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DEEP NEURAL NETWORKS WITH VOICE ENTRY ESTIMATION
HEURISTICS FOR VOICE SEPARATION IN SYMBOLIC MUSIC
REPRESENTATIONS

Reinier de Valk
Jukedeck Ltd.
reinier@jukedeck.com

ABSTRACT

In this study we explore the use of deep feedforward neu-
ral networks for voice separation in symbolic music rep-
resentations. We experiment with different network archi-
tectures, varying the number and size of the hidden layers,
and with dropout. We integrate two voice entry estimation
heuristics that estimate the entry points of the individual
voices in the polyphonic fabric into the models. These
heuristics serve to reduce error propagation at the begin-
ning of a piece, which, as we have shown in previous work,
can seriously hamper model performance.

The models are evaluated on the 48 fugues from Johann
Sebastian Bach’s The Well-Tempered Clavier and his 30
inventions—a dataset that we curated and make publicly
available. We find that a model with two hidden layers
yields the best results. Using more layers does not lead to
a significant performance improvement. Furthermore, we
find that our voice entry estimation heuristics are highly
effective in the reduction of error propagation, improv-
ing performance significantly. Our best-performing model
outperforms our previous models, where the difference is
significant, and, depending on the evaluation metric, per-
forms close to or better than the reported state of the art.

1. INTRODUCTION

In the domain of symbolic music representation, the term
voice separation denotes the identification of individual
lines (voices) in polyphonic music. More formally, it
can be defined as “the task of separating a musical work
consisting of multi-note sonorities into independent con-
stituent voices” [3]. With regard to the term voice itself,
whose meaning is left ambiguous in the above definition,
a distinction can be made between (i) a voice as a mono-
phonic sequence of successive, non-overlapping notes, and
(i) a voice as a perceptually independent, but not nec-
essarily monophonic, sequence of notes or multi-note si-
multaneities [3]. The former definition corresponds to the
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music-theoretical notion of a voice (also part) [3,9], while
the latter corresponds to the music-psychological notion of
an auditory stream [2]. For certain genres of music—e.g.,
piano sonatas or string quartets—it is more appropriate to
think of the polyphonic fabric as consisting of multiple
streams that may or may not be (partly) monophonic.

Voice separation, especially in monotimbral polyphonic
music (e.g., harpsichord or lute music) for more than three
concurrent voices, has been recognised as a difficult task
even for professional musicians [15, 16,30]. From a mu-
sic information retrieval (MIR) perspective, voice separa-
tion is considered a challenge that has not yet been ad-
dressed satisfactorily. It is, however, an important task:
an adequate identification of the individual voices is a pre-
requisite for tackling several open MIR and musicological
problems, such as automatic transcription [1], pattern re-
trieval [11,26,29], and melodic querying [24,36].

Over the past decade, deep neural networks (DNNs)
have been successfully applied to various computer vision,
speech recognition, and natural language processing tasks,
and, increasingly, to MIR tasks [5]. Consisting of multi-
ple processing layers, DNNs can learn representations of
data with multiple levels of abstraction [25], which makes
them better suited than their shallow counterparts to model
complex input-output relationships. Despite their success-
ful application to a number of MIR tasks, DNNs have not
yet been used for voice separation.

The main contributions of this paper are:

e the implementation and evaluation of DNNs for
voice separation in symbolic music representations;

e the implementation and evaluation of improved
voice entry estimation heuristics,

e the creation of a public benchmark dataset for voice
separation, which currently does not exist.

‘We show that a model that combines a DNN with the voice
entry estimation heuristics performs close to or better than
the reported state of the art.

In what follows, in Section 2, related work is discussed.
In Section 3, the model and the integrating framework are
presented, and in Section 4, the evaluation method is ex-
plained. Section 5 is dedicated to the voice entry estima-
tion heuristics, and Section 6 to the dataset. In Section 7,
the experimental results are discussed, and in Section 8,
conclusions and directions for future work are presented.



