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Abstract 

The recent advances in nanotechnology have created the need for the 
development of materials and devices with unique properties, suitable for 
applications in related areas such as nano-electronics, nano-photonics and high 
sensitivity optical sensing. Nanowires are becoming good candidates for such 
applications, however, most of the ongoing research is still at the early stage and 
therefore all the effort in this field is to improve the fabrication techniques, as well 
as to increase the performance of such devices, by optimizing their key 
parameters, in order to bring them into the production line.  

Ormocomp and silicon nanowire waveguides (NWs) are studied and 
developed as optical waveguides intended to be used in optical sensing 
applications. The NWs are designed and developed as part of integrated optical 
devices by having tapered and feed waveguides connected at both the ends. The 
ormocomp and the silicon NWs are theoretically investigated using a full-vectorial 
H-field Finite Element Method (FEM). The aim is to obtain high power 
confinement in the sensing area, which is considered to be the core/cladding 
interface for the ormocomp NWs and the slot region (low-index area) for the 
silicon NWs. The modal field and the power confinement of the guided modes that 
contribute to the enhancement of the sensitivity in the corresponding sensing 
area of the NWs are studied, with respect to the variation of the refractive index 
of the cladding material and the operating wavelength. The structure parameters 
including the width and the height of the NWs are optimized to achieve the 
maximum possible sensitivity.  

A biosensor structure incorporating the silicon NWs with horizontal slot 
structure is also studied theoretically using the full-vectorial H-field FEM. It is 
designed to detect DNA hybridisation through the change of the effective index of 
the NW structure. The key parameters, such as power confinement, power 
density, change in effective index and sensitivity of the fundamental guided 
optical modes are presented, by optimizing the device parameters of the slot 
waveguide.  

Experimental characterisation of the integrated ormocomp NWs is also 
demonstrated. The integrated optical ormocomp NWs are used to measure the 
change of effective index when there is a change of refractive index of the 
material. An evanescent wave coupling technique is exploited for the ormocomp 
NW to be used as optical sensors. The evanescent field that exists at the 
core/cladding interface of the NWs can be enhanced by introducing surface 
plasmon resonance (SPR).  

The SPR is introduced by coating the integrated ormocomp NWs with a thin 
gold layer with a thickness of around 50-100 nm. The optical power at the output, 
the attenuation coefficient of the NWs, the SPR peak wavelengths and their shifts 
are experimentally extracted over three different cladding materials. The redshift 
of the supermode coupling between the dielectric mode and the anti-symmetric 
supermode is observed with higher cladding index and larger metal thickness. The 
power confinement in the sensing region with the SPR effect is improved by a 
factor of ten compared to the performance obtained by the un-coated ormocomp 
NWs. 
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1. Introduction 

1.1 Background 

Optical sensors are optical devices consisting of a light source, optical 

components, and detector. The optical components include optical fibre, lenses, 

grating, filter, polarizer, and etc. As components can be diverse, they are 

considered as a modulator of the devices, which is a measuring zone, where the 

light can change its properties i.e. intensity, phase, polarisation, wavelength and 

spectral distribution [1]. They are necessary to be set up or implemented for the 

optical sensor to measure and/or detect different parameters such as 

temperature, pressure, vibration, chemical species, radiation, pH, humidity and 

etc. The optical sensors can be used as intensity-based sensors, frequency varying 

sensors, phase modulating sensors and polarisation modulating sensors. The 

optical sensors have immunity from the electromagnetic interference (EMI) [2]. 

Their uses in biomedical applications are increased. The optical sensors can have 

extremely high bandwidth capacity with high sensitivity and high dynamic range. 

In addition, they can be used remotely allowing them to have the ability to be 

embedded and used under harsh environments [2]. 

An optical waveguide was initially invented for point-to-point transportation 

of optical energy and its information content. However, the optical waveguide 

sensors are a breakthrough in sensing in the 1970s [3] because the waveguides 

are not limited only to guide the light to and from the modulator but they can also 

be considered as the modulator themselves by coiling a fibre in the modulator 

area. The optical waveguides commonly include optical fibre and rectangular 

waveguides which can be used in integrated optical circuits. They can be 

categorised depending on their i) geometry e.g. planar [4, 5] or strip [6, 7] 

waveguides, ii) mode structure e.g. single-mode [8] or multi-mode waveguides [9] 

and iii) material e.g. semiconductor [10], glass [11] or polymer [12]. The optical 

waveguide sensors can be classified as intrinsic and extrinsic sensors [3]. The 

intrinsic sensors are the sensors which have the waveguide to be the modulator 
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of the system such as microbend sensors, distributed sensors and interferometric 

sensors [13-16]. On the other hand, the extrinsic sensors allow the waveguide only 

to transmit the light to and from other optical or sensing components. The 

modulator of the extrinsic sensors can be a use of reflection and transmission, 

total internal reflection, gratings, fluorescence, evanescent and photoelastic 

effects [17-20] e.g. a thin film planar waveguide can be used as chemical sensor 

to measure liquid-phase absorbance by integrating with a pair of  diffraction 

gratings on a substrate [21]. In comparison with the extrinsic sensors, the intrinsic 

sensors are more sensitive and the connection problems can be minimized. 

However, their structures have more complexity and require more elaboration 

compared to the extrinsic sensors. 

Nanowire becomes a good candidate for nanotechnology applications due to 

their characteristic property of high surface-to-volume ratio [22]. The nanowires 

are approximately one-dimensional structures having a high length-to-width ratio 

which can be made from metal, insulator or semiconductor materials. The size of 

the nanowire is in the order of nanometers (10-9 m). They are exploited in 

nanoelectronic devices such as Field Effect Transistors (FET) [23-25], photonic and 

optoelectronic devices [26-28], including waveguides [29], photodetectors [30-

33], solar cells [34] and various types of sensors [35-42].  

Nanowires are commonly used as sensors in many sensing applications, such 

as gas sensors, chemical sensors, biosensors, medical sensors and optical sensors 

[35-42]. This is mainly due to their small size which allows their placement into 

small biological and chemical species. Therefore, they can be used, for example,  

as a tool for drug delivery [42]. They can be surface-functionalised so that they 

can exhibit unique electrical and optical properties for sensing purposes. In 

addition, they have a high surface-to-volume ratio promising high sensitivity and 

high selectivity [24, 43]. The sensitivity of the nanowires in sensing applications 

depends on the size of the silicon nanowires themselves. Nanowires can also be 

used as optical waveguides called nanowire waveguides (NWs). 

Silicon nanowires used as optical waveguides are widely known in the nano-

photonics area because silicon is one of the most common materials used for 
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photonic and optoelectronic applications. Silicon nanowire optical waveguide 

sensors detect a change of effective index from the light confined in the guiding 

area which occurs due to the change of the cladding medium refractive index 

called homogeneous sensing or the change of a thin layer on the waveguide 

surface called surface sensing [44]. The Silicon-On-Insulator (SOI) technology has 

increasingly being used in optical sensing because it has the advantage of 

improving light confinement in the waveguide, thus the sensitivity of the sensors 

is enhanced [44, 45]. 

Conventionally, the light is guided in the higher refractive index area of the 

waveguide which is mostly sandwiched by the SOI substrate and a cladding 

material such as air and/or water. Therefore, the light interaction with the 

materials to be sensed in the cladding medium or at the surface of the waveguide 

is limited, resulting in a low sensitivity of the device. The goal in sensing 

applications is to be able to achieve a large variation in the effective index when 

there is only a small change in the refractive index of the cladding material. More 

innovative slot type structures of silicon NWs are introduced because of their high 

power confinement in the sensing area compared to a conventional index guided 

waveguides. However, complicated techniques, complex equipment, and 

cleanroom facilities are required in order to fabricate silicon NWs, which make 

them expensive and hard to produce. Therefore, there is a significant interest to 

use other types of materials as optical waveguides. 

Polymer NWs are considered to be an attractive alternative for use as optical 

waveguides in sensing applications due to their unique features. Polymer NWs 

have mechanical flexibility compared to semiconductor NWs and as a result, they 

can be applied on curved surfaces. They are also made of biocompatible materials 

which can accommodate various functional dopants [46]. A dopant is an element 

which can be added into a substance to modify the electrical or optical properties. 

Hence, there is a variety of possible sensing applications due to their exploitable 

optical and electrical properties. By means of their better chemical selectivity, 

polymer NWs can be used to detect a wide range of chemical compounds 
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depending on surface functionalisation which includes toxic gases, metal ions and 

DNA [47-49].  

In this work, a theoretical investigation and its experimental implementation 

of integrated NWs are performed. NWs are designed and developed to achieve 

maximum light interaction in the sensing area, with the intention of developing 

them into highly sensitive optical sensors. Two types of NWs are studied, 

specifically, semiconductor NWs (silicon NWs) and polymer NWs (ormocomp 

NWs). Semiconductor nanowires are becoming an integral part of new generation 

of nanoscale electronics and optoelectronic devices. Besides group IV 

semiconductor nanowire e.g. silicon nanowire, III-V semiconductor nanowires are 

good candidates to be used in the optoelectronic field due to their novel features 

of nanowires [50], especially for active devices. The III-V nanowires can be 

fabricated using a wide range of methods, such as chemical beam epitaxy [51], 

molecular beam epitaxy [52], metal-organic vapour phase epitaxy [53] and laser 

ablation [54], providing different features compared to thin film technology. On 

the other hand, polymer nanowires offer the flexibility and biocompatibility 

properties with low a cost fabrication [55].  

The work includes the design of the integrated NWs, fabrication of the NWs, 

simulation work to theoretically study their characteristics and experimental work 

to analyze and characterize the behaviour of the fabricated NWs. For the design, 

fabrication and simulation parts both silicon NWs and ormocomp NWs are 

considered. For the experimental part, only ormocomp NWs are studied. The goal 

of this work is to develop the NWs for optical sensing applications and to 

understand the underlying concept and behaviour of the demonstrated NWs.  

1.2 Scope of work 

The proposed ormocomp NWs are utilized in an integrated optical device in 

order to minimize the coupling loss when launching the light from a light source 

into the NW. Also, the integrated structure allows the NW to be easily 

incorporated in other optical devices.  A possible integrated optics structure can 
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be realized with the use of feed and tapered waveguides attached at the ends of 

the NW [56] as shown in 1.1. Note that the figure is not drawn to scale. 

 

Figure 1.1: Schematic of the integrated optics NW structure. The NW is attached 
with feed and tapered waveguides at the ends.  

The feed waveguide is designed to be large enough to be easily connected 

with the light source or another optical device such as an optical coupler. In this 

work, the tapered waveguide is optimized to have a taper angle ( ) of 1 . The 

width of the feed waveguide is = 10 μm and the width of the NW is = 1 μm. 

The height of the structure is = 0.5 μm. The optimum taper length is = 260 

μm. The total length of the integrated optics NW is designed to be = 5000 μm. 

With this structure, the interaction between the evanescent field at the 

core/cladding interface and the analyte material can be achieved. This is discussed 

more in details in Chapter 6, where the theoretical study of the ormocomp NWs 

is presented.   

An important parameter that is used to characterize the proposed NWs is the 

attenuation coefficient ( ). In order to perform the required experimental 

measurements the NWs are designed to have different lengths ( ) in one set 

on the same substrate. A set of NWs contains one reference feed waveguide, one 

reference tapered waveguide and four NWs of length 250 m, 500 m, 1000 m 

and 2000 m. A diagram showing the proposed set of NWs is presented in Fig. 1.2.  
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Figure 1.2: Diagram showing the set of NWs which consists of the integrated optics 
NWs with different lengths varied from 250 μm to 2 mm, the feed waveguide and 
tapered waveguide.  

Since the integrated NW device consists of the feed waveguide, the tapered 

waveguide and a NW itself, the attenuation coefficient for the integrated NW is 

only a part of the combined attenuation coefficient resulting from the cascade of 

these three components. In order to extract the attenuation coefficient of the 

ormocomp NW ( ) individually, the two reference waveguides, shown as 

waveguides (5) and (6) in Fig. 1.2 are required. The reference waveguide (6) 

contains only the feed waveguide but the reference waveguide (5) consists both  

offeed and tapered waveguides without the NW part. These two reference 

waveguides are essential in order to eliminate the attenuation coefficient of the 

feed waveguide ( ) and the tapered waveguide ( ) in the attenuation 

coefficient calculation using Beer-Lambert law as discussed later in Chapter 6. 

The ormocomp NWs are studied and investigated theoretically and 

experimentally to improve the power confinement in the sensing region which is 

at the core/cladding interface. The integrated ormocomp NWs are fabricated 

using the nanoimprint technique which is a relatively simple and inexpensive 

technique. Also, mass production without lengthy and complicated processes is 

possible.  With this nanoimprint technique, the dimension and uniformity of the 

polymer NW can be precisely controlled. However, for the nanoimprint technique, 

a hard mold and soft mold are needed in order to have identical NW patterns on 

the ormocomp layer. The hard mold is the silicon NWs with a horizontal slot 

structure and the soft mold is made of PDMS (Polydimethylsiloxane). 
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The power confinement in the sensing region of ormocomp NWs is enhanced 

by sputtering gold on the NW surface to form a thin metal layer. Then, the 

ormocomp NWs are characterised and implemented as optical sensors by 

analyzing the surface plasmon resonance (SPR) signal including the resonance 

wavelength and their shifts. The NWs with non-vertical sidewalls are fabricated 

where only TM plasmonic mode is exhibited. In order to achieve polarisation 

independent plasmonic mode, the waveguide is fabricated to have a bigger 

structure with the width and height of 10x10 μm.  

Silicon NWs with horizontal slot structures used as the hard molds in the 

nanoimprint process are also designed and fabricated as integrated NWs. The 

schematic of the proposed integrated-optics NW with a horizontal slot structure 

and its cross-section is shown in Fig. 1.3. 

 

Figure 1.3: A 3D schematic of the integrated optics silicon NW with horizontal slot 
structure and its cross-section. 

As mentioned earlier, the integrated optics structure is proposed in order to 

minimize the optical power losses and allow the NWs to be easily connected with 

other optical devices in possible sensing applications. However, this integrated 

structure has the additional advantage of making a slot containing possible gas or 

liquid medium. The horizontal slot waveguide consists of the low-index material 

sandwiched by two high-index materials that are poly-Si layers. The low-index 

area can be SiO2, air or water. Mostly, the low-index materials in the horizontal 



8 

 

slot are in solid phase. However, the analyte materials are usually either gas or 

liquid. This integrated device allows an air gap to be implemented as the low-index 

material in the horizontal waveguide structure.  

The NWs are fabricated layer-by-layer, starting from poly-Si, following with 

SiO2, and finally depositing poly-Si again. The oxide layer then can be etched away 

using wet etching.  The oxide layer at the NW region can be removed first due to 

its smaller width, leaving an air gap between the two high-index layers. Once the 

low-index oxide layer under the narrow waveguide region is removed the etching 

process is stopped so that the two high-index layers can be mechanically 

supported by the wider region at the two ends where the low-index material is 

only partially removed.  Therefore, the fluid materials can fill the slot area where 

the light is mostly confined due to the discontinuity of the normal component of 

the electric fields at the dielectric boundaries. More details are presented in 

Chapter 4 where the fabrication of the NWs is discussed.  

The fabricated silicon NWs with horizontal slot structures can be used for 

further theoretical studies, besides serving as master molds in the imprint process. 

These are studied theoretically in order to improve power confinement in the slot 

area. The silicon NW with horizontal structure is investigated theoretically to 

detect DNA hybridisation. A comparison of the sensitivity for its use as the optical 

sensor to detect DNA hybridisation with other devices is also presented. 

1.3 Research objectives 

The overall objective of this research work is to design, characterize and 

develop NWs for optical sensing applications. Two types of NWs are considered in 

this work, silicon NWs and ormocomp NWs. The silicon NWs and ormocomp NWs 

are designed and studied theoretically to achieve a high normalized power 

confinement in the sensing region in order to improve their sensitivity. Both silicon 

and ormocomp NWs are fabricated using the top-down technique. The silicon 

NWs with horizontal slot structure are studied only theoretically to be used as 

label-free biosensors to detect DNA hybridisation. The ormocomp NWs are 
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studied and analyzed both theoretically and experimentally for their optical 

properties.  The specific objectives are listed below. 

1. To design silicon and ormocomp NW structures for the best optical guiding 

property by optimizing the dimensions of the NWs in order to obtain the 

highest possible normalized power confinement in the sensing region.  

2. To investigate the possible guided mode and its characteristics including 

the effective index, the optical modal field, the optical power and the 

effective mode area in the silicon NWs and the ormocomp NWs using the 

Finite Element Method (FEM). 

3. To improve the normalized power confinement in the sensing area for the 

silicon NWs by introducing the horizontal slot structure and numerically 

investigate the silicon NWs with horizontal slot structure for DNA 

hybridisation detection. 

4. To investigate the effect of surface plasmon resonance (SPR) on the 

ormocomp NWs by introducing the thin metal layer on the NWs. The 

polarisation independent plasmonic modes are also studied. 

5. To fabricate the silicon NWs with horizontal slot structure and ormocomp 

NWs with the conventional structure. The silicon NWs are fabricated by 

using oxidisation, low-pressure chemical vapor deposition (LPCVD), 

photolithography and dry etching. The ormocomp NWs are fabricated by 

using the nanoimprint method with a silicon hard mold and a PDMS 

(Polydimethylsiloxane) soft mold. 

6. To build the characterisation optical setup using several optical 

microscopes and optical spectrometer for analyzing experimentally the 

attenuation coefficient, the SPR signals and their shift with different 

cladding materials of the un-coated and gold-coated ormocomp NWs. 
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1.4 Structure of the thesis 

This thesis describes the research performed to develop ormocomp 

integrated NWs for optical sensing applications and numerically study silicon NWs 

with horizontal slot structures to detect DNA hybridisation. The work consists of 

the design, fabrication, simulation and experimental characterisation of the 

proposed integrated NWs. 

Chapter 1 provides an introduction and background information of the 

nanowire optical waveguides in optical sensing applications, the scope of work, 

the research objectives and structure of the thesis. 

Chapter 2 concentrates on a literature review of various topics related to this 

research work and gives the theoretical background to support it. This chapter 

starts by providing the theoretical background of optical waveguides. Then a 

review of the current literature on sensing applications of silicon NWs with 

conventional structures, vertical slot structures, and horizontal slot structures is 

provided. The chapter continues with a discussion on how ormocomp NWs are 

used in various sensing applications. The effect of Surface Plasmon Resonance and 

its importance in sensing applications is examined through this literature review. 

In addition, the reasons for having integrated optics structures embracing the 

NWs are analyzed. Finally, the reasoning behind the choice of using ormocomp as 

the base material to fabricate the NWs and the choice to fabricate the silicon NWs 

with horizontal slot structure are discussed. 

Chapter 3 discusses the basic theory of the Finite Element Method (FEM) 

which is a numerical technique used to solve complex engineering problems. This 

chapter first introduces the basic Maxwell’s equations followed by wave 

equations for the electromagnetic field. The equation used to calculate the 

effective index, which is a significant parameter in this study, is also included in 

this section. The boundary conditions required to solve the wave equations are 

provided next. Finally, an in-house program of the full-vectorial H-field FEM, which 

is used to solve both the silicon and ormocomp NW optical waveguide problems, 

is described in detail. 
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Chapter 4 discusses the fabrication techniques and the fabrication processes 

for the silicon NWs with horizontal slot structure and the ormocomp NWs. Both 

silicon and ormocomp NWs are fabricated using a top-down approach. A basic 

background of the fabrication techniques for the top-down approach is first 

provided. For the silicon NWs with horizontal slot structure, the fabrication 

techniques of oxidisation, LPCVD, photolithography, and dry etching are described 

step-by-step. For the ormocomp NWs, the details of the nanoimprint technique 

are provided including the preparation of the hard mold and the soft mold. To 

study the gold-coated ormocomp NWs, the thin gold metal layer is deposited on 

the ormocomp NWs using the sputtering technique, which is also discussed in this 

chapter. 

Chapter 5 is devoted to the theoretical studies of the silicon NWs with the use 

of the full-vectorial H-field FEM. First, the simulation results of the silicon NWs 

with conventional structure are described as a function of the operating 

wavelength, the structure width, the cladding material, and the surface plasmon 

resonance. Then, the theoretical results of the silicon NWs with horizontal slot 

structures are presented. The key parameters used for the study of the horizontal 

slot structure are the poly-Si core height, the structure width, and the slot height. 

Lastly, the horizontal slot waveguide for the DNA hybridisation detection is 

studied theoretically and described in detail. The sensitivity of the silicon NWs 

with horizontal slot structures to detect DNA hybridisation compared to other 

sensors is also provided. 

Chapter 6 presents the theoretical studies of the ormocomp NWs. To begin 

with, the ormocomp NWs with the ridge waveguide structures are studied. The 

rectangular-shaped (vertical sidewalls) ormocomp NWs are studied with respect 

to the operating wavelength, the structure width, and height. Next, the 

trapezoidal-shaped ormocomp NWs with rib-waveguide structures (non-vertical 

sidewalls), which are the actual structures obtained from the fabrication, are 

studied. In addition, a comparison between the optical field guided inside 

ormocomp NWs with vertical sidewalls structure and non-vertical sidewalls 

structure are included. Finally, the theoretical studies of the ormocomp NWs 
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coated with thin gold layer are provided. The effects of the surface plasmon 

resonance from the thin metal layer are studied in term of their resonance 

wavelength and resonance shift when the cladding-index is changed. The 

comparison of the ormocomp NW with and without gold coating is also presented.  

Chapter 7 details the experimental work which was undertaken to 

characterize the ormocomp NWs. First, the optical setup, which is built for the 

ormocomp NW characterisation, is described. The optical imaging using the in-

house code to obtain the output intensity is discussed in detail. The attenuation 

coefficient of the ormocomp NWs before coated with the gold layer is analyzed 

and the scattering effect from the surface roughness is investigated. After coating 

with a thin gold layer, the attenuation coefficient, which is affected by the 

absorption of the surface plasmon resonance, is evaluated. The effect of the 

surface plasmon resonance (SPR) is investigated with different cladding materials, 

showing the surface plasmon resonance peaks and their shifts. There are two 

types of NW structures with non-vertical and vertical sidewalls. Only the TM 

plasmonic mode is considered for non-vertical sidewalls. For the vertical sidewalls 

structure, both TM and TE plasmonic modes are considered which exhibit 

polarisation independent plasmonic structure.  

Chapter 8 includes the general conclusion, which summarizes the work 

accomplished in this research, and suggests a potential extension of the present 

work to improve the performance of the ormocomp NWs to be used in sensing 

applications.  
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2. Theoretical background and literature review 

This chapter provides a basic background on the use of nanowires as optical 

waveguides. The theoretical background explains the propagation of light in the 

optical waveguides. The technical terms that are generally used to describe the 

light guidance in a waveguide, such as the propagation constant, the effective 

index and the cutoff wavelength are also defined. In addition, the use of taper 

mechanism for integrated optics is also included. The general information about 

the fabrication of the nanowire waveguide (NW) is also presented. 

The literature review on using silicon nanowire with different designs as 

optical sensors is included, such as conventional silicon NWs with the vertical slot 

structure and the horizontal slot structure. In addition, the literature review of 

different types of polymer NWs is presented including ormocomp NWs. The 

research involving surface plasmon resonance (SPR) to enhance the optical power 

guided in the NWs is also described.   

2.1 Optical waveguides background 

Nanowire waveguide (NW) is a specific type of an optical waveguide. They 

exhibit high aspect ratio (length-to-width ratio  1000) with the diameter or 

transverse dimension of 1 nm or so, called one-dimensional nanostructures. They 

are considered as a good candidate for nanotechnology applications due to their 

unique properties with high surface-to-volume ratio [23, 35, 57]. In photonics, 

nanowires are used as optical waveguides. In particular, silicon-on-insulator (SOI) 

based NWs have been used as optical sensors because they have the advantage 

of high refractive index contrast and low optical power losses [58].  

Optical waveguides are structures for guiding the electromagnetic waves. For 

an optical fibre, there are two regions with different refractive indices, which are 

the core (ncore) and cladding (ncladding). For an integrated optics, the waveguide 

consists of three different regions with three different refractive indices 

specifically the cladding (nc), the core (nnw) and the substrate (ns). By considering 
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geometrical (ray) optics theory of optical fibres, where the light is considered as a 

ray, the core is the region where the light propagates by total internal reflection 

[59]. However, the geometrical (ray) optics approximation is valid for structures 

where the dimensions of the core (in optical fibres), or those of the guiding region 

(in optical waveguides) are much larger than the wavelength of the light. In the 

NW structures, where the dimensions are comparable with the wavelength of the 

light, the ray optics approximation cannot be applied. Therefore, the light has to 

be considered in its true nature, as an electromagnetic wave and the analysis of 

the waveguiding properties of the NWs has to be performed in terms of the wave 

theory, based on the Maxwell’s equations, as described in the subsequent 

sections. 

During propagation, the light is guided in discrete waveguide modes.  Modes 

are the allowed characteristics which light can propagate inside a guiding 

structure. They are characteristics of the structure itself (including geometry and 

material profiles) as well as the wavelength of the incident light. A thorough 

exploration of light mode theory can be found in [59]. Each mode has a 

propagation constant ( ) which represents the phase of the light at a given 

wavelength. The propagation constant ( ) is the product of the effective index 

( ) and the vacuum wavenumber ( ) given by [59]: 

 
(2.1) 

where .  

The effective index, , is an effective property of optical parameters such 

as related to its speed in an optical waveguide. It varies with the wavelength and 

also the mode in which the light propagates in the waveguide. Therefore, its value 

depends on the whole waveguide design and can be calculated using different 

numerical methods, such as the Finite Element Method (FEM) [60]. 

The modes of light propagating inside the core of the waveguides are called 

guided modes which can be solved by using Maxwell’s equations. The number of 

guided modes in the waveguide depends on the wavelength, the size of the 



15 

 

waveguide and the refractive index contrast ( n) which is the difference of the 

refractive index between the core and the substrate, or the core and the cladding. 

More modes can be guided when using shorter wavelength and a larger 

wavelength allows a smaller number of modes. Furthermore, larger waveguide 

structures allow a larger number of guided modes to propagate through them. 

Moreover, higher n also results in a higher number of modes that can be guided 

through a waveguide.  Single-mode waveguides allow only one mode 

(fundamental mode) to be guided. Normally, single-mode characteristics of the 

waveguides are only defined in some specific range of the wavelength allowing 

only one mode of light to propagate. The maximum wavelength allowing a guided 

mode is called a cutoff wavelength. Waveguides supporting multiple modes of 

light to propagate are called multimode waveguides. The condition for single-

mode optical fibre can be defined by the V number which has to be below 2.405 

and it is formulated as follows [59, 61]: 

 

(2.2) 

where  is the diameter of the waveguide. This equation is strictly not valid for 

other waveguides, but can give some rough ideas. For the optical fibre, the V 

number below 2.405 allows only the fundamental mode to be guided while the 

other higher order modes are cut off. In our integrated optics waveguide, the 

structure dimensions are numerically designed to be in a sub-wavelength scale in 

order to allow only the fundamental mode to be guided. However, the waveguide 

needs to be carefully designed to be above the fundamental mode cut off limit 

because the mode properties are extensively changed and the mode is unguided, 

which means the light is no longer propagated inside the waveguides, below the 

cut off. Near the cutoff wavelength, the effective mode radius or the spot size of 

the optical field increases dramatically and the power confinement in the guiding 

region is consequently decreased. This is because unguided light spreads into 

either the cladding or the substrate. 
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For very long wavelengths and/or a very small waveguide, it is possible to 

have no guided modes. Therefore, the waveguides need to be carefully designed 

according to their prospective uses. For example, in surface sensing applications, 

the sensitivity can be improved by enhancing the evanescent field [36, 62, 63]. The 

evanescent field is the field that extends outside the guiding region. The maximum 

possible evanescent field can most easily be obtained from the fundamental 

guided mode. Therefore, the design of single-mode waveguides is preferable to 

be used for surface sensing applications.  

In this work, the NWs are designed and developed for their use in sensing 

applications. Therefore, single-mode structures are required. The FEM is used to 

study the fundamental guided mode in the designed NWs. The structure and the 

dimensions of the NWs are optimized accordingly to achieve high optical power 

in the sensing area, which is at the core/cladding interface with the objective of 

enhancing the sensitivity of the NWs. The NWs are fabricated and their optical 

characteristics are experimentally measured and analyzed. Furthermore, surface 

plasmon resonance (SPR) on the top surface of the NWs is introduced to enhance 

the light interaction in the sensing area. Hence, the SPR wavelengths and their 

shift for each cladding material are also investigated.  

2.2 Incorporation of Nanowire waveguides in integrated optics 

Nanowire waveguides are considered sub-wavelength structures since their 

dimensions are less than the operating wavelength in order to attain high power 

levels in the evanescent field. The NWs in this work have height 0.5 μm and width 

about 1 μm. However, the core diameter of the single mode fibre (SMF) is around 

8-10 μm [64]. This means that there will be optical power losses when connecting 

a NW to a SMF light source due to their size difference. In order to reduce the 

coupling losses, a taper mechanism is proposed. 

Two possible types of tapers are the optical fibre taper [65, 66] and the 

integrated optics taper [67-69]. Chun et al. [70] used single mode fibre to make a 

fibre taper with a diameter of 1 μm for coupling the light into silver NWs. It was 
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found that the fibre taper can enhance surface plasmon and couples the light to 

the NW with a coupling efficiency reaching 55%. A common fabrication technique 

for fibre tapers involves heating the optical fibre and then stretching it out until 

the desired dimensions are obtained. Therefore, the fabrication process of fibre 

tapers requires accurate temperature control and pulling mechanism. 

A tapered waveguide has been chosen as the most appropriate method for 

coupling the light into the NW. A tapered waveguide is a mechanism used widely 

in integrated optics in order to improve the power coupling coefficient between 

integrated optical devices such as multimode waveguides, single mode 

waveguides, single mode fibres and laser diodes [71-74]. Tapered waveguides can 

also have various shapes including linear, exponential and parabolic tapered 

structures [75-77]  as shown in Fig. 2.1.  

 

Figure 2.1: Schematics of various tapered structures including (a) linear, (b) 
exponential and (c) parabolic shaped. 

However, the linear tapered structure is found to have the highest efficiency 

[75, 78] compared to the other tapered structures. In addition, it is the simplest 

and easiest shape to fabricate.  Therefore, the linear tapered waveguide tends to 

be widely used in integrated optic applications. 

The linear tapered waveguide plays an important role in reducing the coupling 

loss when the light couples from the feed waveguide to the relatively small 

dimension NW. In order to minimize the propagation loss in the tapered 

waveguide, the tapered angle, , as shown in Fig. 2.2  is considered.  
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Figure 2.2: Schematic of a linear tapered waveguide showing the tapered angle, 
θtp. 

The tapered angle, , can be expressed by the following equation [75]: 

 
(2.3) 

where  is the feed waveguide width,  is the NW width and  is the tapered 

length. It was found that if the taper angle is reduced, the power loss is decreased 

[75], however, its length increases. In addition, a symmetric taper structure about 

z-axis, which is also the direction of light propagation as shown in Fig. 2.2, also 

affects the power losses [75]. Therefore, the designed tapered waveguide should 

possess a symmetric shape about z-axis with the taper angle around 1 -3  in order 

to get the maximum power coupling coefficient and to make it a suitable taper 

structure [75, 79]. If the taper angle is too small, the structure becomes non-

compact since it becomes too long.  

2.3 Nanowire waveguide fabrication process 

Generally, there are two ways to synthesize the nanowire, namely top-down 

and bottom-up approaches. The top-down approach starts with the bulk material 

which is scaled down to the nano-size material through the fabrication techniques 

such as deposition, electron-beam lithography, UV lithography, and etching. With 

the top-down approach, a nanowire with high-yield, high uniformity, and good 

alignment can be achieved. Therefore, this approach is mostly used for mass 

production in the microelectronic industry and production of nanowire arrays [23, 

80]. However, the scaling down process has physical and economical limitations. 
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Concerning the physical limitation of top-down approach, the minimum features 

of 14 nm were achieved in 2014 by Intel Corporation [81, 82]. Economical 

limitations concern the cost of operation of the top-down approach which is more 

expensive compared to the bottom-up approach. The bottom-up approach relates 

to the synthesis of atoms or molecules combined together to form a larger 

complex material. This approach commonly uses the vapor-liquid-solid (VLS) 

growth method in order to grow the nanowires [83]. With the bottom-up 

approach, the physical and economical limits found in the top-down approach can 

be overcome [84, 85]. In addition, the selective doping of the nanowires is possible 

by controlling the dopant precursor gas [86]. The challenge of this approach is to 

control the size, orientation, and positioning of the nanowires. 

Polymer nanowires can be fabricated using one of several possible techniques 

in both top-down and bottom-up processes. Starting with bottom-up techniques, 

electro-spinning is a conventional technique to fabricate nanowires with a 

diameter of 50-300 nm [87]. The nanowires obtained from this technique are 

multiple, overlapping and randomly oriented. Multiple nanowires used as optical 

waveguides have a slower response and lower sensitivity compared to a single 

NW because their response is the average of the responses from many NWs [88]. 

Therefore, single-NWs are more popular for sensing applications when the 

response time is important. A technique that uses scanned electro-spinning and 

direct drawing of solvated polymers have been developed to fabricate individual 

oriented polymer nanowires which can be used as optical waveguides [89, 90]. 

Another bottom-up fabrication technique used to obtain single nanowires is a 

combination of self-assembled mono-layer deposition and electrochemical 

polymerisation [91]. However, none of these bottom-up techniques enables a 

reliable and high throughput for large scale of patterned nanowires. In addition, 

it is difficult to control the interaction of the molecules for the incorporation of a 

single nanowire into a device [91]. On the other hand, top-down fabrication 

techniques, such as laser interference patterning (LIP) combined with inductively 

coupled plasma (ICP) and nanoimprint provide a uniform and oriented nanowire 

structures on a large-scale, which can be used as optical waveguides [92-94]. 
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The silicon NWs with horizontal slot structure and the ormocomp NWs 

developed in this research work are fabricated using the top-down technique in 

order to achieve the integrated optical device structure. With the top-down 

technique, the dimensions of the NW can be controlled if appropriate care is 

taken. In addition, the mass production of a single NW is possible. The fabrication 

process of the silicon NWs includes oxidisation, LPCVD (low pressure chemical 

vapor deposition), photolithography and dry etching. For the fabrication of the 

ormocomp NWs, the nanoimprint method is used because it is a relatively simple 

method, inexpensive and not so time consuming. 

