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Highlights 

 Numerical examination of the aerodynamic breakup of four Diesel droplets in tandem 

formation at representative engine conditions. 

 Identification of a new breakup mode in the multi-mode regime, termed as “shuttlecock”. 

 Droplet proximity becomes important for non-dimensional distances between the droplets 

lower than 9. 

 Drag coefficient and liquid surface area of the “representative chain droplet” are lower than 

the corresponding ones of the isolated droplet; breakup initiation time is longer and the 

critical We number is higher. 

 Proposed correlations to predict the drag coefficient, liquid surface area, breakup initiation 

time and critical We of the “representative chain droplet”. 
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Abstract 

The present work examines the aerodynamic breakup of four liquid droplets in tandem formation at 

Diesel engine conditions using the Volume of Fluid (VOF) method. The examined Weber (We) 

numbers range from 15 up to 64 and the non-dimensional distances between the droplet centres 

(L/D0) vary from 1.25 up to 20. Focus is given on the breakup process of the third droplet of the row, 

which is regarded as a “representative chain droplet”; its development is compared against that of 

an isolated droplet at the same flow conditions. It is found that for small distances and depending on 

the We number, the obtained shapes and breakup modes between the droplets are different, with 

the representative chain droplet experiencing a new breakup mode in the multi-mode regime, 

termed as “shuttlecock”. This is characterized by an oblique peripheral stretching of the droplet 

caused by the acting of pressure forces at an off-centre region. Moreover, the drag coefficient and 

liquid surface area of the representative chain droplet are lower than the corresponding ones of the 

isolated droplet, while the breakup initiation time is longer and the minimum We number required 

for breakup (critical We) is higher; correlations are provided to quantify the effect of droplet distance 

on the aforementioned quantities. Generally, the droplet proximity becomes important for L/D0<9. 

Finally, the predicted drag coefficient is utilised in a simplified 0-D model that is capable of estimating 

the temporal evolution of droplet velocity of the representative chain droplet.  

 

Keywords 

Chain droplet breakup; Diesel; drag coefficient; breakup time; critical We. 

 

Nomenclature 

Roman symbols Greek symbols 

A Area [m2] ε Density ratio [-]  

B Average dimensionless deformation rate [-] μ Dynamic viscosity [kg/(m·s)] 

Cd Drag coefficient [-] ρ Density [kg/m3] 

CF Correction factor [-] σ Surface tension [N/m] 
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1 Introduction 

Droplet deformation and breakup occur in a wide variety of systems and applications from mass 

spectrometry to internal combustion engines [1]. The non-dimensional numbers that describe the 

breakup of isolated droplets, i.e. droplets that are not influenced by the presence of other ones in 

their proximity, are the Weber (We), Ohnesorge (Oh) and Reynolds (Re) numbers as well as the 

density (ε) and viscosity ratios (Ν) of the two phases [2]; nevertheless, only four of them are required 

to fully describe the phenomenon since the fifth number can be expressed as a combination of the 

rest. 
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The breakup timescale proposed by Nicholls and Ranger [3] can be used as a convenient non-

dimensionalisation parameter for time: 

 

    
  

      
√  (2) 

 

Although the aerodynamic breakup of isolated droplets has been thoroughly investigated (see for 

example [2] among many others), not much attention has been given to the breakup of a droplet 

cluster, in which there is interaction between the droplets; such cases are more representative for 

sprays having droplets in close proximity. For example, a typical Diesel spray consists of ~107 

droplets, occupying a volume of ~250mm3 [1]; assuming an average droplet size of 10μm [1, 4], the 

average distance between the droplets (L/D0) can be estimated to be around 2.5 but obviously this 

number will take smaller values closer to the injector nozzle. 

The aerodynamic and hydrodynamic interaction between rigid bodies has been initially studied with 

respect to the collective motion of animals, such as flocks of birds, schools of fish and swarms of 

insects. Earlier theoretical works on the flight formation of birds [5-8] focused on the examination of 

D Droplet diameter [m] φ General droplet quantity 

L Distance between droplet centres [m] Subscripts  

N Viscosity ratio [-]  0 Initial 

Oh Ohnesorge number [-]  cr Critical 

P Pressure [Pa] cross Cross-stream 

Re Reynolds number [-]  d Droplet 

S Droplet surface area [m2] f Frontal 

T Temperature [K] g Gas phase 

t Time [s] is Isolated droplet 

t* Non-dimensional time [-] L Liquid phase 

tbr Breakup initiation time [s] max Maximum 

tsh Shear breakup timescale [s]  RCD Representative chain droplet 

U Velocity [m/s] rel Relative 

We Weber number [-] str Streamwise 
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the so called V formation and showed that it is more energetically efficient due to lower drag and 

higher lift, compared to the isolated flying of birds. Later, numerical studies [9-11] verified these 

results by performing CFD simulations with artificial birds (plates or cylinders) and also studied the 

effect of various parameters such as the angle of the V formation, the number of birds and their 

distance. They found that the energy efficiency is higher at larger numbers of birds and lower 

distances, while the formation becomes more stable at larger angles. Moreover, CFD simulations 

with schools of fish [12-20] indicate that swimming in schools is more advantageous than isolated 

swimming in terms of energy efficiency due to lower drag and sideways forces; this was attributed 

mainly to the exploitation of the reverse von Karman vortex streets by the downstream fishes. 

