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ESTIMATION OF A SEMIPARAMETRIC RECURSIVE BIVARIATE PROBIT
MODEL WITH NONPARAMETRIC MIXING

GIAMPIERO MARRA1,*, GEORGIOS PAPAGEORGIOU2 AND ROSALBA RADICE3

University College London, Imperial College London and University of London

Summary

We consider an extension of the recursive bivariate probit model for estimating the effect
of a binary variable on a binary outcome in the presence of unobserved confounders,
nonlinear covariate effects and overdispersion. Specifically, the model consists of a
system of two binary outcomes with a binary endogenous regressor which includes
smooth functions of covariates, hence allowing for flexible functional dependence of the
responses on the continuous regressors, and arbitrary random intercepts to deal with
overdispersion arising from correlated observations on clusters or from the omission of
non-confounding covariates. We fit the model by maximizing a penalized likelihood
using an Expectation-Maximisation algorithm. The issues of automatic multiple
smoothing parameter selection and inference are also addressed. The empirical properties
of the proposed algorithm are examined in a simulation study. The method is then
illustrated using data from a survey on health, aging and wealth.

Key words: nonparametric maximum likelihood estimation; penalised regression spline;
recursive bivariate probit model; unobserved confounding.

1. Introduction

Quantifying the effect of a predictor of interest (also referred to as treatment) on a
particular response variable is a challenging task in observational studies. This is because
it is often the case that confounders which are associated with both treatment and response
are either unknown or not readily quantifiable (this problem is known in econometrics as
endogeneity of the variable of interest). Moreover, covariate-response relationships can
exhibit nonlinear patterns and observations may be overdispersed. In such a context, the
use of standard estimators neglecting the aforementioned issues yields inconsistent esti-
mates. In this article, we consider the case in which the researcher is interested in estimat-
ing the effect of a binary endogenous variable on a binary outcome in the presence
of unobserved confounders, nonlinear covariate-response relationships and overdispersion
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resulting from either correlations among observations on the same clusters or from the
omission of non-confounding covariates.

Instrumental variable techniques are widely used for isolating the effect of a given
predictor in the presence of unobserved confounding (e.g. Wooldridge 2010; Marra &
Radice 2011b and references therein), and are increasingly used in epidemiological and
medical studies (e.g. Goldman et al. 2001 and references therein). In the context of binary
responses, it is well known, from both theoretical and empirical results, that bivariate like-
lihood estimation methods are superior to conventional two-stage instrumental variable
procedures (e.g. Bhattacharya et al. 2006; Wooldridge 2010). First introduced by Heck-
man (1978), the recursive bivariate probit model represents an effective way to estimate
the effect a binary regressor has on a binary outcome in the presence of unobservables.
The semiparametric version of Heckman’s model is an important extension since unde-
tected nonlinearity can have severe consequences on the estimation of covariate effects
(e.g. Marra & Radice 2011a). Chib & Greenberg (2007) proposed two Bayesian fitting
procedures for the class of instrumental variable models including the semiparametric
recursive bivariate probit model. However, as the authors point out, very large sample
sizes are required to obtain reasonable estimates of the binary treatment effect, hence
undermining the utility of the method for practical modeling. Marra & Radice (2011a)
considered the same model and introduced a penalized likelihood based procedure which
permits reliable estimation of the model coefficients at reasonably small sample sizes.

The neglect of the possible presence of overdispersion may have a detrimental impact
on the estimation of the effect of an endogenous variable. This issue is dealt with by gen-
eralising the method of Marra & Radice (2011a) to include random effects, which are gen-
erated by unknown densities. The usual parametric approach, which assumes that random
effects are generated by a bivariate normal density (Greene 2012), is avoided here as
restrictive. Consequences of parametric assumptions have been studied extensively within
the class of generalised linear mixed models (GLMMs). Several authors have shown that
misspecification of the random effects distribution can affect negatively the estimation of
regression parameters; see for instance Neuhau et al. (1992), Heagerty & Kurland (2001),
Chen et al. (2002), and Agresti et al. (2004). In addition, the assumed distribution is a
very important factor for the prediction of the random effects themselves. In fact, the
shape of the distribution of the empirical Bayes estimates tends to have features that are
similar to the assumed random effects distribution, even if in reality assumed and true dis-
tributions are not close together (Verbeke & Lesaffre 1996; Papageorgiou & Hinde 2012).
With a nonparametric approach such pitfalls are avoided. The results of Laird (1978) and
Lindsay (1983) have shown that the nonparametric maximum likelihood estimate of a
mixing distribution is a discrete distribution. General fitting algorithms have been provided
by Laird (1978), Lindsay (1983), Follmann & Lambert (1989) and Lesperance &
Kalbfleisch (1992).

The proposed model is fitted by maximizing a penalised likelihood using an Expecta-
tion-Maximisation algorithm, where the issues of automatic multiple smoothing parameter
selection and inference are also addressed. The empirical properties of the proposed algo-
rithm are examined in a simulation study. The method is then illustrated using data from
a survey on health, aging and wealth. Specifically, the aim is to estimate the effect of pri-
vate health insurance on private medical care utilization. In such data, endogeneity is
likely to arise because insurance coverage is not randomly assigned but rather is the result
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of supply and demand. Moreover, estimation of the effect of private health insurance on
private medical care utilization may be adversely affected by overdispersion resulting from
the heterogeneity present in the observations due to unobserved covariates related to either
the response or the treatment variable. Buchmueller et al. (2005) provide an excellent
review of these issues, which, if neglected, can lead to a biased estimate of the relation-
ship of interest.

