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~ Abstract— Unsupervised speaker change detection is addressedthird system, the processing is split into two main stages: |
in this paper. Three speaker segmentation systems are examined.the first stage, a metric-based approach using Line Spectral
The first system investigates the AudioSpectrumCentroid and Pairs (LSPs) is implemented, while in the second stage, the

the AudioWaveformEnvelope features, implements a dynamic . . . .
fusion scheme, and applies the Bayesian Information Criterion J€tected potential speaker change points are validateg usi

(BIC). The second system consists of three modules. In the BIC.
first module, a second-order statistic-measure is extracted; th The rest of the paper is organized as follows. The three

Euclidean distance and theT? Hotelling statistic are applied systems are described in Section Il. Experimental results
sequentially in the second module; and BIC is utilized in the third are shown in Section Ill. Statistical analysis is detailed i

module. The third system, first uses a metric-based approach, Section IV d. finall lusi d in Section V
in order to detect potential speaker change points, and then ection 1V, and, Tinally, conclusions are drawn in section v.

the BIC criterion is applied to validate the previously detected Il. BIC-BASED SPEAKER SEGMENTATION
change points. Experiments are carried out on a dataset, which
is created by concatenating speakers from the TIMIT database. A. The first system
A systematic performance comparison among the three systems : ; ;
is c%arried outpby means of ong-way ANOVAgmethod andy post Thg system relies on the BIC_Va”ant propgsed n [2].' The
hoc Tukey’s method. foIIow!ng features are extract.eq. the_ MFCCs; the maximum
magnitude of the DFT coefficients in a speech frame; the
|. INTRODUCTION short-time energy (STE); the AudioSpectrumCentroid; and
Automatic speech segmentation aims at finding the speakerdioWaveformEnvelope [4]. The last two features belong
change points in an audio stream. Bayesian Information Ctd low level MPEG-7 descriptors. With respect to the rep-
terion (BIC) has been widely applied for speaker segmeresentation of the speakers, every speaker is describédawit
tation [1], [2], [3], [4]. A two-pass segmentation techngqu multivariate Gaussian probability density function (pdfith
called DISTBIC has improved the performance by utilizingnean vectorm and covariance matri¥.
distance-based segmentation before applying BIC [1]. A BIC Multiple passes are allowed. In the first four passes, we
alternative, which does not need tuning was introduced]in [2esort to MFCCs; in the 5th pass the maximum DFT magnitude
Meanwhile, novel features like the smoothed zero crossitgg ris used; in the 6th pass the STE is taken into account;
(SZCR), the perceptual minimum variance distortionless rim the 7th pass the MFCCs are explored again; in the 8th
sponse, and the filterbank log coefficients were proposed\[5] pass the AudioSpectrumCentroid is used; in the 9th pass the
hybrid algorithm, which combines metric-based segmemtatimaximum DFT magnitude is investigated, and in the last pass
with BIC and model-based segmentation with Hidden Markahe maximum of the AudioWaveformEnvelope is exploited.
Models (HMMs) is described in [3]. A creditable review onThe decisions taken in one pass are fed to the next pass, as in
speaker segmentation can be found in [6]. a Bayesian network. After each pass, the number of chunks is
The major contribution of this paper is in the systematidecreased, due to specific potential change points aradéxta
comparison of the performance of three speaker segmamtatis being false. Several researchers [1], [5], [11] have came
systems performance. All systems are BIC-based, their effie conclusion that the more data are available, the better i
ciency is tested on the same dataset, and the same expaimehé performance.
protocol is utilized. The novelty of the paper lies in thetfac Referring to the scalar features, that is to the maximum
that their performance is statistically analyzed by using-o magnitude of DFT, the STE, and the maximum of Au-
way analysis of variance (one-way ANOVA), followed bydioWaveformEnvelope, a dynamic thresholding is employed.
Tukey’s method. The first system investigates scalar antbvecWe start with an ad hoc threshottl It is determined after a
features and applies a fusion scheme, which combines ttensiderable number of experiments so as to maximizéthe
partial results so as it boosts efficiency. In the secondeaystmeasure, as it is defined in (8). Let us consider a recording
there are three modules. The first module preprocesses it hasl chunks. We test the possible speaker change ppint
utterances, the second module uses the Euclidean distawbéch lays between chunksandk + 1. If f(k) is the current
followed by theT? Hotelling statistic on MFCCs, and thefeature value computed at churk we estimatef(k + 1)
last module utilizes BIC in conjunction with MFCCs. In theand then we calculate the value of the absolute difference



between these values denoted by= |f(k + 1) — f(k)|. expected to improve the classification performance, coetpar
Let € be the mean value af over all chunks of a recording: to both asymmetric terms taken individually in [1], [8]. Sym
LSV #(L+ 1) — f(I)|. Thene is compared tad, metrization results to:

€= 17 2u=1
whose value is adjusted as follows:

’ K =log(a(X, Y)?/g(X, Y)h(X, Y))+
) {19 +0.005¢  whend < ¢ log(a(Y,X)*/g(Y, X)(Y,X))

¥ —0.005¢  otherwise. @ =3logtr(XY 1) 4+ 3logtr(YX ™) —6logs (2
Whenever a feature vector is employed (such as théered=50. Next, we compardS with an ad hoc threshold
MFCCs), BIC is used. To estimate the GMM within BICY. If K > 4 then a turn point is detected between the
the expectation-maximization (EM) algorithm is appliedm#4 two segments, otherwise the potential speaker change point

ever, the EM algorithm may converge at local minima. This discarded.

issue, combined with the fact that BIC is a weak classifier, In the second module, the first segment is modeled by
leads us to propose a fusion scheme. Thus, we could theotee Gaussian distributiol/(mx, X x), the second segment
ically reduce the error by repeating the experimétimes by N(my,Xy) and the union of the two segments by
and applying majority voting. To be more specific, we obtaiV'(mz, X 7). The extracted features are the MFCCs and delta
a set of possible speaker turn points for each repetitioe. TMFCCs. The Euclidean distance and ffieHotelling statistic.
possible speaker change points that make their appearancé“aHotelling statistic betweemny and my were usedI™

a sufficient frequency$ in the current pass are candidate turhlotelling statistic is defined as [5]:

points for the next pass. If they fail to appeértimes, they Nx Ny i

are discarded. BottR and S are determined heuristically. dr2 (mx, my) = m(mx —my)" 3, (mx — my)
Typical values forR and S are 5 and 4, respectively. The X Y (3)
aforementioned procedure is detailed in [4]. where Ny, Ny is the number of frames within each segment

respectively and each frame has a duration of 40 ms. In this
case, a tandem Bayesian Network is utilized, since in the two
The second system is structured in three modules. In the fidgtector case, the tandem network is dominant [9]. As atresul
module, a total set of 24 features per segment is extractezl. Tve examine every potential speaker change point by using
set includes the mean and the variance of the following featithe Euclidean distance betweenx and my and then, we
values: maximum magnitude of DFT, STE per segment, maxe-examine them using? Hotelling statisticd;- (mx, my ).
mum of AudioWaveformEnvelope per segment, and maximuithe reason for using Euclidean distance first in the chain
of AudioSpectrumCentroid per segment. It also considess thof the Bayesian Network is that it has been proven to yield
first-order (delta) and second-order (delta-delta) diffiees. poorer results thaf? Hotelling statistic experimentally, which
A feature selection algorithm is applied in order to derivis explained by the fact that Euclidean distance does net tak
the optimum feature subset for speaker segmentation [&. Tihto account the correlation of the data, since it disregaid.
search strategy implemented is Branch and Bound, whibih[9], it is established that it is better to put the best dide
has an almost optimal performance. The traversing alguaritHater in the Bayesian Network chain.
uses depth first search with a backtracking mechanism. TheBIC is applied in the third module. BIC is applied last,
criterion utilized for selection is/ = tr(S_'S,) wheretr(-) because it performs better when the segments are long enough
stands for the matrix trace operatd,, is the within-class [1], [11]. BIC is computed in conjunction with the MFCCs and
scatter matrix,S;, is the between-class scatter matrix. Théhe potential sets of potential speaker change points dréofe
best 5 out of the 24 features are selected. Starting from tBEC, used with delta MFCCs to yield the final set of speaker
most efficient, the selected features are: the mean magmitud change points.
the DFT, the delta AudioWaveformEnvelope, the mean STE, .
the AudioWaveformEnvelope, and the variance of the delfa The third system
magnitude of the DFT. The input audio stream is first down-sampled to 10kHz,
Next, we assume that there are two neighboring segmef&bits, mono channel format. The speech stream is then pre-
each of duration of 2 s, shifted every 20 ms. The feature galuemphasized using the filtéf (z) = 1-0.97z~! and is divided
for the 5 features are computed for 25 segment shifts (whigtto 25 ms analysis frames with 5 ms overlap. Non speech
is equal to 1 s resolution). Features are assumed to follamd silence frames are removed [10]. The system considers
the Gaussian distribution. The covariance matridedpr the only voiced frames, from which 10-order LSP features are
first segment andy” for the second segment, are calculatee@xtracted, that are assumed to be Gaussian distributed. Af-
The proposed statistical measuf€, is a combination of the terwards, speech segments are formed by accumulating the
arithmetic mearu(X,Y), the geometric mean(X,Y), and necessary number of voiced frames, so that there are snofficie
the harmonic mearh(X,Y) of the eigenvalues oy X~!. data to prevent the ill-posed LSP covariance matrices. This
The aformentioned means definitions can be found in [8]. Vil@plies that each segment should at least include 55 voiced
employ log(a(X,Y)?/g(X,Y)h(X,Y)). Symmetrization is frames, which corresponds to a minimum segment duration of