2. RELATED WORK

The existing models addressing the task of voice separation
can be divided into two categories: rule-based models and
machine learning models. A characteristic that the models
in both categories share is that they almost all lean heavily
on at least one of two perceptual principles fundamental
in auditory stream segregation, coined the Pitch Proximity
Principle and the Principle of Temporal Continuity in [16].
These principles dictate that the closer two notes are to one
another in terms of pitch or time, respectively, the more
likely they are perceived as belonging to the same voice.

2.1 Rule-based models

The rule-based models form the largest category, contain-
ing a wide array of approaches. In [34], a preference rule
system for contrapuntal analysis is presented. Preference
rules are criteria by which a possible analysis is evalu-
ated. Dynamic programming techniques are used to limit
the amount of possible analyses to be evaluated. In later
work [35], a probabilistic model of polyphonic music anal-
ysis, incorporating a stream segregation component that
builds on the earlier work, is introduced. Inspired by [34]
is the algorithm presented in [27], which consists of a voice
configuration unit generating well-formed local solutions,
and a note assignment unit calculating a preferred solution.

In [4], a contig mapping approach is presented, in which
the music is divided into segments where a constant num-
ber of voices is active, the contigs. Starting from the con-
tigs where the number of voices active equals the nominal
number of voices, the optimal connections to the neigh-
bouring contigs are determined. Gradually branching out,
this process is repeated until all contigs are connected.
A modified version of this approach is proposed in [17],
where the connection of contigs that share a boundary at
which the number of voices increases is prioritised. The
idea is that the distinctiveness (in terms of pitch distance)
of the new voice will prevent it from being connected in-
correctly to one of the voices active in the smaller-size con-
tig. A further improvement of the approach is described
in [14], where, taking into account more context informa-
tion, additional criteria that underly the contig connection
policy are proposed. The criteria are weighted using a ge-
netic algorithm with mutation and crossover operators.

In [33], voice separation is modelled as a clustering
problem. Using an agglomerative single-link clustering al-
gorithm, in an iterative process that starts from an initial
distribution in which each note is a cluster, all clusters are
combined into larger clusters until n simultaneous clusters,
the voices, remain. In [10], the music is modelled as a di-
rected graph. The goal is to create a set of disjoint paths,
the voices, through the graph. To this end, the graph is di-
vided into segments, which are analysed through constraint
satisfaction optimisation. Using a sequence alignment al-
gorithm, the analyses are then connected.

Two models stand out as they allow for non-
monophonic voices. In the local optimisation approach
proposed in [21], a piece is partitioned into slices that
are processed iteratively, assigning the notes to voices. A

stochastic local search algorithm is used to find assign-
ments that minimise a parametric cost function assessing
the assignments; weighting the parameters in a certain
way can result in non-monophonic assignments. In the
Voice Integration/Segregation Algorithm (VISA) as pro-
posed in [19, 20] and later refined in [31], vertical inte-
gration—concurrent notes with the same onset and dura-
tion merging perceptually into a single sonority—is con-
sidered to be prior to horizontal integration—successive
notes close in pitch and time merging perceptually into a
single voice. VISA thus first identifies concurrent notes
that merge into single sonorities, and, using a bipartite
matching algorithm, then assigns the sonorities to separate
streams.

2.2 Machine learning models

In [23], VoiSe, a system for separating voices in both im-
plicit and explicit polyphony, is presented. The system
consists of two components: a same-voice predicate im-
plemented as a learned decision tree, which determines
whether or not two notes belong to the same voice, and
a hard-coded algorithm that maps notes to voices.

A probabilistic, Markov chain-like, system is proposed
in [18]. Based on pitch information only, the system learns
how likely a note is to occur for a voice, as well as how
likely a transition between two notes is to occur. The sys-
tem is inspired by [4] in that the music is processed in
a similar manner—starting at chords in which all voices
are present. Another probabilistic approach is described
in [6], where the music is represented as a sequence of
chords, and a discrete hidden Markov model (HMM) is
used to determine the most likely sequence of mappings
to voices (the hidden states) for the chords (the observa-
tions). A similar, although more sophisticated, approach
using an HMM is proposed in [28]. This model explicitly
allows notes within a single voice to overlap. This not only
makes preprocessing (quantisation) redundant, but also en-
ables application to data generated from live performance.