2.4 Silicon slot nanowire waveguides for sensing applications 

Currently, silicon-on-insulator (SOI) slot waveguide has been growing as a 

field of interest due to the strong power confinement achieved in the slot area, 

leading to an enhancement of light interaction within the sensing region and the 

resulting sensitivity improvement [95].  Almeida et al. [96] were the first to report 

that the intensity in the low-index area of slot region can be 20 times higher than 

that obtained by a conventional rectangular waveguide. Slot waveguides are 

fabricated by having two higher refractive indices but narrower waveguides close 

to each other. The narrow gap between those two NWs is arranged to have a 

lower refractive index. In this arrangement, the light is confined in the low-index 

area due to the discontinuity of the normal component (En) of the electric field (E-

field) at the interface. Due to the high-intensity optical field at the low index 

interface, the intensity of light-matter interaction is increased and consequently, 

the sensitivity of the sensor is improved. Due to their unique characteristics, slot 

waveguides are utilized in several optics and photonics applications, such as in 

micro-resonators [97], optical modulators [28], directional couplers [98], beam 

splitters [99] and logic gates [100]. Moreover, the distinctive feature of power 

confinement in the low-index region also makes the slot waveguides very 

attractive in sensing applications [101-104].  
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There are two possible types of slot waveguides, according to their structural 

orientation, namely the (i) vertical slot waveguides and (ii) horizontal slot 

waveguides, as shown in Fig. 2.3.  

 

Figure 2.3: Schematic of horizontal and vertical slot waveguides. 

The vertical slot structures have the slot region perpendicular to the substrate 

while the slot region of a horizontal slot waveguide is parallel to the substrate. The 

fabrication of the vertical slot waveguides includes photolithography and etching 

where the thermal oxidation and chemical vapor deposition (CVD) are the main 

processes for the horizontal slot waveguides fabrication. Therefore, the interfaces 

between the slot and high-index materials of the horizontal slot waveguides are 

smoother resulting in lower scattering loss compared to the vertical slot 

waveguides [105, 106]. The fabrication techniques for manufacturing the slot 

waveguides are described in Chapter 4. The fundamental mode obtained in the 

vertical slot waveguide is the TE mode (transverse electric mode) whereas the TM 

mode (transverse magnetic mode) is obtained for the horizontal slot waveguide.  

2.4.1 Vertical slot waveguides 

Dell’Olio and Passaro [44] proposed a chemical and biochemical integrated 

optical sensor by optimizing the vertical slot waveguide. The research 

concentrated on modal and sensitivity investigation for conventional SOI slot 

waveguides and SOI rib waveguides at the fixed operating wavelength of =1550 

nm. The influence of the vertical sidewall in the slot region is also investigated. 

The vertical sidewall has a sidewall angle  in the range between 81  and 87 . 
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A full-vectorial 2D FEM with triangular elements is used in the modal 

investigation. In their simulations, the cladding materials are assumed to be either 

air, silicon oxide, or water with refractive indices of 1, 1.444 and 1.33, respectively, 

depending on the design objectives. The results showed that the quasi-TE mode 

is more confined in the gap region for all vertical slot structures examined because 

of the discontinuity of the normal component of the electric field, which is Ex in 

this case [44]. 

In order to investigate the use of the vertical slot waveguide in sensing 

applications, Dell’Olio and Passaro [44] have studied the sensitivity of these 

waveguides by measuring the change of effective index due to the change of 

cladding medium refractive index. This can be used to measure the concentration 

of chemical species presented in a solution form such as glucose solution or 

ethanol solution. In addition, the change in gas concentration can also be 

estimated using this method. The waveguide sensitivity ( ) is defined by the 

following equation [44]: 

 
(2.4) 

where   if the effective index of propagation mode and  is the refractive 

index of the unperturbed sensing region.  

Dell’Olio and Passaro [44] have reported that when the width of the 

waveguide structure decreases, the sensitivity increases in both vertical sidewall 

and non-vertical sidewall structures because the optical field is pushed out of the 

core into the slot region for the narrower waveguide. However, the non-vertical 

sidewall causes an additional reduction of the sensitivity in the range of about 15% 

compared to a vertical sidewall structure. This reduction may reach 25% for a 

wider structure.  The sensitivity of their vertical slot waveguide is reported to be 

70% higher than that of a conventional silicon NWs [107] and also greater than 

the sensitivity obtained in rib waveguides [108].   

Passaro et al. [109] have investigated the slot SOI waveguide used as a 

chemical sensor. The proposed sensor is a compact sensor with a device area of 



23 

 

1200 m2.  The minimum refractive index change that can be detected by this 

sensor is about 10-5. The vertical slot SOI waveguide is studied to detect the 

change in glucose concentration. According to the simulation, the sensitivity was 

expected to be in the order of 0.1 g/L. 

In order to exploit this slot waveguide in a wider range of biochemical sensing 

applications, the surface sensing is considered. Such surface sensing slot 

waveguide can be used to detect, for example, DNA hybridisation and antigen-

antibody reduction [44, 101, 104, 110, 111]. In surface sensing applications, the 

molecular adlayer is deposited on the top surface of the NW structure. The 

molecular adlayer acts as a receptor interacting with an analytic molecule to form 

the immobilisation of an ultra-thin layer. The interaction causes the change of the 

thickness of the adlayer leading to the change of the effective index of the optical 

mode ( ).  

Claes et al. [104] have been the first to prove that vertical slot waveguide with 

the slot width of 100 nm can be used as a selective label-free sensor for the 

protein detection. They developed slot waveguide based on ring resonator, where 

the protein detection sensitivity increases by a factor of 3.5. Dar et al. [110] have 

used the Finite Element Method (FEM) to study the propagation mode and the 

sensitivity of vertical slot waveguides. They proposed a label-free biosensor to 

detect DNA hybridisation as shown in Fig 2.4.  

  

Figure 2.4: Vertical slot waveguide sensor to detect DNA hybridisation proposed 
by Dar et al. [110] 

The adlayer in that research was silanes, which has refractive index of 1.42 

[112]. The silanes layer acts as a linker to form a bond with single-strand DNA 
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(ssDNA). With the presence of complimentary DNA, the ssDNA becomes double-

stranded DNA (dsDNA). 

The refractive index of ssDNA and dsDNA are 1.453 and 1.53, respectively, at 

a wavelength of 633 nm [113]. The sensor proposed in [110] is using a surface 

sensing mechanism to detect DNA hybridisation. When the ssDNA becomes 

dsDNA, the effective index of the guiding mode is changed due to the difference 

in the refractive index at the surface. The dimensions of the slot structure are 

optimized to obtain the maximum sensitivity. The dimensions used in the 

optimisation exercise are the height and width of the NW and the slot width. The 

waveguide sensitivity ( ) in this work is given in the form of equation (2.5): 

 
(2.5) 

where  is the effective index difference when ssDNA becomes dsDNA and 

 is the refractive index of the ssDNA layer. This will be a dimensionless 

parameter. Instead of comparing with the RI, it has also been reported by 

comparing with the change in the RI of the sensing media.  The sensitivity of the 

sensor can also be defined as a function of the frequency or wavelength of the 

output signal called spectral sensitivity, , as shown in the equation below:   

 
(2.6) 

The spectral sensitivity is the relative efficient in the detection of a change in light 

intensity which can be wavelength dependent. Comparing this with the change in 

refractive indices, the spectral sensitivity is used to measure the shifts in the 

wavelength in the unit of nm/RIU. In the research from Dar et al. [110], a NW with 

waveguide width of 220 nm, height in the range between 320 and 340 nm and a 

slot width of 100 nm has been studied theoretically to achieve the sensitivity 

( ) of 856 nm RIU-1.  

An alternative way to enhance the sensitivity of the vertical slot waveguide is 

by increasing the number of slots [114, 115]. Sun et al. [116], have studied the 

evanescent confinement in vertical multiple-slot waveguides for sensing 
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applications. The research shows the enhancement of sensitivity as the number 

of slots is increased. In this research, they have simulated the operation of a 

waveguide with three slots. The sensitivity is reported to be five times higher than 

that of a conventional waveguide without the slot in the case of homogeneous 

sensing, in which the waveguide is surrounded with bulk solution. For surface 

sensing, the sensitivity is three times greater for the three-slot waveguides 

compared to the conventional waveguides.  

Vivien et al. [117] have developed vertical multiple slot waveguide ring 

resonators in silicon nitride as shown in Fig. 2.5. 

  

Figure 2.5: Vertical multiple slot waveguide used as ring resonator proposed by 
Vivien et al. [117]. 

The silicon nitride is used instead of silicon to minimize the refractive index 

contrast, which in turn relaxes fabrication tolerances. A triple slot waveguide has 

higher effective index variation than the single slot waveguide of about 20%. In 

addition, around 60% improvement in effective index variation compared to strip 

waveguide can be achieved [117]. Besides that, using silicon nitride allows the slot 

width to be enlarged to 200 nm [118] which gives the advantage of being able to 

detect bigger molecules in biosensing applications.  

There is a limitation for the fabrication of vertical slot waveguides because 

silicon slot waveguide operates in the near infrared (IR), leading to a restriction of 

the slot width to be less than 100 nm which can be difficult to achieve in 

fabrication, especially in an etching process [117]. Surface roughness can occur in 

the vertical narrow-gap etching process due to the sub-micron dimension 

structure, leading to the scattering loss at the interface of the slot waveguide. 



26 

 

2.4.2 Horizontal slot waveguides 

Horizontal slot waveguide structures can be fabricated using chemical vapor 

deposition (CVD) and thermal oxidisation. These techniques are used to produce 

thin films. They can be applied layer by layer and result in a smoother surface and 

consequently a reduction in the scattering loss [119, 120]. CVD is a chemical 

process used to deposit the thin films of various materials such as poly-Si, SiO2, 

Si3N4, metal and diamond [121] while thermal oxidation is a process to produce 

only SiO2 layer on the silicon surface by the diffusion of an oxidizing agent at a high 

temperature [122]. 

Mullner and Hainberger [123] have investigated and optimized the horizontal 

slot waveguide to improve the power confinement in the slot region. A full-

vectorial 2D FEM with triangular elements was used as a simulation model for that 

research. The operating wavelength was at 1550 nm. The power confinement was 

reported to depend strongly on the thickness of the waveguide rather than the 

slot thickness. The width of the structure also affects the power confinement in 

the slot region. The power confinement is increased when the waveguide 

structure widens. The power confinement can be increased up to 54% when the 

waveguide has a width of 1400 nm. The effect of slot height on the power 

confinement can be negligible [123].  

The horizontal single and multiple slots waveguides have also been 

demonstrated by Sun et al. [124] as shown in Fig. 2.6. 
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Figure 2.6: Horizontal single and multiple slots waveguide structures proposed by 
Sun et al. [124]. 

They have fabricated horizontal slot waveguide using thermal oxidisation. Their 

research shows that the low propagation loss is due to the lower absorption of 

the silicon material. The reported propagation loss in horizontal single and 

multiple slot waveguides is around 6.3 dB/cm and 7.0 dB/cm, respectively. 

Horizontal slot waveguides can be utilized in various optical applications such 

as couplers for instance. Galan et al. [125] have developed high efficiency grating 

couplers for silicon-based horizontal slot waveguides. It is reported that the 

coupling efficiency between a standard single mode fibre and this horizontal slot 

waveguide can reach 61% in which the incident angle is 8° [125]. 

Considering the information collected for slot waveguides that the horizontal 

slot waveguides has significantly lower loss compared to the vertical slot 

waveguides and required tolerances are also better [45, 105, 106], it was decided 

that the NWs with horizontal slot structure are the most appropriate to study and 

fabricate in this PhD research. In addition, the silicon NWs in this work are 

fabricated on a silicon-on-insulator (SOI) wafer due to the significant advantages 
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offered over fabrication on conventional silicon wafers. The SOI technology 

minimizes optical losses and power dissipation in optical waveguides [45, 126].  

2.5 Nanowire waveguides for sensing applications utilizing the evanescent 

field   

2.5.1 Silicon nanowire waveguides 

The silicon-on-insulator (SOI)-based NWs have been widely used as optical 

sensors to detect bio-molecules because they can be surface functionalised to 

bind with the analytes resulting in direct label-free readout [127]. This is the main 

advantage over the conventional biosensors which requires organic molecular 

dyes for labelling detection [128-131]. Due to this label-free and real-time 

detection properties, silicon nanowire-based sensors can be used for immune 

detection, pH sensing and disease diagnosis [24, 42, 43].  When the surface of 

silicon nanowires is linked with the receptor molecules, such as polyanionic, it is 

possible that a single-stranded DNA and some other proteins can be detected due 

to the change of their conductivities [24, 42].  

The sensitivity of the nanowire-based sensor is enhanced due to the high 

surface to volume ratio [132]. Therefore, the sensitivity of the NW can be 

improved by reducing the size of the NW. Rong et al. [133] have developed 20-nm 

porous silicon NWs for label-free DNA hybridisation sensing. The porous structure 

of the silicon waveguide increases the surface area and provides the capability for 

molecular size selectivity. In addition, the sensitivity of the optical waveguide 

sensor can be enhanced from the evanescent field at the cladding region [134]. 

Research work using silicon NWs integrated with a Mach-Zehnder 

interferometer has also been performed by Wang et al. [58, 135]. With this 

integrated optical sensor, a resonance wavelength was measured with the change 

of concentration of Sodium Chloride (NaCl) which leads to the change of the 

effective index. The resonance wavelength linearly increases when the 

concentration of NaCl is increased from 1% to 5% as well as the refractive index in 
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the range between 1 and 1.538. It is reported that a high sensitivity of 110nm/RIU 

and large detection range of refractive index can be obtained [135].  

2.5.2 Silica (SiO2) nanowire waveguides 

Silica NWs with a subwavelength diameter and their properties have been 

studied by Lou et al. [62]. For small diameter NWs, the propagation of light is 

extended outside the guiding region called evanescent field. The power of the 

evanescent field in the surrounding medium can be in a range from 20 to 100 

percent of the overall power of the field present, depending on the core diameter 

of the NW. The evanescent field intensity is inversely proportional to the diameter 

of the silicon NWs. This evanescent field can be used to detect the change of the 

refractive index of the cladding medium which is the detection mechanism for 

several SiO2-based optical sensors [36, 62, 63]. Higher sensitivity can be obtained 

by enhancing the evanescent wave propagation through the geometry of the 

waveguide (size and curvature) and the waveguide material (refractive index). 

Therefore, the subwavelength-diameter silicon NW is required in order to get the 

maximum evanescent wave. Tong et al. [136] have shown that the critical 

diameter for single mode Silicon NWs is 450 nm for the operating wavelength of 

633 nm (visible region) and 1100 nm for the operating wavelength of 1550 nm 

(near-infrared region). The optical loss for these single mode NWs is less than 0.1 

dB mm-1.    

There has been extensive research using silicon NWs as optical sensors by 

integrating them with a Mach-Zehnder interferometer. Themistos et al. [57] have 

characterised the silica NWs for optical sensing by incorporating the silica NWs in 

a Mach-Zehnder interferometer. With this Mach-Zehnder based optical sensor, 

the optical field profiles, the propagation constant and the power confinement of 

both the reference and sensing arms can be calculated while varying the NW 

parameters including the diameter, the refractive index, and the wavelength. It 

was reported that the optical field is more confined in large diameter silica NWs. 

Therefore, the power confinement in the core region is higher when increasing 

the NWs diameter. However, the change in the refractive index of the medium 
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has more effect to a NW with a small diameter. In addition, smaller wavelengths 

provide more confinement of optical fields and power in the core region of silicon 

NWs.  

Lou et al. [62] have proposed the use of a single mode silica NW as an 

evanescent wave based optical sensor as shown in Fig. 2.7.  

 

Figure 2.7: Silica NW sensor based on Mach-Zehnder interferometer using 
evanescent wave proposed by Lou et al. [62]. 

The sensor is assembled as a Mach-Zehnder interferometer to detect the phase 

shift caused by changing the refractive index of the surrounding medium. The 

Mach-Zehnder interferometer consists of two arms, the sensing arm, and the 

reference arm. For the sensing arm, the sensitive area is introduced to the 

medium for detecting the change of the refractive index by the evanescent wave. 

This leads to a phase shift between the sensing arm and the reference arm in the 

interferometer. It is reported that the sensitivity of this proposed optical sensor is 

about 7.5 m-1 which is higher compared to conventional sensors [62]. The 

sensitivity of this NW sensor is inversely proportional to the wavelength of the 

light.  

In addition, this single mode NW can be surface-functionalised for selective 

detection. The surface functionalisation forms a thin layer of a specific specimen. 

If the surface is modified by metal nanoparticles, the surface plasmon (SP) is 

dominant which can improve the evanescent field at the surface of the NWs. It is 

reported that the sensitivity of NW-based sensors can be enhanced by the 

presence of surface plasmon resonance (SPR) [137, 138]. 
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2.5.3 Ormocomp nanowire waveguides 

There are several types of NWs depending on the type of material used for 

their fabrication, which can be semiconductor, glass or polymer. Silicon is the most 

common semiconductor used to fabricate NWs. However, the fabrication of 

silicon NWs requires cleanroom facilities and complex equipments which can be 

costly. Glass NWs e.g. SiO2 are well-suited for simple optical detection due to their 

transparency, which means there is low light absorption at the visible region. 

However, glass is fragile and vibration sensitive, the fabrication process of glass 

NWs is  difficult and very time consuming [12]. 

The polymer is a distinctive alternative material which can be used to 

fabricate optical waveguides. Polymer NWs have flexibility and biocompatibility 

[55].  Their fabrication can be made simple and at a low cost. Gu et al. [88] have 

used a bottom-up technique which is direct drawing of solvated polymer doped 

with functional material to fabricate PAM (polyacrylamide) single-NWs. It is used 

in humidity sensing with response time of 30 ms.  

The PAM single-NW is placed on a low-index substrate which is MgF2 (n=1.39). 

A single-mode fibre is drawn to form a fibre taper and then placed at both ends of 

the NW for the implementation of the evanescent coupling method. A low-index 

fluoropolymer (n=1.38) is used to bond the NW and the fibre taper together and 

keep them isolated from the environment [88].  

In addition, doping PMMA (Polymethylmethacrylate) NWs with bromothymol 

blue (BTB) has been demonstrated for NH3 (ammonia) gas sensing. The response 

time is measured to be around 1.8 s which is considered to be faster than other 

ammonia sensors [88]. The utility of fluorescent polymer nanofibres, such as 

polyacrylic acid-polypyrene methanol (PAA-PM), to detect the metal ions Fe3+ and 

Hg2+ is also possible [48].  

There are several types of polymers commonly used in photonics such as 

PDMS (polydimethylsiloxane), SU8, PMMA (polymethylmethacrylate) and 

ormocomp. The choice of what polymer to use depends on the properties and the 

requirements of a particular application. The main properties of interest of the 
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polymers mentioned above including its refractive index, UV-transparency, 

contact angle, thermal degradation temperature and coefficient of thermal 

expansion are presented in Fig. 2.1. The contact angle is the angle measured how 

the liquid deposited on a solid substrate. It is used to define a wettability of a solid 

surface of each material in which the high contact angle (>90 ) refers to a 

hydrophobic surface. The thermal degradation temperature of polymers indicates 

an upper limit temperature that the polymers can maintain their physical and 

optical properties. The coefficient of thermal expansion (CTE) is a material 

property to indicate the linear expansion (length) of the material upon heating for 

each degree of temperature which has units of increment fraction per C. 

However, a change in length of these materials is extremely small. Therefore, the 

CTE is usually expressed in units of 10-6/ C or ppm/ C. 

Table 2.1: Some properties of the main polymers used in the photonics area 

Polymer n 
(589 nm) 

Contact 
angle ( ) 

Degradation 
( C) 

CTE 
(ppm/ C) 

PDMS[139, 140] 1.43 >100 400 310 

PMMA[141] 1.49 73 250-260 70-150 

SU-8[142, 143] 1.59 85 >340 64 

Ormocomp®[144, 145] 1.52 63 270 100-130 

 The refractive indices of PDMS and PMMA are 1.43 and 1.49, respectively. 

Their refractive indices are less than the refractive index of the glass substrate 

(n=1.51). Therefore, they are not suitable to be used as waveguides when 

deposited above the glass substrate. SU8 is a viscous material and its adhesion 

capabilities to glass are very poor [142]. Consequently, it is difficult to obtain 

uniformity of the SU8 layer on the glass substrate.  

Based on the above, ormocomp has been used in the fabrication of the NWs 

in this work. Ormocomp has a refractive index of 1.52. Ormocomp shows 

hydrophilic property (affinity for water) compared to PDMS, PMMA, and SU-8. 

However, the hydrophilic or hydrophobic properties of the material are not 
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considered in this study. It is a hybrid polymer material consisting of an inorganic 

backbone and organic side groups at the molecular level, unlike composite 

materials which are mixtures at the macroscopic level [146, 147]. Hence, the 

ormocomp is a homogeneous material that combines the properties of different 

material classes as shown in Fig. 2.8. 

 

Figure 2.8:  Molecular composites of ormocomp consisting of silicones, organic 
polymers and ceramics/glass. 

 Ormocomp is one of the commercial polymers in the ORMOCER®s group 

(trademark of Fraunhofer-Institute, Germany [144]). The reaction scheme for the 

ORMOCER®’s resin, which is used as an optical waveguide core region is shown in 

Fig.2.9 [148].  

 

Figure 2.9:  Reaction scheme of ORMOCER® for a use as the core material of 
optical waveguide [148]. 

The ORMOCERs have been used in many optical sensing applications [149] 

due to their wide range of refractive indices in selected silicone functional groups. 

Ormocomp obtains its flexibility and UV-curable property from the properties of 

organic polymers. The hardness and the chemical and thermal stability are 

obtained from the properties of ceramics where the transparency comes from the 

properties of glass [144]. Ormocomp is also known to have an easy and low 

processing cost using the nanoimprint technique [144, 150].  
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Referring to Fig. 2.1, ormocomp has a good wetting property with a contact 

angle of about 63 . It also has a good adhesion on many types of the substrate 

such as glass, silicon, and other polymers. Therefore, it can be used in microfluidic 

applications [55, 151, 152]. In addition, ormocomp has low optical losses at the 

NIR (near infrared: =1550 nm) range and this is important since optical 

components at these wavelengths are easily available and widely used for 

telecommunications [153]. This low loss property leads to its use in optical 

interconnection technologies [154, 155]. 

Wang et al. [156] have fabricated the inverted-rib waveguide with ormocore 

and ormocomp using the nanoimprint method. The fabricated waveguides were 

30 mm long with a ridge width of 2 μm and a ridge height of 1.2 μm. The rib layer 

was about 0.8 μm thick. However, a tapered fibre was needed in order to launch 

the source light (1310-nm laser), into the inverted-rib waveguide, and with these 

dimensions, a transmittance of 58.6% was achieved at =1310 nm. 

2.6 Surface plasmon resonance  

The sensitivity of the NWs can be further improved by coating a thin metal 

layer usually gold or silver, on the top surface to introduce surface plasmon 

resonance (SPR) [157-161]. The metal-coated NWs exhibit resonance coupling 

between the dielectric mode in their core and the plasmonic mode in the metal 

layer [162-164]. There are two plasmonic modes occurring in a gold layer, the 

dielectric core/gold interface (internal plasmon) mode, and the cladding/gold 

interface (external plasmon) mode.  Patskovsky et al. [165] have found that the 

internal plasmon mode is insensitive to the change of the refractive index of the 

cladding material, but the external mode is highly sensitive to the cladding index 

change. However, if the thickness of the gold layer is small enough, the two 

plasmonic modes can couple to each other and become an odd-like or an even-

like supermode which exhibits different behaviours [159, 166, 167]. Therefore, the 

thickness of the metal layer is considered to be one of the most important 

parameters needed to be optimized for each sensing applications [168]. 
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The evanescent field at the dielectric/metal interface is very sensitive to the 

change of the cladding index which is significant for sensing applications [169]. On 

the other hand, low-loss waveguides are mostly used in telecommunications 

which allow the light to travel at longer distances [170]. Therefore, SPR-based 

NWs have been widely used for biosensing and chemical sensing such as for the 

detection of NO2 gas [171-174]. A planar waveguide SPR sensor has been studied 

for its use in environmental monitoring such as the monitoring of low 

concentration of organic pollutants in water [175].  

It has been reported that optical transmission through the sub-wavelength 

holes in the metal film can be increased by an additional factor of 10 [176]. The 

use of localized surface plasmon resonance (LSPR) to enhance the sensitivity of 

the NW optical waveguides for biosensors have also been addressed and reported 

to show a sensitivity increased by more than 23 times [138, 177]. The use of 

colloidal Au as a nanoparticles tag for the detection of DNA hybridisation has 

shown great improvement in the sensitivity compared to those without Au [178]. 

The sensitivity of the SPR sensor integrated with a Mach-Zehnder interferometer 

for glycerin-water solutions is significantly improved to 5.5x10-8 RIU per 0.01  

phase change in which Wu et al. [179] claimed to be a significant improvement, 

allowing the SPR biosensors to have a greater potential to replace the 

fluorescence-based conventional biosensors. 

Chu et al. [180] have developed a SPR sensor based on multi-mode silica-on-

silicon channel waveguide. A ridge channel waveguide was made of Ge-doped 

SiO2. With a 75 nm thick gold layer attached to the top surface of the waveguide 

using chromium as an adhesion layer. The SPR signal occurring at the 

dielectric/metal interface is sensitive to the change of the cladding index. The 

refractive index of the cladding material was varied from 1.333 to 1.450 and the 

waveguide was operated in the range =500-800 nm. A maximum sensitivity of 

4547 nm/RIU was achieved at the cladding index of 1.434 with the resolution of 

4.4x10-5 RIU. 

The  SOI-based biosensors using the evanescent field sensing enhanced by 

SPR has been demonstrated with an interferometer by Debackere et al. [181]. The 
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surface plasmon interferometer-based biosensor is also capable of bulk refractory 

(bulk refractive index sensing). With various concentrations of NaCl solution, the 

sensitivity of 435.454 nm/RIU is attained with the detection limit of 10-3 RIU [182].  

In order to detect protein interaction between avidin and biotin, the 

waveguide element is surface silanized to have a suitable bio-interface between 

silicon and biological media. The integrated biosensors can detect the change of 

the refractive index in the order of 10-6 RIU [183].  With SPR, 2 ng of nCG presence 

in 1 ml of 1% bovine serum albumin solution was detected with a small refractive 

index change which is less than 1.2x10-6 [184]. A high resolution SPR-based 

chemical sensor to calibrate inert electrolyte solution with different 

concentrations was accomplished with the sensitivity of 1.82x10-8 RIU/nm 

calculated based on the changes in Goos-Haenchen shift which measures the 

displacement of the light beam instead of the resonant wavelength and the 

detection limit of 4x10-7 RIU [185] was reported. 

To enhance the performance of the NWs, a polarisation-independent 

structure is introduced in which the SPR occurring at both TE and TM polarisations 

have a similar effective index and show the same SPR behaviour [186].  

2.7 Summary 

Nanowire waveguides (NWs) can be used as optical waveguides to guide light 

waves. In order to couple the light into the NWs, coupling loss occurs due to the 

mode-size difference between single-mode fibres and the NWs, and hence, the 

taper mechanism is proposed to reduce the coupling loss.  

NWs are synthesized using the bottom-up technique or the top-down 

technique. The bottom-up technique is cheaper and allows smaller size NWs to be 

produced. However, the top-down technique provides a better uniformity and 

size control. In addition, integrated NW structures are possible using the top-

down technique. Integrated NWs can be easily used with other optical devices 

such as optical couplers. 
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Conventional waveguides allow light to be confined inside the high-index area 

which is the core of the NWs. On the other hand, light is confined in the low-index 

area in the case of slot waveguides. Slot waveguides are structures for which a 

low-index material is sandwiched in between two high-index materials. The light 

confined in the slot area has been found to have higher confinement compared to 

the conventional structure. There are two types of slot waveguides, the vertical 

slot waveguide, and the horizontal slot waveguide, depending on the slot 

orientation. The horizontal slot waveguide has better fabrication tolerances and 

lower loss compared to the vertical slot structure.  

Silicon is the most common semiconductor material used in the fabrication of 

waveguides. However, the polymer is alternatively used in the fabrication of 

optical waveguides due to its properties. It is flexible, biocompatible and possible 

for various surface functionalisations. The fabrication of polymer is simpler, 

cheaper and less time consuming compared to semiconductor and glass.  

Ormocomp is a hybrid polymer material which has the combined properties 

of inorganic and organic materials at the molecular level. It has high transparency 

in the visible region and its refractive index is 1.52, which is higher than the glass 

substrate so it is suitable to fabricate a waveguide on the glass. The ormocomp 

NWs use the evanescent field at the core/cladding interface to interact with the 

analyte materials. The evanescent field is sensitive to the change of the refractive 

index of the cladding material. In order to enhance the light interaction at the 

interface, surface plasmon resonance (SPR) is introduced. It was found that the 

power confinement and the sensitivity of the SPR-based sensor are significantly 

increased. Also, a polarisation-independent structure is proposed to further 

enhance the sensitivity of the waveguide.  
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3. Numerical analyses 

3.1 Introduction 

There are different numerical techniques available to solve the propagation 

of light in a Nanowire waveguide (NW), which is considered to be a special type of 

optical waveguides. In this chapter, the key features of some of the techniques 

which can be used in the analysis of such NWs and particularly the Finite element 

method (FEM) are described. The advantages of the use of the FEM over the other 

techniques, the fundamental theory of the FEM, the variational formulation 

utilized in the analyses of these structures and the desired parameters obtained 

by applying the above approach, are also presented here.  

The NWs can be complex structures consisting of anisotropic materials or 

materials with complex refractive indices such as metals. The characteristics of the 

propagation of light in NWs can be analyzed by solving the Maxwell’s equations.  

There are several numerical methods which can be used to solve these problems, 

such as, the Finite Difference Method (FDM), the Boundary Element Method 

(BEM), the Finite Element Method (FEM) and the Beam Propagation Method 

(BPM). 

The Finite Difference Method (FDM) [187] is a popular numerical technique 

which has been widely used to solve boundary value problems. In this technique, 

the optical waveguide is defined as a finite cross-section enclosed in a rectangular 

box, where the fields at the boundaries are assumed to be negligible, via the use 

of decay parameters along the boundaries. The cross-section of the optical 

waveguide is mostly implemented by the uniform rectangular grid, consisting of 

regularly spaced nodal points. All the dielectric boundaries of any non-

homogeneous optical waveguides have to lie on the nodal points in the 

rectangular grid, which is one of the shortcomings of the method. The 

approximate solution in FDM is the solution of the eigenvalue problem which can 

be solved base on the Taylor series expansion. By applying the continuity 

conditions of the optical fields at the dielectric interfaces, the eigenvalue matrix 
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equation (Ax- x=0) can be obtained and often solved using sparse matrix 

techniques. 

The Boundary Element Method (BEM) [188] is a computational technique, 

where the waveguide cross-section is divided into a set of elements where the 

basic equations are integral equations. However, the unknown nodal fields are not 

assigned to the whole area of the waveguide cross-section but only at the 

boundary. By deriving integral equations with respect to unknowns taken on the 

boundaries, the integral equations are discretized to linear equations. With the 

linear equations, the numerical solutions can be obtained which is also expressed 

in integral form. This integral equation is then used again to calculate the solution 

numerically. In the BEM, although resulting matrix order may be smaller but often 

dense and less flexible for many practical waveguides. 

The Finite Element Method (FEM) [189] is a powerful numerical technique 

originally developed for structured engineering problems and has a wide range of 

applications. This approach used to analyze complex structural problems such as 

optical waveguides. In the FEM, the differential equations defining a system under 

consideration can be replaced by variational expressions to which a variational 

principle is applied. The region of interest of the structure under consideration 

such as in our case, the cross-section of the optical waveguide is divided into many 

small simpler elements, usually triangular in shape, where the appropriate field 

components are approximated by polynomial expressions over these elements. 

Nodes can then be assigned at the vertices of the triangles, which can be shared 

between adjacent elements and the polynomial expressions are derived with 

respect to the assigned nodes. For more accurate representation of the field 

components, nodes can also be assigned inside the elements, thus increasing the 

order of the polynomial expressions and consequently the accuracy of the 

approach. Each element can have different shape and size with different dielectric 

material which may be anisotropic, non-linear, or lossy. After converting a 

continuous structure into a discretized structure, the variational principle is 

applied to the functional of the system and the problem is then reduced to a 

standard eigenvalue matrix equation (Ax- Bx=0), which can be solved by applying 
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the standard matrix algorithms. The FEM can be effectively used to analyze any 

shape of optical waveguides including 2D and 3D. 

The Beam Propagation Method (BPM) [190, 191] is widely used to analyze the 

behaviour of the light propagating in an optical planar circuit which is similar to 

the strip waveguide. For the BPM, the Fourier Transform (FT) of electromagnetic 

fields with respect to the direction normal to the light propagation was firstly 

introduced by Feit and Fleck [192]. A stepwise method is used to calculate the 

electromagnetic fields along the axial direction. The BPM is the numerical method 

that is effectively used to analyze with the non-uniform structures such as tapered 

waveguides. The BPM can also be based on the finite element method in order to 

characterize 3D optical waveguides [193]. However, being a 3D approach, it is not 

efficient compared to the method developed specifically for the uniform structure 

problems because, in BPM, the discretisations in both transverse and longitudinal 

plane are needed. 

The Finite-Difference Time Domain Method (FDTD) [194] is used to solve the 

electromagnetic problem in which both time and space in the Maxwell’s equations 

are discretized using central difference approximations. It is also a grid-based 

differential numerical modelling method. The FDTD calculates the electric and 

magnetic fields as they evolve in time providing animated displays of the 

electromagnetic field movement. In addition, the electric and magnetic fields can 

be both calculated directly without conversion. However, the computation time 

can be very long as the entire computational domain has to be gridded and the 

grid has to be fine enough for the smallest feature in the waveguide [195]. 

By comparing the FEM with the other numerical approaches described above, 

the FEM is considered to be more suitable for the analysis of the NW structures, 

mainly due to its ability to be adapted to any kind of structure with arbitrary 

boundaries, since the triangular-shaped elements in the FEM can give a better fit 

to any structures and the density of the element discretisation can be varied in 

regions where there is more rapid field variation. Even though the FDM has 

simpler matrix eigenvalue equation compared to the FEM, which may require less 

computer memory storage and programming time, it is not suitable for the 
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irregular shaped structures due to the uniform rectangular grid used and 

furthermore, in the presence of dielectric corners the electric field exhibits a 

singular behaviour produced by its transverse components. 