B. The second system



1.375 s. The sliding of the segment window is 0.5 s of voiced Let us denote byV(m,, 3,) the current speech segment

speech. Thus, the basic processing unit is a 1.375 s segnamt by A/ (m;;, X;;) the current quasi-GMM speaker model

and the temporal resolution of the segmentation is 0.5 s. having S Gaussian densities withV;; feature vectors each.
First, speaker change detection is coarsely performedjusithe distance betweeN (m;,X;) and N (msy, X5) is esti-

a metric-based approach to calculate the distance betvegen anated as:

. . s
secutive speech segments. Each speech segment is repdesent B N '

by a multivariate GaussiaA/(m,X). The Kullback-Leibler D= le” BIC(Z;, %) ©)
(K-L) divergence is used to estimate the distance between tw =

speech segmentsand j, defined asD(i,j) = itr[(%; — where w;; = % and N; = Zle Ny;. If D > 0, the

35) (2};1 — Ej‘l)] [11. A potential speaker turn point is potential speaker change point detected in the first stage is
detected between two consecutive speech segments whenewafirmed as a real speaker boundary by the BIC refinement
the following three conditions are verifie®(i,i+1) > D(i+ procedure, otherwise it is rejected.

1,i+2), D(i,i+1) > D(i—1,%),andD(i,i + 1) > 6; [11].
The first two conditions guarantee that a local maximum sxist
The third condition assures that the prominence of themtigta In order to assess the performance of the proposed al-
peak is high enough to be considered relevant. HoweverdRrithm, the TIMIT database was used [12]. A total of 15
is based on a threshold, whose value is not set trivially: rgcordings is created by concatenating speakers from the
too high value would imply a high miss detection rate, an8IMIT database. 10 randomly selected recordings have been
a too low value would increase the false alarm rate. Lu anged to evaluate the performance of the three aforementione

Zhang proposed an automatic data-dependent threshdlgsetsystems, while the remaining 5 recordings have been used for
method [11]: tuning the respective system parameters. Examples of such

parameters aré in the first system/ in the second system,
1 ‘ anda in the third system.
0i=a N Z D(i—n—1i-n) ) Two sets of figures of merit are commonly used. On the
n=0 one hand, one may use the false alarm rdtel R) and the
where N is the number of the past speech segments used ffioiss detection rateM/ D R) defined as:
threshold estimation. We sé&f = 3 anda = 0.4. In order to FA MD
reduce the false alarm rate, we use the BIC difference betwee FAR=grFa MDR=Gr (7)
speech segment¥(m;,¥;) and A (mz, 32), defined as:  where FA denotes the number of false alarm&[D the
number of miss detections, and7T stands for the actual
((N7 + N2)log |X| — Ny log |% | number of speaker turns, i.e. the ground truth. A false alarm
1 1 5) occurs when a speaker turn is detected although it does not
—Nylog¥s) — 5 A0+ 55(5 +1)) log(Ny + Na) exist, a miss detection MD occurs when the process does not
detect an existing speaker turn. On the other hand, one may
where N; and N, are the number of feature vectors used temploy the precision®® RC), recall (RC'L),andF, rates given
estimate\ (m;, 3;) and NV (my, X5), respectivelyNV' (m, %)  by:
is a single Gaussian estimated using both speech segments, CFC CFC 9 PRC RCL
and )\ = 1. If BIC(X,,3,) admits a positive value, the two PRC = 5y RCL="ar = Prerner (8)

speech segments are likely to originate from differentkpesa \where C FC' denotes the number of correctly found changes

so the speaker change point is accepted. Otherwise, noespegkd DET is the number of the detected speaker changes.

