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POLYPHONIC MUSIC TRANSCRIPTION USING NOTE ONSET AND OFFSET DETECTION

Emmanouil Benetos and Simon Dixon

Centre for Digital Music, Queen Mary University of London, London E1 4NS, UK

ABSTRACT

In this paper, an approach for polyphonic music transcription based
on joint multiple-F0 estimation and note onset/offset detection is
proposed. For preprocessing, the resonator time-frequency image
of the input music signal is extracted and noise suppressionis per-
formed. A pitch salience function is extracted for each frame along
with tuning and inharmonicity parameters. For onset detection, late
fusion is employed by combining a novel spectral flux-based feature
which incorporates pitch tuning information and a novel salience
function-based descriptor. For each segment defined by two on-
sets, an overlapping partial treatment procedure is used and a pitch
set score function is proposed. A note offset detection procedure is
also proposed using HMMs trained on MIDI data. The system was
trained on piano chords and tested on classic and jazz recordings
from the RWC database. Improved transcription results are reported
compared to state-of-the-art approaches.

Index Terms— Automatic transcription, multiple-F0 estima-
tion, acoustic signal processing, music information retrieval

1. INTRODUCTION

Automatic transcription is the process of converting an audio record-
ing into a symbolic representation using some form of musical no-
tation. While the transcription of monophonic music is considered
to be a solved problem, the creation of an automated system able to
transcribe polyphonic music without setting restrictionson the de-
gree of polyphony and the instrument type still remains open. For an
overview on transcription approaches, the reader is referred to [1].

Approaches to transcription related to the current work include
the iterative spectral subtraction-based system in [1], the rule-based
system in [2] which employed the resonator time-frequency image
(RTFI) as a time-frequency representation, and the score function-
based joint multiple-F0 estimation approach in [3]. Previous work
by the authors includes a system for iterative multiple-F0 estimation
[4], which was also evaluated for the 2010 MIREX multi-F0 estima-
tion task.

As far as onset detection is concerned, an overview can be seen
in [5], where the spectral flux and phase deviation are combined into
a complex onset detection feature. In addition, the two aforemen-
tioned features along with an F0 descriptor are combined using de-
cision fusion in [6].

Here, an approach for polyphonic transcription using joint
multiple-F0 estimation, onset and offset detection is proposed.
For onset detection, two novel descriptors are proposed which ex-
ploit information from the transcription preprocessing steps. For
multiple-F0 estimation, a pitch set score function which combines
several pitch-related features is proposed. Finally, a novel hid-
den Markov model-based offset detection procedure is proposed.

This work was supported by a Westfield Trust Research Studentship
(Queen Mary, University of London).

Experiments on recordings from the RWC database [7] provide
competitive transcription results.

The outline of the paper is as follows. In Section 2, the prepro-
cessing steps used in the proposed system are described. Thepro-
posed onset detection procedure is presented in Section 3. Sections
4 and 5 detail the multiple-F0 estimation system and the noteoffset
detection module, respectively. Finally, experiments aredescribed
in Section 6 and conclusions are drawn in Section 7.

2. PREPROCESSING

2.1. Resonator Time-Frequency Image

The constant-Q resonator time-frequency image (RTFI) is employed
[2], due to its suitability for music signal time-frequencyrepresenta-
tion. The RTFI selects a first-order complex resonator filterbank
to implement a frequency-dependent time-frequency analysis. A
constant-Q representation was selected, because the inter-harmonic
spacings are the same for any periodic sounds. The time interval be-
tween two successive frames is set to 40 ms, the number of binsper
octaveb is set to 120, and the frequency range is set from 27.5 Hz
(A0) to 12.5 kHz. From now on, the employed absolute value of the
RTFI will be denoted asX[n, k], wheren is the time frame andk
the log-frequency bin (in 10 cent resolution). When needed,X[k]
will stand for the RTFI slice for a single time-frame.