Similar to the FDM, the FDTD requires sufficiently fine grids to resolve the 

smallest part of the model leading to a long computation time. On the other hand, 

the BEM considers the optical fields only at the surface of the waveguide 

structures and the volume-discretisation also needs to be considered in order to 

study the light behaviour propagated inside the waveguide. The BEM is usually 

applied using Green’s formula, however, the approach is limited to homogeneous 

structures and in some cases, it requires further analytical treatment and 

programming. In the present work, only the modal solution of the optical field 

across the cross-section of the optical waveguide (x-y plane) is required, not the 

dependence of the light along the direction of propagation (z-axis). Therefore, the 

FEM is chosen over the BPM. 

There are several commercial photonic simulation software products 

available in the market such as Lumeical and RSoft. Lumerical’s design tools can 

be used to solve for FDTD problems, mode solutions, charge transport, and heat 

transport. RSoft can be used to design and analyse optical components and nano-

scale optical structures using FDTD-based simulation tool, BPM simulation tool, 

and etc. However, the cost of the commercial software products can be up to 5000 

USD per year. In this work, an in-house full-vectorial H̅-field formulation-based 

Finite Element Method is used to solve for the modal solution of the NWs. 

A detailed description of a basic theory of the FEM and how it is applied to 

our specific waveguides including silicon and ormocomp NWs are presented in the 

next section. 

3.2 The finite element method  

The finite element method (FEM) is a numerical technique used to get an 

approximate solution of differential or integral equation problems. It has an 

advantage in solving the complex system in engineering problems such as elastic 
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problems, thermal problems, fluid flow, electrostatic and electromagnetic 

problems. These problems are seen in the concepts of equilibrium, in 

thermodynamics, in Maxwell’s equations and other application areas, which can 

be expressed by governing differential equations and boundary conditions. The 

principle of the FEM is to divide the complex structure into many discrete 

elements, thus an equivalent discrete model for each element is constructed and 

all the elemental contributions to the system may be assembled. Alternatively, 

the FEM can be considered as the approximation of a continuous system by a 

discretized model. Therefore in the FEM, a differential approach is transformed 

into an algebraic problem, where the building blocks or finite elements have all 

the complex equations solved for their simple shapes [189]. 

A cross-section of an arbitrary shaped optical waveguide is divided into a 

number of sub-domains, called elements, being composed of several different 

materials, each of which can be described by arbitrary permittivity and 

permeability tensors, (x,y) and  (x,y), respectively. A uniform shape of the 

waveguide along the longitudinal z-axis, is assumed and time and axial 

dependencies are given by exp(j t) and exp(- z), where,  is the angular 

frequency and  is the complex propagation constant. 

All the elements in the discretized cross-section of an optical waveguide are 

considered to be interconnected at a discrete number of nodal points on their 

boundaries, as shown in Fig. 3.1.  

 

Figure 3.1: Schematic of an arbitrary waveguide structure divided into triangular 
elements interconnected via the nodal points on their boundaries. 

The elements have triangle-shape, thus giving the best fit to any structure. 

Different expansions can be used over each element, such as polynomials or 
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sinusoids, having the same form over all the elements, but different coefficients 

and satisfying some conditions between the elements, such as field continuity. 

Throughout this work, first order triangular elements have been used, where the 

nodal points are assigned, one at each vertex and first-degree polynomials, which 

are continuous across adjacent triangles, have been considered. 

The FEM is the extension of two classical numerical approaches, the Rayleigh-

Ritz variational method and the Galerkin method of weighted residuals. In the 

variational approach, the governing differential equation is not solved directly. 

Instead, the variational expressions are formulated as functionals. The functional 

is used to solve the problems and the approximate solution is obtained by 

minimizing the functional. For the Galerkin method, the governing equation is 

discretized and solved. The solution is obtained by minimizing the residual error 

of the differential equation. However, both methods are related to a standard 

eigenvalue problem which has to be solved [189, 196-198]. 

There are some fundamental electromagnetic field equations involved in the 

FEM such as Maxwell’s equations, wave equations, and boundary conditions.   

3.2.1 Maxwell’s equations 

Maxwell’s equations are a set of four partial differential equations 

representing the governing laws of the electromagnetic wave phenomena. The 

four vector quantities involved in Maxwell’s equation are the electric field  (volts 

per meter), the magnetic field  (amperes per meter), the electric flux density  

(coulombs per square meter) and the magnetic flux density  (tesla). For source-

free, time independent fields can be written in integral or differential form. In 

Differential form Maxwell’s equations can be represented as follows: 

 
(3.1) 

 
(3.2) 
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 (3.3) 

 (3.4) 

where  is the current density and  is the electric charge density (coulombs per 

cubic meter). 

The associated constitutive equations for the medium can be written as: 

(3.5) 

 (3.6) 

where  is the permittivity and  is the permeability of the medium. These are 

defined as: 

 (3.7) 

 (3.8) 

where  and  are the permittivity and permeability of the vacuum and  and 

 are the relative permittivity and relative permeability of the medium.  and 

 have value of 8.854x10-12 Farad per meter and 4 x10-7 Henry per meter, 

respectively.  

In addition, the rate of the energy of an electromagnetic field per unit area is 

represented by Poynting vector (S): 

 (3.9) 

The Poynting vector or the energy flux density is the cross product of electric 

and magnetic fields with the unit of W/m2. 
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3.2.2 Wave equations 

Assuming that an electromagnetic field oscillates at a single angular 

frequency ( ), the time-dependent electric field  and magnetic field  

over the waveguide region can be expressed as: 

 (3.10) 

 (3.11) 

where  and  are the time-independent electric and magnetic fields, 

respectively. 

In homogeneous media with uniform permeability and constant relative 

permittivity , the wave equation of the electric field and magnetic field can be 

reduced to Helmholtz equation by eliminating the magnetic flux density and 

electric flux density, respectively. 

 (3.12) 

 (3.13) 

where  is a wavenumber represented by: 

 
(3.14) 

The wavenumber in vacuum, called free-space wavenumber is defined as: 

 
(3.15) 

where  is a speed of light in vacuum and  is a wavelength in vacuum. 

In an optical waveguide with a uniform structure in the z-direction, the 

derivative of the electromagnetic field with respect to the z-coordinate is  where 

. For loss less case, there is no attenuation loss ( ) allowing the 

derivative to be constant,  which is called phase constant, where  is the 
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propagation constant. The ratio of the propagation constant to the wavenumber, 

as shown in the equation below, is known as the effective index, .  

 
(3.16) 

3.2.3 Boundary conditions 

In order to solve the wave equation of the electromagnetic field, the 

boundary conditions are required to be satisfied. These are the conditions that 

must be met when the boundary surfaces of two different mediums are in contact. 

Assuming there is no surface currents ( =0) and no surface charges ( =0), the 

required boundary conditions are as shown below: 

(a) The tangential components of the electric field are continuous ( ) 

 (3.17) 

(b) The tangential components of the magnetic field are continuous (

) 

 (3.18) 

(c) The normal components of the electric flux density are continuous (

) 

 (3.19) 

(d) The normal components of the magnetic flux density are continuous 

( ) 

 (3.20) 

where  is the unit normal vector at the boundary. 

In some cases, one of the mediums is considered as a perfect electric 

conductor or a perfect magnetic conductor. If one of them becomes the perfect 
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electric conductor, the electric wall boundary condition is then changed to the 

following: 

 (3.21) 

For the case when one medium is a perfect magnetic conductor, the magnetic 

wall boundary condition becomes as follows: 

 (3.22) 

In an optical waveguide which is a closed surface system, additional boundary 

conditions are needed.  The field decays in some cases at the boundary and 

therefore, the boundary conditions can be left free. In order to take advantage of 

the symmetry of the waveguide leading to a reduction in the number of element 

in FEM, the boundary conditions can be forced. They can be classified as Dirichlet 

and Neuman boundary conditions [197]: 

 (3.23) 

 (3.24) 

 
(3.25) 

where  is the electromagnetic field either electric or magnetic, k is a constant 

value and n is the unit vector normal to the surface. The Neuman boundary 

conditions represent the rate of change of the field when it comes out of the 

surface. In FEM, it can be used to obtain the field decay along the boundary of the 

waveguide. 

3.2.4 Outline of the finite element formulation 

As mentioned earlier, FEM is a numerical technique to obtain an approximate 

solution to boundary value problems defined by a governing differential equation 

in a domain, based on the Raleigh-Ritz variational method and the Galerkin 

method of weighted residuals, in which the domain of the differential equation is 
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discretized. In this case, a cross-section,  of an arbitrarily shaped optical 

waveguide, enclosed by a boundary , as shown in Fig. 3.2, is divided into a 

number of elements, that can be composed of different material and size.  

 

Figure 3.2: Cross-section of an arbitrarily shaped waveguide with the 
computational region  and boundary . 

The boundary  consists of an electric wall e and magnetic wall m, where the 

tangential electric field and tangential magnetic field are 0, respectively. The wave 

equation for the magnetic field, H, obtained from Maxwell’s equations can be 

described as [60]: 

 (3.26) 

where εr is the relative permittivity of the medium. 

In the Raleigh-Ritz variation method, the boundary value problem defined by 

the differential wave equation can be represented by a functional term ( ). The 

functional is a scalar quantity defined in an integral form with the differential 

equation and the boundary conditions expressed as [60]: 

 
(3.27) 

The unknown function from the above wave equation is the magnetic field H, 

therefore the solution of the problem is a function H(x,y), which makes the 

functional  stationary with respect to small changes, H. By expressing the 

functional in terms of the Euler’s equation,  and by taking the first variation 

, after applying the Gauss’ divergence  theorem, Euler’s equation can be 

expressed [60]: 
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(3.28) 

where  is the boundary of the region ,  is the outward normal unit vector to 

the boundary  and  represents the tangential electric field on 

the boundary .   

It can be seen from equation (3.28) that by applying the variational principle 

to equation (3.27), Euler’s equation, , coincides with the wave equation 

(3.26).  

The boundary condition  is automatically satisfied 

along the perfect electric wall boundary,  and therefore it can be considered as 

the natural boundary condition.  Equation (3.28) does not satisfy the boundary 

condition on the perfect magnetic wall boundary and therefore a forced boundary 

condition  should be imposed if required. 

In order to obtain the approximate solution, the cross-section  is divided 

into a number of elements, e and the solution of the unknown function is  for 

each element can be approximated by: 

 

(3.29) 

where m is the number of nodes and Ni is a set of known basis function called 

shape function [197]. Equation (3.29) can be represented in matrix notation as 

shown below. 

 (3.30) 

where N T is the transpose of the shape function matrix and H e is the column 

vector of the nodal field values for each element. By substituting H from equation 

(3.30) into equation (3.27), the solution of the optical waveguide can be obtained 

from the following equation: 
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(3.31) 

In the FEM approach, the whole analysis region of the boundary-value 

problem is discretized into a finite number of elements. Therefore, the integral 

can be evaluated from the summation of the elements over the whole region. 

Equation (3.31), it can be written in the matrix form of a standard eigenvalue 

equation as shown in equation (3.32) [60, 199]: 

 (3.32) 

where   is the eigenvector for each eigenvalue ko
2.  is the complex Hermitian 

matrix and  is the real symmetric matrix.  

As it has been described above, the solution of the optical waveguide problem 

using the finite element analysis can be expressed as a standard eigenvalue 

equation, as shown in equation (3.32). Element matrices A and B are formed for 

each triangular element over the cross-section of the optical waveguide and these 

are assembled into the corresponding Global matrices and the eigenvalue 

problem is solved using an efficient sparse matrix solver. The formation of the 

element matrices A and B and their global matrices can be found in Appendix A. 

3.3 Finite element analysis of nanowire waveguides 

There are many types of FEM-based variational formulations used to evaluate 

the propagation characteristics of optical waveguides. Vector formulations are 

preferable compared to scalar approximations in cases where the accuracy of the 

solution is vital. However, such formulations can lead to large memory 

requirements and increased computational time and therefore trade off should 

be applied between the desired level of accuracy, the computer memory 

resources and consequently the required program execution time.  
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 The types of the FEM-based vector formulations used analyze are 

categorized in terms of the components of the electromagnetic fields used in each 

formulation. Some of these include the EZ-Hz formulation in terms of the axial 

components of the electromagnetic field, the vector E-field formulation and the 

vector H-field formulation. 

The Ez-Hz formulation is one of the oldest FEM formulations used to analyze 

3D optical waveguides. However, using the above formulation to solve optical 

waveguide problems, nonphysical solutions called spurious solutions are also 

generated, while, in treating general anisotropic problems the canonical form of 

the eigenvalue equation is destroyed.  The effective way to eliminate the spurious 

solutions in the above approach has not been found yet [60]. Furthermore, the 

axial components used are the least important components of the E and H fields.  

The vector E-field formulation, where the electric field is used instead of the 

magnetic field, can treat anisotropic but loss-free problems. However, for an 

optical waveguide, the electric field is not continuous across the dielectric 

interface and this needs to be imposed in the formulations. Besides, for the full-

vectorial E-field formula, the natural boundary conditions correspond to the 

magnetic wall. Hence, an enforced boundary condition on the electric wall (

) is required which is more difficult to be implemented in irregular shaped 

structures.  

On the other hand, the vector H-field formulation is more suitable for 

dielectric waveguide problems, since the magnetic field is continuous everywhere, 

the natural boundary conditions correspond to those of the electric wall and no 

forced boundary conditions are required at the boundaries, while several 

approaches have been employed to suppress or eliminate the spurious modes. 

3.3.1 A full-vectorial H̅-field formulation-based FEM 

In this work, the full-vectorial H-field FEM variational formulation has been 

used to study and analyze the propagation characteristic of the light in the 

proposed nanowire waveguides (NWs). As it has already been mentioned above 
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that, this method is chosen because the magnetic field is continuous in all 

directions of the dielectric waveguides. 

 The formulation can be written as [199]: 

 
(3.33) 

The spurious solutions are generated while using the full-vectorial H-field 

formula because the divergence condition ( ) is not satisfied. In order to 

eliminate the spurious solutions generated along with the physical solutions, a 

penalty function method [200] is used to  force the divergence condition. With the 

penalty function method, the variational formula from equation (3.33) becomes 

as follows: 

 
(3.34) 

where  is the penalty coefficient. It can be estimated to be around 1/ , where 

 is the dielectric constant of the NW. The spurious solutions can be minimized 

by introducing a higher penalty coefficient. However, a high value of the penalty 

coefficient can deteriorate the effective index of the waveguide. Therefore, the 

suitable penalty coefficient has to be optimized in order to obtain the precise 

solutions. 

3.3.2 Finite element program 

In the present work, an in-house Finite Element program [201] has been used 

to obtain the modal solution of the NW structure under investigation. In this 

study, the NWs were considered as trapezoidal-shaped optical waveguides, as 

shown in Fig. 3.3. The NWs are coated with a thin metal layer to introduce surface 

plasmon resonance leading to the enhancement of the light interaction at the 

dielectric/metal interface.  
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Figure 3.3: Cross-section of the trapezoidal-shaped NW coated with the thin metal 
layer. 

The NW has a height, H, of 0.5 μm, a bottom and top width of, wbottom=1.5 μm 

and wtop=1.0 μm, respectively and a metal layer thickness of 50 nm. The sidewall 

angle is considered to be about 65 . However, these values can be changed as 

required. 

A low density finite element discretisation of the NW structure described in 

Fig. 3.3, is presented in Fig. 3.4. In order to exploit the symmetry of the structure 

along the y-axis, only the right-hand side half structure of the NW has been 

considered as the computational domain, thus reducing the memory 

requirements and computing execution time. To obtain the symmetric or 

antisymmetric modes of the NWs, either electric or magnetic wall boundary 

conditions were imposed along the symmetry boundary, according to the 

required dominant component of the magnetic field. For example, if the 

symmetric Hx modal field is required, to ensure its continuity along the x-axis, the 

 boundary condition is imposed at the symmetry wall.  
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Figure 3.4: Cross-section of half-symmetry NW structure divided into small 
triangular-shaped elements for FEM program. 

As can be seen in Fig. 3.4, the cross-section of the NW structure has been 

divided into small triangular-shaped first-order elements, where only the nodes 

at the vertices of the triangles are considered in deriving the shape functions for 

the triangular elements. The variables presented in Fig. 3.4, as the dimensions of 

the discretized structure, correspond to the input variables of the Mesh 

Generation Subroutine of the finite element program and these can be varied 

accordingly, when required to change the dimensions of the structure, and the 

mesh refinement in each region of the waveguide, according to the expected 

confinement of the modal field. In other words, in the regions where the modal 

field is expected to have larger confinement a finer mesh point is used to increase 

the accuracy of the approach, while in regions where minor field concentrations 

are foreseen, a low density mesh point is assigned. 

The divisions of the structure presented in Fig. 3.4 along the y-axis, where the 

variable names start with  ‘nyh’ and  ‘yh’, represent the number of divisions used 

and the corresponding height, respectively, for each horizontal section of the 

waveguide considered. Similarly, along the x-axis, the division of the NW is 

performed with the variable names starting with ‘nxw’ for the elements in each 

vertical section and their corresponding widths are represented by the variable 

starting ‘xw’. The structure of this NW consists of the substrate, the buffer oxide 

layer, the core of the waveguide, the metal layer, and the cladding material. They 
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are all demonstrated in different colours and numbers. In this work, typically the 

mesh point of the NW used was 250 x250 discretisation points, along with the x- 

and the y-axis respectively. Therefore, resulting 62500 elements have been 

considered to represent these waveguides in our analyses.  

It can be seen from Fig. 3.4 that each element is different in size and in 

refractive index creating a non-uniform mesh point through the whole structure. 

The non-uniform mesh point allows the program to be able to enhance the 

analysis on some specific part such as the sensitive area, as explained above. 

Hence, the accuracy of the solution can be increased with less simulation time. 

We have used 60 mesh points in 50 nm thick metal layer which gives a spatial 

solution of 0.83 nm. The operating wavelength of this work depends on the 

material used to fabricate the NWs. For silicon NWs, the operating wavelength is 

in infrared (IR) region ( =1550 nm). For the ormocomp NWs, visible light is used 

as operating wavelength ( =400-700 nm).  

The dielectric constant ( ) of each material is also required in the program 

where . The metal layer in this case is gold where its complex refractive 

index is wavelength dependent. The complex refractive index of gold in this study 

is based on [202]. The dielectric constant of gold for the whole range of operating 

wavelength in this work is provided in Appendix B. The cladding material is water 

which has an index of 1.333 at T=25 C. 

During the program execution, the coordinates of the nodes of each 

triangular element, as well as their refractive indices are calculated by the mesh 

generation subroutine. From the obtained parameters, the global matrices  

and  are formed in order to be used in the solution of the eigenvalue problem 

(3.32). The above problem is solved using an in-house efficient sparse matrix 

solver, where the two-dimensional global matrices are reduced in one dimension, 

thus consequently reducing the computational time. Each eigenvalue of the 

solution corresponds to the propagation constant, , of the obtained mode, while 

its eigenvector corresponds to the magnetic field component (Hx, Hy and Hz) of 

each node of the structure under consideration, of the obtained mode for the 

particular propagation constant  .   
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The program has the ability to calculate up to five modes at a time, located 

close to the input value of the propagation constant ( ). Initially, the trial input 

value of the propagation constant , is considered to be that maximum possible 

value of the propagation constant of the fundamental mode, estimated using 

equation (3.16), where   is replaced with the refractive index of the NW  

and . The program allows the calculation of either quasi-TE (Hy) or 

quasi-TM modes (Hx). The field distributions of the obtained five modes for the 

particular input value of the propagation constant ( ) are then plotted and the 

required mode is identified and iterated independently, by using as input the 

calculated value of the propagation constant of the particular mode.  

As it has been mentioned earlier, by solving the eigenvalue problem (3.32) 

some non-physical solutions, known as spurious solutions are also obtained 

because the divergence condition ( ) is not satisfied in the variational 

formulation (3.33). The spurious solutions may appear as separate unclassified 

modes, therefore they can be neglected, or, they can affect the field distribution 

of the guided modes, if their propagation constant is close to the propagation 

constant of a guided mode. The value of the penalty coefficient, , used in 

equation (3.34), to reduce the effect of the spurious solutions is in the range of 

0.4-0.6 depending on the studied NWs, either silicon and ormocomp. 

Furthermore, the E-field and the energy flux density (Poynting vector: S) can 

also be computed later using Equation (3.9). The results obtained from this full-

vectorial H-field formulation-based FEM including the effective index, the optical 

electromagnetic field, the spot size, and the normalized power confinement are 

presented in Chapters 5 and 6. 

3.4 Summary 

Finite Element Method (FEM) is one of the most powerful numerical 

techniques used to solve complex structure problems such as the optical 

waveguide. The concept of the FEM is to divide the continuous structure into 

many triangular-shaped elements. The discretized elements are connected by 
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nodes where the discretized optical field of the whole structure is calculated. Each 

element can have different size, thus forming non-uniform mesh point and 

different dielectric permittivity. In this study, the full-vectorial H-field formulation-

based FEM is used as a tool to analyze the propagation characteristics of the 

guided modes in the NW because of the continuity of the H-field across the 

boundary. The H-field is continuous everywhere in the dielectric waveguide. It has 

the advantage over the E-field formula because no forced boundary condition is 

required. The spurious modes, which occur because the divergence condition is 

not satisfied, can be minimized by using the penalty function method. In the 

discretisation of the NW structure, 62500 elements have been used, thus 

achieving a spatial resolution of 0.83 nm inside the metal layer.  
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4. Fabrication of nanowire waveguides 

4.1 Introduction 

This chapter discusses the fabrication of the proposed nanowire waveguides 

(NWs). First, a general discussion on the existing fabrication methods is given. 

Then the techniques used to fabricate these NWs are described. There are 

different types of NWs depending on the material used to synthesize them. The 

NWs can be metallic, semiconducting, insulating and organics molecules. In this 

work, the fabrication of silicon waveguides (semiconductor waveguides) with the 

conventional structure, silicon NWs with horizontal slot structure and the 

ormocomp NWs (polymer waveguides) are considered as part of optical sensors. 

For silicon waveguide fabrication, photolithography and etching are the main 

techniques utilized. Photolithography is the technique used to transfer the pattern 

from an optical mask to the light-sensitive material called photoresist (PR), which 

is coated on the substrate, by ultraviolet (UV) light illumination. There are two 

types of photoresist, the positive and negative photoresists. The positive 

photoresist is the type of photoresist that is soluble to the photoresist developer 

when it is exposed to the UV light. On the other hand, the negative photoresist is 

insoluble to the developer after the UV light exposure. The comparison of those 

two photoresists is presented in Fig. 4.1. 

  

Figure 4.1: Comparison between positive and negative photoresist. The positive 
photoresist is soluble when it is exposed to the light whereas the negative 
photoresist is not. 
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The positive photoresist has a higher resolution compared to the negative 

one. The photoresist is coated on the substrate using a spin coater. The spin speed 

depends on the viscosity of the photoresist and the designed thickness of the 

photoresist layer. The optical mask is a transparent plate covered with a pattern 

of the metal-absorbing film. It is usually chrome on quartz.  

There are three methods for the mask alignment in photolithography based 

on how the photomask is placed. If the mask makes a contact with the photoresist, 

the method is called contact photolithography [203]. This method provides high 

output resolution with 1:1 magnification. However, the contact of the two faces 

can leave some defects on the mask causing mask degradation and non-uniform 

resolution can occur in a subsequent processing using the same mask. In order to 

alleviate this drawback, another non-contact method has been developed, called 

proximity photolithography [203]. This method allows a small gap in the range of 

10-50 μm between the mask and the photoresist layer. The gap avoids the 

generation of defects on the mask. The drawback of this method is the low 

resolution which is the result of diffraction and no magnification can be achieved. 

The problems discussed above can be overcome through the different method 

called projection photolithography [203]. In this method, the optical mask is 

placed at a distance from the photoresist layer. The pattern image on the mask is 

projected on the photoresist layer by the lens. The projection photolithography 

provides a higher resolution and lower defect density. Also, a de-magnified image 

can be obtained. Therefore, the patterns on the mask do not have to be as small 

as the final image. Usually, the de-magnification is about 5x. With the projection 

method, only a small region on the photoresist layer is exposed at a time, 

therefore the substrate has to be mechanically moved by a stepper. Stepper is a 

machine used in projection lithography to slide the mask step-by-step. Our silicon 

optical waveguides are fabricated using this projection technique with i-line 

stepper ( =365 nm). 

Another main technique used in this work is etching. The two types of etching 

are commonly called wet and dry etching [203]. Wet etching is the process in 

which the etchants are in liquid phase. Therefore, the silicon wafers can be simply 
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immersed in an etchant bath. The wet etching is done with a chemical process 

where reactants from the etchant diffuse to the surface of the wafer and have a 

chemical reaction to form soluble products. The soluble species are then diffused 

away from the surface into the bulk of the liquid. Wet etching is known to have 

high selectivity due to specific chemical reactions between etchants and 

materials. The etching achieved by this method is isotropic in the sense that the 

surface is etched in all directions. Therefore, the directionality cannot be achieved 

except for single crystalline materials and the undercut cannot be avoided.  

In the dry etching method, the material removal reactions occur in the gas 

phase by the use of ion-bombardment in which the ions bombard on the wafer 

surface. The ions are usually plasma of reactive gases which are generated in 

vacuum under low pressure by the electromagnetic field. After the high energy 

ions bombard onto the surface of the silicon wafer, the volatilisation occurs from 

the chemical reactions. The dry etching is very directional which means the critical 

dimension control can be achieved. Etch rate can also be easily controlled. In our 

work, the dry etching is used to fabricate the silicon NWs due to its directional 

control. 

In this work, the nanoimprint is used to fabricate the ormocomp NWs because 

it promises a simpler, less time consuming and lower cost process with high-

throughput compared to other techniques [93]. The nanoimprint is a technique to 

transfer the pattern by having mechanical deformation on imprint resist. The 

imprint resist is a UV-curable polymer which is ormocomp is our case. 

For the surface plasmon resonance (SPR) study, the ormocomp NWs need to 

be coated with a thin metal layer, which is gold in our work. There are two types 

of physical vapour deposition to deposit the thin film, namely evaporation and 

sputtering. In the coating of the polymer NWs used in the SPR study, the 

sputtering technique is used to deposit the gold layer on the ormocomp NWs 

because it provides a better adhesion and a better uniformity of the metal layer 

compared to the evaporation technique. 
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4.2 Silicon nanowire waveguides 

Firstly, the silicon waveguides are fabricated to be used as a hard mold for the 

nanoimprint in order to subsequently fabricate the ormocomp waveguides at a 

lower cost. The silicon NWs are designed to be connected to feed waveguides at 

both ends through the taper as shown in Fig. 4.2. 

 

Figure 4.2: Schematic of the reference waveguide and interested NWs, which are 
connected to the feed waveguides through the taper, on a silicon substrate. 

The reference waveguide with the width of 10 μm is also fabricated on the 

same silicon substrate with integrated NWs at the same time. This reference 

waveguide is used to study for polarisation-independent when coated with a thin 

gold layer in Chapters 6 and 7 because the 1 μm wide NW cannot achieve the 

vertical sidewalls. Hence, the polarisation-independent of surface plasmon 

resonance (SPR) cannot be applied, only the polarisation in the quasi-TM mode is 

considered in the wavelength-scale NWs. 

In this part, the fabrication process of the silicon NWs with a horizontal slot 

structure is described. The slot waveguides are the waveguides that have low-

index material sandwiched by high-index materials. In this work, the slot is 

horizontally oriented, so it is called the horizontal slot structure as shown in Fig. 

4.3. 
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Figure 4.3: Cross-section of the designed silicon NW with horizontal slot structure. 

Our horizontal slot structure NWs are fabricated with silicon-on-insulator 

(SOI) technology to improve the performance. The NWs consist of SiO2 as the low-

index material sandwiched by two poly-Si layers. The main fabrication process for 

the silicon NWs includes photolithography and dry etching. The fabrication 

process of the silicon NW fabrication is provided in Fig. 4.4.  
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Figure 4.4: Schematic showing the fabrication process of the silicon NWs with a 
horizontal slot structure.  

The silicon NWs and the reference waveguides are fabricated on a 6-inch 

silicon wafer which is first cleaned by putting in piranha solution. The piranha 

solution is used to remove organic materials on the wafer. The solution is made 

of 70% sulfuric acid (H2SO4) and 30% hydrogen peroxide (H2O2) with a volume ratio 

of 4:1. The buffered oxide layer for SOI technology is then grown on the silicon 

substrate using the low-pressure chemical vapour deposition technique (LPCVD). 

In a chemical vapour deposition reactor, volatile precursors are fed into a vacuum 

chamber and then react with the substrate causing the desired deposit some by-
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products. These by-products are eliminated by gas flow inside the chamber. The 

chemical vapour deposition reactor used in this work is shown in Fig. 4.5 

  

Figure 4.5: Chemical vapour deposition reactor used in this fabrication at the Thai 
Microelectronics Center (TMEC). 

LPCVD is a chemical process used to produce a thin film on a substrate at sub-

atmospheric pressure. This technique uses the dry oxidation method to grow the 

oxide layer because a better quality of the oxide layer can be obtained compared 

to the those from wet oxidation [93].  The dry oxidation uses oxygen (O2) as an 

oxidant whereas water vapour (H2O) is used for the wet oxidation. To grow the 

250 nm thick oxide layer, O2 is diffused into a chamber at the flow rate of 8 

standard litres per minute (SLPM) at T=1000 oC. The SLPM is a unit of volume flow 

rate of a gas for standard conditions of temperature and pressure. The dry 

oxidisation reaction to grow the oxide layer can be described by: 

 (4.1) 

After that, Poly-Si is deposited on the silicon substrate using the LPCVD 

process. In order to deposit poly-Si, silane (SiH4) is used as the volatile precursor. 

The poly-Si deposition process is operated under the condition, T= 620 oC and P= 

261 mTorr. With a flow rate of silane at 150 standard cubic centimetre per minute 

(SCCM), the 250 nm thick poly-Si layer is produced in 14 minutes. The SCCM is the 

molar flow rate of a gas for standard conditions of temperature and pressure The 

reaction of poly-Si depositing on the substrate from silane is described by: 

 (4.2) 
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After the deposition of the poly-Si layer, another SiO2 layer is generated using 

the same technique as considered in growing the buffer oxide layer. This oxide 

layer will be the slot region with a thickness of 100 nm. Then, another poly-Si layer 

with the thickness of 200 nm is deposited to form the sandwich-structured 

waveguide. The total thickness is now 500 nm. With such a thick structure, the 

photoresist layer, which acts as a soft mask in the etching process, can degenerate 

during the process. Therefore, a thick oxide layer is required to act as a hard mask 

for the etching. The dry oxidation with TEOS (tetraethyl orthosilicate) deposition 

technique is carried out at T= 710 C and P=212 mTorr. With the flow rate of TEOS 

is 100 SCCM and the deposition time is about 1.08 hours. 

Before transferring the NWs pattern, the photoresist is dispensed onto the 

oxide hard mask layer. The photoresist easily comes off, so an adhesion promoter 

is needed in order to make the photoresist remain attached to the substrate. In 

this work, HMDS (hexamethyldisilazane) is used as an adhesion promoter. A 

gaseous HMDS is vaporized inside a chamber for 15 minutes. The photoresist used 

is Sumitomo: PFI-34A which is a positive photoresist. The thickness of the 

photoresist layer is around 1.09 μm.  

The pattern of the NWs set is transferred onto the photoresist layer by 

photolithography. An i-line ( =365.6 nm: UVA) stepper machine with high power 

mercury (HG) lamp, is used for the exposure. The exposure time is 340 ms and the 

exposure dose is 350.81 mW/cm2. After the exposure, post-bake exposure is 

needed at T=110 C for 3 minutes. Following that, the photoresist is developed 

using the developer from Tokuyama SD-W for 60 seconds. Then, hard bake is 

required at T=120 C for 90 seconds to harden the photoresist pattern for the next 

oxide etch.  

After generating the pattern on the photoresist layer, RIE (Reactive-ion 

etching) is used to etch all the layers of the silicon NWs. The RIE is a type of dry 

etching where the plasma is generated under low pressure (between 10−3 and 10−1 

Torr). The plasma etchants for the silicon NWs is CF4 (Carbon tetrafluoride). The 

etching process of each layer can be carried out at the same time because the 

material in each layer is silicon-based. Then, plasma ashing, which is the oxygen 
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plasma RIE, is used as a photoresist removal.  The piranha solution is again used 

to remove the residual photoresist on the silicon NWs. Finally, the TEOS layer is 

etched back using the RIE. 

The process flow of the silicon NW fabrication is provided in Table 4.1.  

Table 4.1: Fabrication process of the silicon NW. 

Process Technique Chemicals Thickness 

1. Cleaning - Piranha - 

2. Buffer oxide growth Dry oxidation O2 250 nm 

3. Poly-Si growth LPCVD SiH4 200 nm 

4. Oxide slot growth Dry oxidation O2 100 nm 

5. Poly-Si growth LPCVD SiH4 200 nm 

6. Oxide hard mask 

growth 

Dry oxidation TEOS 
500 nm 

7. PR coating 
Spin coating Sumitomo:  

PFI-34A 
1.09 μm 

8. NWs patterning Exposure UV - 

9. Developing - Tokuyama: SD-W - 

10. Dry etching RIE CF4 - 

11. PR striping Ash O2 - 

12. Hard mask etch back RIE CF4 - 

SEM images of the fabricated NW with different magnifications showing its 

set, the etched pattern, the sidewall and the top surface are presented in Fig. 4.6. 
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Figure 4.6: (a) SEM image of the NWs set, (b) Magnified SEM image showing the 
etched NW pattern, (c) Magnified SEM image showing the sidewall surface and (d) 
Magnified SEM image showing the top surface. 

Fig. 4.6(a) shows an image of a set of four NWs of different lengths and two 

reference waveguides. The tip of the tapered waveguide is also clearly seen. Fig. 

4.6(b) shows a magnification of a single silicon NW. Fig. 4.6(c) and Fig. 4.6(d) show 

the NW sidewall surface and top surface, respectively. The surface roughness can 

be observed from the image and it is measured to be around 0.1 μm by AFM 

(atomic force microscopy).  

