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Abstract

We propose a multiple hypothesis testing approach to assess structural stability in coin-
tegrating regressions. Underlying tests are constructed via a Vector Error Correction Model
and generalize the reduced rank regression procedures of Hansen (2003). We generalize the
likelihood ratio test proposed in Hansen (2003) to accommodate unknown break dates through
the specification of several scenarios regarding the number and the location of the breaks. We
define a combined p-value adjustment, which proceeds by simulating the entire dataset impos-
ing the relevant null hypothesis. This framework accounts for both correlation of underlying
tests and the fact that empirically, parameters of interest often pertain to a limited even though
uncertain stylized-fact based change points. We prove asymptotic validity of the proposed pro-
cedure. Monte Carlo simulations show that proposed tests perform well in finite samples and
circumvent Bonferroni-type adjustments. An application to the S&P 500 prices and dividends
series illustrates the empirical validity of the proposed procedure.

Keywords: Structural Stability; Vector Error Correction Model; Multiple hypotheses test;
Simulation Based Test.

JEL Classification: C12, C15, C32

∗Cass Business School, City University of London, 106 Bunhill Row EC1Y 8TZ London (UK). E-mail:
Michele.Bergamelli.2@cass.city.ac.uk.
†Department of Management, Economics and Quantitative Methods, Università degli Studi di Bergamo, Via dei

Caniana, 2 -24127 BergamoUniversity of Bergamo (Italy). E-mail: annamaria.bianchi@unibg.it
‡Groupe de recherche en économie de l’énergie, de l’énvironnement et des ressources naturelles (GREEN) Uni-

versité Laval, Centre interuniversitaire de recherche en économie quantitative (CIREQ), and Economics Department,
Carleton University. Mailing address: Economics Department, Carleton University, Loeb Building 1125 Colonel By
Drive, Ottawa, Ontario, K1S 5B6 Canada. E-mail: Lynda_Khalaf@carleton.ca.
§Centre for Econometric Analysis, Cass Business School, City University of London, 106 Bunhill Row, EC1Y

8TZ, London (UK) and University of Bergamo (Italy). E-mail: g.urga@city.ac.uk.

1



1 Introduction

Time series methods often assume some form of stationarity. When strictly stationary processes

lack empirical support, less restrictive definitions including e.g. piecewise stationarity and coin-

tegration provide viable alternatives. The former implies stationarity within time windows, which

may be stated via change points and time-varying parameters.1 In contrast, cointegration typically

describes a time-invariant linear combination of non-stationary series. A cornerstone of the latter

literature is Johansen (1991) which introduced the Vector Error Correction Model (VECM).2

In this paper, we develop more general procedures in which stationarity within time segments

is allowed in the definition of cointegration. In VECMs, cointegration is defined via a reduced rank

regression as follows. Given a p-dimensional vectorXt, consider the regression of∆Xt onXt−1, and

e.g. a constant, possibly further deterministic terms and lags of ∆Xt. Let Π refer to the coeffi cient

of Xt−1 in the latter regression. Then cointegration implies Π = αβ>, where α and β are p × r

matrices and r is the cointegration rank. Hansen (2003) generalizes this model to allow for a time

varying coeffi cient of the form Π(t) = α(t)β(t)> where α(.) and β(.) are piecewise constant. With

reference to available relevant procedures (reviewed below), this framework has several advantages:

(i) all parameters including variance/covariance terms are allowed to change; (ii) both null and

alternative hypotheses are well defined reduced rank regressions; (iii) null hypotheses imposing

ex-ante breaks tested against different breaking schemes are covered.

Hansen (2003) introduces the so called generalized reduced rank regression (G3R) method for

estimation and inference, when break dates are given. This paper extends G3R-based tests to

accommodate uncertain prior information on break dates. With unknown break dates, the most

widely used approach assumes no information is available on change points. Sample-wide change

point searches thus often imply combining a number of tests that grows with the sample size.

On the other hand, researchers are frequently confronted with decisions on historical events, in

which case assuming no prior information is counterfactual and thus statistically ineffi cient.3 With

1For recent references, see for instance Chan et al. (2014); Matteson and James (2014); Preuss et al. (2015);
Schnurr and Dehling (2017).

2For a recent perspective, see e.g. Liao and Phillips (2015).
3Examples include unexpected geopolitical disruptions, regulatory changes, major market crashes, announce-

ments, etc.
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empirical cointegration-based work, such events can be dated though not exactly, allowing for some

uncertainty on effective impact and relevance.

In general, formal break tests when some albeit uncertain information is available on dates is

scarce, perhaps because empirical process asymptotic theories do not (typically) apply. Dufour

et al. (2004) propose finite sample breaks-in-variance tests restricting the search set to a prior

window, using the Monte Carlo (MC) test method of Dufour (2006). As it applies to the present

paper, the method can be summarized as follows. An induced test is defined to assess stability

against a number of alternative hypotheses, each corresponding to several possible break dates,

within a pre-specified search window. A simulation-based method4 is implemented to obtain the

combined p-value, resampling from the stability null hypothesis which is shown to be nuisance

parameter free. Bernard et al. (2007) follow a similar strategy in multivariate regression. In

this paper, we extend these approaches to the nuisance-parameter dependent and non-linear G3R

context.

Our procedure can be summarized as follows. Given a null G3R model denotedM0, we define

a number (say n) of alternative models denoted Mj , j = 1, ..., n, each of which can fit plausible

historical regime changes. M0 may include breaks, and is nested in each ofM1, ...,Mn, leading to

n nested likelihood ratios. These are next combined into a minimum p-value statistic, for which a

p-value is obtained using the MC method and consistent estimates of intervening parameters. In

this way, the correlation structure within the data set as well as between the considered tests is

replicated and thus accounted for. The number of combined statistics, n, can be large. We prove

the validity of this procedure in the nuisance parameter dependent VECM context.