2.2. Spectral Whitening and Noise Suppression

Spectral whitening is applied in multiple-F0 estimation systems in
order to suppress timbral information and make the following anal-
ysis more robust to different sound sources. Here, the method pro-
posed in [1] is employed, modified for log-frequency spectrainstead
of linear frequency ones. For each frequency bin, the squareroot of
the power within a subband of1

3
octave span multiplied by a Han-

ning window is computed, denotedσ[k]. Afterwards, each bin is
scaled according toY [k] = (σ[k])ν−1X[k], whereν = 0.33 is a
parameter determining the amount of spectral whitening applied.

Afterwards, an algorithm for noise suppression is performed to
the whitened RTFI. A two-stage median filtering procedure with 1

3
octave span is applied toY [k] resulting in a noise representation
N [k], in a similar way to [4]. Cepstral smoothing usingD = 30
coefficients is applied toN [k] (as in [3]) and the resulting smooth
curveN ′[k] is subtracted fromY [k], resulting in the whitened and
noise-suppressed RTFI representationZ[k].

2.3. Pitch Salience Function

UsingZ[k], the log-frequency pitch salience functions[p] proposed
in [4] is extracted, wherep ∈ [21, . . . , 108] denotes MIDI pitch.
Tuning and inharmonicity coefficients are also extracted. Atuning
deviationδp is considered for each pitch, with a tuning search space
of ±40 cents around the ideal tuning frequency. Inharmonicity is



also considered for each pitch, with the range of the inharmonicity
coefficientβp set between0 and5 · 10−4. Using the extracted in-
formation, a harmonic partial sequence (HPS)V [p, h] for each can-
didate pitchp and its harmonicsh = 1, . . . , 13 is also stored for
further processing.

3. ONSET DETECTION

In order to accurately detect onsets in polyphonic music, two onset
descriptors which exploit information from the transcription prepro-
cessing steps are proposed and combined using late fusion. Firstly, a
novel spectral flux-based feature is defined, which incorporates pitch
tuning information. Although spectral flux has been successfully
used in the past for detecting hard onsets [5], false alarms may be
detected for instruments that produce frequency modulations such
as vibrato or portamento. Thus, a semitone-resolution filterbank is
created fromZ[n, k], where each filter is centered at the estimated
tuning position of each pitch:

ψp[p, n] =

( kp,0+δp+4
∑

l=kp,0+δp−4

X[l, n] ·Wp[l]

) 1

2

(1)

wherekp,0 is the bin that ideally corresponds to pitchp andWp is
a 80 cent-span Hanning window centered at the pitch tuning posi-
tion. Using the output of the filterbank, the novel spectral flux-based
descriptor is defined as:

SF [n] =

108
∑

p=21

HW (ψ[p, n]− ψ[p, n− 1]) (2)

whereHW (·) = ·+|·|
2

is a half-wave rectifier. Afterwards, onsets
can be detected by performing peak picking onSF [n].

In order to detect soft onsets, which may not indicate a change
in signal energy [5], a pitch-based descriptor is proposed which
is based on the extracted salience function. The salience function
s[p, n] is smoothed using a moving median filter with 120 ms span,
in order to reduce any pitch fluctuations that might be attributed
to amplitude modulations (e.g. tremolo). The smoothed salience
function s̄[p, n] is then warped into a chroma-like representation:

Chr [ρ, n] =
6

∑

i=0

s̄[12 · i+ ρ+ 20, n] (3)

whereρ = 1, . . . , 12. Afterwards, the half-wave rectified first-order
difference ofChr [ρ, n] is used as a pitch-based onset detection func-
tion (denoted as salience differenceSD):

SD [n] =
12
∑

i=1

HW (Chr[i, n]−Chr[i, n− 1]) (4)

Accordingly, soft onsets are detected by peak picking onSD [n].
In order to combine the onsets produced by the two aforemen-

tioned descriptors, late fusion is applied, as in [6]. From each of the
two descriptors an onset strength signal is created, which contains
either the value one at the instant of the detected onset or zero oth-
erwise. The fused onset strength signal is created by summing and
smoothing these two signals using a moving median filter of 40ms
length. Onsets are detected by performing peak picking on the fused
signal by selecting peaks with a minimum 80 ms distance. For tuning
onset detection parameters, a development set containing ten 30 sec
classical recordings from the meter analysis data from Ghent Uni-
versity [8] was employed.