Even though the silicon NWs are designed to have vertical sidewalls, however, 

the fabricated NWs have non-vertical sidewalls due to the resolution limits of the 

stepper machine. Therefore, double exposure is required to obtain the small NWs, 

leading to an inaccurate pattern transferring. In addition, the by-products from 

the stack etching also have an effect on the sidewalls of the NWs because they 

can be re-deposited on the sidewalls surface and block the plasma etchants.  The 

sidewall angle is measured to be around 65 . An SEM image showing a cross-

section of a fabricated NW is shown in Fig. 4.7. 
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Figure 4.7: SEM image showing a cross-section of the silicon NW. 

The fabricated NWs have a height of H=0.5 μm, the width at the top (Wtop) 

and bottom (Wbottom) are 1.0 μm and 1.5 μm, respectively. These fabricated 

horizontal slot silicon NWs are initially used as a master mold (hard mold) to 

fabricate ormocomp NWs using the nanoimprint method. However, a single layer 

(conventional structure) poly-Si NW can also be considered to use as a hard mold 

for the nanoimprint technique to reduce the fabrication steps. 

For the reference waveguide, it has a width of 10 μm. In order to use it as the 

polarisation-independent waveguide with SPR, the reference waveguide is 

fabricated again to achieve the thickness of 10 μm. The fabrication process is the 

same with growing poly-Si layer in the horizontal slot structure using LPCVD and 

the poly-Si is then dry etched with RIE technique. The reference feed waveguide 

is fabricated to have vertical sidewalls as shown in Fig. 4.8. 

 

Figure 4.8: SEM image showing a cross-section of the reference waveguide with 
vertical sidewalls structure. 



69 

 

4.3 Ormocomp nanowire waveguides  

In this part, the fabrication of the ormocomp NWs using the nanoimprint 

method is discussed. The nanoimprint is a technique used to transfer the nano-

size patterns from a mold to an imprint resist. The molds used in our work are the 

silicon NWs with horizontal slot structure and the imprint resist is ormocomp 

which is a hybrid polymer material. However, the ormocomp NWs do not have the 

slot structure but the conventional structure instead. In addition, if the silicon 

NWs are directly imprinted on the ormocomp layer, the opposite pattern is 

obtained as shown in Fig. 4.9(a). Therefore, the additional mold is needed to 

transfer the pattern in order to have the ormocomp NWs with an identical pattern 

to the silicon NWs as shown in Fig. 4.9(b). 

 

 

Figure 4.9: (a) Schematic of an ormocomp NW with the opposite pattern to its 
original. (b) Schematic of the duplicate ormocomp NW with the use of additional 
PDMS soft mold. 

 The additional mold is made of PDMS (Polydimethylsiloxane) which is 

considered to be a soft mold. The PDMS is a silicon-based organic polymer and 

transparent at the optical frequencies ( =240 nm-1100 nm). It is normally 

prepared by mixing the silicone elastomer base (viscous liquid) and curing agent 

(liquid) with the ratio of 10:1 by weight. However, this ratio can be varied 

depending on the desired hardness of the PDMS mold. In our case, a harder 

elastomer mold is needed because the PDMS mold is mechanically stamped on 
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the ormocomp layer and excess applied force is required during the stamping 

process. If the PDMS mold is too soft, the pattern on the PDMS mold can be 

flattened while stamping. This would lead to a distorted pattern on the 

ormocomp. On the other hand, the solidity of the PDMS mold cannot be very 

strong because the mold can be easily torn during the demold process due to the 

lack of flexibility. Therefore, after some trial experimentations, the ratio of the 

mixture is chosen to be 7:1 in this work.  

Before putting the PDMS mixture (liquid) on the silicon NWs, the HMDS is 

vaporized first onto the surface of silicon NWs for 30 minutes in order to improve 

adhesion. After that, the PDMS mixture (liquid) is slowly poured onto the silicon 

NWs. Then, the structure goes through a degas process for 30 minutes in order to 

remove all the bubbles occurring from the mixing. Next, the PDMS is hardened in 

a furnace at T=100 C for 2 hours. After the curing process, the PDMS soft mold 

can be removed from the silicon substrate. The reverse pattern of the silicon NWs 

now appears on the PDMS soft mold. The process of making the PDMS soft mold 

is shown in Fig.  4.10.  

 

Figure 4.10: Schematic of the PDMS soft mold fabrication process. The reverse 
pattern of silicon NWs is obtained on the PDMS mold.  
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In order to transfer the pattern from the PDMS mold, ormocomp, which is a 

UV-curable hybrid material, is dispensed on a clean glass substrate using the spin 

coater. The ormocomp is a viscous material leading to a thick ormocomp layer. 

Normally, the ormocomp layer with a thickness of 20-25 μm is obtained when 

spinning at the speed of 3000 rpm for 30 seconds [145]. The thickness can be 

reduced by increasing the spin time. In this work, the spin time is increased to 1 

minute where the 10 μm thick ormocomp layer is obtained. Then, the PDMS mold 

is imprinted on the ormocomp layer. In this process, air bubbles can be generated 

due to the height of the NW pattern. Therefore, the PDMS mold has to be pressed 

on the ormocomp layer until the air-bubbles are all removed in order to achieve a 

precise and clear pattern. The ormocomp is then cured with UV light for 5 minutes. 

After the UV curing, the ormocomp layer is hardened and the PDMS can be 

detached from the ormocomp NW. An identical pattern with the silicon NWs 

consequently appears on the ormocomp layer. The process flow of the 

nanoimprint used to fabricate the ormocomp NWs is shown in Fig. 4.11. 

 

Figure 4.11: Schematic showing the process flow of the nanoimprint technique 
used to fabricate the ormocomp NW.  
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However, the ormocomp layer was too thick leading to a leftover ormocomp 

layer from the imprint process. Therefore, rather a rib structure ormocomp NW 

was obtained instead of a ridge structure. The optical microscope images of the 

fabricated ormocomp NW from the nanoimprint technique with different 

magnifications are shown in Fig. 4.12. 

 
Figure 4.12: Optical microscope image of (a) a set of NWs, (b) magnified image of 
the NW set consisting of the feed waveguide, the tapered waveguide and four 
different lengths of NWs, (c) feed waveguide and tapered waveguide and (d) 1 m 
wide NW.  

From the optical images, it can be seen how the duplicate pattern to the 

silicon NWs can be produced on the ormocomp layer using the nanoimprint 

method. The taper length is measured to be around 260 μm as shown in Fig. 

4.12(c). The taper angle is 1  which is the same as the dimensions from the initial 

design. The 1 μm wide NW is shown in Fig. 4.12(d). The top width (Wtop) is 

measured to be 1.03 m and the bottom width (Wbottom) is measured to be around 

1.55 m. This result matches the cross-section image obtained from the AFM 

(Atomic Force Microscope) as shown in Fig. 4.13.  
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Figure 4.13: AFM image showing a cross-section of ormocomp NW and its 
dimensions. 

The AFM is a scanning probe microscope used to image and measure nano-

size materials. The tip we used for the AFM is HA_NC ETALON, which is a silicon 

tip with 10 nm tip curvature radius. From the AFM image in Fig. 4.13, Wtop is 

measured to be 1.04 m whereas Wbottom has a width of 1.59 m. The thickness 

of the fabricated ormocomp NW is measured to be around 500 nm. A 3D image 

of the ormocomp NW can also be obtained using AFM where the scanning area is 

25 μm2 as shown in Fig. 4.14. 

 

 

Figure 4.14: 3D image of ormocomp NW with 25 μm2 image space and a table of 
the surface roughness on ormocomp NW measured by the AFM. 

Fig. 4.14 also shows the different types of surface roughness on the 

ormocomp NW. Here, Ra is the average roughness, P-V is the peak to valley ratio, 
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RMS is the root-mean-squares roughness, Rz is the mean roughness depth, S is 

the surface area and S Ratio is the surface roughness ratio. In this work, the 

surface roughness (RMS) is considered to be one of the important parameters 

which affect the loss during light propagating along the NWs. 

Some of the fabricated ormocomp NWs are coated with a thin gold layer to 

study the SPR effect. The technique used to coat the gold layer is sputtering. 

Sputtering is a thin-film deposition technique which can be used with a wide range 

of materials. The sputtering uses plasma to bombard a solid target material 

causing dislodging of atoms which then deposit on the substrate to form the thin 

film as shown in Fig. 4.15. 

 

Figure 4.15: Schematic showing sputtering technique. Gold is used as the target 
material. 

From Fig. 4.15, Argon (Ar), which is an inert gas, is fed into the chamber at 

low pressure. Plasma is created when applying DC voltage across the two 

electrodes. Positive ions in the plasma are accelerated toward the negatively 

biased cathode. The ions then sputter the target, which is gold in our case. After 

that, the gold atoms transport through the plasma and deposited themselves on 

the ormocomp NWs, creating a 50 nm thick gold film. The gold layer deposited 

using this technique has high uniformity and good adhesion with the substrate. 

The ormocomp NWs coated with the gold layer is presented in Fig. 4.16. 
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Figure 4.16: (a) Transparent ormocomp NWs and (b) Gold-coated ormocomp 
NWs. 

A comparison between the ormocomp NWs before and after coating with the 

gold layer can be seen in Fig. 4.16. Before coating with gold, the ormocomp NWs 

are optically transparent while, the pattern of the NWs is hardly visible with the 

naked eye. However, the NWs pattern can be observed clearly after coating the 

ormocomp NWs with the gold layer. There are total 8 sets of the NWs fabricated 

on one glass substrate and each set contains one reference waveguide.  

 

Figure 4.17: SEM image showing a cross-section of the gold-coated reference 
waveguide with vertical sidewalls structure. 

The 10 μm x 10 μm reference waveguide is also coated with the thin gold layer 

as shown in Fig. 4.17. It is clearly seen from Fig. 4.17 that gold is coated at both 

the top and the sides of the 10x10 μm reference waveguide. Hence, the SPR is 

introduced in both quasi-TE and quasi-TM modes leading to the polarisation-

independent behaviour which will be discussed later.  
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4.4 Summary 

In this chapter, the fabrication of the silicon NWs with horizontal slot 

structure and the reference waveguides are discussed using the techniques of 

oxidisation, LPCVD, photolithography, and dry etching. The NWs are designed to 

have an integrated-optics structure for their further use in sensing applications. 

Therefore, the NWs are attached with tapered and feed waveguides. The 

horizontal slot NWs have SiO2 as the low-index slot layer. It is sandwiched by two 

high-index poly-Si layers. The light is highly confined in the low-index area due to 

the discontinuity of the normal component of the electric fields. The NWs are 

fabricated on SOI substrate. The buffer oxide layer is created using the oxidisation 

process. Then, the first poly-Si layer is fabricated using the LPCVD technique. The 

oxidisation is utilized again for the 100 nm thick oxide slot layer. The second poly-

Si layer is also fabricated by using the LPCVD. Both poly-Si layers have a thickness 

of 200 nm. The total thickness of the NWs is 500 nm which is too thick to use only 

photoresist as the mask for the etching process. Therefore, the oxidisation process 

for TEOS is required. It is used as the oxide hard mask for the etching. The stepper 

with i-line Hg lamp is used in the exposure. The UV light exposes the 1.09 μm thick 

positive photoresist which is coated by a spin coater. After developing, the NWs 

pattern is created on the photoresist layer. Next, RIE, which is one type of dry 

etching, is used to etch the silicon NWs by the CF4 plasma. After the etching, the 

photoresist layer is removed by ashing. The fabricated silicon NWs have non-

vertical sidewalls structure due to the resolution of the stepper which limits the 

size of the NWs. The sidewall angle is measured to be around 65 . The width at 

top, Wtop, is about 1.0 μm whereas width at bottom, Wbottom, is 1.5 μm. The 

reference waveguide is also fabricated to have a size of 10 μm x 10 μm with 

vertical sidewalls in order to exhibit SPR at both the top and side surface which is 

considered to a polarisation-independent structure. 

The ormocomp NWs can be fabricated at a lower cost by transferring the 

pattern from the silicon NWs onto ormocomp layer using the nanoimprint 

method. The silicon NWs are used as a hard mold. The additional mold is needed 
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in order to obtain an identical pattern on the ormocomp layer. The PDMS which 

is the additional elastomer mold is then fabricated also with the nanoimprint 

method. The hardness of the PDMS mold has to be controlled by varying the ratio 

of the PDMS mixture. In this case, the mixture ratio of 7:1 by weight is used. The 

HMDS is used as the adhesion promoter. The PDMS mold has the opposite pattern 

to the silicon NWs. After getting the soft mold, the ormocomp is coated on the 

glass substrate using the spin coater. The thickness of ormocomp layer is about 10 

μm. The NWs have the thickness of 500 nm. Air-bubbles are generated during the 

imprint process. These bubbles need to be removed by lightly pressing the silicon 

NWs against the ormocomp layer. The pattern on the PDMS mold can be flattened 

if too much pressure is used. This leads to a distortion pattern on the ormocomp 

layer. After that, the ormocomp is cured by UV light and becomes harder. Then, 

the PDMS mold can be removed.  

To study the SPR effects on the ormocomp NWs, a 50 nm thick gold layer is 

coated using the sputtering technique.  The ormocomp NWs have non-vertical 

sidewalls, similar to the silicon NWs. However, there is some leftover ormocomp 

layer after the imprint process due to the very thick ormocomp layer. This problem 

can be solved by diluting the ormocomp with other chemicals such as ormothin 

and ma-T 1050. For the ormocomp reference waveguides, gold layer with a 

thickness of 100 nm is coated. Due to its vertical sidewalls, the gold-coated at the 

top and the sides of the waveguide can have the SPR in both quasi-TE and quasi-

TM modes which will be described in Chapters 6 and 7.  
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5. Simulation analysis of silicon nanowire waveguides  

5.1 Introduction 

This chapter includes the use of a full-vectorial H-field FEM to study and 

analyze the possible guided modes and their characteristics. The analyses 

concentrate on characteristics of the optical modal field, the effective index of the 

guided modes, the normalized power confinement and power density in the 

silicon nanowire waveguides (NWs). The key parameters investigated are the 

dimensions of the NW structures, the cladding index and the operating 

wavelength. Since the silicon NWs are proposed to be used in optical sensing 

applications, the aim is to design the NWs in order to achieve the maximum 

possible sensitivity. The key in realizing high sensitivity is the ability to achieve high 

normalized power confinement in the sensing region in order to enhance the 

interaction between the light and the analyte material.   

Initially, silica NW is considered in this study to have a comparison with the 

literature reviews. The silica nanowire structure is a conventional waveguide 

structure where the light is confined in the high-index material. The sensing area 

of this structure is at the core/cladding interface where the evanescent field 

exists. After that, a silicon NW with a horizontal slot structure, where the sensing 

region is in the slot area, is studied. For the slot waveguide, the light is confined in 

the low-index area due to the discontinuity of the normal component of the 

electric fields. In the horizontal slot structure, this corresponds to the Ey 

component, which is the dominant component for the quasi-TM mode. 

As it can be seen later in the chapter, the horizontal slot waveguide NWs 

exhibit better confinement of the normalized power in the sensing region 

compared to the conventional waveguide structure NWs. Therefore, the silicon 

NWs with the horizontal slot structure are also studied theoretically for their 

possible sensing applications. The sensing application under consideration is the 

detection of DNA hybridisation which is described in Section 5.4. 
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The horizontal slot NWs can be used for the detection of DNA hybridisation. 

This can be achieved by functionalisation of the surface inside the slot region to 

make it bio-suitable in order to immobilize the bio-material which is single-

stranded DNA (ssDNA) in this case. The NW is theoretically analyzed for use with 

ring resonator scheme and its sensitivity is compared with other optical sensors. 

5.2 Conventional waveguide nanowire waveguide structure 

Initially, the designed silica NWs are studied compared to the literatures. They 

are based on the SOI technology where the use of the buffer oxide layer is 

necessary to enable the propagation of electromagnetic wave in the optical 

waveguides [204, 205]. The buffer oxide layer, BOX, separates a guided mode from 

the high index silicon substrate. The buffer oxide layer is SiO2 and the cladding 

material water with refractive indices, n, of 1.45 and 1.33, respectively, at an 

operating wavelength of 1550 nm. The core of the NW has to have a higher index 

than the buffer oxide layer and the cladding material in order to allow light 

confinement and propagation of the guided modes in the core of the NW.   

Doped-silica with the refractive index, n, of 1.60 is considered to be the core 

of the NWs. The silica can be doped with various possible substances to either 

increase or decrease its refractive index. Possible dopants that increase the 

refractive index are GeO2 and P2O5 [206] while the silica doped with F and Al2O3 

has a lower refractive index [207].  

A cross-section of the proposed waveguide structure of interest is depicted in 

Fig. 5.1. Conventionally, the core of the NW is the doped-silica which is located on 

SOI substrate. The cladding material can be air, water or other materials which 

has a lower refractive index than the doped-silica. 
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Figure 5.1: Cross-section of the proposed silica NW with the conventional 
structure.  

For the conventional structure, the light is guided inside the core and the 

evanescent field is extended into the cladding area. The sensing region is the area 

where the evanescent field interacts with the analyte material which is at the 

interface of core/cladding. Therefore, the NWs are designed to have dimensions 

as single-mode waveguides to support the largest possible evanescent field. For 

an optical fibre, the single-mode waveguide is defined by the normalized 

frequency or V parameter;  

(5.1) 

where V < 2.405 is known to be the single mode condition.  is the diameter of the 

waveguide and  is the operating wavelength. is the refractive index of the NW 

and  is the maximum refractive index chosen between refractive index 

of the cladding and substrate. However, the value of V < 2.405 is only valid for 

optical fibre. Therefore, the dimensions of the single-mode NWs can only be 

initially approximated based on V parameter of the optical fibre. The exact 

dimensions must be designed later from the simulation works.   

The initial silica NW structure has a width (W) of 0.5 μm and a height (H) of 

1.0 μm. A full-vectorial H-field FEM is used to study the optical field confined in 

the NW. H-field is a vector field which is a quantity that has both direction and 

magnitude. For 3-dimentional (3D) structure, H-field consists of 3 main 

components, Hx, Hy and Hz, which are the magnetic field components in x, y and z 

directions, respectively. In this work, two polarisations of the light incident are 
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considered in the conventional NW structure, which are quasi-TE (Transverse 

Electric) and quasi-TM (Transverse Magnetic) modes. The quasi-TE mode is a 

mode characterised by its electric field vector being zero in the direction of 

propagation (Ez = 0) having only Ex and Ey. In this case, Ex is a dominant field in the 

quasi-TE mode (Ex >> Ey). On the other hand, the magnetic field being zero in a 

direction of propagation (Hz = 0) is called quasi-TM mode where Hx is a dominant 

component (Hx >> Hy) as shown in Fig. 5.2(a). The optical field of other 

components of the magnetic field in the quasi-TM mode including Hy and Hz are 

shown in Figs. 5.2(b) and (c), respectively.  

 

Figure 5.2: Considering the quasi-TM mode in the silica waveguide (a) Hx is the 
dominant field showing the field guided inside the core. (b) Hy is a non-dominant 
field. (c) Hz is a non-dominant field. For the quasi-TE mode, the dominant field is 
Hy and the non-dominant fields are Hx and Hz. 

For the quasi-TM mode, Hx, which is the dominant field, has the field mostly 

confined inside the core. Hy is the non-dominant with its maximum fields confined 

at the corner of the NW and the adjacent peaks are of opposite sign. The 

maximum value of Hy is only 1.36% of the maximum value of the dominant Hx field. 

Hz field is mostly confined at the two vertical interfaces with opposite sign. Its 

maximum value is 15.62% of the Hx field. Subsequently, only the main component 

for each polarisation mode (Hy for quasi-TE mode and Hx for quasi-TM mode) is 

shown in this work. 

In the electromagnetic wave, magnetic and electric fields are perpendicular 

to each other. Considering the quasi-TM mode, the main component of the 

magnetic field is Hx while Ey is the dominant electric field. The Hx and Ey field in the 
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0.5 μm wide and 1.0 μm high NW along the y-axis are shown in Figs. 5.3 (a) and 

(b), respectively. 

 

Figure 5.3: (a) Variation of the magnetic field (Hx) in the waveguide along y-axis 
showing the continuous field across the boundary. (b) Electric field (Ey) in the 
waveguide along the y-axis, showing field is discontinuous at the waveguide 
boundary. 

From Fig. 5.3(a), the Hx field has its maximum at the centre. The Hx field at 

core/substrate interface has a value of 39.13% of its maximum while the Hx field 

of 21.74% is obtained at the core/cladding interface compared to the maximum 

value. The Hx field at the core/cladding interface is smaller due to higher refractive 

index difference at that interface. Discontinuity in the Ey field is clearly seen in Fig. 

5.3(b) at the interfaces shown by two arrows. At the core/substrate interface, Ey 

field has a higher value similar to the Hx field. However, the discontinuity is smaller 

compared to the core/cladding interface which is due to lower refractive index 

difference at this interface.   

Any numerical method, the solution accuracy can depend on different 

numerical parameters. Using the full-vectorial H-field FEM, a number of mesh 

point is one of the key components needed to be optimized. A large number of 

mesh point requires longer computing time and larger RAM space capacity. On 

the other hand, a small number of mesh point leads to inaccuracy of the calculated 

effective index.  The relationship between the number of mesh point and the 

effective index is investigated as shown in Fig. 5.4. 
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Figure 5.4: Graph between number of mesh point and effective index showing the 
convergence of results. 

The effective index increases monotonically as the number of mesh point is 

increased and asymptotically reaches its stable value when the number of 

elements is greater than 12000. Hence, the minimum value of elements used to 

calculate the H-field inside the NWs is 12000. In this work, the number of mesh 

point of 17000 is applied, unless stated otherwise. 

The aim of this study is to optimize the NW structures to have a high power 

confinement in the cladding region because it corresponds to the sensitivity of the 

NWs. In the following analysis, the normalized power confinement with the 

variation of the structure dimensions and the operating wavelength are studied.  

5.2.1 The effect of the operating wavelength ( )  

First, the H-field vector formulation of FEM is used to calculate the modal 

properties of the initial structure of the NWs, for w=0.5 μm and h=1.0 μm with 

respect to the operating wavelength for both quasi-TE (transverse electric) and 

quasi-TM (transverse magnetic) modes. Normally, the silica NWs are operated in 

the infrared region. Hence, the operating wavelengths in the first study are in the 

range between 0.85 μm and 1.55 μm. Variation of the effective indices of the 

fundamental quasi-TE and quasi-TM modes of the silica NW in water cladding with 

the change in the operating wavelength are investigated using the FEM and 

presented in Fig. 5.5. 
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Figure 5.5: Variations of the effective indices for quasi-TE and quasi-TM modes 
with the operating wavelength for a width and height of 0.5 μm and 1.0 μm, 
respectively. 

As can be seen from the above characteristics, for the single-mode NW, the 

effective index of the NW is decreased as the operating wavelength increases 

because large wavelengths cannot be guided inside the small NWs. Therefore, the 

power confinement in the core region is reduced as the wavelength increases as 

shown in Fig. 5.6. 

 

Figure 5.6: Power confinement of the quasi-TM mode in the three different 
regions of the structure which are the substrate, the core and the cladding.  

Variations of power confinement in different regions with the operating 

wavelength are shown in Fig. 5.6. The power confinement in the core of the quasi-

TM mode, which is shown by a dashed line, decreases as the wavelength is 

increased as the mode approaching cutoff. Hence, the light is extended more 
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outside the core into the substrate and cladding region which can be seen in the 

increase of power in the substrate and cladding region in Fig. 5.6. The increased 

rate of power confinement in the substrate, shown by a dotted line, is faster than 

the cladding region, which is water, due to smaller refractive index difference with 

the substrate as the optical field has more preference to expand in the next high 

index valued substrate. The maximum normalized power confinement in the 

water cladding region (sensing region) of 14% is achieved in this configuration at 

the operating wavelength of 1550 nm.   

It can be noted that, Fig. 5.5 shows that the effective index of the quasi-TM 

mode is higher than that of quasi-TE mode because for this structure its height is 

larger than its width. Therefore, the light is more confined in the doped-silica for 

the quasi-TM mode than the quasi-TE mode. The optical field distributions of 

fundamental quasi-TM and quasi-TE modes at =1.55 μm are shown in Fig. 5.7. 

 

Figure 5.7: Optical field distributions of the light guided in the core region of the 
silica NW (a) Hx field profile for the quasi-TM mode and (b) Hy field profile for the 
quasi-TE mode. 

For the quasi-TE mode, it can be observed that the light is spread more into 

the substrate leading to the reduction of the normalized power confinement in 

the guiding and the sensing regions.  

 

 



86 

 

5.2.2 The effect of the structure width (w) 

Next, the operating wavelength is kept fixed at 1550 nm and the width of the 

NWs is varied at a constant height of 1.0 μm. The variation of the effective index 

with the NW width, varying from 0.5 μm to 1.0 μm, has then been examined for 

the quasi-TM and quasi-TE modes and the results are presented in Fig. 5.8. 

  

Figure 5.8: Variation of the effective index as a function of the waveguide width 
at =1550 nm. 

It can be seen from the above characteristics when the waveguide width 

reduces, the effective index for both the modes also decreases. As the effective 

index becomes lower than the substrate refractive index (n=1.45) when w<0.9 μm 

for the quasi-TM mode, the power confinement increases in the substrate region 

and the mode becomes unguided. The graph of the normalized power 

confinement varying with the structure width is shown in Fig. 5.9.  

 

Figure 5.9: Power confinement of the quasi-TM mode in three different regions 
with the structure width at =1550 nm. 
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The power in the cladding region (water) is slightly increased with the 

structure width and it is maximized when w > 0.9 μm. However, the power 

confinement in the guiding region is expected to decay by reducing the width and 

hence higher leakage is expected. It can be noted for a quasi-TM mode when w < 

0.9 μm, neff < 1.45 and the power confinement in the substrate is greater than the 

power confinement in the core. For values of the width smaller than 0.9 μm the 

light extends to the substrate region rendering the device less sensitive. 

Therefore, the NWs with larger width values are considered. 

Here, we would like to design an optical sensor with considerable power in 

the sensing cladding region, and also mode is close to cutoff but still guided. 

5.2.3 The effect of the cladding material (nc) 

Next, the silica NWs with the width and the height of 1.0 μm are studied as a 

function of the cladding index (nc). The effective index and the normalized power 

confinement in the sensing cladding region of the quasi-TM and the quasi-TE 

modes with the variation of the cladding index, at a fixed wavelength of 1550 nm, 

has also been examined and is presented in Fig. 5.10. 

 

Figure 5.10: Variation of the effective index with the refractive index in the sensing 
region, which is at the core/cladding interface, at =1550 nm. 

As it can be seen from the above curves the effective index for both the 

guided modes increases with the increase of the refractive index of the cladding 
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at a neff / nc ratio of about 0.2. The normalized power confinement in the sensing 

region, which is at the core/cladding interface, is about 15-24% with cladding 

index varied from 1.33 to 1.40. 

5.2.4 The effect of the surface plasmon resonance (SPR) 

To enhance the normalized power confinement in the sensing region, a thin 

gold metal layer has been considered as a top cladding of the proposed structure 

as shown in Fig. 5.11.  

 

Figure 5.11: Cross-section of the conventional-structure silica NW coated with the 
thin gold layer. 

In the present orientation of the 50 nm thick metal layer, paralleld to x-axis 

only the dominant Hx field (quasi-TM mode), which is tangential to the 

metal/dielectric interface, contributes to the excitation of the surface plasmon 

resonance (SPR) along the interface. Under the phase matching conditions, these 

modes interact with the guided modes of the device and form dielectric-plasmonic 

coupled supermodes. The optical field profiles for the silica NWs with guide height 

of 1.1 μm and 1.2 μm are shown in Figs. 5.12(a) and (b), respectively, where their 

Hx fields along the y-axis are presented in Fig. 5.12(c). 
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Figure 5.12: Optical field distributions of the mode guided in the core region of 
the silica NW for (a) h=1.0 μm and (b) h=1.2 μm. (c) Hx field profile along the y-axis 
for of the plasmonic mode.  

There are two types of optical modes possible in gold-coated NW, which are 

dielectric mode inside the core and plasmonic mode at the metal interface. At a 

smaller height, β values of both dielectric and plasmonic modes are close to each 

other leading to a formation of a supermode. At a larger height, the β value of 

plasmonic mode becomes higher and can be distinguished from the β value of 

dielectric mode. With the supermode occurring in the NW, the H-field is 10 times 

expanded into the cladding region leading to the larger interaction between the 

light and the analyte material. Therefore, the silica NW with the thin metal layer 

confirms that the SPR improves the power confinement in the sensing region. 

However, this optical power can be further improved by the new proposed NW 

structure called slot NW structure [95]. 
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5.3 Horizontal slot structure 

In the slot structure NWs, the low-index material is sandwiched between two 

high-index materials. Unlike the conventional structure, the slot structure NWs 

allow more light to be confined in the low-index area due to the discontinuity of 

the normal component of the electric fields. The horizontal slot structure is 

considered here due to its lower loss and better tolerances than the vertical slot 

[45, 117]. For the horizontal slot structure, only the quasi-TM mode in FEM (Hx) is 

considered. 

The proposed structure of the horizontal slot NWs is shown in Fig. 5.13. 

However, only a half of the silicon NW structure is used, exploiting available one-

fold symmetry, for the full-vectorial H-field FEM which would help to increase the 

computational efficiency of the algorithm and reduces the computing time.  

 
Figure 5.13: Schematic of slot NW structure, characterised by using a full-vectorial 
H-field variational formulation based FEM. 

For this structure 28,000, first-order triangle elements were used, with a 

vertical resolution of 2.5 nm at the vicinity of the sensing area. This area is the slot 

region and the objective is to study the possible guided modes and their 

characteristics. The parameters of interest in the basic multilayer silica/silicon 

structure shown in Fig. 5.13 are the height of the poly-Si core 1 and 2 (h1, h2), the 

slot height (hs), the half width of the structure (w/2), the slot refractive index (ns) 

and the cladding refractive index (nc). In the present work, two possible types of 

slot region have been investigated. Specifically, SiO2 and water, with refractive 

indices of 1.45 and 1.33, respectively, at an operating wavelength of 1550 nm, 

have been studied. In the case of the SiO2 slot, air is considered as the cladding 
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material while in case of water slot, water is also considered as the cladding 

materials.  

5.3.1 The effect of poly-Si core heights (H) 

First, the effect of the height of the poly-Si cores is studied. Initially, 

symmetric core height (H=h1=h2) structure with widths 0.6 m and 0.8 m are 

considered, while slot height, hs, is fixed at 0.10 m.  The core height, H, is varied 

when the slot height and the width are fixed in order to get a large normalized 

power confinement in the slot region. The normalized power confinement for the 

two slot materials, SiO2 and water, with respect to the core height is shown in Figs. 

5.14(a) and (b), respectively. 

 

Figure 5.14: Power confinement versus core height, H, for width, W= 0.60 m and 
0.80 m for a) SiO2 slot and b) water slot. 

The normalized power confinement in the slot region for the wider structure 

(w=0.8 m), shown by a dashed line, is higher than that of the narrower structure 

(w=0.6 m), shown by a solid line, for both the SiO2 and the water slots. This is 

because the wider structure provides a larger volume for the light to be confined 

in the structure and not into the cladding medium or the substrate. The maximum 

power confinement for a wider structure occurs at a slightly smaller height which 

is clearly visible from both Figs. 5.14(a) and (b). This is because a large volume of 

poly-Si core region allows the light to be more confined in the core region instead 

of the slot region (sensing area).  
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For the SiO2 slot, the highest normalized power confinement is achieved in 

the slot region at the core height of 0.145 m and 0.155 m for the width of 0.8 

m and 0.6 m, respectively. At w=0.60 m, the maximum normalized power 

confinement is about 52%. At w=0.80 m wide structure the normalized power 

confinement in the slot region is about 54%. For the water slot structure, the 

maximum power in the slot region for a structure width of 0.6 m is about 46%. 

This maximum power occurs at H=0.164 m. If the width increases to 0.8 m, the 

normalized power confinement is also increased to 47.5% at the height of 0.160 

m.  

In general, the normalized power confinement in the slot region of the SiO2 

slot structure is greater than that of the water slot structure. This is because the 

water slot case also has water as the cladding material, so the slot and cladding 

material have the same refractive index. In the SiO2 slot, air acts as the cladding 

material, which has a lower refractive index than SiO2 and water. Therefore, the 

light is more spread out in the cladding region in the case of water slot for 18.8% 

at H=0.16 m. With the same dimension, the SiO2 slot has only 6.7% power spread 

out to the air cladding medium. In addition, SiO2 has a higher refractive index than 

water and the light tends to confine in the higher refractive index area.  

For all the cases examined, similar characteristics are shown in both the 

graphs. At the smaller core height, the normalized power confinement in the slot 

region is initially low and increases with the core height until it reaches a maximum 

confinement at heights, H=0.15 m and 0.16 m, for the SiO2 and the water slot, 

respectively. As the core height increases further, the normalized power 

confinement decreases. At the smaller height, there is less normalized power 

confinement due to the cutoff limit. When the core height is increased, the guided 

area also increases and the light can be more guided and confined, leading to the 

enlargement of the normalized power confinement in the slot region. However, if 

the core height is too large, the light will mainly be guided only inside the poly-Si 

core region and only a small amount of evanescent waves from those two core 

regions will be overlapping. Consequently, a smaller normalized power 

confinement in the slot region will be obtained. 
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5.3.2 The effect of structure width (w) 

Next, normalized power confinement in the slot region with different 

structure widths, for a symmetric core height of 0.16 m and a slot height of 0.10 

m, is considered. As it has been shown earlier in Fig. 5.14, for H=0.16 m, both 

the SiO2 and water slot structures exhibit maximum normalized power 

confinement. The normalized power confinement in the slot region with the 

variation of the width under the above conditions is presented in Fig. 5.15. 

 

Figure 5.15: Normalized power confinement with the structure width for both SiO2 
slot and water slot. 

It can be seen that both the curves, for SiO2 and water slots exhibit a similar 

trend, with the curve for the water slot having lower normalized power 

confinement. At smaller widths, the normalized power confinement in the slot 

region is less due to the fact that the smaller the structure, the closer the 

waveguide operates near the cutoff frequency. Therefore, only some light is 

guided in the core region and the rest is spread into the cladding region. When 

the width is increased, the normalized power confinement is also slightly 

increased beyond the width of 0.5 m. In the case of the SiO2 slot, a power 

confinement of 53% and 47% is reached for the SiO2 and the water slot, 

respectively. Due to the higher refractive index contrast in the SiO2 structure, the 

light is better guided in the SiO2 slot than in the water slot. On the other hand, the 

light spreads more into the water cladding than in the air cladding. At w=0.8 m, 
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the optical power confinement in water cladding is 13.1% while only 4.5% of 

optical power is in the air cladding.       