Our method of proof proceeds as follows.5 We first modify the framework of Dufour (2006)

to accommodate sequences of parameters converging to true values. This modification may prove

useful beyond the specific problem at hand. Next, we prove that the null distribution of the statistic

converges, though not necessarily to a known nor pivotal limiting distribution. To emphasize the

usefulness of this result, we discuss a special case for which the distribution can be shown to be

4For further references on simulation-based multiple testing see Westfall and Young (1993), Ge et al. (2003),
Dufour and Khalaf (2002), Beaulieu et al. (2007, 2013), and Dufour et al. (2015).

5Thereafter, we refer to the large n as the many priors case, the term large is not intended in its asymptotic
interpretation.
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asymptotically pivotal given specific nesting restrictions on the priors. In this case, validity of

the bootstrap follows with no further requirements. The nesting scheme is not uninteresting, and

may be viewed as an extension of the well known Cochran Theorem (Cochran, 1934) to the G3R

context. Yet its specificity underscores the usefulness of our general proof. Another important

contribution is a bound on the null distribution of the minimum p-value statistic, which we derive

analytically, to validate the required general conditions.

Our approach provides useful contributions to the induced tests literature beyond our specific

context. In particular, because size adjustments such as Bonferroni bounds are avoided altogether,

power is no longer expected to deteriorate with large n. Power depends on the proximity of priors

to the truth. But the MC approach allows to increase the number of priors to reflect uncertainty

with no power losses. This increases the likelihood to cover the truth which addresses one of the

major hurdles of induced tests.

These properties are investigated in finite-samples through an extensive Monte Carlo study.

The study is conducted under the no-break null hypothesis as well as under more challenging

multiple-break scenarios. We also compare the performance of our combined procedure relative

to a joint test that embeds all alternatives, when feasible.6 We show that in the small n case,

the joint test does not outperform our minimum p-value alternative. As n is increased, both size

and power of the joint test deteriorate. The MC method can stabilize its size, a fact we verify.

However, the power advantage of our minimum p-value method remains evident.

An empirical application documents the usefulness of our proposed test. We analyze the

relationship between the S&P500 price and dividend series, which caught the attention of the

profession following Campbell and Shiller (1987, 1989). From their viewpoint, a pair of integrated

variables related through a Present Value Model must cointegrate. Since then, related research

has evolved in line with econometric work on cointegration.7 As an alternative to the bubble

motivated temporary explosiveness approach in e.g. Phillips et al. (2011), Phillips et al. (2015a),

Phillips et al. (2015b) our results suggest a breaking cointegration relation.

To conclude, we note that the test by Hansen (2003) which we extended in this paper seems to

6We thank the editor and an anonymous referee who suggested to analyze the large n case as well as the comparison
to a joint test.

7See e.g. Advanced Information Nobel Prize (2013).
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be the only available multiple breaks test in VECM since the bulk of related works deals mainly

with one shift. These include e.g. the fully modified OLS based method analyzed by Hansen

(1992), the sup test of Bai et al. (1998), the fluctuation tests of Quintos (1997) or the LM tests

of Seo (1998). Hansen and Johansen (1999) propose a useful specification test, with application

to the US term structure of interest rates; see Hansen (2003, Section 5.2). Bierens and Martins

(2010) propose a likelihood-ratio test for time-varying cointegration. Oka and Perron (2011) allow

for more than a break, but they focus exclusively on the statistical properties of the break dates

estimator and the model considered is not the VECM. The literature is more established within a

single cointegrating equation framework; see Kejriwal and Perron (2008, 2010) or Bergamelli and

Urga (2015) and the references therein.

The remainder of the paper is organized as follows: Section 2 summarizes the VECM formula-

tion in presence of breaks based on Hansen (2003). In Section 3, we introduce the new test based

on a minimum p-value approach, the related bootstrap procedures, and proofs of their asymptotic

validity. Section 4 reports our simulation exercise, whereas Section 5 reports our empirical analysis.

Section 6 concludes.

2 Formulation of the VECM in Presence of Multiple Breaks

Let X = {Xt}Tt=1 be a p-dimensional data generating process (DGP) undergoing m regimes and

thus affected by m−1 breaks at locations T0 = 0 < T1 < · · · < Tm−1 < Tm = T . A general VECM

as in Hansen (2003) where all parameters may break takes the form

∆Xt = α(t)β(t)>Ẍt−1 +
k−1∑
i=1

Γi(t)∆Xt−i + Φ(t)Dt + εt, t = 1, . . . , T (1)

where {εt} are i.i.d. Gaussian with zero mean and variance matrix Ω(t), α(t) is the adjustment

matrix, β(t) the cointegrating matrix, Ẍt−1 consists of Xt−1 and restricted deterministic variables

while Dt is a vector of unrestricted deterministic variables. The time-varying parameters are
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piecewise constant given by

α(t)β(t)> = α1β
>
1 11t + · · ·+ αmβ

>
m1mt, (2)

Γi(t) = Γ1,i11t + · · ·+ Γm,i1mt, i = 1, . . . , k − 1, (3)

Φ(t) = Φ111t + · · ·+ Φm1mt, Ω(t) = Ω111t + · · ·+ Ωm1mt, (4)

where 1jt ≡ 1(Tj−1 + 1 ≤ t ≤ Tj), j = 1, . . . ,m, 1 (C) being the indicator function associated with

the condition C, taking value 1 if C is true and 0 otherwise. Defining rj , for j = 1, . . . ,m, the

cointegrating rank of the jth regime, the dimensions of the parameter matrices are the following:

αj is (p × rj), βj is (p1 × rj) where p1 is the dimension of Ẍt, Γi(t) is (p × p), Φ(t) is (p × q),

and Ω(t) is (p × p). Let Z0t = ∆Xt, Z1t = (11tẌ
>
t−1, . . . ,1mtẌ

>
t−1)>, Z2t = (11tZ̃

>
2t, . . . ,1mtZ̃

>
2t)
>,

where Z̃2t = (∆X>t−1, . . . ,∆X
>
t−k+1, D

>
t )>. Z1t is (mp1× 1) while, denoting with p2 the number of

variables in Z̃2t, Z2t is (mp2 × 1). Then (1) can be rewritten as

Z0t = AB>Z1t + CZ2t + εt, t = 1, . . . , T, (5)

where A = (α1, . . . , αm), B =diag(β1, . . . , βm), C = (Ψ1, . . . ,Ψm), Ψj = (Γj,1, . . . ,Γj,k−1,Φj),

j = 1, . . . ,m, and diag(.,.) refers to a block-diagonal matrix with blocks as specified.

The required parameter structure, their identification as well as hypotheses about the presence

of breaks can be obtained through restrictions of the form

vec(B) = Hφ+ h (6)

vec(A,C) = Gψ (7)

where vec(·) is the vectorization operator, H is a known [mp1(r1 + · · ·+ rm)× pφ] matrix, h is a

known [mp1(r1 + · · ·+ rm)× 1] vector, φ is a vector with pφ free parameters and similarly G is a

known [p(r1 + · · ·+ rm +mp2)× pψ] matrix, while ψ is a vector with pψ free parameters.

Stack the free parameters in A, B, C subject to (6) and (7), and the free parameters in

the variance-covariance matrix Ω(t) of εt in θ and let Θ denote the relevant parameter space.
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Let θ0 denote the "true" parameter vector. Hansen (2003) introduces the G3R technique, which

is cast in the likelihood framework and produces maximum likelihood estimates (MLE) for θ.

For the purposes of this paper, given θ, an initial value for the level, and Gaussian errors, it is

straightforward to draw from (5) imposing what is relevant from (6) and (7).

LetM0 andM1 be two models defined by restrictions of the (6) and (7) form, with m0 and m1

regimes, respectively. Assume that M0 is a submodel of M1 with q fewer parameters, and that

M0 and M1 have the same cointegration rank in each subsample. To test the model M0 (null

hypothesis H0 : θ0 ∈ Θ0, where Θ0 is a non-empty subset of Θ) against model M1 (alternative

hypothesis H1), the framework outlined above suggests likelihood ratio (LR) testing. Theorem 10

in Hansen (2003) proves that if breaks dates are known, under suitable conditions on the rank of

the restriction matrices the test can be performed using

LR = T

 m0∑
j0=1

ρj0 log|Ω̂j0 | −
m1∑
j1=1

ρj1 log|Ω̂j1 |

 −→d χ2(q), (8)

where Ω̂ji = (Tj − Tj−1)−1
∑Tj

t=Tj−1+1 ε̂tiε̂
T
ti, ε̂ti = Z0t − ÂiB̂T

i Z1t − ĈiZ2t, i = 0, 1, j = 1, . . . ,mi,

and ρj = (Tj − Tj−1)/T .

3 Multiple Testing with Uncertain Break Dates

In the above, break dates are taken as given. Here we assume instead that some albeit uncertain

information is available on dates: possible breaks can be broadly characterized so that n plausible

scenarios can adequately express uncertainty about their number and location. These scenarios

are treated as possible priors which seem realistic for various empirical purposes.

Our procedure can be summarized as follows. We test a null modelM0 against a set of prior

fixed alternatives M1, . . . ,Mn, having m1, . . . ,mn regimes and the same cointegration rank as

M0 in each subsample. M0 is nested in each ofM1, . . . ,Mn that are otherwise unrestricted as for

the number and location of breaks. Each model is associated with restrictions of the (6) and (7)

form. We denote H1, . . . ,Hn the corresponding hypotheses, where Hi : θ0 ∈ Θi, i = 1, . . . , n, Θi is

a non-empty subset of Θ and Θ0 ⊂ Θi for each i. The intuition is that prior knowledge of stylized
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facts or policies may suggest a number of n plausible scenarios, where uncertainty translates into

different numbers of regimes mi (i = 1, . . . , n) or different break dates Ti,1 < · · · < Ti,mi−1 < Ti,mi .

Formally, we test H0 against

HA =
⋃
i

Hi : θ0 ∈
⋃
i

Θi. (9)

With reference to Section 2, Θ =
⋃
i Θi. Let Mi denote the model estimated under the ith

scenario and LRT,i, for i = 1, . . . , n, a LR test of M0 against Mi as defined in equation (8). To

test H0 versus HA in (9), we propose the following minimum p-value statistic

QT = 1− min
1≤i≤n

[1− Fi(LRT,i)] = max
1≤i≤n

Fi(LRT,i). (10)

where Fi(·) is the CDF of a χ2(qi) random variable with qi being the difference between the number

of parameters inMi with respect toM0.

While it is possible to extend results to n → ∞, QT is defined assuming n is finite yet can

be large. This is inspired by the large scale multiple testing literature, where large n does not

necessarily imply asymptotics on n itself; see e.g. Cao and Wu (2015) and references therein.