4. MULTIPLE-F0 ESTIMATION

4.1. Overlapping Partial Treatment

For each segment defined by two consecutive onsets, multiple-F0
estimation is applied in order to detect the pitches present. The seg-
ment is characterized by the meanX[n, k] of the first 3 frames after
the onset (which correspond to the steady-state part of the sound) and
a corresponding segment salience function and HPS are extracted. A
set ofCN candidate pitches is selected, based on the maximum val-
ues of the salience functions[p] (here,CN is set to 10 as in [9]). The
pitch candidate set will be denoted asC.

In order to recover the amplitude of overlapped harmonics, par-
tial treatment is applied for each possible pitch candidatecombina-
tion. In [1], partial amplitudes were recovered using interpolation.
Here, a discrete cepstrum-based spectral envelope estimation algo-
rithm is employed [10] in order to recover overlapped partial ampli-
tudes. Firstly, given a setC of pitch candidates, a partial collision list
is computed. For a given HPS, if the number of overlapped partials
is less thanNover , then the amplitudes of the overlapped partials are
estimated from the spectral envelopeSEp[k] of the candidate pitch
using only amplitude information from non-overlapped partials. If
the number of overlapped partials is equal or greater thanNover , the
partial amplitudes are estimated using spectral envelope information
from the complete HPS.

4.2. Pitch set score function

Having selected a set of possible pitch candidates and performed
overlapping partial treatment on each possible combination, the goal
is to select the optimal pitch combination for a specific timeframe.
In [3], Yeh proposed a score function which combined four criteria
for each pitch: harmonicity, bandwidth, spectral centroid, and syn-
chronicity. In addition, [9] employed the spectral flatnessof pitch
candidates along with the spectral flatness of the noise residual.

Here, a weighted pitch set score function is proposed, which
combines spectral and temporal characteristics of the candidate F0s,
and also attempts to minimize the noise residual to avoid anymissed
detections. Also, features which concern harmonically-related F0s
are included in the score function, in order to suppress any harmonic
errors. Given a candidate pitch setC ⊆ C with size |C|, the pro-
posed pitch set score function is:

L(C) =

|C|
∑

i=1

(Lp(i)) + Lres (5)

whereLp(i) is the score function for each candidate pitchp ∈ C,
andLres is the score for the residual spectrum.Lp andLres are
defined as:

Lp = w1Fl [p] + w2Sm[p]− w3SC [p] +w4PR[p]

Lres = w5Fl [Res] (6)

Fl [p] denotes the spectral flatness of the HPS, which is maxi-
mized when the input sequence is smooth and its definition canbe
found in [9].Sm[p] is thesmoothness measure of a HPS, which was
proposed in [11]. A high value ofSm[p] indicates a smooth HPS.
SC [p] is the spectral centroid for a given HPS [3], which indicates
its center of gravity.

PR[p] is a novel feature, which stands for the harmonically-
related pitch ratio. It is applied only in cases of harmonically-related



F0s in order to estimate the ratio of the energy of the smoothed par-
tials of the higher pitch compared to the energy of the smoothed
partials of the lower pitch. It is formulated as follows:

PRl[p] =
3

∑

h=1

V [p+ 12 · log2(l), h]

V [p, l · h]
(7)

wherep stands for the lower pitch andp+12 · log2(l) for the higher
harmonically-related pitch.l stands for the harmonic relation be-
tween the two pitches (fhigh = lflow). In case of more than one
harmonic relation between the candidate pitches, a mean value is
computed:PR[p] = 1

|Nhr |

∑

l∈Nhr
PRl[p], whereNhr is the set of

harmonic relations. A high value ofPR indicates the presence of a
pitch in the higher harmonically-related position.