5.3.3 The effect of slot height (Hs) 

Next, the horizontal slot waveguide NWs with H=0.16 m and w=0.8 m is 

considered in order to obtain high power confinement in the slot area. The 

normalized power confinement in the slot region for SiO2 and water slots, with 

the variation of the slot height (Hs) is studied and presented in Fig. 5.16.   

 
Figure 5.16: Graph between power confinement and the slot height (Hs) for both 
the SiO2 and water slots. 

Similar to the other cases examined, the normalized power confinement for 

the SiO2 slot is higher than that of the water slot. In the range between 0.05 and 

0.10 m of slot height, the normalized power confinement increases with the slot 

height. When the slot height increases from 0.05 m and 0.10 m, the normalized 

power confinement in the SiO2 slot is increased from 45.3% to 53.3%. Similarly, 

the power normalized confinement in the water slot is also increased from 42.5% 

to 47.4%. This is due to the fact that at smaller slot heights the volume of the slot 

region is also smaller compared to the volume of the poly-Si core. Therefore, the 

percentage of power confinement is higher in the poly-Si core area at smaller slot 

heights. However, at larger slot heights (Hs>H), the normalized power 

confinement in the slot region decreases due to the large separation between the 
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two poly-Si cores.  In this work, the larger slot height is not considered due to 

limitations in the fabrication process. From this result, the most suitable slot 

height is selected to be at Hs=0.10 m. 

However, it should be noted, for a volume sensing, total confinement in the 

slot area would be useful but for surface sensing, power density would be more 

useful. 

5.3.4 The optical field balancing 

From the results obtained in Fig. 5.16, the Hx11 modal fields for the structure 

with w=0.6 m, H=0.16 m and Hs=0.10 m are presented in Figs. 5.17(a) and (b) 

for the SiO2 and water slot structures, respectively. 

   

Figure 5.17: Field distribution of Hx11 field in (a) SiO2 slot structure and (b) water 
slot structure. 

As it can be seen from the field distribution in Fig. 5.17, the field is more 

confined in the SiO2 slot structure compared to the water slot structure. This is 

due to the refractive index difference between the slot and the cladding medium. 

In the water slot structure, the optical field is extended into the cladding (as nslot 

= nclad) more than in the SiO2 slot case, where nslot > nclad, leading to a lower power 

confinement in the slot region.  

In addition, there is an asymmetry of the optical field in the poly-Si core region 

for the SiO2 slot structure. On the other hand, the optical field is more symmetric 

in the water slot structure. This is because the difference of the refractive index 

between air (upper cladding) and SiO2 (substrate) is higher for SiO2 slot than the 
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difference of the refractive index between water (upper cladding) and SiO2 

(substrate) for water slot. Therefore, the optical field is more confined in the 

bottom poly-Si core, while the optical field is almost equally distributed in both 

poly-Si layers in the water slot structure. The asymmetry and symmetry of the 

optical fields can be explained clearly when the HX field is plotted along the y-

direction as shown in Fig. 5.18.   

 

Figure 5.18: Hx field of the Hx11 mode along the y-direction for both the SiO2 slot 
and water slot. 

Form Fig. 5.18, it can be seen that the evanescent field is expanded into the 

cladding region for the water slot structure as presented by a dashed line. This 

evanescent wave causes the low normalized power confinement in the guiding 

area compared to the SiO2 slot. The ratio of the Hx field in the poly-Si core1 and 

poly-Si core2 in the water slot structure ( ) is around 0.996. Therefore, 

the optical field is almost symmetric in the water slot structure. For the SiO2 slot 

structure, the graph obviously shows the asymmetry of the optical field between 

those two core layers as the magnitude ratio of Hx-field in poly-Si core1 and poly-

Si core2 ( ) is about 0.869. In both structures, the optical field is more 

confined in the bottom poly-Si core layer (poly-Si core2) because SiO2 has a higher 

refractive index than both air and water.  

In order to get a symmetric optical field in the SiO2 slot structure, the height 

of the poly-Si1 (h1) has to be increased to enlarge the waveguide dimension for 

light propagating in that region while the height of poly-Si2 (h2) should be kept 
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fixed. The Hx-field along the y-direction when the height of poly-Si1 is increased is 

shown in Fig. 5.19. 

 
Figure 5.19: Hx field of the Hx11 mode along the y-direction of SiO2 slot structure 
when the height of poly-Si core2 (h2) is fixed at 0.16 m and the height of poly-Si 
core1 (h1) is increased. 

For a fixed height h2=0.16 m, with h1 increasing from 0.16 m to 0.18 m, 

the balance ratio of   is increased from 0.869 to 1.017. The most 

symmetric field is obtained in the SiO2 slot structure with w=0.6 m when 

h1=0.178 m ( =0.999). In this case, the normalized power confinement 

in the slot region is also increased from 52.56% to 52.88%.  

The ratios of the optical field in both the SiO2 slot and water slot structures at 

different poly-Si core height for a width of w=0.60 m and the core height varying 

from 0.15 to 0.21 m, is presented in Fig. 5.20. 
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Figure 5.20: Ratio of the optical field in the core region for both SiO2 slot and water 
slot at different core height. 

From Fig. 5.20, the dashed lines, which represent the water slot structure, 

show a smaller shift between h1 and h2. The solid line shows a greater shift 

between the core heights due to the larger difference in the cladding refractive 

index. The shifting values to achieve equal ratio to balance values and the power 

confinement values of each core height are presented in Table 5.1. 

Table 5.1: The values of shifting, balance ratio and power confinement of each 
structure at different heights. All length units are in m. 

h2 SiO2 slot Water slot 

h1 Shift H1
x H2

x P (%) h1 Shift H1
x H2

x P (%) 

0.150 0.169 0.019 0.998 53.968 - - - - 
0.160 0.178 0.018 0.999 52.889 0.160 0.000 0.996 45.988 

0.180 0.196 0.016 0.998 48.835 0.182 0.002 0.995 44.254 

0.210 0.224 0.014 1.003 39.570 0.213 0.003 1.003 36.541 

According to Fig. 5.14, the optimum core height to be obtained in the SiO2 

and the water slot structures are approximately to be around 0.15 m and 0.16 

m, respectively. For the height below these values, the power confinement in 

the sensing region tends to dramatically decrease. From Table 5.1, it can be 

observed that h1 has to be increased in order to get the most symmetric optical 

field in both poly-Si core layers. For SiO2 slot, the rate of change for h1 is reduced 

from 0.019 m to 0.014 m when h2 is increased from 0.150 m to 0.210 m. The 
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percentage of the normalized power confinement in the slot region is also reduced 

when increasing the core height since the light is more confined in the core 

regions. For the water slot case, the shifting values are very small and the 

percentage of power confinement in the slot region is not affected. Similar to the 

SiO2 slot, the power confinement in the water slot is reduced when the core height 

is increased.   

However, both the SiO2 slot and the water slot waveguide exhibit a very high 

optical power in the slot region compared to the power confinement at the 

core/cladding interface for the conventional structure. Hence, the silicon NWs 

with the horizontal slot structure have a potential to be further used in sensing 

applications. 

5.4 Horizontal slot waveguide biosensor for DNA hybridisation detection 

The normalized power confinement in the slot region of the horizontal slot 

structure NWs is significantly higher than that of the conventional structure as it 

can be seen from Fig. 5.21 

 

Figure 5.21: A comparison of the normalized power confinement in the sensing 
area between the silicon NW with gold-coated conventional structure and the 
silicon NW with horizontal structure. 

Due to the high normalized power confinement in the sensing region, the 

silicon NWs with the horizontal slot structure are considered to be theoretically 
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investigated for the possible biosensing applications. Most of the materials to be 

sensed in biosensing applications are in liquid phase in which water is the main 

solvent.  Therefore, the NW structures design is based on the water slot 

waveguide. The proposed silicon NWs to be studied for biosensing applications 

have symmetric core height, H=0.16 μm, w=1.0 μm and Hs=0.1 μm. 

A more practical device based on the silicon NW structure with horizontal slot 

structure for sensing application is studied theoretically. The horizontal slot 

waveguide is proposed to be used for DNA hybridisation detection. The sensor 

detects the change of effective index when the analyte material has a refractive 

index change. In this case, the analyte materials have to be immobilized with the 

linker materials such as silanes. Linkers act as glue in order to form a selective 

physical or chemical bonding with the analyte materials. A cross-section of the 

horizontal slot waveguide with the sensitive layer proposed for the numerical 

simulations is shown in Fig. 5.22. 

 

Figure 5.22: Cross-section of silicon NW with horizontal slot structure for DNA 
hybridisation detection. 

As mentioned above, the horizontal slot waveguide is investigated as a 

possible sensor to detect DNA hybridisation. The DNA hybridisation is the process 

of combining two single-stranded DNA (ssDNA) to become double-stranded DNA 

(dsDNA). The ssDNA and dsDNA have different refractive indices given by 1.456 

and 1.53 at the wavelength of 633 nm [113], respectively. With the change of 

refractive index in ssDNA and dsDNA, the effective index of the whole structure is 

also changed.  
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The thicknesses of the ssDNA and dsDNA layers are considered to be fixed at 

8 nm [208] for the initial study. The refractive index of the poly-Si core layers is 

3.9. In the simulation, the slot area is assumed to be filled with water. This is the 

same as the cladding material since it is the main constituent material of the 

solution [209], which has a refractive index value of 1.33. To immobilize the 

ssDNA, silanes with a refractive index of 1.42 (na) is used as the linker layer to form 

the covalent bond with the ssDNA and it has a thickness of 1 nm. We have 

exploited the existing one-fold symmetry and used 34,000 first-order triangles to 

represent only half of the structure. The main advantage of the FEM over the 

other numerical methods is that FEM can incorporate triangles of different shapes 

and sizes to obtain the numerical efficiency. In this case, to represent the 1 nm 

thick linker layer, vertical resolutions used were 0.2 nm or better. The key 

parameters that need to be optimized are the width (w) of the structure, the poly-

Si core heights (h1 and h2) and the slot height (hs). The operating wavelength in 

this work is taken at =1550 nm. 

In the modal solution using the FEM approach, the existing half symmetry has 

been considered for the horizontal slot waveguide. The quasi-TM mode, where 

the dominant electric field is normal to the interface, is considered because it has 

a higher confinement in the slot region compared to the quasi-TE mode. For the 

quasi-TM mode, the Hx field is the dominant component of the H-field. The 

contour of the dominant Hx field of the waveguide with w=0.70 m, H=0.16 m 

and hs of 0.10 m is shown in Fig. 5.23(a). The Hx field has a maximum intensity in 

both the poly-Si core layers. However, the maximum intensity is not at the centre 

of the core region but instead, it is closer to the interface between the core region 

and the slot area, as it can be seen in the inset of Fig. 5.23(a), showing the Hx 

profile in y-directional the centre of the waveguide. It was discussed in Section 

5.3.4 that if desired by using h2 slightly larger than h1, symmetry can be improved. 
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Figure 5.23: Contour plots of (a) Hx field, (b) Ey field and (c) Energy flux density 
Poynting vector: S. Insets are the field plots along the y-axis. 

The fundamental Ey field has also been derived from the Hx-field and is shown 

in Fig. 5.23(b). The Ey field along the y-direction, given as an inset, shows the 

discontinuity at the interface of the core and slot regions providing the strong field 

in the slot area.  The energy flux density or so-called the Poynting vector (S) 

calculated from the E and H fields [198] is presented in Fig. 5.23(c). It can be clearly 

seen that the energy is more confined in the slot area, thus confirming that the 

light is guided in the low-index region of the slot waveguide. 

5.4.1 The effect of poly-Si core height (h1=h2=H) 

The effect of the poly-Si core height, H on the power confinement and power 

density is studied next. It is considered H to be symmetric (h1=h2=H) and w=0.7 

m and hs=0.10 m, are assumed to be fixed. The normalized power confinement 



103 

 

and the power density in the sensing layer (DNA probe) with the variations of the 

core height are presented in Fig. 5.24.  

 

Figure 5.24: Variations of power density and power confinement in the sensing 
layer (DNA probe) with the core height, H. 

The normalized power confinement is the ratio of the power in that region to 

the total power. The power density is obtained by dividing this normalized power 

confinement with the area of that region. The total normalized power 

confinement in the sensing area, as shown in Fig. 5.24 is the sum of the normalized 

power confinement in the upper and lower DNA probe layers, each having a 

thickness of 8 nm. Its power density is taken as the average power density for both 

DNA probe layers. The normalized power confinement and power density exhibit 

a similar trend when the core height is varied as the sensing area size stays 

constant and H is varied.  

At a smaller core height, both the normalized power confinement and the 

power density in the sensing layers are initially low because the structure gets 

close to the cutoff limit. Therefore, the optical power reduction occurs due to an 

evanescent wave spreading into the cladding medium and the buffer oxide layer. 

Then the power increases with the core height, due to the enlargement of the 

guided area, until reaching a maximum confinement at a height, H of 0.15 m. 

However, if the core height is too large, the light will mainly be guided only inside 

the poly-Si core region. Consequently, the normalized power confinement and 

power density in the sensing region are decreased as the core height increases 

further. It is also shown that the ssDNA (nb=1.456) has a higher power in the 
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sensing medium compared to the dsDNA (nb=1.530). This is due to the higher 

refractive index contrast in ssDNA compared to dsDNA which leads to the larger 

discontinuity in the electric field. If the whole slot region is used for a particular 

device operation, such as for the polymer filled electro-optic modulator, then 

normalized power confinement is the key design parameter. However, if an 

analyte material is localized only at the interfaces then the power density around 

that region will be a more important parameter.  

One of the most important parameters in biosensing applications is the 

change of effective index which is used to calculate the sensitivity of the device. 

In a Mach-Zehnder arrangement, the change in the effective index will yield a 

phase change between the branches. The variations of the effective index with 

the core height are shown in Fig. 5.25, where the effective index due to the 

presence of each analyte material is included. 

 

Figure 5.25: Variations of the effective index difference and the effective index in 
each analyte material with the core height. 

Due to the smaller refractive index value of ssDNA, we found out that neff,ssDNA 

< neff,dsDNA. However, the effective index increases when the poly-Si core height is 

increased for both ssDNA and dsDNA because of the larger silica volume. The 

change in effective index, shown by the dashed line, increases when the core 

height is increased until it reaches a maximum value at H=0.17 m. At a height 

greater than 0.17 m, the structure becomes too large and light is mostly confined 
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in the core rather than in the slot. This leads to a reduction of the change of 

effective index as well as the sensitivity of the waveguide. 

5.4.2 The effect of structure width (w) 

It was shown in Fig. 5.24 that the maximum power density was achieved when 

H  0.15 m. On the other hand, Fig. 5.25 indicates that maximum Δneff can be 

obtained when H  0.17 m. Although their variations were rather small in this 

region, for subsequent optimisation we have considered H = 0.16 m. The 

thickness of the linker layer (silanes) and the sensing medium (DNA) remained the 

same at 1 nm and 8 nm, respectively. Next, the normalized power confinement 

and power density with the variations of the width of the waveguide are simulated 

and presented in Fig. 5.26.  

 

Figure 5.26: Variations of the power density and power confinement in the sensing 
layer (DNA probe) with the width. 

At smaller width, the normalized power confinement in the slot region is less 

due to the smaller size of the structure, where the mode approaches cutoff. 

Therefore, only some light is guided in the core region and the rest is spread into 

the cladding region. When the width is increased, the normalized power 

confinement is also slightly increased. In the case of the ssDNA (nb=1.456), the 

normalized power confinement is higher than that of the dsDNA (nb=1.530), due 

to the higher refractive index value. On the other hand, the power density is 
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inversely proportional to the width. At smaller width, the power density is high 

because the guiding area is smaller. As the width increases, the power per unit 

area is reduced due to the larger guiding area. However, higher power density is 

observed in the ssDNA than in the dsDNA due to higher normalized power 

confinement. 

From the results obtained above, it can be seen that the effect of the change 

of the core height is more significant in the normalized power confinement than 

the change of the width. Next, the variations of effective index and the effective 

index difference due to the presence of each sensing layer with respect to the 

structure width are examined and presented in Fig. 5.27. 

 

Figure 5.27: Variations of the effective index difference and the effective index in 
each analyte material as a function of the width (w). 

The effective index due to the presence of each sensing layer increases with 

increasing width of the structure. This is because the light can be more confined 

in the larger structure. In addition, neff,dsDNA > neff,ssDNA because dsDNA has larger 

refractive index. The effective index change is gradually affected by the structure 

width. The change in the effective index, shown by the dashed line, is slightly 

increased when the width increases up to 0.7 m. When the width is larger than 

0.7 m, the change of effective is continuously decreased. Comparing these with 

the previous results shown above, the change of effective index is affected more 

by the core height rather than the width as the graph changes more rapidly when 

varying the core height. 
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5.4.3 The effect of slot height (hs) 

The next variable in this study is the slot height (hs). The normalized power 

confinement and the change of effective index are demonstrated with various 

values of slot height as shown in Fig. 5.28. 

 

Figure 5.28: Variations of the effective index difference and the power 
confinements as a function of the slot height. 

The slot structure has a fixed core height and width in which H=0.16 m and 

w=0.70 m, respectively. The normalized power confinements in the ssDNA and 

dsDNA layers, shown by two solid lines, exhibit a similar trend. Their normalized 

power confinement is reduced when the slot height is increased. At a larger slot 

height, the separation gap between the two poly-Si core layers is larger. Thus, the 

power is coupled more into the poly-Si core instead of the slot, leading to a 

reduction of the normalized power confinement in the slot area. As the ssDNA has 

a greater refractive index contrast than the dsDNA, it also has higher normalized 

power confinement. In addition, the effective index difference represented by a 

dashed line decreases with increasing slot height.  

Even though a smaller slot height provides a larger effective index difference, 

it would be difficult to create a very small and uniform slot due to the fabrication 

limits. Besides, a coating of linker layer, adhere of DNA layer can be restricted for 

a very narrow slot layer. So, the slot height of 0.10 m is selected for this work 

because it is a more suitable value that is easy for fabrication. Next, the change of 
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effective index with various values of slot height is studied again with different 

slot height and structure width. The relation of the effective index change with 

the slot height at different core heights and different widths is shown in Figs. 

5.29(a) and (b), respectively. 

 

Figure 5.29: Variations of the effective index difference with the slot height at 
different (a) core heights and (b) core width. 

 Fig. 5.29(a) shows that the change of effective index has almost the same 

value when varying the slot height at the structure width of 0.7 m. Fig. 5.29(b) 

shows the comparison between the structure with a width of 0.70 m and 0.80 

m at the fixed core height of 0.16 m. The smaller structure width represented 

by the solid line has a higher change of effective index when the slot height is 

varied.  
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In order to detect the DNA hybridisation, this horizontal slot waveguide can 

be incorporated in a Mach-Zehnder Interferometer (MZI) system. By introducing 

the sensing slot waveguide in one arm of the MZI, the relative phase shift ( ) 

can be obtained from the change in the effective index,  as: 

 
(5.2) 

Here,  is the difference between the effective indices of the reference 

and sensing waveguide sections and  is the length of sensing section. The 

destructive interference or the minimum interference signal occurs when the 

phase difference is equal to . Therefore, the length of the MZI arm ( ) with 

horizontal slot waveguide is calculated to be 90.0 μm long at a slot height, Hs = 80 

nm as can be seen in Fig. 5.29, when the maximum is obtained. It is assumed 

here that loss in both the branches are similar. 

5.4.4 The sensitivity (S) 

Since the horizontal slot waveguide is proposed for use in a biosensing 

application the sensitivity is a very important parameter for this waveguide. In the 

literature, the sensitivity or Figure-of-Merit (FOM) of a biosensor has been defined 

in terms of the changes in intensity [210], or wavelength shift [110, 211] or 

effective index with the background refractive index change [212] or other 

measurable parameters. For MZI based systems, the change in the effective index 

( ) is directly related to the intensity profile, which in turn depends on the 

normalized power confinement and power density. The normalized power 

confinement and the power density with the variation of the background cladding 

refractive index (which changes in the presence of the analyte materials) is 

presented in Fig. 5.30.  
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Figure 5.30: Variation of the normalized power confinement and power density 
with the change in refractive index of the analyte material. 

It can be observed that both the power confinement and the power density 

decrease when the cladding index is increased. This is due to the smaller refractive 

index contrast between the waveguide and the slot region which reduces the field 

enhancement there. Consequently, the sensitivity of the horizontal slot 

waveguide is reduced.  

The horizontal slot waveguide sensitivity ( ) can be calculated using the 

following equations [213]. 

 
(5.3) 

 
(5.4) 

 
(5.5) 

where  is the refractive index of the material to be sensed, which in this case is 

either ssDNA or dsDNA,  is the reference refractive index which is kept fixed 

at 1.456 (ssDNA),  is the effective index due to the presence of  and  

is  at . In this work, the horizontal waveguide is studied for detecting 

the DNA hybridisation, for example when ssDNA (n=1.456) becomes dsDNA 
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(n=1.530), in which the slot waveguide sensitivity is calculated from the equation 

(2.6) to be 0.082.  

The horizontal slot waveguide can also be incorporated in other optical 

devices such as ring resonator and Mach-Zehnder interferometer to detect DNA 

hybridisation. To compare the results with previously reported work but using a 

vertical slot waveguide The sensitivity of the device ( ) or the spectral 

sensitivity, mentioned in the Chapter 2, can be calculated using the equations 

below [110]: 

 
(5.6) 

where,  is the shift of resonance wavelength defined by [110]: 

 
(5.7) 

where  is the effective index difference when the hybridisation occurs,  

is the resonance wavelength and  is the group index at wavelength of 1550 nm. 

The optimum horizontal slot waveguide structure proposed in this work has w=0.7 

μm, H=0.16 μm and hs=0.10 μm. With this structure, the sensitivity of 893.5 

nm/RIU and the resonance wavelength shift of 6.33 nm are obtained. With the 

same waveguide material, the surrounding media and the analyte material which 

is DNA, the sensitivity of the device, incorporating horizontal slot waveguide is 

slightly higher compared to the vertical slot waveguide, where a sensitivity of 856 

nm/RIU was reported [110]. The results presented here show improved sensitivity 

compared to that of 298 nm/RIU for a vertical slot on SOI [104] and 212 nm/RIU 

for a vertical slot waveguide using Si3N4 [111].   

5.5 Summary 

A H-field finite element approach based on the full-vectorial variational 

formulation is used to study the propagation characteristics of silicon NW 

structures. Two types of NW structures are used in this study, specifically the 
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conventional structure and the horizontal slot structure. The effects of the 

variation of the height (h), width (w) and wavelength excitation ( ) are 

investigated and optimized for the conventional structure of the NWs. To enhance 

the optical power in the sensing region which is at the core/cladding interface for 

the conventional structure, a thin metal layer is added on the top surface of the 

NWs to introduce the surface plasmon resonance (SPR). With the effect of a thin 

metal layer in the excitation of surface plasmon modes, the normalized power 

confinement in the sensing region is increased by 2%. However, this value can be 

further improved by the horizontal slot structure. 

The silicon NWs with horizontal slot structure are studied to obtain the 

optimum parameters for the maximum possible optical power in the sensing 

region. The parameters of concern are the poly-Si core height (h1, h2), the slot 

height (hs), the width (w), the slot material (ns) and the cladding material (nc).  

There are two slot types considered in this case, the SiO2 slot (ns=1.45) and the 

water slot (ns=1.33). For the SiO2 slot, the cladding material is air (nc=1). For the 

water slot, the cladding material is water itself. In all cases, the power 

confinement in SiO2 slot region is higher than in the water slot. This is due to the 

difference of the refractive index between the cladding material and the slot 

material in the SiO2 slot structure.  

The optimum core height for the SiO2 slot waveguide in order to get maximum 

power confinement in the slot region is 0.15 μm. For the water slot, the core 

height of 0.16 μm provides the highest power confinement in the slot region. In 

both structures, power confinement is increased when the width of the structure 

increases. In this work, any width larger than 0.6 μm is suitable for the fabrication 

process. Also, the power confinement is directly proportional to the slot height. 

The slot height of about 0.10 μm is the most practical and suitable for sensing 

applications because it can be easily fabricated and still provides high power 

confinement.  

The optical field in SiO2-slot NW is asymmetric, unlike the one in the water 

slot waveguide, due to the larger difference of the refractive index between the 

cladding material and the buffer oxide layer. In order to get a symmetric field in 
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the SiO2 slot waveguide, the upper silicon core height has to increase. The 

maximum power confinement obtained in the SiO2 slot and water slot waveguides 

are around 54% and 47%, respectively.   

Due to the very high optical power in the slot region, the silicon NWs with 

horizontal slot structure are investigated as possible practical devices in 

biosensing applications. These devices were found to be sensitive with the 

variations of the refractive index difference in the analyte material. The analyte 

materials considered in this work are ssDNA and dsDNA present in the DNA 

hybridisation process. The key parameters, such as the normalized power 

confinement, the power density, the effective index difference ( neff) and the 

sensitivity have been investigated. Moreover, the fabrication parameters, such as 

the structure width (w), the core height (H) and the slot height (hs) have been 

optimized through numerical analysis.  

The optimum dimensions for the slot waveguide structure, in order to achieve 

maximum normalized power confinement and large effective index difference, 

were found to be at w= 0.7 m, H= 0.16 m and hs= 0.10 m and this yields a 

compact design with the resulting device length to be smaller than 100 m. 

Furthermore, the sensitivity of this slot waveguide has been studied with the 

variations of the refractive index of the analyte material. For a ring resonator, a 

significant improvement of the sensitivity value has been obtained and found to 

be S=893.5 nm/RIU.  

 
 

  



114 

 

6. Numerical simulations of ormocomp waveguides 

6.1 Introduction 

In this chapter, the theoretical studies of the un-coated and gold-coated 

ormocomp waveguides using advanced numerical analysis are presented. Both 

un-coated and gold-coated waveguides with two different structures, ridge 

structure with vertical sidewalls and rib structure with non-vertical sidewalls are 

studied. The full-vectorial H-field FEM is used here to study the behaviour of light 

propagation along the waveguides. The existing guided modes, their normalized 

power confinement, and the SPR peak of the waveguides are studied over the 

operating wavelength, their structural dimensions, cladding index and metal 

thickness. For the un-coated ormocomp waveguides, the study examines both the 

quasi-TE and quasi-TM modes. For the gold-coated waveguides with vertical 

sidewalls, which are considered to be polarisation-independent structures, the 

surface plasmon resonance (SPR) effect in these guides are studied for both the 

quasi-TE and quasi-TM modes. However, only the quasi-TM mode is considered in 

the non-vertical sidewalls because the SPR at the sidewalls is not normal to the y-

axis due to a sidewall angle. Hence, Hy dominant quasi-TE mode is not considered 

in this particular case and it is assumed that the waveguides are not coated with 

the gold layer at their sidewalls. This assumption is supported by the experimental 

results presented in Chapter 7. The results also show that there is no SPR effect 

from the sidewalls for waveguides with non-vertical sidewalls. 

6.2 Non-gold-coated ormocomp nanowire waveguides 

The un-coated ormocomp waveguides are theoretically studied in this 

section. There are two different types of structures considered in this work, which 

are the ridge structure with vertical sidewalls and a rib structure with non-vertical 

sidewalls.  
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6.2.1 Ridge structure with vertical sidewalls 

A simple conventional ormocomp nanowire waveguide (NW) structure, which 

is a ridge waveguide structure, is first considered. The NW structure is designed 

to achieve a single mode waveguide. Therefore, the NW is assumed to have a fixed 

width, w, and height, h, of w=0.5 m and height, h=1.0 m, respectively, for the 

initial design. The ormocomp NW with refractive index of n=1.520 is designed to 

be on a fused silica substrate with the refractive index of 1.446. It is surrounded 

by water (n=1.333), which is considered as the cladding material. A cross-section 

of the ormocomp NW is shown in Fig. 6.1. 

 

Figure 6.1: Cross-section of the ormocomp NW ridge waveguide. 

Like the other conventional waveguides, the light is confined in the high-index 

area which is the ormocomp core. The sensing area is at the ormocomp/cladding 

interface where the evanescent field exists. Therefore, the study is focused on 

improving the power confinement at the interface to enhance the light interaction 

with the sensing material. The modal fields of the existing guided modes and their 

power confinement in ormocomp NWs are studied over the wavelength, width 

and height of the NW structure and the different cladding materials. 

6.2.1.1. The effect of the operating wavelength ( ) 

The H field vector formulation of FEM is used to calculate the modal 

properties of this waveguide structure by varying the operating wavelength. 

Ormocomp is a transparent material with only a small loss in visible light. In this 

case, white light with operating wavelength between 400 nm and 700 nm is 

considered as a light source. For the above structure, both the quasi TM and the 
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quasi TE modes, where Hx and Hy are the dominant field components, 

respectively, have been investigated. 

Variations of the effective index of the both quasi-TE and TM modes within 

the operating wavelength range are shown in Fig. 6.2.  

 

Figure 6.2: Variation of the effective index as a function of the operating 
wavelength in the visible region, for both quasi TM and quasi TE modes.  

The effective index variations of the fundamental modes, as shown in Fig. 6.2, 

decrease with the increase in the wavelength, for both the quasi TM and quasi TE 

modes because the wavelength becomes larger compared to the waveguide 

dimension. The graph suggests that the light confinement is stronger in the 

guiding region at a lower operating wavelength. The difference between the light 

confinement at the short wavelength ( =400nm) and long wavelength ( =700nm) 

can also be correlated with the optical field distribution shown in Figs. 6.3(a) and 

(b), respectively. 
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Figure 6.3: The modal field profiles excited in the ormocomp NW with 1.0 m 
width and 0.5 m height at (a) = 400 nm and (b) =700 nm for the quasi TE mode. 

It can be clearly observed from Figs. 6.3 that the field extends more into the 

substrate at a longer wavelength ( =700nm) because at =700nm, the 

wavelength is relatively larger than the NW structure. In addition, it can be 

observed that the quasi TE mode has a slightly higher effective index compared 

to the quasi TM mode as the width of the waveguide is bigger than its height, 

which means that the light is more confined in the core region for the quasi TE 

mode than the quasi TM mode. The normalized power confinements in both the 

guiding and cladding regions for the above two modes, with the variation of the 

wavelength are presented in Fig. 6.4. 

 

Figure 6.4: Variation of power confinement in the cladding region (sensing region) 
and the core region (ormocomp) with the operating wavelength for the quasi-TM 
(Hx11) and quasi TE modes (Hy11).
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It can be seen from Fig. 6.4 that the power confinements in the core region 

are decreased by a larger wavelength as shown by dashed lines while the power 

confinement in the cladding region shown by solid lines are increased with larger 

wavelength. At the short wavelength, the light is more confined in the NW. 

Therefore, the evanescent field extending into the cladding region is less 

compared to that at the long wavelength. The cladding region, where the 

evanescent field extends, is considered to be the sensing area for our work. Thus, 

the relatively larger power confinement in the cladding is a key design parameter 

to achieve better sensitivity. However, the power loss in the substrate is also 

greater with the higher operating wavelength because it is close to the cutoff 

wavelength leading the light to spread more into the substrate. To obtain high 

power confinement in the cladding region, together with a good confinement in 

the guiding area as shown in Fig. 6.4, the 650 nm wavelength (red region) is 

selected as the operating wavelength in the following studies and in the 

experimental work.  

6.2.1.2. The effect of the structure width (w) 

With the operating wavelength fixed at 650 nm (red light source), the effect 

of the waveguide width on the fundamental mode field has been studied as shown 

in Fig. 6.5. The study assumes a structure with a fixed height of 0.5 m and its 

width is varied between 0.5 m and 1.0 m. Water (nc =1.333) is considered as 

the cladding material because it is generally a good solvent in aqueous solutions 

for many sensing applications [214]. 
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Figure 6.5: The change in the effective index as a function of the structure width 
in the range between 0.5 m and 1.0 m for both quasi TM and quasi TE modes. 

The effective indices of the fundamental quasi TM and quasi TE modes, 

increase with the increase of the width of the NW, allowing the light to be more 

confined due to the greater volume of the guiding region.  At a width of 0.75 μm, 

the effective index obtained in both the quasi TM and quasi TE modes is about 

1.446, which is close to the refractive index of the fused silica substrate, thus 

reaching cut-off.  Therefore, the light starts extending into the substrate leading 

to a large power loss when the width of the structure is less than 0.75 μm. The Hx 

field profiles of the light confinement for two different widths of the NW are 

shown in Fig. 6.6. 

 

Figure 6.6: Hx modal field profiles excited at (a) w=0.7 m and (b) w=1.0 m for 
the quasi TM mode.  
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Fig. 6.6(a) shows the extension of Hx-field well into the substrate region when 

the structure has a width of w=0.70 μm and mode reaches its cutoff. Fig. 6.6(b) 

shows the well-confined Hx-field in the 1.0 μm wide core region. The normalized 

power confinement in the sensing region and in the core with respect to the 

structural width can be seen in Fig. 6.7.  

 

Figure 6.7: The variation of power confinement in the cladding region (sensing 
region) and core region (ormocomp) with the structure width for quasi-TM (Hx11) 
and quasi TE (Hy11) modes. 

The maximum power confinement in the cladding region is achieved when 

the structure has a width of w=0.80 μm. For a width larger than 0.80 μm, the 

power confinement in the cladding region is slightly decreased due to a larger 

confinement in the core region. For a structure width below 0.80 μm, the power 

confinement in both the cladding and guiding regions is significantly decreased 

because the power is lost in the substrate region. The optical field extends in the 

substrate when the mode reached the cutoff limit.  

The cutoff limit for this NW structure can also be identified by studying the 

spot size, which is considered as the area where the field intensity is above the 

value of 1/e of its maximum intensity. The change in the spot size with respect to 

the width of the NW is shown in Fig. 6.8. From the numerical modelling, it can be 

noted that this waveguide remains single-mode when the width, w, is reduced 
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below 1.55 μm and 1.65 μm, for the quasi-TE and the quasi-TM modes, 

respectively. 

 

Figure 6.8: Variations of spot size area with the width of the NW varied from 0.65 
μm to 1.00 μm. 