3.1 Simulation-based Multiple Test Correction

To analytically derive the exact distribution of QT under the null, we consider a simulation-based

procedure. The intended correction requires simulating the relevant structural model under the

null at estimated parameter values. The following algorithm describes our proposed parametric

simulation-based multiple test adjustment, for any θ ∈ Θ.8

Step 1. Estimate by G3R a VECM under H0 (i.e., model M0) for Xt to obtain a matrix of

residuals (ε̂1, . . . , ε̂T )> where ε̂t = Z0t − Â0B̂
>
0 Z1t − Ĉ0Z2t. Denote θ̂T the MLE for θ,

computed under H0. Estimate the model under each alternative and compute the test

statistic QT0.

Step 2. For any θ ∈ Θ, for b = 1, . . . , B independently repeat:

8Recall that θ stacks all parameters that describe the model, including the variance-covariance matrix.
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(a). Draw εb = {εt,b}Tt=1 from N (0,Ω(t)).

(b). Using εb, build recursively the bootstrap counterpart of X, denoted with Xb(θ).

(c). Use Xb(θ) to estimate the null and the alternative models under the various scenarios

and compute the associated LR statistics LRb,i(θ) for i = 1, . . . , n.

(d). Compute the bootstrap statistic QTb(θ) = 1−min1≤i≤n[1−Fi(LRb,i(θ))] and record its

value. Compute the bootstrap p-value for Q, p̂TB [Q|θ], where

p̂TB [x|θ] =

B∑
b=1

1(QTb(θ) ≥ x) + 1

B + 1
. (11)

Step 3. Decide on the acceptance/rejection of the null hypothesis by comparing the associated

bootstrap p-value with the chosen level of significance.

The parametric bootstrap corresponds to replacing θ by θ̂T in Steps 2 to 3, leading to p̂TB(QT0|θ̂T ).

One important advantage of simulating the underlying structural model is that all n candidate

statistics can be replicated, explicitly controlling for their implicit correlation. In this way, the

global level of the test can be adequately adjusted.

3.2 Asymptotic validity of the bootstrap procedure

Our proof of validity begins by a modification of Dufour (2006)’s local condition (Section 3.2.1).

This is a general condition and can be applied in other situations as well. Next, using this condition,

we prove the asymptotic validity of the proposed procedure (Section 3.2.2).

3.2.1 Asymptotic Monte Carlo tests’validity condition

Consider a family of probability spaces {(Ω,F , Pθ) : θ ∈ Θ} , where Ω is a sample space, F a σ-

algebra of subsets of Ω, and Θ a parameter space in Rk. Let QT = QT (ω), ω ∈ Ω, be a real-valued

F-measurable function whose distribution is determined by Pθ0 , i.e. θ0 is the "true" parameter

vector. We test the hypothesis H0 : θ0 ∈ Θ0 where Θ0 is a non-empty subset of Θ, using a critical

region of the form {QT ≥ c} . We denote by GT (x|θ) = Pθ [QT ≤ x] , x ∈ R̄, the distribution
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function of QT , where θ ∈ Θ. Consider

QT0, QT1 (θ) , ..., QTB (θ) , θ ∈ Θ, T ≥ I0, I0 ∈ R, (12)

real random variables defined on a common probability space (Ω,F , P ) . Here QT0 normally

refers to a test statistic with distribution function GT (x|θ0) based on a sample of size T , while

QT1 (θ) , ..., QTB (θ) are i.i.d. replications of the same test statistic obtained independently under

the assumption that the parameter vector is θ. Let also

ŜTB (x|θ) =
1

B

B∑
j=1

1 (QTj (θ) ≥ x) (13)

be the sample tail (or survival) function and the MC p-value function be defined as in (11). We

establish an asymptotic validity result under the following assumptions.

Assumption 1 QT1 (θ) , . . . , QTB (θ) are i.i.d. according to the distribution GT (x|θ) =

P [QT (θ) ≤ x], ∀θ ∈ Θ.

Assumption 2 Θ is a nonempty subset of Rk.

Assumption 3 ∀T ≥ I0, QT0 is a real random variable and θ̂T an estimator for θ, both

measurable, and GT
(
QT0|θ̂T

)
is a random variable.

Assumption 4 θ̂T is consistent in probability for θ0 given specific regularity-identification

conditions.

Assumption 5

QT0
p−→ Q0, (14)

D0 is a subset of R s.t. P [Q0 ∈ D0 and QT0 ∈ D0 for all T ≥ I0] = 1, (15)

and ∀x ∈ D0, ∀η > 0, and given any sequence θT
T→∞−→ θ0 under the same regularity-identification

conditions as θ̂T in Assumption 4, there exists an open neighborhood B(x, η) of x such that

lim sup
T→∞

{
sup

y∈B(x,η)∩D0
|GT (y|θT )−GT (y|θ0) |

}
≤ η. (16)
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Assumptions 4 and 5 require θ̂T and the sequence θT to satisfy the same regularity-identification

properties. These are general properties and are unspecified on purpose. Examples of such prop-

erties include a certain rate of convergence T−α to θ0. The advantage is that it is enough to prove

(16) for sequences of parameters θT having the same properties as the estimator that is used to

implement the MC test.

Theorem 1. Given (12), (13), (11) and Assumptions 1-5, suppose the random variable QT0 and

the estimator θ̂T are both independent of QT1 (θ) , ..., QTB (θ) . Then for 0 ≤ α ≤ 1 and 0 ≤ α1 ≤ 1

lim
T→∞

{
P
[
ŜTB

[
QT0|θ̂T

]
≤ α1

]
− P

[
ŜTB [QT0|θ0] ≤ α1

]}
= 0

and

lim
T→∞

{
P
[
p̂TB

[
QT0|θ̂T

]
≤ α

]
− P [p̂TB [QT0|θ0] ≤ α]

}
= 0. (17)

The proof of Theorem 1 is provided in Appendix A.