In [6], the task of voice separation is modelled both as a
multi-class classification problem (see also [7]), where the
music is represented as a sequence of notes, which are as-
signed to voices (the classes), and as a regression problem,
where the music is represented as a sequence of chords,
for which mappings to voices are rated. Standard single-
hidden layer feedforward neural networks are used as the
classifier and regressor, respectively. In [13], too, the mu-
sic is represented as a sequence of chords, and a single-
hidden layer feedforward neural network is used to greed-
ily assign each chord note to the voice that maximises a
trained assignment probability.

3. PROBLEM FORMULATION, MODEL, AND
FRAMEWORK

As in [6, 7], in this paper we formulate the task of voice
separation as a multi-class classification problem, where
each note in a piece is assigned to one of v voices (the
classes). We assume that a voice is always monophonic



(see Section 1), and that the number of voices in a piece is
equal to its nominal number of voices, which we infer from
the size of its largest chord. (These assumptions do not al-
ways hold true, but in pure contrapuntal music one gener-
ally finds only few exceptions. We resolve such cases by
removing the offending notes from the dataset; this is dis-
cussed in Section 6.) Furthermore, for practical reasons we
set the maximum value of v to 5. This enables us to pro-
cess pieces containing up to five voices, which currently
suffices. The maximum number of voices determines the
number of classes and hence the size of the neural net-
work’s output layer; for the sake of efficiency, it should
thus be kept as small as possible.

3.1 Model

We use the open source TensorFlow machine learning li-
brary ! (version 1.6.0) to implement a multi-layer deep
feedforward neural network that uses the rectified linear
unit activation function for all L — 1 hidden layers and
the softmax activation function for the output layer, and
that has five output neurons, each representing a class.
Given that our dataset is relatively small, we use batch
training, where we check the performance on the valida-
tion set (comprising every fifth training example) every
10 epochs as early stopping strategy, and store the earliest
best-performing model. We use Xavier initialisation [12]
for the weights and initialisation with zeros for the bi-
ases, the Adam optimisation algorithm [22] to minimise
the cross-entropy loss, and dropout [32] to prevent overfit-
ting. We set the learning rate to 0.01 and the number of
training epochs to 600, values we observed to work well.
Three further hyperparameters are optimised using a grid
search (see Section 7): the dropout keep probability, the
number of hidden layers, and the size of the hidden layers.

3.2 Framework

We integrate the model in our previously developed frame-
work for data preprocessing, feature extraction, and cross-
validated training and evaluation [6], implemented in
Java.? In this framework, the music is represented as a se-
quence of notes, by default ordered by (i) onset time (low
to high) and (ii) pitch (low to high). When evaluating the
model, this sequence is processed in linear fashion, where
for each note a feature vector is calculated that is given as
input to the model, which then makes a class decision—
thus assigning the note to a voice.

3.2.1 Feature vector

Each note is represented by a 33-dimensional feature vec-
tor, containing properties of that note in its polyphonic
context. The features are handcrafted and can be divided
into four categories of increasing scope: (i) note-level fea-
tures, encoding individual properties of the note; (ii) note-
chord features, encoding the note’s position in the chord,;
(iii) chord-level features, encoding properties shared by all

'https://www.tensorflow.org/
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notes in the chord; and (iv) polyphonic embedding fea-
tures, encoding the note’s polyphonic relation to the notes
in the previous as well as the current chord. All feature
values (except certain default values) are scaled to fall in
the range [0, 1]. An overview is presented in Table 1; more
detail is provided in [6].