Finally, it was found that triangular and rectangular formations are more efficient than tandem ones, 

indicating that a diamond-like configuration is the most efficient hydrodynamically for the swimming 

of schools of fish. 

Turning now to the the examination of the interaction between liquid droplets, the majority of the 

previous studies is focused on deforming (but without breakup) droplets, characterized by low Re 

and We numbers. Liu et al. [21] studied the deformation of monodisperse droplets both 

experimentally and numerically (using periodic boundary conditions) for Re numbers ranging from 20 

up to 100 and non-dimensional distances between the droplets from 2 to 12. Their study was 

focused on the investigation of the drag coefficient and found that the drag coefficient of droplets in 

an infinite chain is up to an order of magnitude smaller than the drag coefficient of a single isolated 

droplet for L/D0=2. Mulholland et al. [22] studied the drag coefficient of droplets in a monodispersed 

stream for Re numbers ranging from 90 to 290 and L/D0 from 1.7 to 1700. Based on the results of the 

study, an empirical model for the computation of the drag coefficient was proposed, which was able 

to predict the droplet trajectories with acceptable accuracy. Temkin and Ecker [23] investigated 

experimentally the binary interaction of water droplets exposed in the flow behind a weak shock 

wave for Re numbers lower than 150, horizontal distance between the droplets from 1.5 up to 11 

and vertical one from 3 to 6. They concluded that the leading droplet is not affected by the trailing in 

terms of drag force, while the latter experiences reduction in its drag coefficient up to 50% relative to 

its isolated value. Poo and Ashgriz [24] also investigated the variation of the drag coefficient in a 

droplet stream present in a turbulent flow and found a decrease in the drag coefficient by a factor of 

4 to 5 compared to the drag coefficient of a solid sphere at the same conditions. Nguyen and Dunn-

Rankin [25] conducted experiments with droplet packets (1-6 droplets) travelling vertically in an air 

stream for Re=80 and L/D0=5.2, and found that the average drag of the trailing droplet was 25% 

lower than that of the leading one. From the same research group, Connon and Dunn-Rankin [26] 

studied the behaviour of a droplet flowing parallel to an infinite droplet stream and their main 

outcome was that the isolated droplet is influenced for values of L/D0 lower than 15. Hollander and 

Zaripov [27] performed experiments with a monodisperse droplet stream for Re numbers ranging 

from 1 up to 10 and proposed a correction for the drag coefficient in the droplet momentum 

equation, so that the presence of other droplets, can be taken into consideration.  

Regarding the numerical modelling of droplet chains, Kim et al. [28-30] studied the flow over two 

solid and liquid spheres using a three-dimensional implicit finite-difference algorithm for Re numbers 

ranging from 50 up to 150 and non-dimensional distances from 1.5 up to 25. They examined the flow 

structure and drag coefficient, and observed that the latter becomes almost identical to that of the 

isolated droplet for L/D0 >9. Prahl et al. [31] performed 3D simulations using the VOF method of 
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single and dual droplets in a uniform flow with Re=100 and We=0.1 and 1. The non-dimensional 

distance between droplets varied from 1.5 up to 6 and the drag coefficient was calculated for the 

downstream droplet compared to the leading, as well as the isolated ones.  Later studies examined 

higher We and Re numbers resulting in highly deforming droplets. In this respect, Quan et al. [32, 33] 

used a moving mesh interface tracking scheme coupled with the finite volume method to study the 

dynamics of two deformable droplets placed in tandem and subjected to a sudden acceleration by a 

gaseous flow. The examined We numbers ranged from 0.4 up to 40, the Oh number from 0.1 up to 

1.1, the Re number was equal to 40, the non-dimensional distances between the droplets ranged 

from 1.3 up to 6 and the density and viscosity ratios of the two phases were both equal to 50 

(Oh=0.1-1.1). They observed that the two droplets form a mushroom shape during their deformation 

and also that the drag coefficient of the trailing droplet is greatly reduced, while that of the leading is 

less affected, compared to that of the isolated droplet. Finally, Magi and Abraham [34] used a lattice-

Boltzmann method to simulate binary and ternary systems of drops moving in tandem formation into 

a quiescent gas. The examined density and viscosity ratios were equal to 5, the Oh number equal to 

0.025, the We number equal to 20 and 50 and the L/D0 equal to 1.5. Their main conclusions were 

that for the case of ternary droplets the two trailing droplets decelerate slower than the isolated 

one, while the leading droplet breaks up faster followed by the middle one. Summarizing, all studies 

(experimental and numerical) on the effect of the distance between particles/droplets have shown 

that the trailing particle/droplet exhibits a reduction in the drag coefficient relative to the trailing 

one.  

To the authors’ best knowledge, the current study is the first one that investigates numerically the 

aerodynamic breakup of four Diesel droplets arranged in tandem formation for a wider range of We 

and L/D0 numbers than those examined so far. The examined We and L/D0 of the current study are 

depicted in Figure 1 along with those of the previous numerical studies. The purpose of the study is 

to provide a breakup map in the L/D0–We plane, and correlations for the prediction of a) the 

maximum liquid surface area, b) the breakup initiation time and c) the drag coefficient, as functions 

of We and L/D0, of the third droplet of the row, which is considered as "representative chain 

droplet”, RCD, (see Appendix A). The proposed correlations can be used in CFD codes employed for 

the simulation of sprays, as they provide a better estimation of the aforementioned quantities 

compared to the correlations derived for isolated droplets. Nevertheless, in realistic spray conditions 

droplets are influenced by the presence of other droplets in the direction parallel to the flow, which 

affect their deformation and breakup characteristics [1]; however, such effects are not examined in 

the current work. 
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Figure 1. Examined We and L/D0 numbers in the current and previous numerical studies. 