The spot size of the NW with w>0.75 μm increases with its width. This is due 

to the large core area in the guiding region. The smallest spot size represents the 

region closer to the cutoff limit. The quasi TM mode has a bigger spot size 

compared to the quasi TE mode and approaches its cutoff limit before the quasi

TE mode. For the quasi TM mode, the structure is close to the cutoff when the 

structure width is close to 0.80 μm whereas the NW structure can be scaled down 

to 0.70 μm for the quasi TE mode. For the smaller NWs, with dimensions below 

the cutoff limit, the spot size becomes larger due to the expansion of the light in 

the substrate.  

6.2.1.3. The effect of the structure height (H) 

To avoid the cut-off limit, the width of the ormocomp NWs has to be larger 

than 0.8 μm. From Fig. 6.7, the maximum power confinement in the sensing region 

is achieved at a width of about 0.80 μm. However, in the fabrication process, 1.0 

μm wide NWs are fabricated because the structures might shrink during the 

nanoimprint process. Therefore, the ormocomp NWs with a width of w=1.0 μm 

and at operating wavelength of =650 nm are considered. Next, variations of the 
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effective indices with the structure height for both quasi-TM and quasi-TE modes 

are shown in Fig. 6.9 

 

Figure 6.9: Change of effective index as a function of the waveguide height for 
both quasi TM and quasi TE modes. 

As the structure height increases, the effective index of the NW is also 

increased because the ormocomp guiding region allows a larger volume of light to 

be confined. At smaller heights, the effective index decreases, approaching the 

refractive index of the glass substrate. Hence, the power confinement in the 

substrate is increased, leading to low optical power confined in the sensing area. 

The variations of the normalized power confinement in the sensing region and the 

guiding region are presented in Fig. 6.10.  
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Figure 6.10: Variation of power confinement in the cladding region (sensing 
region) and core region (ormocomp) with the structure height for quasi TM and 
quasi TE modes. 

The normalized power confinement in the cladding, which is the sensing 

region, is reduced when the structure height increases because the light is more 

confined inside the core. It can also be observed that the normalized power 

confinement in the guiding region is increased with the increase of the height. At 

the structure height of 0.5 μm, the optical power in the sensing region is close to 

its maximum for the quasi-TM mode. For heights less than 0.5 μm, the normalized 

power confinement in the cladding for quasi-TM mode drops dramatically, where 

for the quasi-TE mode a slight reduction is observed. Therefore, the quasi-TM 

mode attains cutoff before the quasi-TE mode does. 

6.2.1.4. The sensitivity (S) 

To prevent the NW operating near the cutoff region, the NW with dimensions 

w=1.0 m and H=0.5 m at an operating wavelength of =650 nm is considered 

in the next study. The NW is intended to be used in biosensing applications in 

which the cladding material is an aqueous solution. Therefore, sensitivity over the 

cladding material with the refractive index in the range of 1.333 to 1.400 is 

studied. The sensitivity of the NW (Snw) can be calculated using equations

=Δ Δ  which is already described in Chapter 5. 
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The sensitivity of this NW structure with respect to the refractive index of the 

cladding material is shown in Fig. 6.11. 

 

Figure 6.11: Sensitivity and the cladding percentage power confinement of the 
NW when the refractive index of the cladding material is varied from 1.333 to 1.40.  

It can be observed from Fig. 6.11 that the sensitivity of the quasi TM mode of 

the NW (presented along the left y-axis) is slightly greater than that of the quasi-

TE mode. The sensitivity for both the above modes increases when the refractive 

index of the cladding material is increased. Even though the quasi TE mode has a 

greater effective index, the ratio of the effective index change with respect to the 

cladding index change, defined as the sensitivity ( ), is less. The greater 

effective index difference in the quasi TM mode can be enhanced by increasing 

the field intensity at the interface between the cladding material and the guiding 

region where the evanescent field exists. It can be observed from the change in 

the cladding normalized power confinement with the variation of the cladding 

refractive index, shown along the right hand side y-axis of Fig. 6.11, that as the 

cladding refractive index increases, the power confinement in the cladding also 

increases, thus improving the sensitivity of the device.  

After optimizing the dimensions of the polymer NW under investigation, the 

structure with a width of w=1.0 μm and a height of h=0.5 μm is considered in order 
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to obtain the single-mode propagation and still be able to achieve a higher power 

confinement in the sensing region.  

6.2.2 Ormocomp nanowire rib waveguide with trapezoidal-shaped 

In this section, we present the simulation results of the fabricated NW 

structure which is shown in Fig. 6.12(a). The NW from the fabrication process has 

a rib waveguide structure with slab thickness (t). This layer is the result of the 

residual ormocomp layer from the nanoimprint process. A schematic of the 

fabricated NW structure is presented in Fig. 6.12(b). 

 

Figure 6.12: (a) SEM image of a fabricated ormocomp NW showing the non-
vertical sidewalls. (b) Schematic cross-section of a fabricated ormocomp NW with 
rib waveguide structure. 

The NW core has a non vertical sidewall structure (trapezoidal shaped) due 

to the limitation of the fabrication process we had. The sidewall angle is measured 

to be 65 . Theoretical study of the modal fields, the power confinement and the 

sensitivity of the modes identified are carried out for different slab thicknesses (t), 

operating wavelengths ( ) and cladding materials (nc). This trapezoidal-shaped 

waveguide has the fixed dimensions of height h=0.5 μm, top width wtop=1.0 μm 

and bottom width wbottom=1.5 μm. The operating wavelength is in visible region, 

=400-700 nm. The cladding material considered in the simulations has a 

refractive index in the range between 1.333 and 1.400.  

6.2.2.1. The effect of the operating wavelength ( ) 

The fundamental mode field inside the NW is studied using a full vectorial H-

field FEM. The slab thickness (t) obtained from the fabrication is measured to be 
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t=2 μm. Therefore, the NW with slab thickness fixed at 2 μm is considered to 

numerically study the guided optical modes and their power confinement. First, 

variation of the effective index of the NWs is studied over the operating 

wavelength as presented in Fig. 6.13.   

 

Figure 6.13: Variation of the effective index as a function of the operating 
wavelength for the quasi-TM mode and quasi-TE mode. 

Similar to the behaviour of the conventional structure NWs as presented in 

Section 6.2.1, the effective index of the NWs is decreased when the operating 

wavelength increases because the light with longer wavelengths becomes less 

confined in the relatively small NWs. This leads to larger field extensions in the 

cladding region, as can be seen from the graph of normalized power confinement. 

The changes of power confinements in the core and cladding regions over the 

wavelength are presented in Fig. 6.14. 
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Figure 6.14: Graph of power confinements in the cladding and core regions of the 
quasi TM mode NW with non vertical sidewall with the operating wavelength in 
the visible region (400-700 nm).  

It can be observed from the characteristics in Fig. 6.14, there is less 

confinement of the optical field in the guiding region at a large wavelength. 

Therefore, the normalized power confinement in the cladding region is greater 

due to the large evanescent fields. Even though the power confinement in the 

cladding region is increased with the operating wavelength, this is found to be 

much smaller compared to that obtained from the conventional structure NWs. 

This is due to the presence of lower slab region of ormocomp. At the operating 

wavelength of 0.65 μm, the normalized power confinement about only 0.21% is 

captured. Therefore, the ormocomp slab layer thickness is another important 

parameter that affects the performance of the ormocomp NWs. 

6.2.2.2. The effect of the slab thickness (t) 

The power confinement in the cladding region is quite small because the light 

is mostly confined in the slab layer of the NWs. This 2 μm thick slab layer occurs 

from the nanoimprint process. The H field profiles for the quasi TM and quasi TE 

modes for the structure with the slab thickness of 2.0 μm are shown in Figs. 6.15 

(a) and (b), respectively.  
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Figure 6.15: Dominant H field of the quasi-TM mode (left) and quasi-TE mode 
(right) guided in the rib waveguide with a slab thickness of 2.0 μm. 

From the optical field profiles shown in Fig. 6.15, it can be observed that the 

light is mostly confined in the slab layer resulting in smaller power confinement at 

the core/cladding interface. By changing the slab thickness, the characteristic of 

the polymer rib NW with non vertical sidewall including the effective index and 

power confinement can be modified. The change of the effective index when 

varying the slab thickness for quasi TM and quasi TE modes is shown in Fig. 6.16. 

 

Figure 6.16: Graph of the effective index change with the slab thickness (t) for the 
NW rib waveguide with H= 0.5 μm, wtop=1.0 μm and wbottom=1.5 μm.  

Similar to a vertical sidewalls NW, the quasi TE mode has a slightly higher 

effective index than the quasi TM mode because the width of the NW is also larger 

here than its height. With the slab thickness between 1 to 5 μm, the effective 
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index is increased rapidly when the slab layer is larger. For slab thickness greater 

than 5 μm, the core height of the NW is too small compared to the slab layer and 

it cannot influence the change in the effective index of the whole structure. 

Therefore, the effective index value becomes almost constant at around 1.52, 

which is the refractive index of the NW.  

The graph of the normalized power confinement in the guiding region and the 

cladding region with respect to the slab thickness is shown in Fig. 6.17.  

 

Figure 6.17: Variation in the normalized power confinement in the cladding and 
the core region with the slab thickness (t). 

As the slab thickness increases from 1 μm to 2.5 μm, the normalized power 

confinement in the cladding region significantly decreases. On the other hand, the 

normalized power confinement in the guiding region is increased rapidly. At the 

thick slab layer (t > 2.5 μm), the normalized power confinement in both the 

cladding region and the guiding region changes only slightly because most of the 

light is confined in the slab layer. 

With the fixed slab thickness of 2.0 μm, the normalized confinement is found 

to be only 0.2% in the cladding region. The power confinement in the cladding 

region can be improved by reducing the thickness of the excess ormocomp layer.  

6.2.2.3. The sensitivity (S) 

The sensitivity of the fabricated ormocomp NWs is studied with the change in 

the cladding index. The cladding materials considered here are water and the 
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glycerol solution that have refractive indices of 1.333 and 1.365, respectively. 

With the different cladding materials, the sensitivity is calculated from Equation 

5.4 and shown in Fig. 6.18. 

 

Figure 6.18:  Sensitivity and the normalized power confinement in the cladding of 
the rib waveguide ormocomp NW with non vertical sidewall when the refractive 
index of the cladding material is varied in the range of 1.333 to 1.400. 

The sensitivity of the NW is improved when the refractive index of the 

cladding material increases for both the quasi TM and quasi TE modes. Similar to 

the conventional ridge waveguides, the quasi TM mode also has a higher 

sensitivity than the quasi TE mode. However, the sensitivity calculated for the 

fabricated NWs structure is lower by two orders of magnitude than the sensitivity 

calculated for the designed NWs structure. This is because the modal field of 

fabricated nanowire rib waveguide shifts away from the cladding region to the 

slab region leading to small power confinement in the sensing region as confirmed 

by simulations. 

In addition, highly slanted waveguides can induce polarisation rotation, thus 

leading to mode coupling [25]. The above effect has been considered in the 

simulations of the device. However, it is found that it does not have a significant 

contribution to the NWs due to the lower index contrast and the structure 

examined being almost symmetric in the present work. 

In order to enhance the power confinement at the core/cladding interface, 

the slab layer has to be removed and this can be done during the nanoimprint 
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process. However, another way to increase the amount of light at the interface 

for the slab structure NWs is the use of surface plasmon resonance (SPR). 

Therefore, a thin gold layer is coated on the NWs to study the effect of the surface 

plasmon resonance. 

6.3 Gold-coated ormocomp nanowire waveguides 

The gold-coated ormocomp NWs are theoretically studied in this section. 

Similar to the non-gold-coated waveguide as described in Section 6.2, there are 

two different structures considered in this work, which are ridge structure with 

vertical sidewalls and rib structure with non-vertical sidewalls. Initially, the vertical 

sidewalls waveguides are considered in order to introduce polarisation-

independence of the gold-coated waveguides. However, due to the fabrication 

limitation, the ridge structure with vertical sidewalls could not be fabricated in a 

size comparable to the wavelength. Therefore, the non-vertical sidewalls 

waveguides are included in the study to support the experimental work. 

6.3.1 Ridge structure with vertical sidewalls (Polarisation-

independent SPR) 

In this part, a conventional waveguide structure which is a ridge structure 

with vertical sidewalls is considered to study for the effect of the surface plasmon 

resonance (SPR). A thin gold layer is assumed to be coated on the top and at the 

sides of the waveguide. However, a 0.5 μm wide and 1.0 μm high NW could not 

be fabricated to achieve vertical sidewalls due to a limitation in the fabrication 

process we had. Hence, 10 μm x 10 μm waveguide, which is a part of the feed 

waveguide in an integrated NW structure introduced in Chapters 2 and 4, is 

studied both theoretically and experimentally. The fabricated gold-coated ridge 

waveguide with a vertical sidewall is shown in Fig. 6.19(a) and its schematic for 

the theoretical study is shown in Fig. 6.19(b). 
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Figure 6.19: (a) SEM image of a fabricated ormocomp waveguide showing the 
vertical sidewalls with a thin gold layer at the top and sides. (b) Schematic cross-
section of a gold-coated ormocomp waveguide. Gold is coated on the top and the 
sides of the waveguide. 

It can be clearly seen from the bright part in Fig. 6.19(a) that the waveguide 

is coated with thin gold layers on the top and the sides. A gold thickness of 100 

nm is coated on the waveguide using the sputtering technique in order to 

introduce plasmonic modes at the vertical sidewalls and the top metal surface of 

the waveguide, according to the polarisation of the optical field. 

Surface plasmon resonance is the oscillation of the electrons at the interface 

between dielectric and electric materials. The resonance occurs when the 

momentum of the photons from the incident light matches the momentum of the 

oscillated electrons at some specific wavelength called the resonance wavelength. 

The absorption due to SPR at the resonance wavelength provides a large power 

confinement in the sensing area. Hence, the sensitivity of the NWs can be 

improved [157-161].  

With the presence of SPR, light is guided as a plasmonic mode. The first order 

resonance condition at the semi-infinite dielectric/metal interface is given by 

[215]: 

 

(6.1) 

where  is the propagation constant for the SPR mode. The resonance is 

occurred when the propagation constant of the guided mode equals to  where 

 is the operating wavelength in free space.  is the real part of the dielectric 
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constant of the metal, which is a wavelength dependent parameter and  is the 

dielectric constant of the cladding material (  = ). The surface plasmon 

resonance exists when  is negative and its magnitude is larger than   (  

and ). The equation 6.1 is varied only for the semi-infinite metal layer in 

which the thickness of the metal layer is not considered. The ormocomp 

waveguides are coated with a gold layer of thickness about 100 nm. Therefore, a 

resonance condition for the finite metal layer is required instead of semi-infinite. 

The analytical form of the resonance condition for the finite dielectric/metal 

interface can be calculated from the incident light reflectivity where the metal 

thickness is the key parameter [215]. 

In our work, the numerical method is used to study the SPR in ormocomp 

waveguides instead of using analytical formulation. The full-vectorial H-field FEM 

is the numerical method used here to study the characteristics of the gold-coated 

ormocomp waveguides with the effect of the SPR. By using the FEM, the metal 

thickness is also taken into consideration when  is calculated. At the top 

surface, the oscillation of the electrons introduces SPR quasi-TM mode with 

dominant Hx/Ey field as shown in Fig. 6.20(a). On the other hand, at the vertical 

sidewalls, SPR quasi-TE mode is formed with dominant Hy/Ex field as shown in Fig. 

6.20(b).  

 

Figure 6.20: 2D H-field of the light guided in golthe d-coated ormocomp 
waveguide for (a) quasi-TM mode, Hx field and (b) quasi-TE mode, Hy field. 

The waveguide in Fig. 6.19 can be characterised as polarisation-independent 

SPR waveguide in terms of the ability to detect SPR wavelengths in sensing 
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applications without the use a polarizer in an integrated sensor system, thus 

providing a simpler configuration with increased reliability. In addition, the 

polarisation-independent mechanism allows the integrated SPR sensor to be 

scaled down in the manufacturing and packaging process.  

In this section, the full-vectorial H-field finite element method (FEM) is used 

to simulate the optical modes in the waveguide structure calculating the effective 

index, resonance wavelength and its shift in different cladding materials such as 

water (n=1.333) and iso-propanol solutions (n=1.344, 1.351 and 1.365) in the 

visible region (λ=400-700 nm). 

6.3.1.1. The resonance wavelength (λres) 

To achieve polarisation independence, the waveguide designed has an equal 

width and height of 10 μm with a 100 nm thick gold layer coated at the sides and 

on the top. In this work, 64800 first-order triangular elements are used to 

represent one half of the gold-coated waveguide structure. With the FEM, the size 

of the triangles can be varied for each individual part of the waveguide to achieve 

a higher computational efficiency. In this case, the vertical resolution of 1.67 nm 

is obtained for the 100 nm thick gold layer. 

Gold has a complex refractive index ( ) which is defined by  where 

 is the extinction coefficient [216]. Both  and  are wavelength dependent 

[202]. This complex refractive index is used to calculate for the dielectric constant, 

sometimes called the complex relative permittivity of gold ( ), which is the 

required parameter in the FEM simulations. The dielectric constant of gold can be 

calculated as follow [216]: 

 (6.2) 

The  varies with the wavelength. The value of  in the whole visible spectrum 

for this work is given in Appendix B.  

First, a variation of effective index ( ) and loss of the fundamental quasi-

TM and quasi-TE modes over the visible region in water cladding are studied as 

shown in Fig. 6.21 
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Figure 6.21: Change of effective indices (neff) and loss over the operating 
wavelength in the visible region for quasi-TM and quasi-TE modes. 

The effective index of the gold-coated ormocomp waveguide is reduced with 

the operating wavelength. As for the larger wavelength, power confinement in 

the core is reduced.  However, as the ormocomp waveguide structure was 

relatively larger, there is no modal cut-off in the wavelength range considered 

here. The loss for this waveguide structure involves the light guided outside the 

waveguide core which includes the light extended into the substrate and also the 

sensing region (metal/cladding interface). For this 10 μm size waveguide 

operating in the visible wavelength, most of the light is confined in the core. 

Hence, the loss in the substrate is negligible and only the loss in the sensing region, 

which is in the metal layer in this case, is calculated by using equation 6.3. The loss 

shows its peak at the SPR wavelength because the plasmonic mode located at 

metal/cladding interface is dominant compared to the dielectric mode. 

(6.3) 

where  is an input intensity and  is an output intensity. 

The effective index variation graph shows several peaks at some specific 

locations indicating the resonance phenomena. In this case, the two dominant 

resonance wavelengths (λSPR) are located at λSPR1=595 nm and λSPR2=648 nm. The 

effective index of the fundamental plasmonic mode is usually higher than the 
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dominant dielectric mode. The thickness of the gold layer is fixed at 100 nm to 

ensure guidance of fundamental and higher-order plasmonic modes. The higher 

order plasmonic modes have lower effective indices and this allows different 

order plasmonic modes to be coupled with the dielectric mode at different 

resonance wavelengths leading to several resonance peaks to occur. In addition, 

the effective index of the quasi-TE mode is slightly higher than the quasi-TM mode 

because there are two metal/cladding interfaces at the vertical sides of the 

ormocomp waveguide for the quasi-TE mode but only one metal/cladding 

interface for the quasi-TM mode at the top of the waveguide. However, the 

resulting resonance wavelengths for both the quasi-TM and quasi-TE modes are 

almost identical. 

The 2D optical field for a dielectric mode obtained from the H-field FEM is 

compared with the optical field images from the experimental field profile at a 

non-resonance wavelength and at resonance wavelength as shown in Figs. 6.23 

and 6.24, respectively. 

 

Figure 6.22: Modal field profile excited in the ormocomp waveguide at a non-
resonance wavelength from (a) FEM simulation, (b) experiment, and (c) Hx field of 
the guided mode along the y-axis 

It can be observed that the dielectric mode is well confined in the core of the 

gold-coated ormocomp waveguide at the non-resonance wavelength. The 

ormocomp waveguide has a quasi-rib-structure, so some of the light in the core 

of the waveguide is extended into the rib layer as can be seen from the simulation 

in Fig. 6.22(a) which compares well with the image from CCD camera in the 
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experimental setup as shown in Fig. 6.22 (b). The dominant field variation along 

the y-axis is also shown in Fig. 6.22 (c) which clearly identifies this as a pure 

dielectric mode. 

In addition, the gold-coated ormocomp waveguide has two dielectric/electric 

interfaces which are the ormocomp/gold and the cladding/gold interfaces. 

Therefore, the plasmonic modes occurring at the metal layer are also plasmonic 

supermodes which are coupled modes between fundamental dielectric mode and 

odd-like fundamental plasmonic supermodes. At the resonance wavelength, the 

plasmonic modes are induced and coupled with the dielectric mode to form a 

supermode. The optical image from the CCD camera in the experiment, Fig. 

6.23(b), shows a good agreement to the simulation result, shown in Fig. 6.23(a), 

in which the plasmonic mode are mostly confined at the metal/cladding interface 

and the dielectric mode confined in the core and rib layer. The numerically 

simulated shown Hx-y profile at the centre of the waveguide is in Fig. 6.23(c) which 

clearly shows the plasmonic peaks at the metal-dielectric interfaces. The dielectric 

mode is dominant at the non-resonance wavelength but the plasmonic mode is 

dominant at the resonance wavelength. 

 

Figure 6.23: Modal field profile excited in the ormocomp waveguide at the 
resonance wavelength from (a) FEM simulation, (b) experiment, and (c) Hx field of 
the coupled dielectric-plasmonic mode along the y-axis. 

There are other coupled dielectric-plasmonic modes occurred over the 

wavelength such as the fundamental dielectric mode coupled with the even-like 
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plasmonic mode. They can also have higher order variation in other transverse 

direction. The effective index of the even-like plasmonic mode is lower than that 

of the odd-like plasmonic mode, but by adjusting waveguide parameters it may 

be possible to couple this plasmonic mode to the core dielectric mode. However, 

only the coupled mode between the fundamental dielectric and the odd-like 

plasmonic mode is studied in this work as shown in Fig. 6.24 for water cladding. 

 

Figure 6.24: Hx-field of the coupled dielectric-plasmonic mode in water cladding 
along the y-axis at the SPR wavelengths where (a) λSPR1= 595 nm (b) λSPR2= 648 nm. 

With the large field at the interface for the surface plasmon mode at the 

resonance wavelength, the power confinement in the sensing region is also 

expected to be enhanced. The normalized power confinement in the sensing 

region, which is the metal/cladding interface is obtained by using the FEM 

simulation, is shown in Fig. 6.25. 

 

Figure 6.25: Graph of normalized power confinement in the sensing region of the 
ormocomp waveguide in water cladding calculated by using an in-house FEM 
program for quasi-TM and quasi-TE modes. 
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The resonance wavelengths can be identified from power confinement in the 

sensing region graph where the peaks representing high power confinement 

occur. There are several peaks occurring due to multiple plasmonic modes 

possible in the thicker gold layer. From the numerical simulations, the minimum 

thickness of the gold layer allowing the dominant plasmonic mode to occur is 

identified as 80 nm. However, in our fabricated guides, the actual gold thickness 

is around 100±20 nm. For a thicker gold layer, several plasmonic modes are 

occurred resulting in several SPR peaks in the simulation results. Considering only 

the coupled modes between the fundamental dielectric and odd-like fundamental 

plasmonic supermode, there are two distinct peaks for both the quasi-TM and the 

quasi-TE modes when the gold layer thickness is 100 nm. 

6.3.1.2. The resonance shift and sensitivity 

In this work, the gold-coated ormocomp waveguides are tested with four 

different cladding materials with different refractive indices to study the 

resonance shift. The four different cladding materials are water and three 

different concentrations of isopropanol solutions with the refractive index of 

1.333, 1.344, 1.351 and 1.365, respectively. In order to investigate the resonance 

wavelength for each cladding material, only the lowest order symmetric 

plasmonic mode, which is the fundamental dielectric-plasmonic coupled mode, is 

tracked as presented in Fig. 6.26. 
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Figure 6.26: Hx-field of the coupled dielectric-plasmonic mode in three different 
isopropanol solutions along the y-axis at the resonance wavelengths where ISO15, 
ISO13 and ISO11 have refractive index of 1.344, 1.351 and 1.365, respectively. 

From Fig. 6.26, it can be clearly observed that all the modes are the coupled 

modes between fundamental dielectric mode and odd-like fundamental 

plasmonic supermode. 

In order to obtain the resonance wavelengths for each cladding material, the 

effective index and power confinement in the sensing region are examined as 

shown in Fig. 6.27. 
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Figure 6.27: Graphs of the effective index of the gold-coated ormocomp 
waveguide and optical power in the sensing region with the wavelength for both 
quasi-TM and quasi-TE modes in three different claddings including ISO15, ISO13 
and ISO11. 

The resonance peak wavelengths of the quasi-TM and quasi-TE modes of the 

gold-coated ormocomp waveguide, in different cladding materials, obtained from 

Fig. 6.27  are presented in Table 6.1. 
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Table 6.1: Simulation results of the resonance peaks of the gold-coated ormocomp 
waveguide in different cladding materials for quasi-TM and quasi-TE modes 

n 

TM mode TE mode 

Resonance peak 
1 

Resonance peak 
2 

Resonance peak 
1 

Resonance peak 
2 

1.333 595 nm 646 nm 593 nm 645 nm 

1.344 599 nm 652 nm 598.6 nm 652 nm 

1.351 603 nm 655 nm 603 nm 655 nm 

1.365 610 nm 661 nm 611 nm 662 nm 

The resonance peaks for both the quasi-TM and quasi-TE modes occur at 

nearly the same wavelength because the waveguide is designed with equal height 

and width (but with single-side or double-side metal cladding) leading to a small 

difference in their effective indices. Two resonance peaks are located about 50 

nm away from each other. They are the coupled supermodes between 

fundamental dielectric mode and odd-like fundamental plasmonic supermode. 

The resonance peaks for each cladding material are given in Table 6.1 and plotted 

as shown in Fig. 6.28. 

 

Figure 6.28: Variations of the two resonance peaks with the cladding index, 
obtained from the numerical simulations for each cladding material in both the 
quasi-TM and quasi-TE modes. 

It can be observed from Fig. 6.28 that the resonance peak wavelength has a 

linear relationship with the refractive index of the cladding material for both the 
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quasi-TM and quasi-TE modes. The regression lines of the quasi-TM modes, which 

are represented by solid lines, almost perfectly fit the data with R-squared of 

0.9929 and 0.9960 for resonance peaks 1 and 2, respectively. For the quasi-TE 

modes, the regression lines are represented by dashed lines with R-squared of 

0.9755 and 0.9935 for resonance peaks 1 and 2, respectively. The slopes of the 

quasi-TE modes are slightly higher than the slopes of the quasi-TM mode for both 

resonance peaks which means that the quasi-TE mode has a higher sensitivity 

compared to the quasi-TM mode. This is due to the larger surface area (double) at 

the two vertical sides of the waveguide for the quasi-TE mode compared to the 

single surface on the top of the waveguide for the quasi-TM mode. The sensitivity 

of the gold-coated ormocomp waveguides with vertical sidewalls can be 

interpreted from the slope of the plot in Fig. 6.28 as presented in Table 6.2. 

Table 6.2: Sensitivity of the gold-coated ormocomp waveguide with vertical 
sidewalls for quasi-TM and quasi-TE modes. 

Mode Resonance Peak Sensitivity (nm/RIU) 

TM mode 
Peak 1 475.64 

Peak 2 400.46 

TE mode 
Peak 1 538.19 

Peak 2 514.15 

The sensitivity of the waveguide in the quasi-TE mode is slightly higher than 

that in the quasi-TM mode because, for the quasi-TE mode, the SPR exhibits at 

both the vertical sides. 

6.3.2 Rib structure with non-vertical sidewalls (quasi-TM mode SPR) 

In this section, the gold-coated ormocomp NW with a designed structure 

allowing only the propagation of fundamental optical mode is studied 

theoretically. The vertical sidewalls NW cannot be achieved in the fabrication 

process available to the candidate. Hence, the structure of the fabricated NWs has 

non-vertical sidewalls with the sidewall angle =65 . In this case, only the quasi-

TM mode is considered because the oscillation of the electron is normal to x-axis 

allowing the dominant Hx/Ey field to be observed. At the sidewall, the electrons 
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oscillate with an angle of 65  to the y-axis. Therefore, the quasi-TE mode with the 

dominant Hy/Ex field cannot be observed straightforwardly. In addition, the metal 

thickness at the sidewalls is thinner compared to the thickness at the top surface. 

Hence, the metal layer at the sidewalls is assumed to be negligible in the 

theoretical study. A cross-section of the ormocomp NW coated with 50 nm thick 

gold layer on top is shown in Fig. 6.29. 

 

Figure 6.29: A cross-section of the fabricated ormocomp NW coated with a gold 
layer on the top surface. 

 The gold-coated ormocomp NWs are studied theoretically with the FEM for 

their resonance wavelengths and their shifts with different cladding materials. For 

this structure, 4500 first-order triangular elements are used to represent its half 

in the FEM with a vertical resolution of 0.8 nm is achieved inside the 50 nm thick 

metal layer. The operating wavelength is in the 400-700 nm range, which is in the 

visible region. The refractive index of the cladding materials in this study are taken 

as 1.333 (water), 1.351 (ISO13: Iso-propanol solution with 1:3 volume ratio) and 

1.356 (ISO11: Iso-propanol solution with 1:1 volume ratio). 

6.3.2.1. The resonance wavelength ( res) 

The light propagates in the ormocomp NWs coated with a thin gold layer on 

the top surface as the quasi-TM mode where the dominant electric field 

component (Ey) is normal to the dielectric/metal interface.  First, the gold-coated 

ormocomp NWs with water cladding are studied theoretically over the operating 

wavelength. A comparison of the effective index values of the un-coated NW and 

gold-coated NW is shown in Fig. 6.30. 
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Figure 6.30: A comparison of the effective index between un-coated NW and gold-
coated NW in water cladding over the operating wavelength. 

Effective indices of both the NWs decrease with the larger operating 

wavelength. The ormocomp NW coated with gold layer has a lower effective index 

because gold has a complex refractive index ( ) which is defined by  

where  is the extinction coefficient [216]. The extinction coefficient indicates the 

amount of light absorbed by the material. Here, both the  and  are wavelength 

dependent [202].  

The resonance peak can also be seen in Fig. 6.30. Even though the effective 

index of the gold-coated ormocomp NWs is lower than the corresponding un-

coated NWs, at some specific wavelength, where the resonance occurs, the 

effective index of the gold-coated NW becomes higher. In the case of water 

cladding, the resonance occurs at =546 nm. The 2D Hx field contour and its 

variation long the y-axis at the non-resonance and resonance wavelength are 

presented in Fig. 6.31. 
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Figure 6.31: 2D optical fields and Hx field in y-axis at (a) =500 nm (b) =545 nm 
(the resonance wavelength) (c) =600 nm. 

There are two modes present in the gold-coated ormocomp NWs which are 

the dielectric mode (guided mode) and the plasmonic mode. These two modes 

couple with each other to form a supermode when their effective indices are very 

close. At the resonance wavelength in Fig. 6.31(b), the plasmonic mode is stronger 

than the dielectric mode. On the other hand, the dielectric mode is dominant at 

other wavelengths (Figs. 6.31(a) and (c)). According to the large surface plasmon 

mode at the resonance wavelength, the power confinement in the sensing region 
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is also expected to be improved. The graph showing the linear-fit of normalized 

power confinement in the sensing region, which is the metal/cladding interface, 

is presented in Fig. 6.32. 

 

Figure 6.32: Comparison of the normalized power confinement in the sensing 
region between gold-coated ormocomp NWs (linear-fit) and un-coated 
ormocomp NWs over the operating wavelength. 

A comparison of the normalized power confinement in the sensing region 

between gold-coated and un-coated ormocomp NWs is also shown in Fig. 6.32. 

The power confinement in the sensing region generally increases with the 

operating wavelength. The resonance peak from the linear-fit can be observed at 

the resonance wavelength which is at =550 nm. The graph shows that the power 

confinement in the gold-coated ormocomp NW is 10 times higher than the un-

coated NWs at the resonance wavelength. 

6.3.2.2. The resonance shift and sensitivity 

For the 50 nm-gold-coated ormocomp NWs with water cladding, the 

resonance wavelength is found to occur at 546 nm. However, the resonance 

wavelength shifts with a different refractive index of the cladding material. The 

cladding materials considered in this theoretical study are water (n=1.333) and 

two different volume ratios of iso-propanol solutions (n=1.351 and n=1.365). 
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The exiting guide modes, their modal field distribution and their power 

confinement in ormocomp NWs with the effect of SPR are theoretically studied 

over the wavelength and the different cladding materials. As mentioned earlier, 

there are two possible optical modes in this NW structure, the dielectric mode 

inside the ormocomp region and the plasmonic mode at the dielectric/metal 

interface. These two modes can be clearly separated or coupled with each other 

to become a supermode depending on the parameters of the NW structure, 

especially the height of the NW. In our work, the coupled dielectric-plasmonic 

mode is obtained for all three different cladding materials, which are water and 

two iso-propanol solutions with different concentrations, as shown in Fig. 6.33.   

 

Figure 6.33: Hx field of coupled dielectric-plasmonic mode along the y-axis for 
three different cladding indices at a specific wavelength.  

From Fig. 6.33, the supermode coupling between the dielectric mode and 

odd-like (antisymmetric) plasmonic supermode is clearly seen from the Hx profile 

along the y-direction at a specific operating wavelength. The odd-like supermode 

is the mode where the superposition of those two modes have opposite field 

polarity [217]. The variation of the effective index of the allowed modes in three 

different cladding mediums with respect to the operating wavelength is shown in 

Fig. 6.34. 
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Figure 6.34: Change in the effective index of the gold-coated ormocomp NW in 
different cladding materials with operating wavelength. The peak indicates the 
wavelength where the SPR is excited. 

Effective indices of the optical mode decrease when the wavelength is 

increased regardless of the value of the cladding index because the wavelength 

becomes larger compared to the dimension of the NW. However, the graph of 

effective indices in Fig. 6.34 shows the peak at a specific wavelength for each 

cladding material, which can be considered to be the SPR wavelength. The 

effective index of the plasmonic mode is normally higher than that of the 

fundamental dielectric mode. Hence, the effective index of the coupled dielectric-

plasmonic mode occurring at the resonance wavelength is slightly higher than the 

dielectric mode alone.  