Res denotes the residual spectrum, which can be expressed in a
similar way to the linear frequency version in [9]:

Res =

{

Z[k]

/

∀p,∀h,

∣

∣

∣

∣

k − kp,h >
∆W

2

∣

∣

∣

∣

}

(8)

where∆W denotes the mainlobe width of the employed window
W . In order to find a measure of the ‘whiteness’ of the residual,
1− Fl [Res ], which denotes the residual smoothness, is used.

In order to train the weight parameterswi, i = 1, . . . , 5 of the
features in (6), training was performed using the Nelder-Mead search
algorithm for parameter estimation [12] with 100 classic, jazz, and
random piano chords from the MAPS database [9] as a training set.
Trained weight parameterswi were{1.3, 1.4, 0.6, 0.5, 25}. Finally,
the pitch candidate set that maximizes the score function:

Ĉ = argmax
C⊆C

L(C) (9)

is selected as the pitch estimate for the current frame.

5. OFFSET DETECTION

In order to accurately detect note offsets we employ hidden Markov
models (HMMs). HMMs have been used in the past for smoothing
transcription results (e.g. [13]) but to the authors’ knowledge they
have not been utilized for offset detection. Each pitch is modeled by
a two-state HMM, denoting pitch activity/inactivity. The observation
sequence is given by the output of the multiple-F0 estimation step for
each pitch:Op = {op[n]}, n = 1, . . . , N , while the state sequence
is given byQp = {qp[n]}. In order to estimate state priorsP (qp[1])
and the state transition matrixP (qp[n]|qp[n − 1]), MIDI files from
the RWC database [7] from the classic and jazz genres were used.
For each pitch, the most likely state sequence is given by:

Q
′
p = argmax

qp[n]

∏

n

P (qp[n]|qp[n− 1])P (op[n]|qp[n]) (10)

In order to estimate the observation probabilitiesP (op[n]|qp[n]),
we employ a sigmoid curve which has as input the salience function
of an active pitch from the output of the multiple-F0 estimation step:

P (op[n]|qp[n] = 1) =
1

1 + e−(s[p,n]−1)
(11)

wheres[p, n] denotes the salience function value at framen. The
output of the HMM-based postprocessing step is generated using the
Viterbi algorithm. The note offset is detected as the time frame when
an active pitch between two consecutive onsets changes froman ac-
tive to an inactive state for the first time. An example for thecom-
plete transcription system, from preprocessing to offset detection, is
given in Fig. 1 for a guitar recording from the RWC database.
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Fig. 1. (a) The pitch ground-truth of an excerpt from ‘RWC MDB-
J-2001 No. 9’ (guitar). (b) The transcription output of the same
recording. The abscissa corresponds to seconds.

6. EVALUATION

For the transcription experiments, we used 12 excerpts fromthe
RWC database [7], which have been used in the past to evaluatetran-
scription approaches in [14, 15, 13]. They contain classical and jazz
music produced by a variety of instruments with various polyphony
levels. A list of the recording titles along with the instruments
present in each one can be seen in [13]. Non-aligned MIDI files
are also provided as ground-truth. However, these MIDI filescon-
tain several note errors and unrealistic note durations, making them
unsuitable for transcription evaluation. As in [14, 15, 13], aligned
ground-truth MIDI data was created for the first 23 sec of each
recording, using Sonic Visualiser (http://www.sonicvisualiser.org/).
All in all, 1187 note events are contained in the test set.

