0.207,0.42)

theta = -4.14e-08(-100,-4.14e-08) tau = -2.07e-08(-0.98,-2.07e-08)
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total edf = 87.8
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Figure 6: Selection equation: smooth effects for age andsyafaaducation and associated’ point-wise intervals obtained from the final model
which is based on thg70° Clayton copula and probit and inverse Gaussian margins. tghplot, at the bottom of each graph, shows the covariate
values. The number in brackets in the y-axis of each plot'si@apepresents the effective degrees of freedom of theertise smooth curve.
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