3.2.2 Asymptotic validity of the proposed bootstrap procedure

This section establishes the asymptotic validity of our combined test procedure. Formally, we

show that for large T the limit of the rejection probability referring the bootstrap p-value to an α

cut-off, is equal to α. This is formalized in the following Theorem.

Theorem 2. Consider hypotheses H0 and HA in (9) and the test statistic QT defined in (10).

Assume that all the modelsM0,M1,. . .,Mn satisfy standard regularity conditions (e.g. Assump-

tions 1-4 in Hansen (2003)). Then, under H0, for 0 < α < 1

lim
T→∞

P
[
p̂TB(QT0|θ̂T ) ≤ α

]
=
I[α(B + 1)]

B + 1
, (18)

where p̂TB [x|θ] is defined in (11) and I [x] is the integer part of a number x. When B is such that

α (B + 1) is an integer, the right-hand side of equation (18) is exactly α.

The proof of Theorem 2 is provided in Appendix B.9 Our methodology can be summarized

9Note that our proof accommodates lags and deterministic terms automatically in the context of Theorem 10
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as follows. The combined statistic is the minimum p-value over the n considered tests.10 We

analytically derive a bound on the null distribution of the combined statistic. We also show that

its distribution converges. Though we combine asymptotically χ2 statistics, joint convergence is not

granted. The statistics we combine in this paper in fact converge in probability which in contrast

to convergence in distribution does imply joint convergence. We emphasize that the limiting

distribution in question does not need to be asymptotically pivotal. For this purpose, in Theorem

3 we present a special case where a pivotal limiting distribution follows from the configuration of

the priors. Although noteworthy theoretically, this configuration remains restrictive. The special

case allows us to emphasize the usefulness of our general result.

Once convergence is shown, validity follows from our generalization of the limiting equi-

continuity conditions of Dufour (2006), the bound we derive and the fact that the null model

can be estimated consistently. The MCT method does not literally supply an estimate of the joint

distribution of combined statistics; in fact, it circumvents the need to do so.

It is worth noticing that our procedure can accommodate the (consistent) estimation of break

locations under the null as this is a discrete parameter and thus satisfies (16) automatically.11

One consequence of the above is that validity is shown with practically no restrictions on n

which can in fact be large, reflecting what we discuss in our simulation section as the "many priors"

case. This stands in sharp contrast with the main-stream literature on combining non-independant

tests, and for that matter, with its alternative empirical process theory based sample wide agnostic

searches. This leads us to discuss the power of our combined test, before turning to simulations

aimed to supplement our asymptotic analysis.

Consider the collection of the n statistics LRT,i associated with H0i respectively (these are not

necessarily different). We are interested in H0 which is the intersection of all the hypotheses H0i,

i = 1, ...n. Let Hc
0i denote the complement of H0i, and conformably let Hc

0 denote the complement

of H0. Then Hc
0 =

n⋃
i=1

Hc
0i, which implies that if H0 is false then at least one of the H0is is false.

The rationale underlying testing the intersection of null hypotheses against the union of their

in Hansen (2003). For presentation clarity, Appendix B focuses on the constant variance case with minor loss of
generality. Breaks in variance can be accommodated using similar arguments by allowing the size of the subsample
in each regime to grow as in Hansen (2003, page 274).
10We use the (1-minimum) transformation for presentation ease just to obtain a right tailed test.
11We thank Jean-Marie Dufour for pointing out this property for discrete parameters.
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respective alternative hypotheses typically presumes that the individual statistics considered are

suitably chosen, that is, can be presumed to have desirable power properties against their respective

alternative. Indeed here, we are combining LR statistics, which can generally be presumed to be

consistent against their respective alternative.

Because of our reliance on the min p-value to test H0, if at least one of the combined tests is

consistent against some alternative H1, then the combined test will be consistent against this same

alternative. The domain of consistency of the combined test is the union of the consistency domains

of all individual tests. Our test thus shares the usual consistency properties of induced Bonferroni

tests, with the added important advantage that it avoids bounds. Consistency of Bonferroni-

type combined induced tests is a (rather) well known property. Intuitively, this property suggests

that users should cast their nets wide when defining a set of statistics to combine, unless some

prior knowledge is available which may or may not be the case. However, when only bounds

are available, for example when the minimum p-value should be referred to α/n, the power of the

resulting procedure would deteriorate as n increases. The MCT combined method circumvents this

problem. Our simulations show that power does not deteriorate in any way as n increases. Our

proposed MCT combinations thus allow us to accommodate tight or wide priors on the possible

alternatives, with no power costs. Because Bonferroni adjustments are avoided altogether here, we

do not observe (other things constant) a decrease in power as the number of alternatives increases.

Because our validity proof does not restrict n, when the number of considered alternatives increases,

we have a better chance of covering the alternatives against which the test is consistent.

Finally, a question that is often raised in the combined tests literature is the performance of

proposed methods relative to a joint test that embeds all alternatives. Whether such a test is

feasible as n increases is beside the point. The relative power when n is manageably small is worth

assessing, here particularly because the G3R framework is rich enough to more or less permit

embedding n alternatives. This test is denoted in what follows as the H procedure. We report

extensive simulations to analyze these questions in finite samples.