Index Feature Description
0 pitch pitch, as a MIDI number
1 duration duration, in whole notes

2 isOrnamentation true (1) if a 16th note or
shorter, false (0) if not

3 indexInChord index (pitch-based) in
the chord

4 pitchDistBelow  distance to note below

5 pitchDistAbove  distance to note above

6 chordSize number of chord notes

7 metricPosition metric position in the bar

8 numNotesNext number of notes (onsets)
in the next chord

9-12 intervals intervals in the chord

13-17 pitchProx for each voice v, the
pitch proximity to the
adjacent left note in v
idem, inter-onset

idem, offset-onset

for each voice v, whether
it is currently occupied

(1) or not (0)

18-22 interOnsetProx
23-27 offsetOnsetProx
28-32 voicesOccupied

Table 1. The feature vector, containing note-level (0-2),
note-chord (3-5), chord-level (6-12), and polyphonic em-
bedding features (13-32). Pitch distances and intervals are
measured in semitones; proximities are inverted distances.

4. EVALUATION

We evaluate the models using k-fold cross-validation. Be-
cause it is not desirable that identical or highly similar sam-
ples extracted from one piece end up in both the training
and the test set, we partition a dataset along its individual
pieces rather than randomly. % thus equals the number of
pieces in a dataset; each piece in it serves as test set once.

4.1 Evaluation metrics

We use four metrics to assess model performance. Accu-
racy is a per-note metric that measures the proportion of
notes that have been assigned to the correct voice:

]

— 1
] ey

acc =
where C' is the set of notes assigned to the correct voice,
and N the set of all notes.

Soundness and completeness are complementary met-

rics that measure transitions between note pairs. We use
the definitions provided in [23]. If f is an assigned



voice and ¢ a correct voice, then a pair of adjacent notes
(n¢,ng11) in f is considered sound if g(ny) = g(ngs1)
holds. (Note that, according to this definition, f and g need
not be the same voice.) Extending the definition, we take
soundness to be the proportion of sound pairs in all voices:

|51

snd = —,
|P|

@)
where S is the set of sound pairs, and P the set of all pairs
in all assigned voices f. Similarly, a pair of adjacent notes
(n¢, ngq1) in correct voice g is considered complete if as-
signed voice f(n:) = f(n¢s1) holds. We take complete-
ness to be the proportion of complete pairs in all voices:

C]

= 3
7] 3

cmp =
where C' is the set of complete pairs, and P the set of all
pairs in all correct voices g.>

Average voice consistency (AVC), coined in [4], mea-
sures, “‘on average, the proportion of notes from the same
voice that have been assigned ... to the same voice”. The
voice consistency (VC) for voice v is calculated as follows:

L max{|n € S(v) : vN(n) =ul}, @)

VEW) = g ma

where S(v) is the set of notes assigned to v, V' the set of all
voices, and v N (n) the correct voice for note n. The AVC,
then, is the average VC over all voices:

Aave— L Z VC(v). (5)
|‘/|UGV

The per-fold percentages for each metric m are
weighted by the number of notes (or note pairs) in the piece
for the fold, so that the average values over all folds are al-
ways per-note (or per-pair):

S (mi - [Ny)
S NG|

where k is the number of folds, and N the set of notes in a
piece.

avg(m) = (6)

4.2 Evaluation modes

We use two evaluation modes: fest mode and application
mode. In test mode, the feature vectors are calculated us-
ing the correct voice information for the preceding notes.
Test mode serves a gauging function in that it reflects the
optimal model performance on unseen data. In application
mode, the feature vectors are calculated using the model-
generated voice information. This mode corresponds to the
real-world application scenario where no correct voice in-
formation is available, and where all voice decisions must
be based on previous decisions—it thus reflects the ex-
pected model performance on unseen data. In application
mode, model performance can suffer from error propaga-
tion.

3 The definitions are equal to those given for precision and recall in
[10], metrics used in [13, 14, 18,27, 28]. The terms appear to be used
interchangeably.