 

The paper is organized as follows: first, the computational setup and examined conditions are 

described, followed by a section about the temporal evolution of droplet shapes and their 

comparison for the leading, the representative chain and the isolated droplets. Subsequently, the 

numerical results for the quantities of the critical We number, the maximum droplet surface area, 

the breakup initiation time and the drag coefficient of the representative chain droplet are presented 

and correlations are proposed for their prediction as functions of We and L/D0 (summarized in Table 

2 at the end of the paper). Finally, the overall assessment of the effect of L/D0 on the representative 

chain droplet is presented, and the main conclusions are summarized in the last section of the paper.  

 

2 Computational setup and examined conditions 

The flow present in the aerodynamic breakup of droplets is considered as incompressible and 

laminar, mathematically described by the Navier-Stokes equations, the continuity equation and the 

Volume of Fluid (VOF) equation of [35] for tracking the interface between the liquid droplets and the 

surrounding gas. In order to model the surface tension forces in the momentum equation the 

Continuum Surface Stress (CSS) model of [36] is utilized. Two-dimensional axisymmetric simulations 

are performed with the commercial CFD tool ANSYS FLUENT v16 [37]. The finite volume method 

(FVM) [38] is applied for the formulation of the equations, while the resulting system is solved with 

the PISO algorithm [39] of the segregated pressure-based solver [40]. The pressure equation is 

spatially discretized using the body force weighted scheme [40], while for the momentum equation 

the second order upwind scheme [41] is utilized. The VOF equation is solved implicitly and is spatially 

discretized with the compressive scheme [40]. The temporal discretization of all equations is done 

with the bounded second order implicit scheme [40]. In addition, various User Defined Functions 

(UDFs) are utilized for i) the adaptive local grid refinement technique around the liquid-gas interface 

[42], ii) the adaptive time-step scheme for the implicit VOF solver based on the velocity at the droplet 

interface [43], and iii) the moving mesh technique based on the average velocity of the droplets. The 

CFD model has been developed and validated in previous works for a number of applications, among 

else the free fall of droplet [42], the droplet impingement on a flat wall [44] or a spherical particle 

[45-47], the aerodynamic droplet breakup [43, 48-52] and the droplet evaporation [43, 50, 53].   

The 2-dimensional axisymmetric computational domain and boundary conditions are shown in Figure 

2. The four droplets are placed in tandem formation moving with an initial velocity Ud,0 in stagnant air 

(boundary condition for velocity inlet U=0). A 3-D simulation would require approximately a 

thousand times more computational resources (CPU·hours) compared to a 2-D one; for this reason, 

the 2-D axisymmetric approach is employed in the current study instead of the 3-D one. Apart from 

the three-dimensional nature of droplet breakup, which becomes important at the last stages of 

breakup, limitations of axisymmetric simulations appear in the deformation and breakup of droplets 

due to turbulence and vortex shedding [54]. Nevertheless, at low Reynolds numbers the 

axisymmetric approximation has proven to be relatively accurate during deformation stages [51, 55, 

56]. In addition, in [57, 58] some 3D simulations show that symmetry is present in the low Reynolds 

regime. Finally, the axisymmetric simulations do not allow the prediction of the characteristics of the 

secondary droplets resulting from the breakup of the main droplet, which is not the aim of the 

current work. 
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The grid comprises of rectangular cells with a base grid resolution equal to 3cpR (cells per radius) 

followed by the implementation of 6 levels of local grid refinement, to obtain the desired resolution 

of 192cpR around the liquid-gas interface. The refinement algorithm is solely based on the interface 

location and is presented in detail in [44]. Systematic runs with 96, 192 and 384cpR have shown that 

the resolution of 192cpR is adequate for the simulations of droplets in tandem since the average 

velocity and deformation of the RCD change less than 2% when a finer grid is used. 

 

 

Figure 2. Computational domain and boundary conditions for a case with L/D0=2. 

 

The droplet diameter and the conditions of the surrounding air correspond to those of Diesel engines 

as presented in Table 1, along with the corresponding references used for their estimation. It should 

be noted that at such high air temperature, evaporation of the droplets takes places, which is 

neglected in the current work; focus here is given to the aerodynamic deformation and breakup. The 

resulting non-dimensional numbers from these conditions are: Oh=0.05, ε=51 and N=37. By changing 

the initial droplet velocity, the obtained We numbers range from 15 up to 64, while the Re number 

lies in the range of 402 to 860; it is to be noted that these conditions correspond to bag and multi-

mode breakup for isolated droplets. The examined non-dimensional distances measured from the 

droplet centres (L/D0) range from 1.25 up to 20, resulting in 96 examined cases in total (see Figure 1). 

Finally, simulations have been performed also for an isolated droplet using the same computational 

domain and conditions in order to compare the results (11 simulations in total in the range of 

We=15-64). 

 

Table 1. Representative Diesel engine conditions.  