To conclude, we report a special case where in fact the limiting distribution of the test statistic

is asymptotically pivotal. This result is interesting in itself but it is clear that our underlying priors
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are restricted with respect to Theorem 2. If the priors are not restricted, the joint distribution of

the test statistics to be combined is not guaranteed to be asymptotically pivotal. The following

Theorem 3 provides a generalization of the Cochran Theorem to the cointegration asymptotic

framework. The proof of Theorem 3 is provided in Appendix C.

Theorem 3. Let Hi (i = 1, ..., n) be a sequence of nested alternative hypotheses, i.e. H1 ⊂

H2 ⊂ ... ⊂ Hn and consider hypotheses H0 and HA as defined in (9). Assume that all the models

M0,M1,. . .,Mn satisfy standard regularity conditions (e.g. Assumptions 1-4 in Hansen (2003)).

Consider the test statistic QT defined in (10). Then, the test statistic is asymptotically pivotal

and hence, under H0, for 0 < α < 1, limT→∞ P
[
p̂TB(QT0|θ̂T ) ≤ α

]
= I[α(B+1)]

B+1 , where p̂TB [x|θ] is

defined in (11).

4 Finite Sample Properties: a Monte Carlo Study

In this section, we report the results of an extensive Monte Carlo simulation study by considering

the case of no breaks (Experiment I), one break (Experiment II) and two breaks (Experiment III)

under the null, and three alternatives; we also consider two cases (Experiments IV and V) of a

blind search when the set of possible locations is very large.

Experiment I is a baseline case, in the following sense. The stability null hypothesis is tested

against three prior scenarios for breaks in β, centered around T/2. In addition to the mid-sample,

we allow for a fixed window around it or for a window that depends on T . In all subsequent Tables,

our proposed test is denoted QT and the embedding test H. The dimensionality of this problem is

our baseline specification, as in further designs we allow for more scenarios, for breaks under the

null, and for breaks in both β and α.

Recall that QT is defined to test the union of priors as an alternative whereas on face value, H

embeds them all which suggests it is an intersection test. Yet a subtle property of the G3R frame-

work allows us, in simulations, to compare both tests: via adequate restrictions the parameters of

the models are assumed freely varying so even if the breaks appear to be imposed, the associated

parameters are not restricted to be away from zero. This underscores the χ2 results we exploit.

The main requirement is that the union of priors case remains identifiable, and the sample should
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be large enough to allow adequate maximization in practice.

As the number of priors increases, it is harder to ensure that their union preserves identification;

it is thus harder to ensure perfect maximization of the likelihoods. Our baseline case has been

calibrated to avoid this problem.12 We however allow one important exception to stress-test our

baseline design: we force weak identification via one of the considered values for α. Our point

is that identification problems are not necessarily due to dimensionality in this model. It is thus

important to study the size of proposed tests with small to moderate dimensions as identification

is challenged by design.

The design of our power analysis also sets the standard for the remaining experiments. In

particular, we define two cases depending on whether the prior is covered by the considered DGP

or not. We do not claim that good power is to be anticipated in the latter case. The sensitivity of

results to mis-specifying the prior is an important matter to document, particularly in our baseline

design.

Experiment II increases dimensionality as follows. The null hypothesis assumes a break in β

at a known date. We maintain the same number of prior scenarios as in Experiment I, and use

a nested set-up where in addition to the break in the null model, we allow for up to two extra

breaks. We explore various sources of uncertainty around that break, moving away via fixed steps

or with steps the number of which increases with the sample size. This is to stress-test regularity

assumptions in each sub-sample. Again we consider DGPs that fit or miss our priors.

Experiment III tightens dimensionality further as we allow for two breaks in β under the null,

at T1 and T2. In addition to these two, the priors incorporate up to three more breaks. The

uncertainty window around the known breaks is modelled via fixed before and after steps. We also

assess for mis-specification of priors in various forms and extents.

Experiments IV and V are designed to test for stability against one break such that the set

of possible locations is very large: every fifth observation or at any possible location after some

trimming. Experiment IV considers breaks in β only, while Experi ment V considers breaks in both

α and β. This aims to provide a severe stress-test for our asymptotic assumptions, also replicating

12This includes in particular automated robustness checks on starting values. In the results shown below, we used
two different starting values for φ and ψ, and considered the maximum value of the likelihood between the two
results.
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the completely agnostic search over all possible locations. Despite the fact that we allow for a wide

range of priors, we also consider several cases with mis-specified priors.

As the number of priors increases, the H test is no longer feasible. We document these cases

as well, particularly via Experiment V. In all cases we report results for sample sizes ranging from

100 to 300. For space considerations, Experiments I-III report results for size for all considered

sample sizes T = {100, 200, 300, 400, 500}. The tables pertaining to the remaining experiments

report only a range of sample sizes that suffi ce to illustrate our main findings. Tests are applied

at the 5% nominal significance levels, the number of Monte Carlo simulations is set to M = 1000,

while the number of bootstrap replications B = 199.

4.1 Monte Carlo design.

Experiment I: No breaks under the null

The first experiment considers no breaks under the null and three alternatives.

Hypotheses. We have considered the following hypotheses

1. H0 : no breaks; H1 : T/2 ∪ (T/2− T/5) ∪ (T/2 + T/5)

2. H0 : no breaks; H1 : T/2 ∪ (T/2− 20) ∪ (T/2 + 20)

DGP for size. Data are generated with no breaks:

DGP:

∆X1t

∆X2t

 =

α1

α2

[1 −β̃
]
Xt−1 +

ε1t
ε2t

⇒ Xt = (I2 + αβ>)Xt−1 + εt. (19)

with εt
iid∼ N (0,Ω), Ω = I2, (20)

where β̃ = 1 and I2 denotes the identity matrix of order 2, and:

α = (α1, α2)′ ∈
{

(−1, 0)′ , (−0.2, 0)′ , (−0.01, 0)′ , (−0.5, 0.5)′
}

(21)

T ∈ {100, 200, 300, 400, 500} . (22)
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The process was initialized as follows: 50 draws from the model starting from zero were dis-

regarded and we retained observation 51 for X0.