2. Model specification

The recursive bivariate probit model consists of a reduced form or treatment equation
for the potentially endogenous binary variable and a second structural form or outcome
equation for the binary response variable. The mixed effects semiparametric version of
this model takes the form

y�1ij ¼ u1i þ x>1ijh1 þ
XK1

k1¼1

s1k1ðz1k1ijÞ þ e1ij

y�2ij ¼ u2i þ #y1ij þ x>2ijh2 þ
XK2

k2¼1

s2k2ðz2k2ijÞ þ e2ij

; i ¼ 1; . . .;m; j ¼ 1; . . .; ni; ð1Þ

where m denotes the number of clusters, ni is the number of observations within the ith
cluster, and y�vij is a latent continuous variable which determines its observable counterpart
yvij through the rule 1ðy�vij [ 0Þ, for v ¼ 1; 2, where 1ð�Þ is the indicator function; # is
the coefficient of the endogenous binary variable y1ij; vector x1ij contains P1 parametric
model components (such as dummy and categorical observed confounders, but not inter-
cepts as we do not impose a zero mean on the random effects), with corresponding
parameter vector h1. The s1k1 are unknown smooth functions of the K1 continuous
observed confounders z1k1ij. Varying coefficients models can be obtained by multiplying a
smooth term by some predictor (Hastie & Tibshirani 1993). Smooth functions of two co-
variates such as s11;12ðz11ij; z12ijÞ can also be implemented (e.g. Wood 2006, pp. 154–167).
Similarly, x2ij is a vector of dimension P2 with associated parameter vector h2, the s2k2 are
unknown smooth terms of the K2 continuous observed confounders z2k2ij. For identifica-
tion purposes, the smooth functions are subject to the centering constraint

P
ij skðzkijÞ ¼ 0

for all terms (Wood 2006 pp. 167–168). The pair of random effects ðu1i; u2iÞ is cluster
specific, hence it induces correlation among multiple observations on the same cluster or
can be used to handle overdispersion in case of independent observations, i.e. ni ¼ 1 for
all i. For instance, a large value of u1i will tend to make y�1ij large for all ni observations
within the ith cluster. Similar comments hold for u2i. As in Chib & Greenberg (2007) and
Marra & Radice (2011a), we make the assumption that unobserved confounders have a
linear impact on the response. That is, the error terms ðe1ij; e2ijÞ are assumed to follow the
bivariate distribution

e1ij
e2ij

�
�iid N

�
0
0

� �
;

1 qe
qe 1

� ��
;

�
where qe is a correlation coefficient and the error variances are set to 1 as the model
parameters can only be identified up to a scale coefficient (e.g. Greene 2012). Parameter
qe accounts for the correlation between the responses not accounted for by the pair
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ðu1i; u2iÞ. As in Greene (2012), u1i and u2i can be correlated. Further, it is assumed that
the error terms and random effects are independent.

The recursive structure of (1) follows from the condition of logical consistency. It
states that only one observed endogenous variable is allowed on the right-hand side of
system (1). This is because the probabilities for the different possible value combinations
of the two binary variables have to sum to one (e.g. Maddala 1983, p. 118). To identify
the model parameters, it is typically assumed that the exclusion restriction on the exoge-
nous variables holds (e.g. Maddala 1983, p. 122). That is, the exogenous covariates in the
first equation of (1) should contain at least one regressor not included in the second equa-
tion. Such covariates are regarded as instrumental variables which induce variation in the
treatment, do not directly affect the outcome, and are independent of the error terms given
the covariates (e.g. Chib & Greenberg 2007). However, under correct model specification,
this restriction may not be strictly necessary as pointed out by Wilde (2000) and Marra &
Radice (2011a).

The smooth functions are represented using regression splines. The key idea is to
approximate a generic function skðzkijÞ by a linear combination of known spline basis
functions, bkqðzkijÞ, and regression parameters, bkq,

skðzkijÞ ¼
XQk

q¼1

bkqbkqðzki jÞ ¼ BkðzkijÞ>bk;

where Qk is the number of bases (hence regression coefficients) used to represent sk,
BkðzkijÞ is a vector containing Qk basis functions evaluated at observation zkij, i.e.
BkðzkijÞ ¼ fbk1ðzkijÞ; bk2ðzkijÞ; . . .; bkQkðzkijÞg>, and bk is the corresponding parameter vec-
tor. Basis functions should be chosen to have convenient mathematical properties and
good numerical stability. Many choices are possible within the framework adopted in this
article. These include B-splines, cubic and thin plate regression splines (see, e.g. Ruppert
et al. 2003; Wood 2006 for a more detailed introduction); we opt for the latter. Based on
the above regression spline representation, model (1) is written as

y�1ij ¼ u1i þ x>1ijh1 þ B>
1ijb1 þ e1ij ¼ g1ij þ e1ij

y�2ij ¼ u2i þ #y1ij þ x>2ijh2 þ B>
2ijb2 þ e2ij ¼ g2ij þ e2ij;

where B>
vij ¼ fBv1ðzv1ijÞ>; . . .;BvKvðzvKvijÞ>g, b>v ¼ ðb>v1; . . .; b>vKv

Þ, for v ¼ 1; 2, and the
linear predictors, gvij, have the obvious definitions.

In the current context, the effect of y1ij is of primary interest. This is typically calcu-
lated using the average treatment effect (ATE). Given estimates for the random effects,
parametric and smooth function components, the ATE can be estimated as follows

1Pm
i¼1 ni

Xm
i¼1

Xni
j¼1

U2 ĝ
ðy1ij¼1Þ
2ij ; ĝ1ij; qe

� �
Uðĝ1ijÞ

�
U2 ĝ

ðy1ij¼0Þ
2ij ;�ĝ1ij;�qe

� �
1� Uðĝ1ijÞ

;

where U and U2 are the distribution functions of a standardized univariate normal and a
standardized bivariate normal with correlation qe, and ĝðy1ij¼rÞ

2ij indicates the linear predictor
evaluated at r equal to 1 or 0. Coefficient qe is also of interest as it can be used to ascer-
tain the presence of unobserved confounding (endogeneity). It can be interpreted as the
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correlation between the unobserved confounders in the two equations (e.g. Monfardini &
Radice 2008). If qe ¼ 0 then e1ij and e2ij are uncorrelated and hence there is not a prob-
lem of endogeneity. Because model (1) can capture, and hence separate, two different
sources of variability (represented by evij and uvi), estimation of qe will be done more reli-
ably by model (1) than by a model which does not account for overdispersion (e.g.
Greene 2012).