 D0 (μm) P (bar) Tg (K) μg(kg/s·m) ρg (kg/m
3
) TL (K) μL(kg/m·s) ρL(kg/m

3
) σ (Ν/m) 

Value 50 40 900 4E-05 15.48 335 0.0015 788.6 0.024 

Reference [4] [59] [59] [60] Ideal gas law [59] [61] [61] [62] 

 

The different quantities of the representative chain droplet (maximum surface area, breakup 

initiation time and drag coefficient) can be calculated as a product of two terms: i) the value of the 

corresponding quantity of an isolated droplet at the same conditions (Appendix B), and ii) a 

correction factor that accounts for the interaction between the droplets. The correction factor is a 

function of We and L/D0 and is given in its general form in equation (3). The symbol φ denotes the 

respective examined quantity (Smax/S0, tbr, Cd) and the subscripts “is” and “RCD” stand for the isolated 

and representative chain droplets, respectively. The plus sign is used for the quantities that are 
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higher compared to the corresponding values of an isolated droplet (such as tbr), while the minus one 

for those that are lower (such as Smax/S0 and Cd). When the We and L/D0 are large enough, the 

correction factor approaches unity, i.e. the two droplets have a similar behavior. Conversely, when 

the We and L/D0 are small enough the correction factor approaches zero, i.e. the representative 

chain droplet is totally covered by its upstream droplet. The equation for the drag reduction due to 

L/D0 is in agreement with the correlation proposed by [27], in which the ratio Cd,RCD/Cd,is decreases 

with the inverse exponential of L/D0.  

 

     
    

   
    

      
 

  
 
  (3) 

 

With 

 

 (   
 

  
)           

 

  
      (3b) 

 

The coefficients c1, c2 and c3 appearing in equation (3), as well as those of the isolated droplet are 

found by fitting to the results of the simulations for the corresponding quantity, and are summarized 

in Table 2 of section 3.6. 

 

3 Results and discussion 

3.1 Droplet shapes 

In Figure 3, the temporal evolution of the droplets’ shape (denoted with the VOF iso-value of 0.5) is 

presented at different time instances for a representative case of droplet chain (We=40, L/D0=2) 

along with the one of an isolated droplet at the same We number. The first observation is that the 

leading and isolated droplets exhibit a quite similar evolution of droplet shape and experience the 

same breakup mode (multi-bag), something that holds true for all the examined cases, as expected. 

Nevertheless, despite the similarity in droplet shapes, for small L/D0 the drag coefficient of the 

leading droplet decreases up to 30% compared to the corresponding value of the isolated droplet, 

while the breakup initiation time and maximum surface area are slightly lower.  

On the other hand, the shapes of the trailing droplets (no. 2, 3 and 4) after t/tsh=1.0 start to deviate 

from those of the isolated droplet, as they are influenced by the presence of their upstream droplets 

(Appendix C presents a quantitative comparison between droplets 1, 2, 3 and 4). More specifically, 

their shapes are more deformed in the streamwise direction, which is due to the faster air flow 

observed at their periphery compared to their centre (in terms of relative velocity), as indicated by 

the streamlines of Figure 3. In addition, they also encounter higher pressure at their periphery rather 

than their centre (again after t/tsh=1.0), as shown in Figure 4, where the contour of dimensionless 

pressure (        
 

 
      

   is presented for the same conditions (We=40, L/D0=2). As a result, 

an oblique pressure gradient is developing, which tends to stretch the droplet towards a 45deg 

downstream direction; this alters their breakup mode in relevance to the one of the isolated droplet 

(multi-bag). This breakup mode has not been reported so far in the literature and it is termed here as 

“shuttlecock”, as its shape resembles that of a shuttlecock ball used in Badminton. This was observed 

for We numbers in the range of 16 to 64 and droplet distances ranging from 1.25 to 4 (see Figure 7 of 
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section 3.2). When the distance between the droplets becomes large enough (L/D0>5 for We=40) 

their shapes and breakup modes become similar to those of the isolated droplet (multi-bag), as it is 

shown in Figure 5. In addition, the trailing droplets move faster than the leading one (due to lower 

drag) and therefore get closer to it (especially evident for the first two droplets), which might result 

in their collision at subsequent time instances.  

 

 

Figure 3. Temporal evolution of droplet shape for chain (We=40, L/D0=2) and isolated (We=40) droplets 

(streamlines colored with the non-dimensional relative velocity magnitude). 
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Figure 4. Dimensionless pressure contour for We=40 and L/D0=2. 

 

 

Figure 5. Snapshot of droplet shapes for We=40 and L/D0=5. 

 

For the same distance between the droplets (L/D0=2), Figure 6 presents the temporal evolution of 

droplet shape of the representative chain and the isolated droplets for two We numbers (20 and 60). 

It is observed that for the low We of 20 the representative chain droplet deforms up to a maximum 

point and then reaches an elongated spheroid shape without breaking (Figure 6a). This elongated 

spheroid shape differs from the spherical shape reported in the literature for low We (oscillatory 

deformation) [2], since it is affected by the presence of the upstream droplet, which hinders the 

incoming air flow. For the same We number the isolated droplet experiences bag breakup mode. On 

the other hand, when the We number increases to 60, both the representative chain and the isolated 

droplets experience multi-bag breakup mode, as shown in Figure 6b, indicating that for high We 

numbers the effect of distance between the droplets is minimized and thus their deformation rates 

and shapes become independent.  

 

 

Figure 6. Temporal evolution of droplet shape for chain (L/D0=2) and isolated droplets with a) We=20 and b) 

We=60. 