DGP for power. Data are generated with one break via (19)-(22), where now β̃(t) = β̃111t+

β̃212t, β̃1 = 1, 11t = 1(1 ≤ t ≤ T1),12t = 1(T1 + 1 ≤ t ≤ T ), and β̃2 ∈ {1.1, 1.3, 1.5, 2.0} .

We study power only for case 1. above, H1 : T/2 ∪ (T/2− T/5) ∪ (T/2 + T/5). Further, we

consider two possible situations: a) DGP covered by one of the alternatives: break at (T1 = T/2);

and b) DGP not covered by any of the alternative hypotheses, with a break at 2T/3.

Experiment II: One break at T1 under the null

The second experiment considers one break at T1 under the null and three alternatives.

Hypotheses. We explore several options for the break location. Some are closer to the

regularity conditions in Hansen (2003) (the proportion of observations in each subsample remains

constant), others mimic realistic situations where observations are added at the sample end.

1. H0 : break at T1 = T/2; H1 : (T1, T1 + T/5)∪ (T1, T1 − 3T/10)∪ (T1, T1 − T/4, T1 + T/5)

2. H0 : break at T1 = T/2; H1 : (T1, T1 + 20) ∪ (T1, T1 − 30) ∪ (T1, T1 − 25, T1 + 20)

3. H0 : break at T1 = 20; H1 : (T1, T1 + 20) ∪ (T1, T1 − 30) ∪ (T1, T1 − 25, T1 + 20)

4. H0 : break at T1 = T/5; H1 : (T1, T1 + T/5)∪(T1, T1 − 3T/10)∪(T1, T1 − T/4, T1 + T/5)

DGP for size. Data are generated via (19)-(22) under the null model of one break at T1,

where β̃(t) = β̃111t + β̃212t, β̃1 = 1, β̃2 = 2, 11t = 1(1 ≤ t ≤ T1),12t = 1(T1 + 1 ≤ t ≤ T ).

DGP for power. Data are generated via (19)-(22) with two breaks, where now β̃(t) =

β̃111t + β̃212t + β̃313t, β̃1 = 1, β̃2 = 2, 11t = 1(1 ≤ t ≤ T1),12t = 1(T1 + 1 ≤ t ≤ T2),13t =

1(T2 + 1 ≤ t ≤ T ), and different values for β̃3 are explored, β̃3 ∈ {2.1, 2.3, 2.5, 3.0} .

We study power for the cases 1. and 3. above, with two designs: a) DGP covered by one of the

alternatives, that is, breaks at (T1, T1 + T/5) for case 1. and (T1, T1 + 20) for case 3.; b) DGP not

covered by any of the alternative hypotheses. In both cases 1. and 3., the breaks are at (T1, 2T/3) .
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Experiment III: Two breaks under the null

The third experiment considers two breaks under the null and three alternatives.

Hypotheses. We consider the following hypotheses:

1. H0 : breaks at T1 = T/2 & T2 = 2T/3; H1 : (T1, T2, T1 + 20) ∪ (T1, T2, T2 − 5, T1 + 15) ∪

(T1, T2, T1 + 10, T1 − 10, T2 − 5)

2. H0 : breaks at T1 = 20 & T2 = 2T/3; H1 : (T1, T2, T1 + 20) ∪ (T1, T2, T2 − 5, T1 + 15) ∪

(T1, T2, T1 + 10, T1 − 10, T2 − 5)

3. H0 : breaks at T1 = T/2 & T2 = T − 20; H1 : (T1, T2, T1 + 20) ∪ (T1, T2, T2 − 5, T1 + 15) ∪

(T1, T2, T1 + 10, T1 − 10, T2 − 5)

DGP for size. Data are generated via (19)-(22) with two breaks,where now β̃(t) = β̃111t +

β̃212t + β̃313t, β̃1 = 1, β̃2 = 2, β̃2 = 1.5,11t = 1(1 ≤ t ≤ T1),12t = 1(T1 + 1 ≤ t ≤ T2),13t =

1(T2 + 1 ≤ t ≤ T ).

DGP for power. Data are generated via (19)-(22) with three breaks, where β̃(t) = β̃111t +

β̃212t + β̃313t + β̃414t, β̃1 = 1, β̃2 = 2, β̃3 = 1.5, 11t = 1(1 ≤ t ≤ T1),12t = 1(T1 + 1 ≤ t ≤

T2),13t = 1(T2 + 1 ≤ t ≤ T3),14t = 1(T3 + 1 ≤ t ≤ T ), and β̃3 ∈ {1.6, 1.8, 2.0, 2.5} .

We study power for 1. and 2. above, with two designs: a) DGP covered by one of the

alternatives, that is, breaks at (T1, T2, T1 + 20) for case 1. and (T1, T2, T2 − 5) for case 2.; b) DGP

not covered by any of the alternative hypotheses. In both cases 1. and 2., the breaks are at

(T1, T2, 5T/6) .

[Tables 1-4 about here]

Experiment IV: Many Priors Search, breaks in β

The experiments reported here mimic more agnostic searches, where one has much more uncertain

priors about possible break locations.