3. Methods

3.1. Estimation approach

Recall that the error terms ðe1ij; e2ijÞ are assumed to follow a bivariate normal distri-
bution. Define the parameter vector d ¼ ðh>1 ; h>2 ; b>1 ; b>2 ; #;qe; m>Þ>, and pairs of random
effects ui ¼ ðu1i; u2iÞ>. Vector m contains the parameters pertaining to the random effects
distribution (see next section). In the current context, the data identify four possible
events, ðy1ij ¼ e1; y2ij ¼ e2Þ with ev 2 f0; 1g for v ¼ 1; 2, with the following condi-
tional probabilities

pu11ij � Prðy1ij ¼ 1; y2ij ¼ 1jd; uiÞ ¼ U2ðg1ij; g2ij; qeÞ; ð2Þ

pu10ij � Prðy1ij ¼ 1; y2ij ¼ 0jd; uiÞ ¼ Uðg1ijÞ � pu11ij; ð3Þ

pu01ij � Prðy1ij ¼ 0; y2ij ¼ 1jd; uiÞ ¼ Uðg2ijÞ � pu11ij; ð4Þ

pu00ij � Prðy1ij ¼ 0; y2ij ¼ 0jd; uiÞ ¼ 1� pu11ij � pu10ij � pu01ij: ð5Þ
The penalised log-likelihood function of the observed data y ¼ fyi; i ¼ 1; . . .;mg,

where yi ¼ fyij ¼ ðy1ij; y2ijÞ> : j ¼ 1; . . .; nig, is

‘pðdjyÞ ¼ ‘ðdjyÞ � 1
2
b>Skb; ð6Þ

where ‘ðdjyÞ ¼ logfQm
i¼1 f ðyijdÞg, b> ¼ ðb>1 ; b>2 Þ, Sk ¼ P2

v¼1

PKv
kv¼1 kvkvSvkv , and the

Svkv are positive semi-definite known square matrices measuring the (second-order, here)
roughness of the smooth terms in the model, that is b>

P2
v¼1

PKv
kv¼1 kvkvSvkv

� �
b ¼ P2

v¼1

PKv
kv¼1 kvkv

R
s00vkvðzvkvÞ

2dzvkv . The kvkv are smoothing parameters controlling the
trade-off between fit and smoothness.

Note that because of the presence of smooth components in the model, unpenalised esti-
mation would yield exceedingly wiggly curve estimates which can have a detrimental impact
on the estimation of the ATE (Marra & Radice 2011a). This is why the log-likelihood is
augmented by a penalty term. In addition, because qe is bounded in ½�1; 1�, we use the
common transform for correlation qþe ¼ tanh�1ðqeÞ ¼ 0:5 logfð1 þ qeÞ=ð1 � qeÞg, so
that ½�1; 1� is mapped to the real line.

3.1.1. EM penalised log-likelihood maximisation

We make no assumptions about the form of the density that gives rise to the model’s
random effects ui. The nonparametric maximum likelihood estimate of a mixing distribution
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is discrete (Laird 1978; Lindsay 1983) and thus the density of ui can be represented by F
bivariate mass points, m1 ¼ ðm11;m12Þ; . . .;mF ¼ ðmF1;mF2Þ, with corresponding proba-
bilities, p1; . . .; pF , where

PF
l¼1 pl ¼ 1. Hence the parameter vector m, first introduced in

Section 3.1, consists of m ¼ ðm>
1 ; . . .;m

>
F ; p1; . . .; pF�1Þ>. We will treat F as a tuning con-

stant.
An EM algorithm (Dempster et al. 1977) is employed for maximising (6). We con-

sider ðy;uÞ ¼ fðyi; uiÞ : i ¼ 1; . . .;mg to be the complete data and indirectly maximise
‘pðdjyÞ by iteratively maximising the expectation of the penalized log-likelihood of the
complete data, where the expectation is taken with respect to the conditional distribution
of the missing given the observed data

QpðdjdðaÞÞ ¼ QðdjdðaÞÞ � 1
2
b>Skb ¼ Eflog f ðy; uÞjy; dðaÞg � 1

2
b>Skb

¼
Xm
i¼1

½Eflog f ðyijuiÞjyi; dðaÞg þ Eflog PrðuiÞjyi; dðaÞg� �
1
2
b>Skb

¼
Xm
i¼1

Xni
j¼1

Eflog f ðyijjuiÞjyi; dðaÞg þ
Xm
i¼1

Eflog PrðuiÞjyi; dðaÞg �
1
2
b>Skb;

where dðaÞ is the current value of the parameter vector. Let dðaþ1Þ ¼ /ðdðaÞÞ be the
parameter vector that maximises QpðdjdðaÞÞ. Under regularity conditions, at convergence
d̂ ¼ /ðd̂Þ maximises both the complete and the observed data log-likelihoods.