 

3.2 Breakup map 

Figure 7 presents the simulated cases of the current work in the L/D0-We map: the blue circles 

correspond to the cases that the representative chain droplet deforms without breaking up (Figure 

6a), the red triangles to the cases that the droplets are clearly breaking up (Figure 6b), and finally the 

yellow diamonds correspond to the cases that the droplets become very thin without breaking 
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(Figure 3 for t/tsh=2.1). For the latter case it is quite likely that a 3D simulation would predict breakup 

and therefore in the current work they are considered as transition points between breakup and no-

breakup. It is apparent from Figure 7 that as the droplet distance L/D0 decreases, the minimum We 

number required for the breakup to occur (critical We) is increasing. The critical We number as a 

function of L/D0 can be estimated using equation (4), similar to eq. (3), and is presented in Figure 7. It 

is observed that for large L/D0 the value of the critical We number approaches the value of the 

isolated droplet, which is found equal to 14 from the simulation of an isolated droplet at the same 

conditions (Oh, Re, ε). In general the critical We number of an isolated droplet depends on the flow 

conditions and in [63] a correlation is proposed that can predict it, as a function of the non-

dimensional numbers Oh, Re and ε. For small L/D0 the Wecr increases rapidly as the representative 

chain droplet is greatly influenced by the upstream one.  

 

       
        

       
      (

 

  
)
   

 (4) 

 

with c1=5.5 and c2=2.2. 

In addition, Figure 7 presents the regions of the different breakup regimes encountered in the 

simulations (bag, shuttlecock and multi-bag). The bag breakup regime is encountered at We numbers 

in the range of 15 to 25 and droplet distances L/D0 higher than 4, the multi-bag regime from We=26 

up to 64 and for L/D0 higher than 1.5, and the shuttlecock regime from We=16 up to 64 and L/D0 less 

than 5. 

 

 

Figure 7. L/D0-We map with the simulated cases along with the regions of the various breakup regimes 

(Oh=0.05, ε=51 and N=37). 

 

3.3 Droplet surface area 

One quantity that is important for spray applications and is difficult to be measured experimentally is 

the surface area of the droplet, which is calculated from the CFD data as   ∑      |  |
      
 . The 

current work is dealing with the maximum surface area of the droplet corresponding to either the 

surface area at the instance of breakup or the maximum surface area for the droplets undergoing 

deformation. The ratio of the maximum surface area of the representative chain to the isolated 

droplet Smax,RCD/Smax,is is presented in Figure 8 as a function of We and L/D0. The colored dots 

correspond to the results of the CFD simulations, while the iso-lines (0.3, 0.6, 0.9 and 0.99) to the 

predictions of the proposed equation (3), with c1=0.21, c2=0.35 and c3=0.79. For instance, the iso-line 
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0.6 corresponds to a 40% reduction in maximum surface area, relative to the one of an isolated 

droplet. It is observed that as the L/D0 decreases, the ratio Smax,RCD/Smax,is also decreases since the 

representative chain droplet is affected by the wake of its upstream droplet, reaching values as low 

as 0.21, indicating a strong influence of the maximum surface area on the droplet distance. 

Conversely, as the L/D0 increases, the ratio Smax,RCD/Smax,is approaches unity and the maximum liquid 

surface area of the representative chain droplet approaches the corresponding value of the isolated 

one. Finally, the dependence of the ratio on the We number is weak, as indicated by the almost 

vertical iso-lines.  

 

 

Figure 8. Ratio Smax,RCD/Smax,is as function of We and L/D0 (scatter: CFD, lines: equation (3)). 

 

3.4 Breakup initiation time 

Similar to the droplet surface area, the breakup initiation time of the representative chain droplet is 

also different from that of the isolated one for the same conditions. By looking back at Figure 3 for 

t/tsh=2.1, we observe that the trailing droplets break up later than the isolated one. Figure 9 presents 

the ratio tbr,RCD/tbr,is as a function of We and L/D0, as predicted by the CFD simulations (colored dots) 

and equation (3) (iso-lines), with c1=0.1, c2=0.64 and c3= 0.71; only the cases that actually break up 

are taken into account, i.e. the red triangles of Figure 7. We notice that for large L/D0 the ratio 

tbr,RCD/tbr,is approaches unity (similar to Smax,RCD/Smax,is), while as the L/D0 decreases the breakup time of 

the representative droplet increases. The effect of L/D0 on this ratio is larger at lower We numbers, 

while for the examined cases the breakup time is not increasing more than 23% compared to that of 

an isolated droplet. 
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Figure 9. Ratio tbr,RCD/tbr,is as function of We and L/D0 (scatter: CFD, lines: equation (3)). 

 

3.5 Drag coefficient 

The drag coefficient of a deforming droplet is also an important quantity used in macroscopic CFD 

spray codes, especially those following the Lagrangian approach. The drag coefficient can be found 

from the droplet force balance in the streamwise direction [64], which is given for a decelerating 

droplet in equation (5) (particle motion equation). The terms representing the effect of the gravity, 

virtual mass, pressure and stress forces have been neglected (since ρg/ρL<<1) [40], while the effect of 

Basset force has been incorporated into the drag coefficient (pertaining to an effective drag 

coefficient), similar to previous numerical studies [65-68]. The droplet velocity is the volumetric 

averaged one.  