5. VOICE ENTRY ESTIMATION HEURISTICS

Error propagation is the phenomenon in which an incorrect
voice assignment influences the voice decision for the fol-
lowing notes negatively. Given the accuracy in test (accr)
and application mode (accy ), the proportion of misassign-
ments due to error propagation, g, is calculated as follows:

accT — accp
g=— (N

1 — acca

In previous work [6, 7], depending on the dataset we ob-
served ¢ values up to 0.87, indicating that model perfor-
mance is indeed seriously hampered by error propagation.

Although error propagation can occur throughout a
piece, it tends to be particularly strong in thinly-textured
openings of pieces, where the model may start ‘on the
wrong foot’. This often leads to a chain of misassignments.
To address this problem, we propose a preprocessing step
that applies two heuristics, hl and h2 (improving on [8]).
They estimate which notes belong to the new voices at each
density increase, that is, each point where the maximal
number of simultaneous notes so far increases. hl and,
partly, h2 are based on the prior assumptions that (i) voices
tend to move in small steps, and that when new voice(s)
enter, (ii) none of the already active voices has a rest, and
(iii) none of the voices is involved in voice crossing.

01 function estimate(list notes) returns list

02 density increases d := [di, ..., dn]
03 available voices av := [1, ..., dnl
04 add av to new list fw

05 for i from m to 2:

06 if hl: find lowest-cost configuration
07 at pos(d;)

08 if h2: find pattern at pos(d;)

09 remove new voices from av

10 prepend av to fw

11 av := copy(av)

12 return fw

Figure 1. Algorithm outline. Underlined concepts are ex-
plained in the main text.

hl and h2 share a similar overall algorithmic structure,
as shown in Figure 1. The algorithm takes as input the
sequence of notes representing a piece (see Section 3.2),
and returns, for each density increase (including the open-
ing), a vector of voice assignments for the first chord of
the increased density. If the voices enter successively, h2
is called; if not, or if h2 fails, hl is called. The voice as-
signments returned remain fixed when the DNN is applied.

e 0o 00 e 0o 0 0 o o
(1) @ e o @ (2) o o (3) e 0o 0 0
o o e 0o 0 0 e 0o 0 0

Figure 2. Chord configurations (n = 2). Columns repre-
sent chords; rows represent layers.

hl is the more generic heuristic. It determines the
new voices by calculating, at each density increase start-
ing at the last, the lowest-cost configuration. A configura-
tion organises the last n chords (i.e., ordered sequences of



pitches) of density d;_; and the first n chords of density d;
into horizontal layers, as shown in Figure 2. The cost for a
configuration is calculated as follows:

n di—1 n

SN Ipiw — prsl; (8)

j=1 k=1 I=1

where p; ;; is the pitch at the kth 2n-sized layer in the jth
chord of density d;_1, and p; i, the pitch at the kth 2n-sized
layer in the [th chord of density d;. The positions of the
remaining n-sized layers in the lowest-cost configuration,
then, determine the new voices.

h2 caters specifically to imitative pieces, and attempts
to determine the new voices by finding, at each density
increase starting at the last, a match for the pattern (as de-
fined by the first n notes of the piece, the opening motif’s
head) in the first n chords of density d;. The first match-
ing criterion is rhythmic sequence; if this yields multiple
matches, melodic contour (up, same, down) is added as a
second matching criterion. If a single match is thus found,
the new voice is identified; if multiple matches are still
found, the lowest-cost configuration (as in hl) is used to
disambiguate. If no match is found, which can happen if
the prior assumptions do not hold true, the new voice is as-
sumed to enter below the existing voice(s). If at more than
half of the density increases no match is found, h2 fails.