Conditionally on the data and current parameter estimates, the distribution of ui is
discrete with points mðaÞ

l ; l ¼ 1; . . .;F, and probability masses given by

wðaÞ
il ¼ Prðui ¼ mðaÞ

l jyi; dðaÞÞ ¼
f ðyijdðaÞ; ui ¼ mðaÞ

l ÞpðaÞlPF
l¼1 f ðyijdðaÞ; ui ¼ mðaÞ

l ÞpðaÞl

:

Given the wðaÞ
il , we have the following expression for the penalised complete data log-like-

lihood

QpðdjdðaÞÞ ¼
Xm
i¼1

Xni
j¼1

XF
l¼1

wðaÞ
il log Prðy1ij; y2ijjdðaÞ; ui ¼ mðaÞ

l Þ

þ
Xm
i¼1

XF
l¼1

wðaÞ
il log pðaÞl � 1

2
b>Skb; ð7Þ

where the Prð�j�Þ are given in (2)–(5).
Note that in (7) the parameter vector d separates into two independent subvectors,

namely the vector d1 � ðh>1 ; h>2 ; b>1 ; b>2 ; #;qþe ;m>
1 ; . . .;m

>
F Þ> that appears in the triple

sum and penalty term and the vector d2 � ðp1; . . .;pF�1Þ> that appears in the double sum.
Consequently, maximisation of Qp is achieved in two steps. Firstly, the triple sum has
summands that, ignoring fixed wðaÞ

il ; are exactly the same as those that would have
been obtained by assuming a model without random effects. It follows that the triple
sum with penalty term can be maximized using the algorithm presented in Marra &
Radice (2011a). Secondly, the double sum is used to update the masses of the random
effects distribution resulting in closed form formulas pðaþ1Þ

l / Pm
i¼1 w

ðaÞ
il .
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3.1.2. Smoothing parameter selection

If the model has more than two or three smooth terms, then it becomes crucial to
estimate the smoothing parameters using an automatic, quick and reliable procedure. There
are several techniques for automatic multiple smoothing parameter selection for univariate
models (see Ruppert et al. 2003; Wood 2006 for a detailed overview). These include the
performance-oriented iteration method first introduced by Gu (1992) which consists of
applying the generalized cross validation or unbiased risk estimator (UBRE, Craven &
Wahba 1979) to each working linear model of the penalized iteratively re-weighted least
squares scheme used to fit the model. In what follows, we employ an adaptation of Gu’s
approach. Also, we suppress the superscript ðaÞ to avoid clutter.

Given values for kvkv and d2, an estimate for d1 can be obtained by minimisation of

kz� � X�d1k2 þ d>1 S
�
kd1 w.r.t. ; d1; ð8Þ

where

z� ¼
XF
l¼1

wl

ffiffiffiffiffi
W

p
lfXld1 þW�1

l dlg and X� ¼
XF
l¼1

wl

ffiffiffiffiffi
W

p
lXl;

S�k is an overall blockdiagonal penalty matrix made up of the kvkvSvkv and zero vectors cor-
responding to the model parameters which are not penalised, and wl is a vector containing
the masses as defined in the previous section. Assuming, for simplicity and without loss
of generality, that ni ¼ 1 and Qvkv ¼ Q for each vkv so that the total number of observa-
tions is m, dil is a 3-dimensional vector given by f@Qil=@g1il; @Qil=@g2il; @Qil=@g3ilg>,
g3il ¼ qþe , Qil ¼ wil log Prðy1i; y2ijd; ui ¼ mlÞ, Wil is a 3 � 3 matrix with ðr; hÞth
element

ðWilÞrh ¼ �E
@2Qil

@gril@ghil

� �
; r; h ¼ 1; . . .; 3; ð9Þ

Xil is a 3 � fðF þ P1 þ K1 � QÞ þ ðF þ P2 þ K2 � QÞ þ 1g block diagonal
matrix, i.e. Xil ¼ diagfðc>1il; x>1i;B>

1iÞ; ðc>2il; x>2i;B>
2iÞ; 1g, where each of the vectors c1il and

c2il contain F zero elements but the lth which is set to 1, and the definitions of the linear
predictors in (9) follow from the definition of Xil. The square root and inverse of Wl are
obtained via eigendecomposition.

The smoothing parameter vector k is selected so that the estimated smooth terms are
as close as possible to the true functions (Craven & Wahba 1979). Given an estimate
for d1, multiple smoothing parameter estimation for problem (8) can be achieved by
minimization of the approximate UBRE score

Vw
u ðkÞ ¼

1
n�

kz� � X�d1k2 � 1þ 2
n�

trðAkÞ; ð10Þ

where the working linear model quantities are calculated using the parameter esti-
mates from the optimisation step mentioned in Section 3.1.1, n� ¼ 3m, Ak ¼
X�ðX�TX� þ S�kÞ�1X� is the hat matrix, and trðAkÞ the estimated degrees of freedom of
the penalised model. For each working linear model of iteration (8), Vw

u ðkÞ is minimized
with respect to k. In practice, this is implemented employing the approach by Wood
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(2004), which is based on the Newton-Raphson method. In evaluating score (10) and their
derivatives, efficiency and stability are achieved using a combination of pivoted QR and
singular value decompositions (see Wood 2004 for full details). Note that because each of
the Wl is a non-diagonal matrix of dimension n� � n�, computation can quickly become
prohibitive, hence its sparse structure is exploited in implementation.

3.2. Inference

Inference in penalised models is complicated by the presence of smoothing penalties
which undermines the usefulness of classic frequentist results for practical modelling. Solu-
tions to this problem have been introduced in the literature (see, e.g., Gu 2002; Wood 2006 for
an overview). Here we show how to construct pointwise confidence intervals for the terms of a
mixed effects semi-parametric bivariate model by adapting the well known Bayesian confi-
dence intervals, originally proposed by Wahba (1983) and Silverman (1985). An appealing
feature of these intervals is that they have close to nominal ‘across-the-function’ frequentist
coverage probabilities (Marra & Wood 2012). This is because the Wahba/Silverman type
intervals include both a bias and variance component. Moreover, their empirical performance
has little sensitivity to the neglect of smoothing parameter uncertainty. For a generic term
skðzkiÞ intervals can be constructed by seeking constants Cki and A, such that