At the wavelength where the SPR occurs, the power confinement in the 

sensing region which is at the gold/cladding interface also increases because the 

evanescent field at the interface is enhanced. The graph of the power 

confinement in the sensing area and the wavelength is shown in Fig. 6.35. 
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Figure 6.35: Variation of power confinement in the sensing region of the NW at 
different cladding-indices with the operating wavelength. The highest power 
confinement is obtained at the SPR wavelength. 

The power confinement of the quasi-TM mode in the sensing region of the 

gold-coated ormocomp NW with water cladding, is 10 times higher than that the 

ormocomp NW with the same parameters but without the gold layer. The 

resonance peak wavelength where the SPR signal occurs for each cladding 

material can be recognized from the peak in both the effective index (Fig. 6.34) 

and power confinement graphs (6.35). For the water cladding structure, the SPR 

signal is obtained at 551 nm wavelength. The plasmonic modes in iso-propanol 

solution are observed at the wavelengths of 576 nm and 590 nm for the cladding 

index of 1.351 and 1.365, respectively. As the cladding index increases, a redshift 

of SPR peak wavelength is observed.  

Beside the cladding material, the thickness of the metal layer is another 

important parameter which affects the resonance peak position. For the gold-

coated NW, the SPR occurs at both the core/metal and the cladding/metal 

interfaces. These two plasmonic modes couple with each other and form the 

supermode of symmetric (even-) or antisymmetric (odd-) resonance [159, 166, 

167]. With thicker metal layer, the antisymmetric surface plasmon mode has a 

redshift while the symmetric surface plasmon mode obtains a blueshift [218]. For 

our work, the antisymmetric supermode (odd-like supermode) is considered. The 
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relation between the SPR peak wavelengths for each cladding material with 

different metal thickness for an odd-plasmonic supermode is shown in Fig. 6.36. 

 

Figure 6.36: Graph of SPR peak wavelength of an ormocomp NW with three 
different cladding materials and gold coating thickness of 50, 60 and 70 nm. The 
redshift occurs for the antisymmetric modes when the thickness of gold layer is 
increased. 

The metal thicknesses of 50, 60 and 70 nm are considered. For a very thin 

metal layer, the enhancement of the evanescent fields by SPR is less compared to 

the enhancement in the case of thicker metal layer. However, if the thickness of 

the metal layer is too large, the coupling between the core mode and surface 

plasmon mode does not occur. Hence, the power confinement and sensitivity at 

the cladding/metal interface is inhibited. From Fig. 6.36, a redshift of about 25-30 

nm is observed in each cladding index when the metal thickness is increased by 

10 nm. The sensitivity of the NWs can be obtained from the slope in 6.36 which is 

presented in 6.3.  

Table 6.3: Sensitivity of the gold-coated ormocomp NW with non-vertical 
sidewalls for quasi-TM and quasi-TE modes. 

Metal thickness (nm) Sensitivity (nm/RIU) 

50 1250.00 

60 1406.25 

70 1562.50 

As the thickness of the gold layer increase from 50 nm to 70 nm, the sensitivity 

also increases due to a larger volume of the SPR at the sensing region. 
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6.4 Summary 

Numerical analyses of the un-coated and gold-coated ormocomp NWs have 

been presented in this chapter. The modal fields and the power confinement in 

the cladding region (sensitive area) for both quasi-TM and quasi-TE modes are 

studied in order to optimize the dimensions of the NW structure for the un-coated 

ormocomp NWs. Smaller NWs have higher sensitivity compared to a large 

waveguide due to the extension of the optical field in their cladding area. 

However, due to instrument limitations in the fabrication process, a non-vertical 

sidewall NW, with a top-width of wtop= 1.0 μm and a height of H= 0.5 μm, is the 

smallest possible NW that was possible for this work. The sensitivity of the non-

vertical sidewall NWs is less than that of the vertical sidewall structure. However, 

the fabrication of vertical sidewall for wavelength-scale structures has proven to 

be a very challenging task. The closest structures to the perfectly vertical 

structures were trapezoidal-shaped structures with base angle of 65 . 

In order to improve the sensitivity of the NWs by enhancing the light 

interaction in the sensing area, a thin gold layer is deposited on the surface of the 

waveguide to introduce the SPR. The SPR occurs when the momentum of the 

photons in the incident light matches with the momentum of the electron 

oscillation. The effect of SPR on ormocomp waveguides have been studied both 

theoretically and experimentally. These experimental results are discussed in 

Chapter 7.  

The full-vectorial H-field FEM is used to study theoretically the existing guided 

modes, their distribution and their normalized power confinement in the NWs 

with vertical resolution of 0.8 nm in the sensing region. The modes presented here 

are the supermodes formed due to the coupling between the dielectric mode in 

the core and the plasmonic supermode at the dielectric/metal interface. For the 

gold-coated NWs, the two plasmonic modes at the ormocomp/gold and 

cladding/gold interfaces are coupled and form a symmetric or an antisymmetric 

mode (even or odd mode). In this work, the odd-like plasmonic supermode is 

considered. 
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With the gold layer on the top surface of the NW, the SPR is introduced at the 

interface where the evanescent field exists and the power confinement is 

increased by a factor of ten, at a specific wavelength called the resonance 

wavelength, allowing a larger amount of light interaction with the analyte 

materials. From the different cladding materials examined, it has been observed 

that those with higher cladding refractive index exhibit higher resonance. Also, 

the normalized power confinement in the sensing region, at the cladding/gold 

interface, is enhanced when the cladding index is increased.  

The resonance peak also depends on the thickness of the metal layer. For the 

vertical sidewall structure, the minimum thickness of the gold layer was calculated 

to be 80 nm in order to have a dominant plasmonic mode at the SPR wavelength.  

For metal thickness less than 80 nm, the plasmonic mode is not dominant. Hence, 

a 100 nm thick gold layer is coated both at the top and at the sides of the 10x10 

μm waveguide and the SPR is introduced for both the quasi-TE and TM 

polarisations. There are two resonance peaks observed because there are two 

different plasmonic modes coupled with the dielectric modes. Both the TM and 

TE modes have almost identical resonance wavelength for each cladding material. 

Hence, a polarizer is not required and polarisation-independent waveguides are 

obtained. Consequently, a simple and compact integrated SPR sensor can be 

achieved. 

On the other hand, the gold layer with the thickness of 50 nm is considered 

to be coated only at the top of the wavelength-scale waveguide. With a thicker 

metal layer, the odd-mode has a redshift. A redshift of about 25-30 nm is observed 

when the metal thickness is increased by 10 nm for the wavelength-scale 

waveguide. The sensitivity of the NWs can reach up to 1406.25 nm/RIU. 
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7. Experimental characterisation of ormocomp nanowire 

waveguides 

7.1 Introduction 

The experimental effort of this research work was devoted to the 

characterisation of the ormocomp nanowire waveguides (NWs). This chapter 

consists of three main parts which are (i) the optical imaging process, (ii) the 

extraction of the attenuation coefficient of both un-coated and gold-coated 

waveguides, and (ii) the analysis of surface plasmon resonance wavelength and its 

shift for gold-coated waveguides including the polarisation-independent and TM 

mode waveguide structures. The NWs used in the characterisations are the 

ormocomp waveguides fabricated using the nanoimprint method as described in 

Chapter 4.  

First, the focus of the experiments is to obtain an image of the optical field at 

the output of the waveguides representing the guided signal. The optical images 

are then processed to obtain the intensity, which is later used to extract the 

attenuation coefficient for the un-coated NWs (αnw). The operating wavelength 

used in the experiments for the un-coated NWs is 633 nm, which is, in fact, a red 

light source. Three cladding mediums used in the experiments are air (n = 1.000), 

water (n = 1.333) and glycerol solution (n = 1.365). The scattering caused by the 

surface roughness affects the attenuation coefficient of the un-coated ormocomp 

NWs. 

In the experimental characterisation of the gold-coated NWs, the optical 

setup used is similar to the one used for the un-coated NWs. However, for surface 

plasmon resonance (SPR) analysis a beam splitter and a spectrometer are 

required. The attenuation coefficient of the gold-coated NWs and the feed 

waveguides are extracted. The SPR peak and its wavelength shift, with the change 

of the refractive index of the cladding materials, are analyzed. The cladding 

materials of interest in the SPR experiments are (i) water (n=1.333), (ii) iso-
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propanol solutions with volume ratios in a way that the refractive indices are 1.351 

and (iii) 1.365.  The attenuation coefficient of the gold-coated NW is mainly 

affected by the SPR. 

7.2 Optical imaging 

As it was described in Chapter 4, the integrated ormocomp NWs were 

fabricated on a glass substrate and designed to be connected to a feed waveguide 

via a tapered waveguide as shown in Fig. 7.1. The light is coupled into the NW 

from the feed waveguide and the output light is detected through the tapered 

waveguides.  

 

Figure 7.1: Schematic of ormocomp NW attached to tapered waveguides and feed 
waveguides, used in the experimental characterisation.  

A set of NWs including two reference waveguides and four with different 

length of NWs are fabricated to extract the attenuation coefficient of the feed 

waveguide ( ), the attenuation coefficient of the tapered waveguide ( ) and 

the attenuation coefficient of NW ( ), individually. Fig. 7.1  (not drawn to scale) 

shows the total length of the integrated NW device (Lo) is 5 mm. The taper length 

(Ltp) is 260 μm and the four NWs have a length (Lnw) of 250, 500, 1000 and 2000 

μm, respectively. The width of the feed waveguide (W) is 10 μm whereas the width 

of the NW (Wnm) is 1 μm. There are eight sets of the NWs on one glass substrate 

as shown in Fig. 7.2.  
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Figure 7.2: Pattern of the NWs on a glass substrate. There are eight sets of the 
NWs on one glass substrate. Each set contains two reference waveguides and four 
of different lengths NWs. 

Fig. 7.2 reveals that there is a 100 μm wide waveguide included in the middle 

of the substrate. This wide waveguide plays an important role in the alignment 

process as is described later.  

The first experiment was carried out to image the optical fields of the output 

signals. An optical setup is needed for the optical imaging process. It mainly 

consists of a light source, a multimode optical fibre, a sample stand, an xyz-stage, 

objective lens with various magnifications and CCD cameras. The optical setup 

schematic utilized to image the optical signal and characterize the optical 

properties of the ormocomp NWs is shown in Fig. 7.3.   
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Figure 7.3: Schematic of the optical setup to image the output signal. It mainly 
consists of a red light source, objective lens and CCD cameras. 

From Fig. 7.3, the red LED ( =633 nm) is connected to a multimode optical 

fibre and is used as a light source. An objective lens with a magnification of 20x is 

used to focus the light and also to enhance the input signal. For the alignment 

process, an objective lens with a magnification of 10x connected to a CCD camera 

is used to align the optical fibre and the specific ormocomp NW on a glass 

substrate. Following the alignment, the focused light is coupled into the specific 

NW and then propagates along the wire. The output signal is detected by another 

CCD camera connected to a 20x objective lens which is used to magnify the output 

image. The actual setup is shown in Fig. 7.4. 
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Figure 7.4: Actual optical setup used to characterize the attenuation coefficient of 
the un-coated ormocomp NWs. 

During the experiments, all the processes involved took place in a dark room 

in order to reduce noise caused by the ambient light. In the dark room, the 

alignment process is critical. Therefore, an additional LED is added separately as a 

light source only for the alignment. The alignment setup consists of xyz-stage and 

CCD camera connected with a 10x objective lens which is placed above the NWs 

sample. The image obtained for the alignment setup is shown in Fig. 7.5. It is 

focused by adjusting the x-stage. 

 
Figure 7.5: Pattern of NWs imaged by the CCD camera connected with a 10x 
objective lens in the alignment process. 
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Fig. 7.5 shows the top view of a set of the NWs which includes two reference 

waveguides (no.(5) and (6)) and four NWs with different lengths (Lnw=250, 500, 

1000 and 2000 μm). In order to couple the light into a single NW, the CCD camera 

connected with the 10x objective lens is moved by the z-stage to the edge of the 

glass substrate as shown in Fig. 7.6. 

 
Figure 7.6: Image of alignment process in order to couple the light into a specific 
NW. The CCD camera is moved to the edge of the NW where the light source is 
focused and aligned into NW. 

In the alignment process, the red light source is placed on an xyz-stage. It is 

focused into a specific NW by a 20x objective lens which can be observed from the 

bright spot in Fig. 7.6 which indicates the position of the light source aligned to 

the first NW that has a length of Lnw=2000 μm. The size of the focused light or the 

bright spot can be adjusted by moving the z-stage. In addition, the NW has a small 

height of H= 0.5 μm which makes alignment in the y-direction very challenging. 

Besides that, the optical output signal can be very weak due to the optical losses 

in the cladding and substrate. 

 At the other end of the NWs, another CCD camera connected with the 20x 

objective lens is placed to detect the output signal. The image of the NWs at the 

other end captured by the CCD camera is shown in Fig. 7.7 
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Figure 7.7: Image of the NWs at the other end by the CCD camera connected with 
a 20x objective lens. The optical output cannot be observed from this image. 

From Fig. 7.7, another end of the NWs can be clearly seen by the CCD camera. 

However, it is reasonably difficult to observe the optical output signal. This is 

because the glass substrate is bigger than the length of the integrated NWs and 

the relative height of the NW (H=0.5 μm) are very small compared to the space 

between the NW end and the glass edge which is about 150 μm. These lead to the 

optical loss at the output. Hence, it is hard to observe a weak signal output from 

the NWs by CCD camera. 

In order to observe the optical output signal, the test is performed again on 

the wider waveguide. Therefore, instead of coupling the light into the small NW, 

the light source is coupled into a 100 μm wide waveguide as shown in Fig. 7.8. The 

100 μm wide waveguide is a thick line located in the middle of the substrate in Fig. 

7.2. The light source is moved to the 100 μm wide waveguide by adjusting the x-

stage and focused and aligned into the waveguide by tuning the z-stage and y-

stage, respectively. In order to obtain the maximum output signal, the xyz-stage 

has to be carefully adjusted. 
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Figure 7.8: Image of the light coupled into 100 μm wide waveguide by CCD camera 
connected with the 10x objective lens in the alignment process. 

Due to the wider structure of the waveguide compared to the NWs, the 

optical output signal can be observed at the other side of the waveguide by a CCD 

camera connected with a 20x objective lens as shown in Fig. 7.9(b). The image of 

the waveguide at the output before coupling the light is also shown in Fig. 7.9(a) 

in order to be able to distinguish the output signal.  

 

Figure 7.9: Image at the output of a 100 μm wide waveguide (a) before coupling 
the light and (b) after coupling the light at the input of the NW.  

After getting the signal from the 100 μm wide waveguide, we are assured that 

the light can be coupled in and out the NWs, but the output signals are too weak 

to be detected by the current setup. Therefore, the 20x objective lens is replaced 

with the 40x objective lens in order to magnify the output signal before detecting 

with the CCD cameral. With the use of the 40x objective lens, the optical output 
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signal from the NW is successfully observed by the CCD camera as shown in Fig. 

7.10. 

 

Figure 7.10: Image of the output signal from the NW detected by the CCD camera 
connected with the 40x objective lens. 

However, the output signal is still weak due to the optical loss at the output. 

As mentioned earlier, the glass substrate is bigger than the whole length of the 

integrated NWs (Lo= 5 mm) leading to the optical loss at the output. To reduce the 

optical loss at the output, the NWs have to be fabricated again on a smaller glass 

substrate in order to have the length of the NWs to match the length of the 

underneath substrate. Consequently, both ends of the integrated NWs are located 

at the edge of the glass substrate. A 4 mm wide glass substrate is used for the new 

fabrication instead of 5 mm, which is used earlier. 

The detection of optical field at the output of the newly fabricated ormocomp 

NWs became relatively easier because an optical loss at the output due to the size 

mismatch between the NW and the substrate is minimized. An image of the 

optical output signal from the NW fabricated on a 4 mm wide glass substrate is 

shown in Fig. 7.11. 
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Figure 7.11: Image of the output signal obtained from the newly fabricated NWs 
on a smaller glass substrate. The signal is detected exactly at the edge of the 
substrate. 

Using the newly fabricated NWs, the output signal can be detected exactly at 

the edge of the glass substrate. It is clearly seen that the output signal from the 

newly fabricated waveguide is much stronger than the previous one. The output 

signal obtained from the CCD camera is computed numerically to quantify the 

optical intensity.  

An iris diaphragm is placed in front of the CCD camera to allow only the output 

signal from the NW to be detected by CCD camera. The optical output detected 

by the CCD camera after passing through the iris is shown in Fig. 7.12(a). The image 

of the optical field output is then computed by an in-house code to obtain the 

output intensity. In order to obtain the average output intensity from the CCD 

camera image, the highest intensity point in the image needs to be located first. 

After that, the points where the intensity is more than 70% of the maximum 

intensity have to be located. The high-intensity points are now located randomly. 

Therefore, the centre of high-intensity points is marked and enclosed by a square 

boundary. The average intensity is finally calculated from the intensity profile 

located inside the boundary.  The average intensity of one NW is presented in Fig. 

7.12(b). 
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Figure 7.12: Image of the optical field detected by the CCD camera at the output 
of (a) one specific NW. (b) Average intensity image of the output signal computed 
by the in-house code. 

It can be observed that the guided optical field image obtained from the CCD 

camera, as shown in Fig. 7.12(b), matches the optical field image from the 

simulation shown in Chapter 6, where the field is more confined in the slab layer.  

In the simulation, it is shown that part of the field extends into the cladding region. 

However, the percentage of the normalized power confinement in the cladding 

region is very small and cannot be observed in the experiment using the camera 

images. 

To study the polarisation-independent SPR, ridge waveguides with vertical 

sidewalls are fabricated with 10x10 μm dimensions. With this structure, the light 

source can be easily aligned and selectively guided inside the waveguide as shown 

in Fig. 7.13. 

 

 



165 

 

 

Figure 7.13: (a) Image of the end of the waveguide. (b) to (f) Images of the light 
coupling in each waveguide showing that the light can be selectively guided into 
a specific waveguide. 

Fig. 7.13(a) shows the image of the end of the waveguide array. It is seen from 

Figs. 19(b) to 7.13(f) that the light can be selectively guided into a specific 

waveguide. It can also be noted that the confinement of light in each deep 

structure waveguide is well inside the core area, unlike the shallow structure in a 

previous work where the light is confined in the rib layer. At the output, the light 

is observed to be confined more in the wide waveguide compared to the NW 

structure as shown in Fig. 7.14 for a rib waveguide.  

  

Figure 7.14: Modal field profiles excited in the feed waveguide with Wwg = 10 μm 
and H = 10 μm from (a) simulation and (b) experiment. 

Due to a large structure of the waveguide compared to the NW, Fig. 7.14, 

shows that the optical field can be guided inside the core of the feed waveguide. 

The numerical simulations and experimental measurements are consistent with 

the light confined in both core and rib layer 
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7.3 Extraction of attenuation coefficient  

After obtaining the output intensity from the NW, the attenuation coefficient 

can be calculated using Beer Lambert law   

 (7.1) 

where  is the intensity of the transmitted light, is the intensity of the incident 

light, is the attenuation coefficient and  is the path length. However, since the 

proposed NW structure is also enhanced by the feed and tapered waveguides, 

their attenuation coefficients (  and ) are also presented together with the 

attenuation coefficient of the NW ( nw). With the presence of the feed and 

tapered waveguides, Equation (7.1) can be extended to the following equations: 

 
(7.2) 

 
(7.3) 

 
(7.4) 

where  is the length of the waveguide. It equals to , where 

 is the taper length which is 260 μm and  is the length of the NWs which 

are 250, 500, 1000 and 2000 μm.  is the total length of the integrated NWs 

which is 5000 μm. 

By rearranging Equation (7.4), a linear equation can be obtained as shown 

below: 

 
(7.5) 

The intensity of incident light ( ), in this work is the intensity of the light 

transmitted from the reference feed waveguide. The intensity of transmitted light 

( ) represents the intensity of the light transmitted from each NW. The term 



167 

 

 is a constant term and the term  = 

 is the slope of the linear equation. The ratio of light transmitted inside the non

vertical sidewalls NW over the feed waveguide with air cladding can be fitted into 

a linear plot as demonstrated in Fig. 7.15. 

 

Figure 7.15: The linear relation between ln(Ij/Io) and the length of the NW (Lnw,j) 
obtained experimentally, where the slope is  for air cladding. 

The relation of the attenuation coefficient between the air-cladding feed 

waveguide and NW, obtained from the slope of the line, can be calculated to be 

, where the negative sign represents a 

greater attenuation coefficient in the NW than the feed waveguide. This is due to 

the higher losses occurring in the NW for a larger field of a structure with smaller 

size. In the experiment, water (n=1.333) and glycerol solution (the mixture of 

water and glycerol with the volume ratio of 4:1, n=1.365) are also considered as 

cladding mediums. For water cladding, the calculated  is about  

whereas  is obtained for glycerol solution cladding as shown 

in Figs. 7.16 (a) and (b), respectively. 
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Figure 7.16: The linear relation between ln(Ij/Io) and length of the NW (Lnw,j) 
where the slope is  for (a) water cladding and (b) glycerol solution cladding. 

It can be noted that  is reduced when the refractive index of the cladding 

material is increased as the index contrast is reduced. The large error bars in Figs. 

7.15 and 7.16 are because the tests were carried out with different samples which 

might have a variation of surface roughness. The change in  over the different 

cladding materials obtained from the experiment is shown in the Fig. 7.17. 

 

Figure 7.17: Change of attenuation coefficient difference ( ) with the cladding 
material including air, water and glycerol solution. 

Fig. 7.17 shows the slope from Figs. 7.15 and 7.16. The power confinement in 

the guiding region decreases with the increase of the refractive index of the 

cladding material (smaller ). Hence, the attenuation coefficient is increased if 

the NW with a relatively smooth surface is considered. However, the fabricated 

NW does not have a smooth surface. The surface roughness arises from the 

fabrication process used here and this causes scattering loss [220]. The increase 
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of the cladding index reduces the difference of the refractive index between the 

core and the cladding ( ). Hence, the scattering due to the surface roughness is 

reduced, leading to a smaller attenuation coefficient. In this work, only the 

scattering from the interface between the core and the cladding is considered. 

The scattering effect from the core substrate interface is assumed to be negligible 

due to the smooth surface of thr glass substrate. The relation between scattering 

from surface roughness and the attenuation coefficient ( ) derived from the 

simple theory of surface scattering [220] is defined as follows  

 

(7.6) 

where  is the root mean squares of the surface roughness,  is the transverse 

propagation constant in the core region ( ),  is the transverse 

propagation in the cladding region ( ),   is the modal propagation 

constant and h is the thickness of the NW. The derivation of the attenuation 

coefficient from the surface scattering in the Equation (7.6) is given in Appendix 

C. The average surface roughness of ormocomp NWs measured from AFM is found 

to be around 0.10 μm. The attenuation coefficient ( ) due to the scattering effect 

with different cladding materials is calculated as shown in Fig. 7.18.  

 

Figure 7.18: Results from the calculation of the attenuation coefficient of the NW 
over the cladding material with the effect of scattering from the surface 
roughness.  
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It can be observed from Fig. 7.18 that the variation of the attenuation 

coefficient obtained from the calculation with the refractive index of the cladding 

material has a similar trend with the experimental measurements in Fig. 7.17. The 

attenuation coefficient decreases as the refractive index of the cladding material 

increases. This is due to the scattering effect from the surface roughness.  

To study the sensitivity of the NWs affected by the scattering from surface 

roughness, the change of the attenuation coefficient over the change of the 

refractive index of the cladding material is calculated. The attenuation coefficient 

difference when changing the cladding material from water (n=1.333) to glycerol 

solution (n=1.365) is investigated over the root mean square roughness (Rq) as 

shown in Fig. 7.19. 

 

Figure 7.19: Change of attenuation coefficient over the change of cladding 
material with surface roughness from the numerical calculations.  

With the same cladding material, the NW structure with the rough surface 

has higher scattering loss than a NW with a smooth surface. The scattering loss at 

the surface of the NW enhances the sensitivity because there is more light 

interaction at the interface between the core and cladding regions. Fig. 7.19 shows 

the normalized value of the change in the attenuation coefficient over the change 

in the cladding index with the surface roughness.  In the experimental work, the 

change of the attenuation coefficient over the change of cladding refractive index 

is around 1.88 cm-1 with the root mean square roughness of 0.10 μm. It has a 
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lower sensitivity compared to the calculation which may be due to external factors 

such as instrument resolution and environmental control. 

7.4 Analysis of the surface plasmon resonance peak and its shift 

The next step is to characterize the ormocomp NWs coated with the thin gold 

layer. A thin gold layer introduces surface plasmon resonance (SPR) at the 

dielectric/electric interfaces enhancing the optical power in the sensing region. 

The gold-coated ormocomp NW on the glass substrate is shown in Fig. 7.20. 

 

Figure 7.20: Gold-coated ormocomp NWs on a glass substrate.  

In order to analyze the SPR signal, a similar optical setup to the one used in 

the previous study has been utilized. However, some additional optical devices 

are required including a polarizer, beam splitter, a positive lens and a 

spectrometer. The light source was also changed from the red LED to white LED in 

order to have the operating wavelengths over the whole visible region because 

the resonance occurs at different wavelengths for different cladding materials. 

The optical setup for the SPR analysis is shown in Fig. 7.21. 
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Figure 7.21: Optical setup for the study and analysis of SPR in the gold-coated 
NWs. 

There are 2 types of waveguide structures in this SPR study including (i) the 

10x10 μm ridge waveguide with vertical sidewalls and (ii) the 0.5x1.0 μm rib 

waveguide with non-vertical sidewalls. The waveguide with vertical sidewalls 

represents the polarisation-independent SPR because the plasmonic modes can 

occur as both TE and TM modes are almost identical which can be identified by 

using a polarizer. For the non-vertical sidewalls structure, only TM mode SPR at 

the top surface of the waveguide is detected using polarizer because the 

plasmonic modes are mixed between TE and TM modes at the slanted sides. 

7.4.1 Ridge structure with vertical sidewalls (Polarisation-

independent SPR) 

The ormocomp waveguide with vertical sidewalls structure exhibits SPR at 

both the top and sides of the waveguide through TM and TE modes, respectively. 

From the simulations, the minimum thickness of the gold layer needed in order to 

have significant plasmonic modes is 80 nm. Hence, a 100 nm thick of gold layer is 

coated on the waveguide using the sputtering technique to ensure the SPR effect.  

The warm white LED (λ=350-1000 nm) coupled to a multimode optical fibre is 

used as a broadband light source (Thorlabs: MWWHF1). The spectrum of the light 

source is shown in Fig. 7.22. 
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Figure 7.22: Spectrum of the warm white light source (Thorlabs: MWWHF1). 

An objective lens with a magnification of 20x is used to focus the light and 

also to enhance the input signal. For the alignment process, an objective lens with 

a magnification of 10x connected to a CCD camera is used to align the optical fibre 

and the specific ormocomp waveguide. Following the alignment, the focused light 

is coupled into the specific waveguide and then allowed to propagate along it. The 

output signal is detected by a separate CCD camera connected to a 20x objective 

lens which is used to magnify the output image. The actual complete experimental 

setup is shown in Fig. 7.23. 

 

Figure 7.23: Actual optical setup for optical characterisation of the gold-coated 
ormocomp NWs. 

At the end of the NW, the output signal is divided into two equivalent beams 

by a beam splitter. One signal is imaged on the CCD camera and the other part is 
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sent to a compact spectrometer to measure the intensity of the transmitted light 

affected by SPR. 

The transmitted output signal is used to study the resonance peak which can 

occurs when the momentum of electron oscillation matches the momentum of 

the photons in the incident light. From Beer-Lambert law, the transmittance ( ) is 

the fraction of light passing through the waveguide ( ) over the incident light ( ) 

in a specific wavelength as presented in Equation (7.7) [219]. 

 
(7.7) 

The incident light ( ) in this case is the intensity of the light propagating in 

the waveguide with air cladding where  is the output intensity when the light 

propagates along the gold-coated ormocomp waveguide with water cladding.  

Hence, air is considered to be the cladding material for the incident light because 

the SPR absorption wavelength in the air/metal interface is in the infrared (IR) 

region but the waveguides are operated in the invisible region. When the cladding 

medium changes from air to water, the intensity of light at the output is reduced 

at some specific wavelengths for TM mode. This is due to the absorption of SPR 

between metal layer and water medium. At some specific wavelength, 

supermodes occur due to the fact that the dielectric mode is coupled with the 

plasmonic mode. In addition, the plasmonic mode itself is also a supermode from 

the coupling between the plasmonic mode at the ormocomp/gold interface and 

the cladding/gold interface. There are two distinct dielectric-plasmonic 

supermodes that can be observed in the experiment from the dip in the 

transmissivity as shown in Fig. 7.24. 
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Figure 7.24: Graph of transmittance of the gold-coated waveguide with four 
different cladding solutions over the wavelength in the visible region. The redshift 
is observed as the cladding-index increases. 

The transmissivity dip occurs due to the absorption of the SPR between the 

metal layer and the cladding medium. The gold-coated ormocomp waveguides are 

tested with 4 different cladding materials, which are water and three different 

volume ratios of iso-propanol solutions with refractive index of 1.333, 1.344, 1.351 

and 1.365, to study the resonance peaks and their shifts.  

The SPR is sensitive to the change of the cladding index, which can be studied 

by investigating the wavelength shift with different refractive indices of cladding 

materials. The cladding materials used in this study are water (n=1.333) and iso-

propanol solutions. The solutions are prepared with different volume ratios of iso-

propanol to water. With 1:1 volume ratio (ISO11), the solution has a refractive 

index of 1.365. The index of 1.351 and 1.344 are measured for the ratio of 1:3 

(ISO13) and 1:5 (ISO15), respectively. The solutions used as cladding media with 

their refractive indices and mixing ratios are presented in Table 7.1. 
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Table 7.1: Cladding materials with their refractive indices and mixing ratios. 

Solution 

(Cladding 

materials) 

Mixture by volume ratio Refractive index  

(n) Iso-propanol Water 

Water 0 1 1.333 

ISO15 1 5 1.344 

ISO13 1 3 1.351 

ISO11 1 1 1.365 

The resonance wavelengths can be investigated for each cladding material by 

matching the transmittance graph with a polynomial curve as demonstrated in 

Fig. 7.25. 

 

Figure 7.25: Investigation of the two resonance peaks of polarisation-independent 
SPR waveguide using polynomial curve fitting. 

 The two resonance wavelengths for both quasi-TM and quasi-TE modes of 

the gold-coated ormocomp waveguides in different cladding materials obtained 

from the experiment are presented in Table 7.2. 
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Table 7.2: Experimental results of the resonance peaks of the gold-coated 
ormocomp waveguide in different cladding materials for quasi-TM and quasi-TE 
modes 

n 

TM mode TE mode 

Resonance peak 
1 

Resonance peak 
2 

Resonance peak 
1 

Resonance peak 
2 

1.333 592.34 nm 649.26 nm 598.01 nm 646.81 nm 

1.344 601.84 nm 654.35 nm 600.63 nm 649.93 nm 

1.351 606.31 nm 656.37 nm 601.63 nm 654.13 nm 

1.365 609.97 nm 660.57 nm 612.56 nm 659.66 nm 

It can be observed that the resonance peaks occur for both the quasi-TM and 

quasi-TE modes at similar wavelengths. Hence, a polarisation-independent gold-

coated ormocomp waveguide has been successfully fabricated. The resonance 

peaks from Table 7.2 can be plotted so that we have a comparison with the 

resonance peaks obtained from the numerical simulations are shown in Fig. 7.26. 

 

Figure 7.26: Comparison of the resonance peaks obtained from the experiment and 
simulations for both TM and TE modes. 

It can be observed from Fig. 7.26 that the resonance peaks obtained from the 

experiment have a similar trend compared to the simulation results. The error 

bars for experimental work come from 50 individual measurements. For the 

simulation results, the error bars show the results of SPR wavelengths for various 
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metal thicknesses in the range between 80-120 nm. Gold thickness is a key 

parameter in order to match the simulation results with experimental results. 

Initially, the gold thickness was optimized using the FEM. The minimum thickness 

of the gold layer was calculated to be 80 nm in order to have a dominant 

plasmonic mode at the SPR wavelength.  For metal thickness less than 80 nm, the 

plasmonic mode is not dominant. For metal layer thicker than 120 nm, the 

dynamic range of SPR peak becomes smaller which means the spectrum of SPR 

peak is more broadened due to the coupling between several plasmonic modes. 

It can be observed that the error bars from simulation and experiment are 

overlapped. Hence, it can be confirmed that the actual thickness of the metal layer 

is around 100±20 nm. There are two different resonance peaks in both the 

experimental and simulation results, which means there are two distinguish 

plasmonic supermodes which are coupled with the dielectric mode. These two 

resonance peaks are located about 50 nm away from each other. The quasi-TM 

and quasi-TE modes have similar resonance wavelengths so the polarizer in the 

experiment can be removed because the waveguides are polarisation 

independent allowing a compact integrated optical sensor with surface plasmon 

resonance system to be obtained. Both experimental and simulation results show 

a redshift when the refractive index of the cladding material is increased.  

To use this gold-coated ormocomp waveguide for refractive index sensing 

applications, the sensitivity is calculated from the linear regression of the 

experimental results and it is found to be 544.55 nm/RIU with resolution 5.3x10-

3 RIU. The sensitivity and resolution of the waveguide can be further improved by 

optimizing the dimensions of the waveguide itself and the thickness of the gold 

layer. 

7.4.2 Rib structure with non-vertical sidewalls (TM mode SPR) 

The ormocomp NWs with non-vertical sidewalls have a sidewall angle of 65 . 

These are coated with gold layer with a thickness of 50 nm. The plasmonic modes 

at the slanted sidewalls consist of SPR in both TE and TM modes. This assumption 

is confirmed by the experimental work as there is an insignificant effect of SPR in 
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TE mode at the sidewalls. The thin metal layer at the top surface introduces the 

coupling of SPR between the ormocomp/gold and the cladding/gold interfaces in 

TM mode only.  

The cold white LED (λ=400-700 nm) connected with a multimode optical fibre 

is used as a broadband light source (Thorlabs: MCWHF1). The spectrum of the light 

source is shown in Fig. 7.27. 

 

Figure 7.27: Spectrum of the cold white light source (Thorlabs: MCWHF1). 