6. DATASET

The models are evaluated on the 48 fugues from Johann
Sebastian Bach’s The Well-Tempered Clavier (BWV 846-
893), containing one two-, 26 three-, 19 four-, and two
five-voice pieces, as well as his 30 inventions (BWV 772-
801), containing 15 two- and 15 three-voice pieces (also
known as sinfonias). The dataset, in MIDI format, was
originally retrieved from the MuseData repository of the
Center for Computer Assisted Research in the Humani-
ties,* and has been slightly modified. First, all in-voice
chords—instances where a voice is non-monophonic—
were reduced to single notes, and all temporarily added
extra voices were removed. Figure 3 shows an example
of both. Second, because of liberties in performance or
rounding errors leading to note overlap within a voice,
occasionally some quantisation was required. This was
achieved by adjusting each offending left note’s offset to
equal its adjacent right note’s onset. These first two modi-
fications are necessary in order for the data to comply with
the assumptions that underly our modelling approach (a
voice is always monophonic, and the number of voices in
a piece is equal to its nominal number of voices—see Sec-
tion 3). Third, to create a more equal distribution of train-
ing and test data in cross-validation, the two-voice fugue
was split into two parts, and the two five-voice fugues
were split into four (BWV 849) and two (BWYV 867) parts.
Fourth, for a number of pieces starting with an anacrusis,
some padding with rests was required to ensure a correct
metrical alignment. Fifth, where necessary, time signature
or key signature information was corrected or added.

4http://www.musedata.org/

Figure 3. The Well-Tempered Clavier, Fugue 17 in Ab
major (BWV 886), closing bars. Temporarily added ex-
tra voice, chromatically descending from G3 to Ebs (lower
staff), and in-voice chord (upper staff, final chord).

Thus, a total of 206 notes were pruned from the orig-
inal 53230 notes in the fugues, and a total of five notes
from the original 19872 notes in the inventions—yielding
a dataset containing 72891 notes. We publish this dataset
as a curated benchmark dataset for voice separation, > that
enables the comparison of results in a rigorous manner, and
that thus facilitates reproducible research [37].

7. EXPERIMENTAL RESULTS AND DISCUSSION

In a first experiment, we performed a grid search to opti-
mise three hyperparameters: the number of hidden layers
(HL), the size of the hidden layers (HLS), and the value of
the dropout keep probability (KP). We explored a small hy-
perparameter space determined in earlier experimentation,
consisting of four HL values (2, 3, 4, and 5), four HLS val-
ues (25, 33, 50, and 66), and three KP values (0.75, 0.875,
and 0.9375). The grid search was performed on the 19
four-voice fugues; as the deciding metric, accuracy in test
mode was used (metrics in test mode are more stable in-
dicators of model performance; see Section 4.2). For each
HL value, we selected the best-performing model, which
we then trained and evaluated on all 48 fugues and all 30
inventions. This was done separately on the different sub-
sets (two-voice, three-voice, etc.); the performance on all
fugues or inventions is the per-note (or per-pair) average
over their subsets as calculated using Equation (6). Ta-
ble 2 shows that on the fugues, the two-layer model yields
the highest performance in both test and application mode.
On the inventions, the results are less clear—although the
two more shallow models seem to perform better here too.
Overall, however, the results are fairly similar, indicating a
limited effect of the number of layers.

Focussing on the best model (HL = 2; HLS = 66, KP
= 0.875), in a second experiment, we then investigated
the effect of using a deep(er) neural network, as well as
the effect of the integration of the voice entry estimation
heuristics. To this end, we compared four models: the
single-hidden layer neural network as described in [6, 7]
(N), the same model with the heuristics integrated (N/h),
the two-layer model (D), and the two-layer model with the
heuristics integrated (D/h). The heuristics were not used in
test mode, as error propagation does not occur there. Ta-
ble 3 shows that D always outperforms N, and that N/h and
D/h always outperform N and D, respectively. A test for

Shttps://www.github.com/reinierdevalk/data/




HL HLS KP Test Application
acc snd cmp AVC acc snd cmp AVC

2 66 0.875 98.34 97.11 97.26 98.27 90.72 96.43 96.39 90.76
3 66 0.75 98.36 97.12 97.24 98.27 89.96 96.30 96.30 90.05
4 50 0.75 98.32 97.07 97.23 98.25 89.97 96.36 96.36 90.12
5 50 0.75 98.27 96.98 97.13 98.20 89.96 96.38 96.35 90.23
2 66 0.875 99.09 98.52 98.58 99.06 96.64 98.14 98.09 96.49
3 66 0.75 99.17 98.64 98.62 99.13 96.53 98.22 98.21 96.35
4 50 0.75 99.20 98.64 98.66 99.15 96.54 98.17 98.13 96.34
5 50 0.75 99.00 98.40 98.39 98.96 96.44 97.95 97.93 96.28