ACP ¼ 1
n
E

X
i

1ðĵskðzkiÞ � skðzkiÞj 	 qa=2A=
ffiffiffiffiffiffi
Cki

p
Þ

( )
¼ 1� a; ð11Þ

where ‘ACP’ denotes ‘Average Coverage Probability’, a is a constant between 0 and 1,
and qa=2 is the a=2 critical point from a standard normal distribution. Defining
bkðzkÞ ¼ EfŝkðzkÞg � skðzkÞ and vkðzkÞ ¼ ŝkðzkÞ � EfŝkðzkÞg, so that ŝk � sk ¼
bk þ vk, and I to be a random variable uniformly distributed on f1; 2; . . .; ng, we have
that ACP ¼ PrðjBk þ Vkj 	 qa=2AÞ, where Bk ¼ ffiffiffiffiffiffiffi

CkI
p

bðzkIÞ and Vk ¼ ffiffiffiffiffiffiffi
CkI

p
vðzkIÞ. It is

then necessary to find the distribution of Bk þ Vk and values for Cki and A so that
requirement (11) is met. As shown in Marra & Wood (2012), in the context of non-
Gaussian response models involving several smooth components, such a requirement is
approximately met when confidence intervals for the ŝkðzkiÞ are constructed using the
distribution

djy �� Nðd̂;VdÞ; ð12Þ
where, in our context, y refers to the binary response vectors, d̂ is an estimate of d, and
Vd ¼ ðI þ S�kÞ�1 where I is the information matrix. Specifically,

ŝkðzkiÞ �� NðskðzkiÞ;BkðzkiÞ>VdkBkðzkiÞÞ;
where Vdk and BkðzkiÞ are the submatrix of Vd and the basis functions corresponding
to the regression spline parameters associated with skðzkiÞ. In addition, intervals for non-
linear functions of the model parameters, such as the ATE, can be conveniently obtained
by simulation from (12).

In practice, I can be replaced by its observed version J . In the present context,
however, J cannot be obtained as a byproduct of the estimation procedure and of the sec-
ond order derivatives of Q, in (7), used therein. Second derivatives of the log-likelihood
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of the ‘complete’ data ðy; uÞ would overestimate the information about the model parame-
ters in the sample. Ultimately, this is attributed to treating the weights wil that appear in
Q as fixed. We therefore find the observed information using the method of Louis (1982),
by which the observed information matrix is expressed as

J ¼ � @2Q
@d@d>

�
Xm
i¼1

VarðwiÞ;

which makes clear how the second derivative of the complete data likelihood Q is
adjusted for the unobserved data u. Details about the approach, including the definition of
wi, are provided in Appendix A. It is important to stress that there is no contradiction in
fitting the model using the method of Section 3.1 and then constructing intervals follow-
ing a Bayesian result, and such an approach has been employed many times in the litera-
ture (e.g. Gu 2002; Wood 2006 and references therein).

3.3. Algorithm

As indicated previously, we treat F, the number of mass points of the nonparametric
mixing distribution, as a tuning parameter. It is common practice to find its value as the
one that minimizes Akaike’s information criterion. This, for a given value of F, takes the
following form: AICðFÞ ¼ �2‘ðd̂jyÞ þ 2dimðd̂jFÞ, where dimðd̂jFÞ denotes the effective
dimension of d̂ for a fixed value of F, and the log-likelihood is obtained from Equation
(6), in which we express f ðyijdÞ ¼ PF

l¼1 f ðyijd; ui ¼ mlÞPrðui ¼ mljdÞ, as also shown in
Appendix A.

Having fixed a value of F, we need to choose starting values, d0, for the model
parameters. Starting values for ðh>1 ; h>2 ; b>1 ; b>2 ; #; qþe Þ> are chosen as the maximum
likelihood estimates of the corresponding fixed effects model, i.e. the model assuming
F ¼ 1, fitted using the method of Marra & Radice (2011a). Starting values for the masses
pk; k ¼ 1; . . .;F, are all set to 1=F, while starting values for the mass points,
ðm>

1 ; . . .;m
>
F Þ>, as set to a multiple (here, square root of two) of the Gauss-Hermite

quadrature nodes.
Given F and d0, parameter estimates are found using an iterative algorithm. Iteration

ða þ 1Þ consists of finding the maximizer of QpðdjdðaÞÞ using the algorithm described
after (7). For a given estimate of d, smoothing parameter selection is achieved by minimi-
sation of (10), as described in Section 3.1.2. The two main steps, one for d the other for
k, are iterated until convergence. The rule that we follow for stopping the iterative algo-
rithm is that the maximum absolute change in the parameter estimates from successive
iterations is less than � ¼ 10�6.

At convergence, we calculate log-likelihood and AICðFÞ to guide model choice, stan-
dard errors of the estimates by inverting the observed information obtained as described in
the previous section, and random effects predictions using (14) as these are needed for
estimating the ATE.

4. Simulation study

To gain insight into the empirical effectiveness of the proposed method, a Monte
Carlo simulation study was conducted. All computations were performed in the
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R environment (R Development Core Team 2013) using the package SemiParBIV-
Probit (Marra & Radice 2013).