 

      

  
        

     

    
 

 

    
   

  (5) 

 

As seen from equation (5), an estimation of the droplet frontal area variation (Af(t)/Af,0) is needed in 

order to calculate the drag coefficient of a deforming droplet. Pilch and Erdman [69] excluded the 

frontal area term from equation (5) and its effect was incorporated into the drag coefficient. This 

method was later utilized by [43] and [68] for the calculation of the average drag coefficient of a 

deforming droplet as function of the Re number, and is also presented in the current work in 

Appendix D. Another method, proposed initially by [70, 71] and utilized later by [40, 72], assumes 

that the drag coefficient of a deforming droplet can be estimated as a linear interpolation between 

the drag coefficient of a spherical object (initial droplet shape) and that of disk (deformed droplet 

shape) for the same Re number, depending on the droplet deformation. This geometrical estimation 

of the drag coefficient requires the solution of an additional equation for the prediction of droplet 

deformation as a function of time, which might be computationally costly when applied to 

macroscopic spray models for a very large number of droplets. In this work we propose a method in 

which the droplet frontal area is assumed to vary linearly with time (equation (6), where t*=t/tsh), in 

an attempt to simplify as much as possible the calculations. This is a first step towards the estimation 

of the temporal variation of droplet frontal area, whereas more accurate and complex models can be 

later utilized such as those used in macroscopic CFD codes for the prediction of the temporal 
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variation of droplet deformation.  Such models are the Taylor Analogy Breakup (TAB) model [73], the 

Droplet Breakup and Deformation (DBB) model [74] and the Clark’s model [75] among others. The 

linear approach followed in the current study applies only to droplets experiencing breakup and 

therefore is utilized only for the cases corresponding to the breakup and transition points of Figure 7. 

 

    
  

    
        (6) 

 

 

The factor B represents the average dimensionless deformation rate given by equation (7), where 

    
  is the time instance corresponding to S=Smax up to which the drag coefficient is calculated. This 

time instance is chosen instead of the actual breakup time because in some cases droplets do not 

clearly break (transition points in Figure 7).  

 

  

       
  

    
  

    
  

(7) 

 

By substituting equations (6) and (7) into equation (5) and integrating for t* we get equation (8), 

which gives the temporal evolution of droplet velocity; note that an average drag coefficient   
̅̅ ̅ is 

used instead of Cd(t). By fitting equation (8) to the results of the simulations (       the average 

drag coefficient of each case is calculated. 

  

    
   

    

  
̅̅ ̅  

 

 √ 
     

       

    
 

(8) 

 

The results of the ratio       
̅̅ ̅̅ ̅̅ ̅̅ /     

̅̅ ̅̅ ̅̅  are shown in Figure 10 as a function of We and L/D0 as calculated 

by the CFD simulations (colored circles) along with the predictions of equation (3) (iso-lines), with c1= 

0.038, c2= 1.1 and c3= 0.53. The ratio       
̅̅ ̅̅ ̅̅ ̅̅ /     

̅̅ ̅̅ ̅̅  decreases when the ratio L/D0 is decreasing, in 

agreement with previous studies [28-33], reaching values down to 0.75. A strong dependence of the 

ratio on the We number is observed as depicted by the iso-lines, something that is attributed to the 

dependence of the frontal area on the We number as well.  
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 Figure 10. Ratio       
̅̅ ̅̅ ̅̅ ̅̅ /     

̅̅ ̅̅ ̅̅  as function of We and L/D0 (scatter: CFD, lines: equation (3)). 

 

Finally, equation (8)  predicts the temporal evolution of droplet velocity, using Cd and B from 

equation (3). Figure 11 presents the temporal evolution of droplet velocity of a representative chain 

droplet for two We numbers (40 and 60) and L/D0=2 as predicted by the equation and the CFD 

simulations, up to the point of breakup initiation. As it is observed from the figure there is a good 

agreement between the simulations and the predictions from the equation for both We numbers up 

to approximately t/tsh=1.6, while after that point a deviation is observed. The velocity as predicted by 

the CFD simulations seems to approach a constant value, while that of the equation continues to 

decrease. This observed trend in the simulations is due to the low air velocity (in terms of the relative 

one) appearing in the upstream of the representative chain droplet, which is attributed to the wake 

induced by the upstream droplet (see Figure 3 of chapter 3.1 for t/tsh=2.1). For the cases 

characterized by larger L/D0, the results resemble those of an isolated droplet at the same conditions 

(see Figure 15 in Appendix B).  

 

 

Figure 11. Temporal evolution of droplet velocity for two We numbers (40 and 60) and L/D0=2 as predicted by 

the CFD simulations and the correlation (8). 

 

3.6 Overall assessment of the effect of droplet distance L/D0  

In order to summarize the effect of the droplet distance L/D0 on the deformation of a representative 

chain droplet, a marked area is identified in the map L/D0-We, where the effect of L/D0 can be 
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considered significant, as shown in Figure 12. In this marked area either the maximum surface area, 

the breakup initiation time or the drag coefficient of the representative chain droplet differs more 

than 5% from those of an isolated droplet at the same conditions. As it is observed from the figure, 

the distance between the droplets is important when L/D0 is less than 9 (or higher for low We). This 

indicates that most of the analytical models used for isolated droplets, when applied to droplet 

chains, are valid for L/Do and We numbers higher than 9 and 20, correspondingly. 

 

 

Figure 12. Area of influence of the distance between the droplets depicted in the L/D0-We map along with the 

iso-lines of Smax,RCD/Smax,is, tbr,RCD/tbr,is,       
̅̅ ̅̅ ̅̅ ̅̅ /     

̅̅ ̅̅ ̅̅  and the critical We. 