For evaluating the transcription experiments, several metrics are
employed, such as the overall accuracy (Acc), the total error (Etot ),
the substitution error (Esubs), missed detection error (Efn ), and false
alarm error (Efp). Definitions for the aforementioned metrics can
be found in [14, 15, 13]. It should be noted that all evaluations
take place by comparing the transcribed output and the ground-truth
MIDI files at a 10 ms scale. For assessing the onset detection per-
formance of the system, the precision (Pre), recall (Rec), and F-
measure (F ) were employed, with a 50 ms tolerance around ground
truth onset times, as in the MIREX onset detection task.

Table 1 shows transcription results for the proposed system, ap-
plying onset detection and multiple-F0 estimation only or also ap-
plying offset detection. A comparison is made with reportedresults
in the literature for the same files [13, 15, 14], where the proposed
method reports improved meanAcc. It should be noted that the pro-
posed system demonstrates impressive results for some recordings
compared to state-of-the-art (e.g. in file 10, which is string quar-
tet recording). Additional insight to the proposed system’s perfor-
mance is given in Table 2, where the aforementioned error metrics
are shown. It can be seen that by applying offset detection, an ac-
curacy improvement of 1.5% is reported. Generally, the system re-
ports relatively few false alarms, but contains a considerable num-
ber of missed detections. For comparison, excerpts from theRWC



Recording Onsets only Onsets+offsets [13] [15] [14]
1 58.0% 60.0% 63.5% 59.0% 64.2%
2 72.1% 73.6% 72.1% 63.9% 62.2%
3 60.2% 62.5% 58.6% 51.3% 63.8%
4 64.8% 65.2% 79.4% 68.1% 77.9%
5 52.5% 53.4% 55.6% 67.0% 75.2%
6 74.4% 76.1% 70.3% 77.5% 81.2%
7 67.6% 68.5% 49.3% 57.0% 70.9%
8 58.3% 60.1% 64.3% 63.6% 63.2%
9 49.2% 50.3% 50.6% 44.9% 43.2%
10 70.5% 72.4% 55.9% 48.9% 48.1%
11 56.2% 56.2% 51.1% 37.0% 37.6%
12 33.0% 36.6% 38.0% 35.8% 27.5%

Mean 59.7% 61.2% 59.1% 56.2% 59.6%
Std. 11.5% 11.2% 11.5% 12.9% 16.9%

Table 1. Transcription results (Acc) for the 12 RWC recordings
compared with other approaches.

Method Acc Etot Esubs Efn Efp

Onsets only 59.7% 40.3% 8.4% 24.6% 7.3%
Onsets+offsets 61.2% 38.8% 7.3% 24.8% 6.7%

Table 2. Transcription error metrics for the RWC recordings.

database are available online1, along with synthesized transcriptions
of the system.

Onset detection results using the fused descriptor, the modified
SF only or theSD only, can be seen in Table 3. It should be noted
that for the transcription system, we aim for highRec instead of high
F . Thus, it is more important to obtain most of the correct onsets
and slightly over-segment the input (which will not affect multiple-
F0 estimation), rather than lose any potential onset candidates which
will lead to missed pitch detections.

7. CONCLUSIONS

In this paper, a system for automatic transcription of polyphonic
music was proposed, which employed joint multiple-F0 estimation,
a late fusion-based onset descriptor, and HMM-based offsetdetec-
tion. Experiments performed on multi-instrument recordings from
the RWC database produced results which outperformed the state-
of-the-art, while the use of offset detection demonstrateda consistent
improvement throughout the recordings.

In the future, the proposed system will be evaluated at the forth-
coming MIREX multi-F0 estimation task, as was done in 2010 for a
previous system proposed by the authors [4]. In order to reduce the
number of missed detections, future research will focus on model-
ing the attack, transient, sustain, and release states of the produced
notes. Finally, system performance can be improved by perform-
ing joint multiple-F0 estimation and note tracking, instead of frame-
based multiple-F0 estimation with subsequent note tracking.
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