4.1. Design and model fitting details

The sampling experiments were based on the model

y�1ij ¼ u1i � 0:75x1ij þ s1ðz1ijÞ þ s2ðz2ijÞ þ e1ij

y�2ij ¼ u2i � 1:5y1ij þ x1ij þ s3ðz1ijÞ þ e2ij;
ð13Þ

where the binary outcomes y1ij and y2ij were determined as described in Section 2. The
test functions used were s1ðz1ijÞ ¼ 0:6fz31ij þ sinðpz31ijÞg, s2ðz2ijÞ ¼ �1:25z2ij and
s3ðz1ijÞ ¼ 0:5 cosð2pz1ijÞ (see Fig. 1). Covariates x1ij, z1ij and z2ij were generated as binary,
uniform and normal correlated predictors, respectively. This was achieved by drawing
standardised multivariate normal random variables with correlation 0.5 (using rmvnorm
() in the package mvtnorm) and then transforming the first two of them with round()
and pnorm() (e.g. Marra & Radice 2011a). Bivariate normal errors with zero means,
standard deviations equal to one, and correlations qe ¼ 
ð0:1; 0:5; 0:9Þ were considered.
Sample sizes were set to 2000 and 6000 in the following two ways. In the first case, ni was
set to a randomly chosen number between 9 and 11 and m was set to 200 and 600. In the
second case, ni ¼ 1 and m was set to 2000 and 6000. The pairs of random effects
ðu1i; u2iÞ were generated according to three scenarios: bivariate normal variates with mean
vector (0,2), standard deviations r1 ¼ r2 ¼ 0:5 and correlation qu ¼ 0:5; mixture of two
equally weighted bivariate normals with mean vectors ð�2;�2Þ and ð2; 2Þ, and with the
remaining parameters as above; bivariate gamma variates with shape and scale parameters
equal to 0.5. This last was achieved via a normal copula with qu ¼ 0:5 using mvdc() in
the package copula. Each scenario was replicated 250 times and the quantities of interest,
estimated ATE and qe (see final paragraph of Section 2), recorded.
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Figure 1. Test functions used in the simulation study (dotted lines) and a realization of estimated
smooths (black lines) with corresponding 95% pointwise confidence intervals (shaded regions). The
smooth estimates were obtained applying the proposed method on data from a typical sample with
ni ¼ 1 and m ¼ 2000, and bivariate gamma random variates for the random components. The esti-
mates are on the scale of the respective linear predictors. Due to identifiability constraints, the curves
centered around zero. The numbers in brackets in the y-axis captions are the estimated degrees of
freedom of the smooth curves, while the rug plot, at the bottom of each graph, shows the observed
covariate values.
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The smooth components of continuous covariates in the model were represented
using penalized thin plate regression splines with basis dimensions equal to 10 and penal-
ties based on second-order derivatives (Wood 2006, pp. 154–160). The spline basis repre-
sentation used here is a low rank eigen-approximation version of the full rank version
introduced by Duchon (1977). It represents a general solution to the problem of estimating
efficiently, and without having to choose knot locations, a smooth function of multiple
predictors from noisy observations of the function. Smoothing parameters were chosen by
approximate UBRE as described in Section 3.1.2. The tuning constant F was identified to
be 3; further increasing the value of this parameter did not change the results reported in
the next section.

True values for the ATEs, under the scenarios detailed above, were obtained via sim-
ulation. Specifically, 10000 replicate datasets were generated according to model (13) and
ATEs calculated based on the true linear predictors. The simulated average true ATEs
for the normal, mixture of normals and gamma cases are �0.43, �0.15 and �0.45,
respectively.

Estimates of the ATE were obtained using the proposed mixed model and, for the
sake of comparison, the semiparametric bivariate model of Marra & Radice (2011a) which
neglects the presence of random effects (henceforth, these two models will be referred to
as mixed SRBP and SRBP, respectively). The calculation of the ATE for mixed SRBP
requires an estimate of the random effects distribution. This was obtained, using empirical
Bayes, as weighted averages of the estimated mass points, m̂1; . . . ; m̂F , with respective
weights Prðm̂1jyiÞ; . . . ; Prðm̂F jyiÞ. That is, for each i,

ûEBi ¼
XF
l¼1

m̂lPrðm̂ljyiÞ ¼
XF
l¼1

m̂l
Prðyijm̂lÞp̂lPF

l0¼1 Prðyijm̂l0 Þp̂l0
: ð14Þ

4.2. Results

Tables 1 and 2 display the percentage biases and the root mean squared errors
(RMSEs) of the estimated ATEs and qe’s obtained using SRBP and mixed SRBP, when
ni is a randomly chosen number between 9 and 11 and m is set to 200 and 600, and ran-
dom effects are generated using bivariate normal (N), mixture of normals (MN) and
gamma (G) distributions. Tables 4 and 5, reported in Appendix B, provide the same infor-
mation but for the case in which ni is set 1 and m set to 2000 and 6000.

The main results can be summarized as follows:
• Table 1 shows that, under the N and G scenarios, mixed SRBP is only slightly better
than SRBP, in terms of accuracy and precision of the estimated ATEs. This suggests
that, under the N and G cases, the model neglecting cluster specific random effects
can still yield good estimates of the average treatment effect. A likely explanation is
that the parameter that links the two equations of the bivariate model (i.e. qe) cap-
tures correlations due to both unobserved confounders and cluster or ‘litter’ effect.
However, this is not true when the bivariate random effects distribution is not unimo-
dal, the case in which mixed SRBP considerably outperforms SRBP. These conclu-
sions are in agreement with previously reported findings on the impact of
misspecification of the random effects distribution on parameter estimation within the
class of GLMMs; see Heagerty (1999), Chen et al. (2002) and Agresti et al. (2004).
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• Table 2 shows that, under all random effects distribution scenarios, mixed SRBP per-
forms considerably better than SRBP, in terms of accuracy and precision of the esti-
mated qes. The unsatisfactory performance of SRBP can be attributed to the fact that
a model neglecting the presence of overdispersion will not be able to disentangle dif-
ferent sources of variability (in this case, one due to endogeneity and the other due
to overdispersion). This finding is important because the parameter linking the two
model equations is useful to ascertaining the presence of endogeneity, and the esti-
mates produced using SRBP can clearly lead to erroneous conclusions.

• The findings for the more computationally challenging scenarios, in which ni ¼ 1
and m ¼ 2000; 6000, are essentially the same as those reported above, except that,
as expected, the estimates obtained using mixed SRBP are more variable. These
results can be found in Tables 4 and 5 given in Appendix B.