 

Finally, the proposed correlations for the prediction of the critical We number, maximum droplet 

surface area, breakup initiation time, drag coefficient and average dimensionless deformation rate 

are summarized in Table 2, both for the representative chain and the isolated droplets (Appendix B). 

The equation for the prediction of the Smax/S0 of the RCD shows a mean absolute error equal to 6.6% 

compared to the CFD simulations, that of the tbr equal to 3.7%, while that of the Cd equal to 6.8%.   

Sensitivity analysis regarding the proposed coefficients showed that when the coefficient c1 (see 

equation (3)) is increased by 10% the mean absolute error compared to the results of the simulations 

becomes equal to 7.3% for the Smax, equal to 3.5% for the tbr and equal to 6.9% for the Cd. For a 10% 

increase in the coefficient c2 the errors are calculated as 7.6% (Smax), 3.8% (tbr) and 8.1% (Cd), while 

for the c3 they are equal to 6.4% (Smax), 3.5% (tbr) and 7% (Cd). It should be mentioned that in actual 

sprays several different droplet sizes are present and much more complicated phenomena would 

appear, something that is not considered in the present work. 

 

Table 2. Summary of proposed correlations. 

 Isolated droplet Representative chain droplet Correction factor  

Wecr [63]                                      (
 

  

)
    

 

    

  

 [50] 
        

  

 
       

  

       
       

    
              

 
  

       

 

tbr [51, 63, 69, 76]                     
 

     
    

             
 
  

   
    

 

Cd      
̅̅ ̅̅ ̅̅                  

̅̅ ̅̅ ̅̅ ̅̅       
̅̅ ̅̅ ̅̅      

 
    

    
              

 
  

   
    

 

B                                
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4 Conclusions 

In the present study, the aerodynamic breakup of four Diesel droplets arranged in tandem formation 

was investigated numerically. The examined ambient conditions correspond to those of Diesel 

engines, while the We numbers range from 15 up to 64 and the non-dimensional distances between 

the droplets (L/D0) from 1.25 up to 20.  

The examination of the temporal evolution of droplet shapes revealed that the leading droplet has a 

similar shape and breakup mode with that of an isolated one at the same conditions, while the rest 

of the droplets are influenced by the presence of their upstream droplet, especially for small L/D0. 

When the distance is small enough (L/D0<5 for We=40) the shapes of the trailing droplets deviate 

from that of the isolated one, as they become more deformed in the streamwise direction, while also 

experiencing a new breakup mode termed as “shuttlecock”, characterized by a stretching of the 

droplet at its periphery.  

The results of the simulations revealed that the droplet surface area and drag coefficient of the third 

droplet of the row (representative chain droplet) are lower than those of the isolated one (in 

agreement with previous studies), while the breakup initiation time and the critical We number are 

higher. Overall, the effect of droplet distance is significant for L/D0<9 (or higher for lower We) as 

either the maximum surface area, the breakup time or the drag coefficient of the representative 

chain droplet differs more than 5% from the corresponding values of the isolated droplet. 

Correlations were provided based on the simulations for the prediction of the aforementioned 

quantities of the representative chain droplet as functions of the corresponding quantity of an 

isolated droplet, which is a function of We, and of a correction factor that accounts for the 

interaction between the droplets, which is a function of We and L/D0. Finally, the proposed 

correlations for the drag coefficient can be used in a simplified 0-D model, similar to those utilized in 

Lagrangian numerical codes, to predict more accurately the temporal evolution of droplet velocity of 

a representative chain droplet. The results of the 0-D model are compared with those of the 

simulations and a very good agreement is observed for droplet distance L/D0 equal to 2 and 

intermediate to high We numbers (40-60), while a deviation starts appearing for larger droplet 

distances and high We (=60). It should be noted, however, that the linear approximation of droplet 

frontal area as a function of time, used in the present study, can be further improved by utilizing a 

more accurate model for the prediction of droplet deformation such the TAB, DDB or Clark’s [77]. 
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Appendix A. Difference between the RCD of the current work with that of a seven-

droplet chain 

In order to estimate the difference between the RCD considered in this work with that of a seven-

droplet chain, which is more representative of an infinite array of droplets, a simulation is performed 

with seven droplets at We=40 and L/D0=2. Figure 13 depicts the shapes of the droplets at the time 

instance of t/tsh=2.1, which corresponds to the time of breakup of the leading droplet. It is evident 

that the shapes of the droplets 3 to 6 are nearly identical. Moreover, the values of the drag 
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coefficient and maximum surface area of the droplets 4 and 5, which can be considered as 

representative in the seven-droplet chain, are very close and higher than those of the RCD up to 

13.8% and 12.7%, respectively. Nevertheless, these differences are expected to decrease at higher 

We numbers and larger L/D0. The simulation of four droplets is chosen in the current study instead of 

seven, because it is more suitable for parametric studies, since the computational cost for the 

simulation of seven droplets is increased by approximately 75% compared to that of four.  

 

 

Figure 13. Droplet shapes at the time instance of t/tsh=2.1 from the simulation of a chain of seven droplets 

arranged in tandem. We=40 and L/D0=2. 

 

Appendix B. Isolated droplet correlations 

In [50] they proposed correlations for the prediction of the liquid surface area of an isolated droplet 

as function of We, and the reader is referred to that work for more details. For the prediction of the 

breakup initiation time the works of [51, 63, 69, 76] provide correlations that estimate it as function 

of the non-dimensional numbers (We, Oh, Re, ε). Regarding the critical We number this can be 

estimated as function of the non-dimensional numbers (Oh, Re, ε) using the equation proposed in 

[63]. Finally, the drag coefficient of an isolated droplet can be estimated as function of the We 

number using equation (9), similar to [66]. In the current simulations the Re number is a unilateral 

function of We (for a single We there is only one existing Re) so equation (9) can be written also as 

function of Re. 