change point is declared. F, admits a value between 0 and 1. The higher its value is,
Next, we utilize the approach proposed in [11], in ordefe better performance is obtained. Between the pait$R,

to refine the detected speaker change points and build D R) and (PRC, RCL) the following relationships hold

speaker models. Speaker models are stored using a qUaSIPR = 1 — RCL and FAR = S ggCL-',—};%ACL —. Table

GMM approach, but we propose a different implementatiandemonstrates the performance of the 3 systems in terms of
of the quasi-GMM procedure. Each speaker is modeled Ryean value and standard deviation for all the five features of
a quasi-GMM with at most 32 Gaussian components. In Okferit over the 10 randomly selected recordings, created by

implementation, if no speaker change is detected at a specffbncatenating speakers from the TIMIT database.
point, instead of discarding the arriving speaker data when

the model reaches a number of 32 time-dependent Gaussian IV. STATISTICAL ANALYSIS

components, the oldest component is marked in the currenOur aim is to test whether the performance of each system
speaker model and is replaced by the component created fraifferentiates significantly from the other, with respeetthe

the new speech data. This mechanism is robust to speakaean of all the five figures of merit. One-way ANOVA is
whose voice starts to present changes after talking for loeglected for this purpose and is applied for a 95% confidence
periods of time, or to long-term changes of background noisavel. The null hypothesis, that the groups means are equal i
or recording conditions. tested, i.e. the systems do not differentiate significafityn

Ill. EXPERIMENTAL RESULTS

BIC(Z1, %) =

N =




TABLE | TABLE Il

PERFORMANCE OF THE3 SYSTEMS ON10 RANDOMLY SELECTED 95% CONFIDENCE INTERVALS FOR ALL PAIRWISE COMPARISONS OF THE
RECORDINGS IN TERMS OF MEAN VALUE AND STANDARD DEVIATION 3 SYSTEMS FORPRC', RCL, F1, FAR, AND MDR.
System examined| First System| Second Systen] Third System
PRC (mean 0.780 0.490 0.678 Systems PRC RCL F FAR MDR
PRC (st. dev) 0.137 0.040 0.155 1°f - 2nd 1 10.16,0.43] | [-0.26,0.02] | [0.02,0.20] | [-0.36,-0.12] | [-0.02,0.25]
RCL (mean 0.700 0.812 0.546 1% - 377 | [-0.03,0.24] | [-0.01,0.27] | [0.05,0.23] [ [-0.13,0.12] | [ -0.28,-0.01]
RCL (st. dev) 0.136 0.111 0.108 2nd - 374 [1-0.32,-0.05] | [0.11,0.39] | [-0.06,0.12]| [0.11,0.35] | [-0.39,-0.12]
Fy (mean 0.720 0.607 0.580
Fy (st. dev) 0.081 0.037 0.11
FAR (mean 0.218 0.455 0.244
FAR (st. dev) 0.135 0.060 0.117
MDR (mean 0305 0188 0442 system appears to favors accuracy, as can be deducted from
MDR (st. dev) 0.136 0111 0.108 its lowest FAR score. The second system exhibits the lower

M DR, which is consistent with the research community’s
trend to considerM DR more important thanF AR, since
one another. The alternative hypothesis states that thepgrothe latter is easier to remedy. The third system puts a higher
means are unequal, i.e. at least one of the systems differgphasis on the real-time operation and also manages to
from the rest. The"-statistic value and thg-value for all five maintain low F'AR levels.
efficiency measures is shown in Table Il. As it is easy to deduc
from Table Il, the three systems are statistically diff¢yevith V. Moschou acknowledges the FP6 European Union Network
respect toPRC, ROL, F1, and M DR, but there appears to of Iéxcellence MUSCLE "E/Iultimedia Understpanding through Se-

be no statistically significant difference ffAR. mantics, Computation and Learning” (FP6-507752). M. Kotti ac-
TABLE Il knowledges the support project 03ED 849 co-funded by the Euro-
pean Union and the Greek Secretariat of Research and Technology
F-STATISTIC VALUES AND p-VALUES FOR PRC, RCL, Iy, FAR, AND  (Hellenic Ministry of Development) of the Operational Program for
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