Figure 1 provides an example of estimated smooths with corresponding 95% Bayes-
ian pointwise confidence intervals obtained using the mixed SRBP model. The function
estimates recover the true functions reasonably well. This is a good result given the com-
plexity of the model.

5. Empirical illustration

The modeling framework described in this article is illustrated using data from an
Italian population based survey. The aim of this study is to estimate the causal effect of
private health insurance on private medical care utilization in the presence of unobserved
confounding and overdispersion. The problem of unobserved confounding arises in such
data because insurance coverage is not randomly assigned as in a controlled trial but
rather is the result of supply and demand, including individual preferences and health sta-
tus. As a consequence, differences in outcomes for insured and uninsured individuals
might be due not only to the effect of health insurance but also to the effect of unob-
served characteristics that are associated with insurance coverage and medical care utiliza-
tion. If we do not account for the endogeneity of coverage insurance then the estimated
effect will be biased, hence leading to distorted assessments of health policy implications.
Overdispersion, which in this study can result from unobserved predictors of either private
health insurance or private medical care utilization, can also bias the effect of interest.
Buchmueller et al. (2005) provide an excellent review of these issues. The direction of the
bias due to unobserved confounding is unclear a priori. Specifically, standard economic
models of insurance markets point to the problem of adverse selection: individuals with a
greater demand for medical care, because of poor health for instance, are expected to have
a greater demand for insurance. In this case, adverse selection would impart a positive
bias on the estimate of the insurance effect on medical care utilization. On the other hand,
there could be a problem of moral hazard; once insured, individuals consume more care
than optimal. Here, moral hazard would contribute to bias in the opposite direction.

5.1. Data

We used data from the Survey on Health, Aging and Wealth (SHAW; Brugiavini
et al. 2002) which was conducted by the leading Italian polling agency DOXA in 2001.
The SHAW sample consists of 1068 households whose head is over 50 years old and
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mainly provides information about individual health status, utilization of health services,
types of insurance coverage, as well as socio-economic features. The response is utiliza-
tion of private health care (util): an indicator variable that takes value 1 if the subject
has private examinations and 0 otherwise. The treatment variable is private health insur-
ance (ins): a dummy variable with value 1 if the respondent has private insurance cover-
age and 0 otherwise. The observed confounders are the continuous covariates age (age),
income (inc), body mass index (bmi), the binary variables indicating whether the indi-
vidual is a male (male), is unmarried or widower (single), is unemployed (unemp),
suffers from chronic conditions (cond), has a condition that limits activities of daily life
(lim), suffers from hearing and/or eyesight troubles (heey), has ever smoked (smoke),
and a factor indicating self-reported health status (poor, good and excellent self-perceived
health: poor, good and exc, respectively).

5.2. Health care modeling

The methodology presented here is suitable to tackle both endogeneity and overdi-
spersion; the bivariate model allows us to account for unobserved confounding and for the
source of variation due to the heterogeneity in the households. Following previous work
on the subject (e.g. Holly et al. 1998; Fabbri & Monfardini 2003; Marra & Radice
2011b), we specified a mixed SRBP model with main terms only. Specifically, the equa-
tions for ins and util are:

ins�i ¼ u1i þ h11malei þ h12singlei þ h13unempi þ h14condi þ h15limi þ h16heeyi
þ h17poori þ h18exci þ h19smokeþ s1ageðageiÞ þ s1incðinciÞ þ s1bmiðbmiiÞ þ e1i;

util�i ¼ u2i þ #insþ h21malei þ h22singlei þ h23unempi þ h24condi þ h25limi
þ h26heeyi þ h27poori þ h28exci þ h29smoke þ s2ageðageiÞ þ s2incðinciÞ
þ s2bmiðbmiiÞ þ e2i:

The parameters in the model have the obvious definitions and thin plate regression
splines of the continuous covariates with the same settings as those used for the simulation
study were employed. The optimal value for tuning parameter F was identified to be 2, that
is the random effects distribution is represented by a two point discrete distribution. The
non-linear specification for age, inc and bmi arises from the fact that these covariates
embody productivity and life-cycle effects that are likely to affect ins and util non-line-
arly. In fact, Holly et al. (1998) and Fabbri & Monfardini (2003) considered a model for
health care utilization that contains linear and quadratic terms in age, inc and bmi,
whereas Marra & Radice (2011b) specified a model containing smooth functions of them.
For comparison purposes, we also employ the SRBP model and a classic univariate probit
model using the same functional form specification. Mixed SRBP can account simulta-
neously for unobserved confounding and overdispersion, SRBP accounts for unobserved
confounding only whereas the probit model cannot account for either of these issues.

Results are displayed in Table 3. Bayesian confidence intervals for the ATE and cor-
relation coefficient were obtained using 1000 coefficient vectors simulated from the pos-
terior distribution of the estimated model parameters (see Section 3.2).

For the mixed SRBP model, the estimated bivariate mass points arem1 ¼ ð1:50;�0:24Þ
andm2 ¼ ð�8:27; 0:20Þ, with probabilities 0:71 and 0:29, suggesting the absence of relevant
predictors of private health insurance. The estimates of q� are both negative and statistically
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significant, suggesting the presence of endogeneity. Specifically, the point estimate obtained
with mixed SRBP is larger than that of SRBP, although their intervals overlap. This confirms
the finding by Holly et al. (1998) which is consistent with the interpretation that unobserved
confounders are present and have an opposite significant effect on ins and util.