 

     
̅̅ ̅̅ ̅̅           (9) 

 

with c1=4 and c2=0.41 (mean absolute error equal to 8.6% compared to the simulations). 

In Figure 14 the drag coefficient is presented as function of the Re number for the solid disk [78], 

solid sphere [78] as well as for deforming droplets calculated by the CFD simulations and the 

correlation (9). The predicted drag coefficients lie within the one of solid sphere (initial droplet 

shape) and the one of solid disk (deformed droplet shape) for the majority of the examined cases. In 

addition, both decrease with the Re number in agreement with that of solid sphere.  

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

19 

 

 

Figure 14. Drag coefficient as function of Re number for solid sphere, solid disk and for deforming droplets 

calculated by the CFD simulations and the correlation (9). 

 

Similar to the method presented in section 3.5, equation (8) can be utilized to predict the temporal 

evolution of droplet velocity, where the Cd is given by equation (9) and the average dimensionless 

deformation rate by           (with c1=0.016, c2=1.5 and mean absolute error equal to 9.9%). 

The predictions of equation (8) for three We numbers (15, 30 and 60) are presented in Figure 15 

along with the results of the simulations for the same We numbers. For the low and intermediate We 

numbers of 15 and 30 there is a quite good agreement between the simulations and the correlation, 

while a deviation is observed for the higher We number of 60. This is attributed to the abrupt decline 

of droplet velocity, which is not easily captured by equation (8). 

 

 

Figure 15. Temporal evolution of droplet velocity for three We numbers (15, 30 and 60) as predicted by the CFD 

simulations and correlation (8). 

 

 

Appendix C. Quantitative comparison between droplets 1, 2, 3 and 4, and selection 

of the RCD 

Figure 16 presents the temporal evolution of the deformation in both axes (cross-stream and 

streamwise) as well as the velocity for each of the four droplets of Figure 3 (We=40 and L/D0=2). The 

droplets no. 2, 3 and 4 show similar evolution of deformation in both axes, while the droplet no.1 

experiences larger cross-stream deformation and lower streamwise, due to the absence of an 

upstream droplet, as already discussed in section 3.1. Moreover, the droplet no.1 decelerates faster 

than the trailing ones due to higher drag, while the droplet no.2 decelerates slower due to lower 
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drag, since it is influenced by the wake of the 1st droplet, which has the largest cross-stream 

deformation. For the same reason its shape is also different from those of the 3rd and 4th droplets as 

seen in Figure 3. For these reasons the 2nd droplet cannot be considered as RCD. On the other hand, 

the droplets no. 3 and 4 show similar behaviour, but the droplet no.3 has a trailing droplet, which is 

more representative of an RCD, therefore justifying its selection as RCD. 

 

 

Figure 16. Temporal evolution of the a) deformation in both axes and b) velocity for each of the four droplets 

for a case with We=40 and L/D0=2. 

 

Appendix D. Drag coefficient with the inclusion of frontal area  

Another way to calculate the drag coefficient is by including the effect of frontal area into it. In this 

approach, equation (10) is utilized to predict the droplet velocity as function of time (instead of 

equation (8)). Although this method is not as accurate as the one described in section 3.5, the latter 

is easier to use in macroscopic spray CFD models as it does not require tracking of the residence time 

of each particle in order to predict its temporal evolution of droplet velocity (by solving equation (10) 

numerically). In addition, this method can be used also for droplets experiencing solely deformation 

as it does not utilize equation (6) for the prediction of droplet frontal area, which is only valid for 

droplets experiencing breakup. 

 

    
   

    

  
̅̅ ̅  

 

 √ 
     

 
(10) 

  

The ratio       
̅̅ ̅̅ ̅̅ ̅̅ /     

̅̅ ̅̅ ̅̅  is presented in Figure 17 as calculated by the simulations (scatter) and 

equation (3) (iso-lines) (with c1=0.16, c2=0.41, c3=0.82 and mean absolute error equal to 4.8%). The 
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ratio reaches values as low as 0.24, compared to the value of 0.75 predicted by the method of 

section 3.5, while also being a weak function of We instead of a strong one as in section 3.5.  

 

 

Figure 17. Ratio       
̅̅ ̅̅ ̅̅ ̅̅ /     

̅̅ ̅̅ ̅̅  as function of We and L/D0 (scatter: CFD, lines: equation (3)).  

 

Finally, the temporal evolution of droplet velocity is given in Figure 18 for three We numbers (low, 

intermediate and high) both for an isolated droplet and a representative chain droplet with L/D0=2, 

as predicted by equation (10) (  
̅̅ ̅ found from the equations (3) and (9)) and the CFD simulations. It is 

observed that similar to section 3.5, the agreement is good for the representative chain droplet, 

while for the isolated droplet a deviation is observed for the high We number. In addition, the 

prediction of droplet velocity using the equation shows opposite curvature compared to the 

simulations for both cases, owing to the exclusion of droplet frontal area.  
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Figure 18. Temporal evolution of droplet velocity for three We numbers as predicted by the CFD simulations 

and the correlation (10) for a) an isolated droplet and b) a representative chain droplet with L/D0=2.   
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