Table 2. Experiment 1. Best-performing models per HL value, 48 fugues (top) and 30 inventions

averages over the different subsets (see Section 7 and Equation (6); all values are percentages.

(bottom). Values are

Model Test Application q
acc snd cmp AVC acc snd cmp AVC F,
N 97.86 96.54 96.70 97.78 86.36 95.46 95.33 86.73 95.39 0.84
N/h 90.44 95.86 95.69 90.62 95.78 0.77
D 98.34 97.11 97.26 98.27 87.69 96.26 96.20 87.43 96.23 0.86
D/h 90.72 96.43 96.39 90.76 96.41 0.82
[28] 88.23 97.00
[17] 89.21
[10] 92.5

Table 3. Experiment 2 and 3. N, N/h, D, and D/h models, 48 fugues (top); [10, 17,28] models, 48 fugues (bottom). Values
are averages over the different subsets (see Section 7 and Equation (6); all values except q are percentages. The F; score is

the harmonic mean of soundness and completeness.

statistical significance (we used the one-tailed Wilcoxon
signed-rank test with p < 0.05 as the significance crite-
rion) reveals that these performance differences are always
significant. We thus conclude that both using a deep(er)
neural network and integrating the heuristics yield a signif-
icant performance improvement. Furthermore, the ¢ values
show that the heuristics indeed reduce error propagation—
but the effect is weaker in case of the D model, where error
propagation is also slightly worse. Finally, we note that in-
tegrating the heuristics leads to a strong improvement in
terms of accuracy and AVC. The improvement in terms of
soundness and completeness—which are by definition less
affected by error propagation—, on the other hand, is only
small.

Additionally, we compared the performance of our
overall best model (D/h) on the 48 fugues with the per-
formances reported for the three voice separation models
that, to our knowledge, represent the current state of the
art, and that have also been evaluated on the 48 fugues. As
Table 3 shows, D/h outperforms the [17] and [10] models.
It also outperforms the [28] model in terms of AVC, but
not in terms of F; score—which may be because the lat-
ter model is specifically optimised for that metric, whereas
D/h is optimised for accuracy.

It should be noted, finally, that a strict comparison with
the state of the art is problematic due to the heterogeneity
of datasets and metrics used. We address this by making
our dataset publicly available as a benchmark dataset (see
Section 6).

8. CONCLUSIONS AND FUTURE WORK

In this paper, we present the implementation and evalua-
tion of DNNs for voice separation in symbolic music rep-
resentations as well as the implementation and evaluation
of two voice entry estimation heuristics. We evaluate the
models on 78 keyboard works by Johann Sebastian Bach,
which we publish as a curated benchmark dataset for com-
paring voice separation models. We observe that both the
use of deep(er) neural networks for the task and the inte-
gration of the heuristics into the models improve perfor-
mance significantly. The best model outperforms our pre-
vious models, and performs close to or better than the re-
ported state of the art.

A first analysis of the results reveals that the model
has difficulties processing musically challenging passages,
containing, for example, voice crossings or reduced tex-
tures. Furthermore, despite the success of the voice entry
estimation heuristics, error propagation remains problem-
atic. An in-depth analysis of the results, planned for fu-
ture work, is required to gain better insight into these mat-
ters. Possible explanations are that the model is not given
enough context information, and that it does not have any
memory. We therefore also plan to encode a larger poly-
phonic window into the features as to increase the context
information, and we plan to experiment with other types
of DNNss, such as recurrent neural networks, which allow
information to persist, or long short-term memory models,
which are capable of learning long-time dependencies.
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