Moving on to the estimated ATE, the result obtained with the univariate probit model
suggests that the effect of private health care insurance is not significant. However, this
estimate may be biased due to the unmodelled effects. If we look at the results obtained
with the SRBP models, that is models which account for unobserved confounding, private
health care insurance has a significant positive impact on the probability of using private
health care services. Specifically, the mixed SRBP estimate suggests that the probability
of using private medical services increases by 0.38 points for an individual with private
health coverage as compared to an individual without private insurance. The point esti-
mate obtained with mixed SRBP is larger than that obtained using SRBP, although their
intervals overlap. Results for the other parametric coefficients (not reported here) are in
agreement with those found in the literature. The change in the correlation coefficient and
ATE of mixed SRBP suggests that decomposing the disturbance in the model into a part
attributed to endogeneity and another attributed to overdispersion might have led to a
more accurate estimate of the effect of interest. Figure 2 shows the impacts of age, inc
and bmi for the treatment and outcome equations obtained using the mixed SRBP model.
These results support the presence of nonlinear effects in the outcome equation.

In summary, if we employ a univariate probit model to estimate the effect of private
health insurance, the impact appears not to be statistically significant. However, this result
is likely to be biased by the presence of unobserved confounding and overdispersion. The
estimates obtained with the SRBP models, which account for unobserved confounding,
are likely to be more realistic, with mixed SRBP also accounting for overdispersion.

6. Discussion

In this paper, we introduce an algorithm for the simultaneous estimation of the
equations of a semiparametric recursive bivariate probit model with nonparametric
mixing. Estimation is carried out by maximising a penalised likelihood function using an
Expectation-Maximisation algorithm. We also address the issues of automatic multiple
smoothing parameter selection and inference. Results from our simulation study suggest
that the approach is effective for estimating the effect of an endogenous binary predictor
on a binary outcome. Interestingly, the model neglecting overdispersion yields average

TABLE 3
Estimates of the ATE andqe in the health care study obtained using the univariate probit model, and
semiparametric recursive bivariate probit without and with nonparametric random effects (SRBP and

mixed SRBP, respectively).

dATEð95%CIsÞ q̂eð95%CIsÞ
Probit 0.07 (�0.05,0.19) –
SRBP 0.25 (0.13,0.36) �0.26 (�0.44,�0.07)
mixed SRBP 0.38 (0.18,0.58) �0.46 (�0.68,�0.24)

Notes: Bayesian confidence intervals for ATE and qe were calculated using 1000 coefficient vectors simu-
lated from the posterior distribution of the estimated model parameters.
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treatment effect estimates exhibiting substantial bias only for the case of bimodal random
effects densities. However, this is not true for the estimation of the parameter linking the
two model equations (which is important for ascertaining the presence of endogeneity),
where substantial bias is observed in all simulation settings. The methodology was illus-
trated using data from a survey on private medical care utilization. For this application,
differences in the point estimates of the average treatment effects were found between the
models with and without random effects, and a classic univariate probit model.

Maximum likelihood estimators are typically sensitive to model error misspecifica-
tions. This creates a need for considering different joint distributions of the model errors.
A copula approach can be used to that end (e.g. Nelsen 2006). As for the nonparametric
approach to the estimation of the random effects distribution, although it yields reasonably
efficient parameter estimates, it has several drawbacks. For instance, the resulting discrete
estimate of the distribution is not satisfactory as it is more likely to be continuous than
discrete. A more relevant drawback is the amount of information required to obtain an
accurate estimate of the nonparametric mixing distribution (Carroll & Hall 1988), which
can ultimately affect the precision of the effect of interest. We plan on extending the
approach presented here in order to include random effects generated by flexible densities
that avoid the restrictive assumption of normality but also allow for smooth estimates of
the random effects densities. Such densities can, for instance, be represented by mixtures
of Gaussians.

Appendix A: Observed information matrix

We briefly describe the method we used to obtain the observed information matrix.
First, the log-likelihood, ‘ðdjyÞ ¼ Pm

i¼1 log f ðyijdÞ, of the hierarchical model is written
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Figure 2. Function estimates in the health care study, on the scale of the respective linear predictors,
obtained using a mixed SRBP model. Dashed lines represent 95% Bayesian confidence intervals.
The plots in the two panels show the estimated smooth terms of age, inc and bmi for the treat-
ment and outcome equations, respectively. The numbers in brackets in the y-axis captions are the
estimated degrees of freedom of the smooth curves.
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in terms of both the observed data and random effects, as
Pm

i¼1 logf
PF

l¼1 f ðyijd; ui ¼ mlÞ
Prðui ¼ mljdÞg, which for the sake of notational convenience is expressed as
‘ðdÞ ¼ Pm

i¼1 logf
PF

l¼1 f ðyi; uljdÞg. From this, we obtain the score function,
Wðy; dÞ � @‘ðdÞ=@d; as

W ¼
Xm
i¼1

XF
l¼1

f ðyi; uljdÞ	PF
l¼1 f ðyi; uljdÞ


 @ log f ðyi; uljdÞ
@d

¼
Xm
i¼1

XF
l¼1

wil
@ log f ðyi; uljdÞ

@d
¼

Xm
i¼1

XF
l¼1

wilwil;

where wil and wil have the obvious definitions. Note that the above score function and the
one obtained by differentiating (7) are exactly the same (except for the penalty term).
Now, the observed information matrix J � �@2‘ðdÞ=@d@d> ¼ �@W=@d>, is obtained as

J ¼�
Xm
i¼1

XF
l¼1

wil
@2 log f ðyi; uljdÞ

@d@d>

�
Xm
i¼1

XF
l¼1

wil
@ log f ðyi; uljdÞ

@d

@ log f ðyi; uljdÞ
@d>

þ
Xm
i¼1

XF
l¼1

wil
@ log f ðyi; uljdÞ

@d

( ) XF
l¼1

wil
@ log f ðyi; uljdÞ

@d

( )>

¼ � @2Q
@d@d>

�
Xm
i¼1

VarðwiÞ;

with expressions involving model parameters being evaluated at parameter estimates
obtained at convergence of the fitting algorithm.
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