It can be seen from Fig. 7.27 that the intensity of the light source when >600 

nm is quite low. The input light from the light source is considered to be an 

unpolarised light, so a polarizer is needed in the optical setup in order to be able 

to select the TM mode signal for the SPR from the top surface of the NW. The 

objective lens with the magnification of 20x is used to focus the light for the input 

signal. In the alignment process, an objective lens with a magnification of 10x 

connected to a CCD camera working as an optical microscope to align the optical 

fibre and the NW on the glass substrate. With the alignment, the focused light is 

coupled into a specific NW and then propagates along that wire. At the end of the 

NW, the output signal is divided into two equivalent beams by a beam splitter. 

One signal is imaged by the CCD camera. The other part of the output signal is 

detected by a spectrometer to measure the intensity of the light affected by the 

SPR. The actual optical setup for the SPR analysis is shown in Fig. 7.28. 
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Figure 7.28: The actual optical setup used for the SPR analysis. 

A spectrometer is used to measure the transmittance ( ) of the light 

propagating along the NW. First, the transmittance of light propagating along 

different NWs has to be obtained. It can be achieved by measuring the light 

intensity of the output signal when the cladding medium is air and water, 

respectively. 

  The transmittance ( ) of the output signal obtained in TM and TE modes are 

shown in Fig. 7.29. 

 

Figure 7.29: (a) Light transmittance in the TM mode. (b) Light transmittance in the 
TE mode. 

From Fig. 7.29(a), a dip of the transmission spectrum is the region where the 

momentum of light source matches with the momentum of SPR in the TM mode. 
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The intensity of the transmittance in the TE mode is shown in Fig. 7.29(b). It can 

be seen that there is no significant dip in the transmitted signal. Hence, the SPR at 

the NW sidewalls is negligible in this case. 

The transmittance in the TM mode shown in Fig. 7.29(a) demonstrates only 

the transmittance of one specific NW. In order to extract the attenuation 

coefficient of the NW ( ) individually, the transmittance of all NWs in one set 

has to be obtained in which the attenuation coefficient of the feed waveguide 

( ) and tapered waveguide ( ) can be eliminated. The intensities of the 

output signals measured by the spectrometer are computed with a graphical user 

interface (GUI). The codes for all GUI analyses are built in-house.  

The optical output intensities of four different length NWs in air cladding and 

water cladding are measured and then computed using the GUI to obtain their 

transmittances. The lengths of the NWs considered are 250, 500, 1000 and 2000 

μm. The transmittance spectrum of each NW then smoothed as demonstrated in 

Fig. 7.30. 

 

Figure 7.30: Transmittance of gold-coated NWs with lengths 250, 500, 1000, 2000 
μm over the wavelength in the visible region. The transmittance decreases for 
longer NWs due to the SPR absorption.  

It can be seen that the longest NW ( =2000 μm) represented by the solid 

line, has the lowest transmittance. The dotted line represents the shortest NW 



182 

 

( =250 μm) which has the highest transmittance. It can be concluded that the 

longest NW has the highest SPR absorption. 

From Equation (7.7), the transmittance ( ) can also be written in term of the 

attenuation coefficient ( ) as presented in Equation (7.8): 

 (7.8) 

where  is the attenuation coefficient which is a function of wavelength ( ).  

represents the path length. As mentioned earlier, a NW has been designed to be 

easily used in conjunction with other optical devices so it is integrated with the 

feed and tapered waveguides at its ends. Therefore, the attenuation property of 

one integrated NW (α) is a combination of the attenuation coefficients of the feed 

waveguide ( ), the tapered waveguide ( ) and the NW itself ( ).  

In order to extract  individually,  and  have to be investigated and 

isolated. This can be achieved by using the transmittance result of the reference 

feed waveguide and tapered waveguide in the NW set. The transmittance of light 

propagated in the feed waveguide ( ) can be expressed by in Equation (7.9):  

(7.9) 

where  is the length of the feed waveguide which is equal to the total length 

of the sample in this case (  =5000 μm). The attenuation coefficient   

is obtained by rearranging Equation (7.9) as presented in Equation (7.10): 

 
(7.10) 

Similar to the feed waveguide, the transmission of light in the tapered 

waveguide ( ) and its attenuation coefficient ( ) can be written as shown in 

Equations (7.11) and (7.12), respectively: 

 
(7.11) 
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(7.12) 

Therefore, the attenuation coefficient of the NW ( ) can be calculated 

using Equation (7.13): 

(7.13) 

where  is 5000 μm and  is 260 μm.  From the above equations, the 

attenuation coefficient of each part can be calculated. However, the  seems to 

have some distortion.  Thus, the calculation of  is carried out by neglecting the 

term of . The attenuation coefficients of the feed waveguide and the NW from 

several experiments are computed as demonstrated in Fig. 7.31. 

 

Figure 7.31: Attenuation coefficients of feed waveguides and NWs from several 
experiments computed. 

Then the average of the attenuation coefficient is calculated and 

smoothened. The average attenuation coefficient of feed waveguides and gold-

coated ormocomp NW is presented in Fig. 7.32. 
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Figure 7.32: Graph of the average attenuation coefficient of the feed waveguide 
and gold-coated ormocomp NWs wavelength. The NWs have higher SPR 
absorption compared to the feed waveguide. 

From Fig. 7.32, the average attenuation coefficient of the NWs is represented 

with the dashed line and the average attenuation coefficient of the feed 

waveguide is represented by the solid line. The absorption peak for both the feed 

waveguide and the NWs is at λ =590 nm. The feed waveguide has an absorption 

coefficient of  (or 0.45 dB/mm), which is lower than the 

absorption coefficient of the NWs with value  (or 0.84 

dB/mm). This is because the feed waveguide is a multimode waveguide but the 

NW is a single mode waveguide. In the multimode waveguide, the power is 

distributed to many modes, causing a reduction of optical power in each mode. In 

addition, each mode has different SPR momentum. Therefore, the absorption 

peak of the SPR in each mode is located at a different wavelength, causing the 

broadening of the absorption peak in the feed waveguide. 

The transmitted intensity of the light propagating in the NWs with different 

cladding materials at the output is then measured by the spectrometer. After that, 

the transmittance is calculated using equation (7.7) and computed with another 

GUI as presented in Fig. 7.33. 
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Figure 7.33: GUI for computing the transmittance of all NWs in three different 
cladding mediums including (i) water, (ii) ISO11 and (iii) ISO13 and their averages.  

From the average transmittance obtained in the bottom image of the GUI, the 

resonance peaks, where the momentum of the photons matches with the 

momentum of the electron oscillation, are investigated for each cladding material. 

For accurate results, the resonance peak is examined by fitting the transmittance 

curve with a polynomial curve fitting algorithm as presented in Fig. 7.34. 
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Figure 7.34: Investigation of the resonance peak using polynomial curve fitting.  

After fitting the transmittance graph with the polynomial curve, the minimum 

value of the transmittance is then located. It is seen that it is at a different 

wavelength for each cladding material, as shown in Fig. 7.35 

 

Figure 7.35: Resonance peaks located at specific wavelengths for each cladding 
material. 

Then, the attenuation coefficients of the NWs showing the SPR peak 

wavelength for the three cladding materials are calculated and computed using 

Equation (7.13). The graph of the attenuation coefficient is then smoothened as 

demonstrated in Fig. 7.36. 
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Figure 7.36: Graph between the attenuation coefficients of the NW for different 
cladding materials and wavelengths. It shows the SPR absorption peaks and their 
positions. The redshift is observed as the cladding index increases. 

As the cladding index increases, the SPR peak is shifted to a higher 

wavelength. According to simulation results, the redshift occurs with a higher 

refractive index of the cladding material. The attenuation coefficient of the gold-

coated NWs is the combination of the attenuation from scattering due to the 

surface roughness, the SPR and the light coupling as presented in the following 

equation [221]:   

 (7.14) 

It can be observed that the attenuation coefficient of the gold-coated NWs 

increases when the refractive index of the cladding material increases. Unlike the 

attenuation coefficient of the un-coated ormocomp NWs, it is reduced when the 

cladding index increases. Therefore, the SPR is the dominant factor that affects 

the attenuation coefficient in the gold-coated ormocomp NWs while the 

scattering from the surface roughness is the main factor for the un-coated NWs. 

The attenuation from the material absorption can be negligible because 

ormocomp has very low absorption in the visible region [145]. 

The average SPR peak wavelength for those three cladding materials is shown 

in Fig. 7.37. The comparison of the peak positions between the simulation results 

and experimental results is also presented in Fig. 7.37. 
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Figure 7.37: Comparison of the SPR peak wavelength between the experimental 
result and the simulation result for three cladding materials. The peak position of 
the NW coated with a metal thickness of 55 nm is the best match with the 
experimental work. 

From the experimental work, the SPR peak wavelength for the water cladding 

(n=1.333)  is about 578±0.5 nm.  For the ISO13 solution with a refractive index of 

1.351, the peak position is at 590±0.9 nm. For the largest cladding index in this 

work (n=1.365), the SPR is observed at the wavelength of 594±1.7 nm. The SPR 

peak from the experiment has the best fit with 55 nm gold-coated NW in the 

simulation. The comparison shows the same trend of the peak shift with the 

cladding index. However, at n=1.361, the peak position result obtained in the 

experiment is significantly lower than the simulation result. This could be due to 

the intensity of the light source spectrum as shown in Fig. 7.27, which provides a 

low signal at >600 nm. Therefore, a distortion occurs at the highest cladding 

index, where the peak position should be around 610 nm. Furthermore, the large 

surface roughness as a result of the fabrication process also has an impact on the 

results of the experimental work. The surface roughness of the NW is measured 

to be around 0.1-0.2 μm. 

7.5 Summary 

This chapter presented the experimental results of both un-coated and gold-

coated ormocomp NWs. For the un-coated ormocomp NWs, the attenuation 



189 

 

coefficient of the NW is extracted. The optical setup to image the optical signal for 

the attenuation coefficient extraction mainly consists of the red light source with 

=633 nm, the objective lens, the sample stand and the CCD cameras. Initially, the 

optical field at the output could not be detected due to its weak signal. The output 

signal is quite weak because both ends of the NWs are not at the edge of the glass 

substrate leading to a large coupling loss. After fabrication of new NWs on a 

smaller glass substrate, the output signal is improved substantially and thus it was 

clearly detected. The intensity of the output signal is computed using MATLAB. 

The attenuation coefficient of the un-coated NWs is studied for different cladding 

materials including air, water and glycerol solutions. 

With a higher refractive index of cladding material, the optical field is 

extended deeper into the cladding area, thus causing a higher attenuation 

coefficient when the surface roughness is neglected for an ideally smooth surface. 

Nevertheless, the attenuation coefficient tends to reduce when increasing the 

cladding index. This is because the light scattered from the surface roughness of 

the core/cladding region is reduced when changing the cladding medium from 

water (n=1.333) to glycerol solution with a higher index (n=1.365). The scattering 

effect from the rougher surface provides a greater change in the attenuation 

coefficient over the change of refractive index. Therefore, the scattering from the 

surface roughness is the dominant factor causing the change in the attenuation 

coefficient of the un-coated ormocomp NWs.  

Further enhancement of the light interaction at the core/cladding interface 

can be achieved by coating the top surface of the fabricated NW with a metallic 

layer, thus improving the sensitivity of the fabricated NW. A thin gold layer, coated 

by the sputtering technique exhibits surface plasmon resonance and enhances the 

evanescent fields in the sensing region, leading to an improvement of the 

sensitivity of the NWs. The optical setup for the SPR analysis is similar to the setup 

for the un-coated NWs. Only a beam splitter, a positive lens and a spectrometer 

are added in the setup. The light source is changed from a red light source to 

broadband light source in order to cover the visible spectrum. The cladding 

materials considered for the gold-coated ormocomp NWs are water and three 
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different volume ratios of iso-propanol solutions (ISO15, ISO13 and ISO11). The 

operating wavelength is in the visible region (400-700 nm).  

The SPR peak wavelength is clearly observed for both polarisation-

independent and TM mode SPR structures. The redshift occurs when the 

refractive index of the cladding material is increased. For polarisation-

independent structure, a waveguide with a dimension of 10 μm width and height 

is considered. There are two resonance peaks observed because there are two 

different plasmonic modes coupled with the dielectric modes. Both the TM and 

TE modes have almost identical resonance wavelength for each cladding material. 

Hence, a polarizer is not required and polarisation-independent waveguides are 

obtained. Consequently, a simple and compact integrated SPR sensor can be 

achieved. The simulation and experimental results show an excellent agreement 

in their images, resonance peaks and their shifts. With a larger refractive index of 

the cladding material, redshift occurs. The sensitivity of the gold-coated 

ormocomp waveguide is around 544.55 nm/RIU, and the resolution is 5.3x10-3 RIU 

and these can be further improved by optimizing the waveguide dimensions and 

metal thickness. 

For TM mode SPR structure, the extracted attenuation coefficient of the NW 

is 1.93x10-4 μm-1, or 0.84 dB/mm and it is the result of measuring the 

transmittance with a spectrometer. The NW has a higher attenuation coefficient 

than the feed waveguide which means that the NW is more sensitive compared 

to the feed waveguide. Also, longer NWs have larger SPR absorption. In addition, 

the attenuation coefficient of the gold-coated ormocomp NWs increases with the 

refractive index of the cladding material. Therefore, the SPR is the main factor 

causing the change of the attenuation coefficient. It is clearly seen that the SPR is 

sensitive to the change of the cladding index which is an important factor in 

sensing applications. 
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8. General summary and suggestions for further work  

8.1 Conclusion 

In this PhD research, the design, fabrication, as well as the theoretical and 

experimental characterisations of nanowire waveguides (NWs) for optical sensing 

applications, were carried out. Two types of waveguides were considered in the 

present study, the silicon and the ormocomp based polymer waveguides. Both 

types of waveguides were designed and fabricated by using the top-down 

techniques. Silicon NWs investigated were of a horizontal slot type structure while 

ormocomp NWs were of rib-waveguide like structure. Due to constraints of the 

laboratory facilities available, characteristics of the silicon NWs were studied only 

theoretically, while those of the ormocomp NWs were studied both theoretically 

and experimentally. 

NWs were designed to be connected with feed and tapered waveguides at 

both the ends, thus enabling their effective use as integrated optical devices for 

sensing applications. Feed and tapered waveguides also reduce the insertion loss 

when the NW is coupled to a light source or other optical device. In order to attain 

maximum sensitivity of the NW devices, key dimensions of the structure, such as 

the width and the height were optimized according to the power confinement of 

the fundamental guided optical modes obtained in the sensing area of each 

structure examined. This was considered to be the core/cladding interface and the 

slot region for the ormocomp and the silicon NWs, respectively. 

The full-vectorial H-field variational formulation of the Finite Element Method 

(FEM), where the magnetic field is continuous across the boundaries of the finite 

elements has been used for the theoretical characterisation of the NW structures 

examined.  The guided optical modes that contribute to the enhancement of the 

sensitivity were identified using the above approach and their characteristics, such 

as effective index, attenuation constant and power confinement, with the 

variation of key structure parameters, were investigated.  
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The main fabrication process used for the ormocomp optical waveguides and 

NWs was the nanoimprint method, which was considered suitable for these type 

of structures, due to its capability for mass production, with relatively low cost 

and time. However, the nanoimprint method requires a mold to stamp on the 

ormocomp layer, therefore, in our case, silicon NWs were used as a master mold, 

and PDMS as a soft mold to transfer the pattern from the silicon mold onto the 

ormocomp layer.  

Oxidation, LPCVD, photolithography and dry etching were the main processes 

used to fabricate the master mold silicon NWs. The fabricated silicon NWs have a 

horizontal slot structure. An unavoidable fact is that the silicon NWs have non-

vertical sidewall structures and this is due to the limiting resolution of the stepper 

machine in the photolithography process. Hence, trapezoidal-shaped NWs were 

produced. The dimensions of the fabricated NWs considered in the theoretical 

study were a height of H=0.5 μm, a top-width of Wtop=1.0 μm, a bottom-width of 

Wbottom=1.5 μm, and a sidewall angle of =65 . In addition, the fabricated 

ormocomp NWs have the rib-waveguide like structure due to an excess 

ormocomp planar layer created during the imprint process. The thickness of the 

rib layer was found to be 2 μm. To achieve vertical sidewall structures, silicon 

waveguides with a dimension of 10 μm x 10 μm were fabricated.  

The silicon NWs with horizontal slot structure were studied theoretically to 

detect the effective index change with the change of the refractive index of the 

analyte material. The analyte material considered in the study was DNA and the 

detection of DNA hybridisation was investigated. The DNA hybridisation is a 

process where two single-stranded DNAs (ssDNA) are combined with each other 

to form double-stranded DNA (dsDNA) and vice versa. The horizontal slot NWs 

were also connected with feed and tapered waveguides which can be used to 

mechanically support the horizontal slot NWs when the solid-slot region is 

replaced with gas or liquid materials. The optimized dimensions of the silicon NWs 

for the width, the slot height and the silicon core height were found to be W=1.0 

μm, Hs=0.1 μm and H=0.16 μm, respectively. The horizontal slot waveguide 
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proposed to detect DNA hybridisation in which a sensitivity of 893.5 nm/RIU is 

obtained theoretically.   

The characterisation of the ormocomp waveguides and NWs was divided into 

two main parts. First, the attenuation coefficient of the polymer NW was studied 

over the NW lengths for three different cladding materials, specifically air (n=1), 

water (n=1.333) and glycerol solution (n=1.365). The presence of surface 

roughness on the NWs was also included in this study.  Secondly, the polymer NWs 

were coated with thin gold layer which facilitates the exhibition of the surface 

plasmon resonance (SPR) property. For non-vertical sidewalls NW, only the TM 

mode SPR is considered. For vertical sidewalls waveguide, both TM and TE 

plasmonic modes are supported and their SPR response can be adjusted to 

consider it as polarisation-independent waveguide structure. The absorption 

peaks of the SPR and their shifts were studied for different cladding materials 

involving water and three different volume ratios of iso-propanol solutions with 

the refractive indices of 1.33, 1.344, 1.351 and 1.365, respectively. 

The characteristics of the non-metal coated ormocomp NWs were 

investigated first by studying their attenuation coefficient which can be affected 

by the volume absorption and the surface scattering. For these types of structure, 

the surface scattering is the dominant factor of the attenuation loss in the NWs. 

The relation of the attenuation coefficient between the feed waveguide and the 

NW ( ) in air cladding was found to be   (-5.132 dB/cm), where 

the negative sign represents a greater attenuation coefficient in the NW than the 

feed waveguide. For water cladding, the value of  was   (-4.613 

dB/cm) whereas  (4.440 dB/cm) was measured for glycerol 

solution cladding.  

In order to increase the interaction at the core/cladding interface, SPR was 

introduced by coating the thin metal layer on the surface of the NWs. In this study, 

a 50 nm and 100 nm thick gold layer were deposited on the non-vertical sidewalls 

NWs and vertical sidewalls waveguide, respectively, using the sputtering 

technique. As in the case of the un-coated ormocomp NWs, the characteristic of 

the gold-coated ormocomp NWs was investigated by studying their attenuation 
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coefficient. However, the attenuation coefficient of the gold-coated ormocomp 

NWs is mainly affected by the absorption of the SPR. For vertical sidewalls 

structure, the SPR is dominant in both TM (top surface) and TE (sidewalls) modes. 

However, only TM mode SPR is significant in the non-vertical sidewall structures. 

At the slanted sidewalls, the SPR mode is mixed between TM and TE modes. 

The extracted attenuation coefficient of the feed waveguide ( ) was found 

to be . It was lower than the attenuation coefficient of the NWs ( ) 

which was . The normalized power confinement in the sensing area 

(gold/cladding interface) was found to be 10 times higher than in the core region 

of the un-coated ormocomp NWs. The optical guided modes considered here, 

were the coupled supermodes between the dielectric mode in the ormocomp NW 

and the plasmonic supermode. In addition, the plasmonic supermode is the 

coupled mode between the two plasmonic modes at the ormocomp/gold and the 

cladding/gold interfaces.  

The demonstration of the gold-coated ormocomp NWs was performed to 

detect the change of effective index of the NW when the refractive index of the 

analyte solution is changed. With the four different cladding refractive indices 

(n=1.333, 1.344, 1.351 and 1.365), the SPR peak wavelengths were clearly 

observed, with the redshift occurring in both the theoretical and the experimental 

results when the refractive index of the cladding material was increased for both 

non-vertical sidewall (TM mode SPR) and vertical sidewall (polarisation-

independent) structures. The peak position also depends on the thickness of the 

metal layer. A redshift of about 25-30 nm was observed when the metal thickness 

was increased by 10 nm.  

For the polarisation-independent structures, the oscillation of the electrons 

introduces SPR quasi-TE mode with dominant Hy/Ex field at the vertical sidewalls. 

On the other hand, at the top surface SPR quasi-TM mode is formed with 

dominant Hx/Ey field. These structures can be characterised as polarisation-

independent SPR waveguide in terms of the ability to detect SPR wavelengths in 

sensing applications without the use a polarizer in an integrated sensor system, 

thus providing a simpler configuration with increased reliability. In addition, the 
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polarisation-independent mechanism allows the integrated SPR sensor to be 

scaled down in the manufacturing and packaging process. 

In summary, the scattering from the surface roughness is the dominant factor 

providing a large attenuation coefficient for the un-coated ormocomp NWs, 

where the SPR is the main effect for the gold-coated ormocomp NWs. In addition, 

the demonstration of the gold-coated ormocomp NWs to detect the wavelength 

shifts, when there is a change of the refractive index of the analyte solution, is 

possible. 

8.2 Suggestions for future work 

The power confinement in the sensing area of the gold-coated ormocomp 

NWs can be further improved by having a ridge-waveguide structure instead of a 

rib waveguide.  It can be achieved by the possible improvement of the 

nanoimprint process to minimize the excess ormocomp layer. The ormocomp can 

be mixed with an ormothin to reduce the viscosity resulting in thickness reduction. 

In addition, the spin speed can also be increased from 3000 rpm to 6000 rpm 

during the spin coating of the ormocomp layer in order to make the coating 

thinner [145]. Furthermore, the integrated gold-coated ormocomp NWs can be 

designed to have an enclosed structure to improve their performance. 

In the future, the gold-coated ormocomp NWs can have a surface 

functionalisation in order to be able to selectively detect specific materials such 

as DNA, proteins, enzymes and metal ions. To be used as a sensor, the robustness 

and temperature-sensitive issues will also need to be considered. The sensitivity 

can be further improved by optimizing the structure dimension and metal 

thickness.  
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 Assembly of element matrices 

In FEM, the continuum structure is discretized into a simple element which is 

a first-order triangular element in this case and then each element is assembled 

together with respect to the shape functions and nodal field values of each 

triangular element.  For the optical waveguide, the solution obtained by the FEM 

can be represented as a standard eigenvalue problem as in equation (3.32). In 

order to assemble the elements, equation (3.30) is considered. The nodal 

magnetic field vector H e over the cross-section of the triangular element and 

the shape function matrix  are shown in equation (A.1) and (A.2), 

respectively. 

 
(A.1) 

where {Hx}, {Hy}, {Hz} are the nodal field vectors along each axis 

 

(A.2) 

where {N} is the shape function vector and {0}, is the null vector. The term j arises, 

as for lossless cases Hz component is 90  out of phase with the transverse 

components. Therefore, equation (3.30) can be written as follow. 

 

(A.3) 

With the Maxwell’s equation, e)( H  can be defined as: 
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(A.4) 

From equation (A.4), it can be written as follow. 

 (A.5) 

where the matrix  is defined in equation (A.6). 

 

(A.6) 

The solution to the optical waveguide problem can be obtained from Euler’s 

equation, which can be transformed to a discretized form as in equation (3.31). By 

assuming isotropic media  and substituting equation (A.5) into (3.31), the 

resulting element equation is shown below. 

  

(A.7) 

By summing all the elements over the cross-section of the guide, the above 

equation can be expressed in matrix form based on the standard eigenvalue 

problem as shown in equation (A.8). 

 (A.8) 

where,  and  are global matrices of the eigenvalue equation. They are the 

summation of the element matrices for each triangular element of the discretized 

cross-section of the optical waveguide which can be expressed by the following 

equations. 
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(A.9) 

 
(A.10) 

where 1/εe is the relative dielectric permittivity of the element and  and  

are the element matrices which may be evaluated as follows: 

For matrix : 

(A.11) 

The resulting matrix is a 9x9 real symmetric matrix. By using the shape function 

coefficients and the relation for a triangular element, the various terms can be 

determined as follow. 

 
(A.12) 

For the element matrix : 

 

(A.13) 
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where the various terms can be evaluated by using equation (A.12). 
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 Dielectric constant of materials used in this work 

B.1 Gold (Au) 

The complex dielectric constant of gold ( ) is calculated from the complex 

refractive index of gold ( ) [202] as show in in the following equations [216]: 

(B.14) 

 (B.15) 

 (B.16) 

where  is the real part of the complex dielectric constant and  represents the 

imaginary part. Here,  is the refractive index and  is the extinction coefficient. 

The values of the refractive index ( ) and extinction coefficient ( ) of gold in the 

visible region is plotted as shown in Fig. B.1.  is wavelength dependence due to 

the material dispersion. The value of  of gold in the visible region using in this 

work is presented in Table B.1. 

 

Figure B.1: Graph of refractive index ( ) and extinction coefficient ( ) of gold in 
the visible region 

Table B.1: The complex dielectric constant of gold (ε͠r ) in the visible region (400-
700 nm) 
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 (μm)   

0.39995 1.658+1.956i -1.076972+6.486096i 

0.40651 1.647+1.95938i -1.1265609844+6.45419772i 

0.41328 1.636+1.958i -1.157268+6.406576i 

0.42029 1.628+1.95138i -1.1574999044+6.35369328i 

0.42754 1.616+1.94i -1.152144+6.27008i 

0.43504 1.596+1.9245i -1.15648425+6.143004i 

0.4428 1.562+1.904i -1.185372+5.948096i 

0.45086 1.502+1.87588i -1.2629217744+5.63514352i 

0.4592 1.426+1.846i -1.37424+5.264792i 

0.46787 1.346+1.81463i -1.4811660369+4.88498396i 

0.47687 1.242+1.796i -1.683052+4.461264i 

0.48622 1.087+1.79738i -2.0490058644+3.90750412i 

0.49594 0.916+1.84i -2.546544+3.37088i 

0.50606 0.755+1.9565i -3.25786725+2.954315i 

0.5166 0.608+2.12i -4.124736+2.57792i 

0.5276 0.492+2.32625i -5.1693750625+2.28903i 

0.53907 0.402+2.54i -6.289996+2.04216i 

0.545 0.3743+2.6314i -6.78416547+1.96986604i 

0.5463 0.3682+2.654i -6.90814476+1.9544056i 

0.547 0.3648+2.6662i -6.9755434+1.94525952i 

0.548 0.3601+2.6822i -7.06452483+1.93172044i 

0.549 0.3554+2.6985i -7.15559309+1.9180938i 

0.55 0.3507+2.7138i -7.24171995+1.90345932i 
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0.55105 0.346+2.73063i -7.3366241969+1.88959596i 

0.552 0.343+2.7422i -7.40201184+1.8811492i 

0.557 0.3271+2.8019i -7.7436492+1.83300298i 

0.56 0.3173+2.8377i -7.951862+1.80080442i 

0.561 0.3141+2.8494i -8.02042155+1.78999308i 

0.562 0.311+2.8616i -8.09203356+1.7799152i 

0.56357 0.306+2.88i -8.200764+1.76256i 

0.57 0.2872+2.9096i -8.38328832+1.67127424i 

0.572 0.2814+2.9189i -8.44079125+1.64275692i 

0.574 0.2757+2.9281i -8.49775912+1.61455434i 

0.57668 0.268+2.94063i -8.5754807969+1.57617768i 

0.578 0.2649+2.9436i -8.59460895+1.55951928i 

0.58 0.2602+2.9478i -8.6218208+1.53403512i 

0.582 0.2555+2.9521i -8.64961416+1.5085231i 

0.584 0.2509+2.9564i -8.67735015+1.48352152i 

0.588 0.2416+2.9639i -8.72633265+1.43215648i 

0.59041 0.236+2.97i -8.765204+1.40184i 

0.592 0.2333+2.9751i -8.79679112+1.38818166i 

0.596 0.2266+2.9875i -8.87380869+1.353935i 

0.6 0.22+3i -8.9516+1.32i 

0.60481 0.212+3.015i -9.045281+1.27836i 

0.61 0.2058+3.0304i -9.14097052+1.24731264i 

0.617 0.1974+3.0513i -9.27146493+1.20465324i 

0.61993 0.194+3.06i -9.325964+1.18728i 
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0.622 0.1919+3.0612i -9.33411983+1.17488856i 

0.625 0.1889+3.0632i -9.34751103+1.15727696i 

0.63 0.1838+3.0064i -9.00465852+1.10515264i 

0.63582 0.178+3.07i -9.393216+1.09292i 

0.65255 0.166+3.15i -9.894944+1.0458i 

0.67019 0.161+3.44581i -11.8476855561+1.10955082i 

0.68 0.1605+3.633i -13.17292875+1.166193i 

0.68881 0.16+3.8i -14.4144+1.216i 

0.70849 0.161+4.08769i -16.6832885361+1.31623618i 

0.72932 0.164+4.357i -18.956553+1.429096i 

0.75143 0.17+4.61019i -21.2249518361+1.5674646i 

0.77491 0.176+4.86i -23.588624+1.71072i 

 

B.2 Silicon (Si) 

Similar to the gold, the complex dielectric constant of silicon ( ) can be 

calculated from the complex refractive index of silicon ( ) [222] as shown in the 

equation (B.14). The refractive index ( ) values and the extinction coefficient ( ) 

of silicon in the visible region are plotted as shown in Fig. B.2. The value of  of 

silicon in the visible region as used in this work is presented in Table B.2. 
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Figure B.2: Graph of refractive index ( ) and extinction coefficient ( ) of silicon in 
the visible region 

Table B.2: The complex dielectric constant of silicon (ε͠r ) in the visible region (400-
700 nm) 

 (μm)   

0.3999 5.57+0.387i 30.875131+4.31118i 

0.4133 5.222+0.269i 27.196923+2.809436i 

0.4275 4.961+0.203i 24.570312+2.014166i 

0.4428 4.753+0.163i 22.56444+1.549478i 

0.4592 4.583+0.13i 20.986989+1.19158i 

0.4769 4.442+0.09i 19.723264+0.79956i 

0.4959 4.32+0.073i 18.657071+0.63072i 

0.5166 4.215+0.06i 17.762625+0.5058i 

0.5391 4.123+0.048i 16.996825+0.395808i 

0.5636 4.042+0.032i 16.33674+0.258688i 

0.5904 3.969+0.03i 15.752061+0.23814i 

0.6199 3.906+0.022i 15.256352+0.171864i 
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0.6525 3.847+0.016i 14.799153+0.123104i 

0.6888 3.796+0.013i 14.409447+0.098696i 

0.7293 3.752+0.01i 14.077404+0.07504i 

0.7749 3.714+0.008i 13.793732+0.059424i 

 

B.3 Silica (SiO2) 

The dielectric constant of silica ( ) is taken as equal to  as the extinction 

coefficient considered here to be equal to zero [223]. The values of the refractive 

index ( ) of the SiO2 in the visible region is plotted as shown in Fig. B.2. The value 

of  of SiO2 in the visible region using in this work is presented in Table B.3. 

 

Figure B.3: Graph of refractive index ( ) of SiO2 in the visible region 

Table B.3: The dielectric constant of silica (εr ) in the visible region (400-700 nm) 

 (μm)   

0.3917 1.47105251 2.16399549 

0.4055 1.46952865 2.15951445 

0.4197 1.46812182 2.15538168 

0.4345 1.46680482 2.15151638 

0.4498 1.46558083 2.14792717 
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0.4657 1.46443603 2.14457289 

0.4821 1.46337193 2.14145742 

0.4991 1.46237644 2.13854485 

0.5167 1.46144499 2.13582146 

0.5349 1.46057308 2.13327372 

0.5537 1.45975629 2.13088841 

0.5732 1.45898656 2.12864179 

0.5934 1.45826079 2.12652453 

0.6143 1.45757581 2.12452723 

0.636 1.4569256 2.12263221 

0.6584 1.45631041 2.12084 

0.6816 1.4557247 2.1191344 

0.7056 1.45516603 2.11750817 

0.7305 1.45462988 2.11594807 

0.7562 1.45411617 2.11445382 

 

B.4 Ormocomp 

Similar to the SiO2, the dielectric constant of ormocomp is equal to  as the 

extinction coefficient is considered to be equal to zero. The average refractive 

index of the ormocomp used in this work is equal to 1.52 [145] in the visible 

region. Hence, the value of 2.31 is used as the dielectric constant ( ) over the 

wavelength range considered in this work. 
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 Derivation of the attenuation coefficient from surface scattering 

The scattering losses from a symmetric slab waveguide was first studied by 

Marcuse in 1969 [224].  In 1971 Tien [220] studied the loss from surface scattering  

for an asymmetric waveguide in which the two surfaces of the waveguide scatter 

differently as the refractive indices of the substrate and cladding materials are 

different. The power attenuation for the asymmetric waveguide can be derived as 

follows [220]. 

 

(C.1) 

where  is the thickness of the waveguide, and  and  are the transverse 

propagation constant of substrate and cladding, respectively.  is constant which 

can be defined as follow [220]; 

 
(C.2) 

where  and  are the surface roughness at the core/substrate and 

core/cladding interfaces, respectively.  is the operating wavelength. 

For this work, we assume that the scattering effect arises only from the 

surface roughness ( ) at core/cladding interface. At the core/substrate interface, 

the surface is assumed to be smooth and . The fabricated waveguide 

structure for this work is shown in Fig. C.1.  Therefore, the Equation (C.1) can be 

derived as; 

 

(C.3) 
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Figure C.1: The fabricated ormocomp waveguide showing the wave motion. 

For the reflection angle , the wave in a waveguide mode propagates as the 

zigzag wave motion in which the propagation constant ( ) can be defined as 

follow [220]; 

 (C.4) 

where  is the refractive index of the core waveguide and  is the wavenumber 

which equals to . For the zigzag wave motion,  is in the horizontal direction. 

The transverse propagation constant in the core region ( ), which is a component 

in the vertical direction of the zigzag wave motion, is defined by the following 

equation [220].  

 (C.5) 

From Equations (c.4) and (c.5), the attenuation loss ( ) in the Equation (C.3) can 

be derived as follows; 

 

(C.6) 

 

(C.7) 

 The transverse propagation constant of substrate ( ) and cladding ( ) 

can be calculated as  and , respectively, 

where  is the refractive index of the substrate and  is the refractive index of 

the cladding material.  
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