Hypotheses. We consider the following experiments:

1. H0 : no break; H1 : at (location) 5 ∪ 10 ∪ 15 ∪ ... ∪ 40 ∪ 45 ∪ 50
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2. H0 : no break; H1 : at (location) 5 ∪ 10 ∪ 15 ∪ ... ∪ 85 ∪ 90 ∪ 95

3. H0 : no break; H1 : at (location) 5 ∪ 6 ∪ 7 ∪ ... ∪ 93 ∪ 94 ∪ 95

DGP for size. Data are generated via (19)-(22) with no breaks, where β̃ = 1.

DGP for power. Data are generated via (19)-(22) with one break, where β̃(t) = β̃111t+β̃212t,

β̃1 = 1, 11t = 1(1 ≤ t ≤ T1),12t = 1(T1 + 1 ≤ t ≤ T ), and β̃2 ∈ {1.1, 1.3, 1.5, 2.0} .

We consider two possible situations: a) DGP covered by one of the alternatives, with break

at T1 = 50; b) DGP not covered by any of the alternative hypotheses for case 1., with a break at

location 55.

For case 3., the H test is of course infeasible, while there was no issue with our proposed test.

Table 5 reports size and power results.

[Table 5 about here]

Experiment V: Many Priors Search, breaks in α1 and β

Finally, we consider the case of more agnostic searches, where the breaks affect both α and β.

Hypotheses. We consider the following hypotheses:

1. H0 : no break; H1 : breaks in α1 and β at (location) 5 ∪ 10 ∪ 15 ∪ ... ∪ 40 ∪ 45 ∪ 50

2. H0 : no break; H1 : breaks in α1 and β at (location) 5 ∪ 10 ∪ 15 ∪ ... ∪ 85 ∪ 90 ∪ 95

DGP for size. Data are generated via (19)-(22) with no breaks, where β̃ = 1. Two cases for

the adjustment coeffi cient are considered: α̃1 = −1, α2 = 0, and α̃1 = −0.01, α2 = 0. We only

report results with T = 100.

DGP for power. Data are generated according to

DGP:

∆X1t

∆X2t

 =

α̃1 (t)

α2

[1 −β̃ (t)

]
Xt−1 +

ε1t
ε2t

 (23)

with εt
iid∼ N (0,Ω), Ω = I2, (24)
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where β̃(t) = β̃111t + β̃212t, β̃1 = 1, α̃1(t) = α̃1111t + α̃1212t, α̃11 = −1, 11t = 1(1 ≤ t ≤ T1),12t =

1(T1 + 1 ≤ t ≤ T ), and T = 100. We examine changes in both long run and/or adjustment

parameters, since breaks in one may be masked by breaks in the other. For this reason, in Table

6 we consider changes in all directions, namely,
(
α̃12, β̃2

)
∈ {−0.02,−1.1,−1.3,−1.5,−2.0} ×

{1.1, 1.3, 1.5, 2.0}. Further, we consider the following two designs: a) DGP covered by one of the

alternatives, that is, break at T1 = 50 for cases 1. and 2.; b) DGP not covered by any of the

alternative hypotheses for case 1. with a break at location 55.

[Table 6 about here]

4.2 Discussion of Simulation Results

Our findings can be summarized as follows. In all analyzed cases, except when we provoke poor

identification namely the α1 = −0.01, α2 = 0 case, the combined QT test is adequately sized,

even with T = 100. Interestingly, even in the weakly identified case where we do not anticipate

adequate size based on existing theory, the distortions are rather minor, not exceeding 11% for a

few cases we show in Table 1. In contrast, the asymptotic H test is severely oversized. Empirical

rejections exceeding 30% occur in the weakly identified case even with small n, as reported in Table

1; with large n, rejection exceed 50% even in the identified case, as can be seen in Tables 5 and

6. Some of the over-rejections in the large n (the "many priors") experiments can be attributed

to imperfect maximization. In the context of Table 6, and although we still report the H test, we

have observed that the estimated parameters are unstable. Of course, this test is infeasible for a

completely agnostic search over all possible break locations, as reported in Table 5 for breaks in

β only. In this case, we only verify that the size of the combined test is controlled, and no further

results are reported.

Numerical problems were not encountered in Experiments I-III. These were carefully designed

to allow fair comparisons between the QT and H: we considered a small number of priors and the

size of the samples was acceptable in each subsample. Nevertheless, the asymptotic H test did

not perform well size wise. We thus applied the MC method to the H test, with dramatic success:

the size of the MC H was brought back quite close to 5% in the identified designs, and close
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enough although slightly worse than that of the Q test in the weakly-identified case. While the χ2

limiting distribution provides the asymptotic validity for the MC H, the extent of the correction it

achieves is noteworthy, particularly though not exclusively when identification weakens. The most

dramatic size corrections are observed in the many priors case [Tables 5 and 6]. The fact that

the H test does not completely break down in some of these experiments is by itself noteworthy.

Recall that the G3R algorithm in this case admits a concentrated solution optimizing over the β

parameters only, which requires less data than a global search. In addition, the null is the stable

model here which is well estimated. This is a key ingredient for the validity of the MC method

size-wise; power is another story, as we show below.

So despite the severe size distortions of the asymptotic test and the (related) instability of

parameter estimates under the alternative, the MC H test remains feasible for the "many priors"

designs we report. Particularly, in the case of breaks in α1 and β (Experiment V) it turns out that

the estimates are notably unstable for theH test; this result is important to document for empirical

practice. The QT test by construction is immune to these problems. We nevertheless proceed and

study the relative power of these procedures mainly for stress-testing purposes, reporting some

results in Table 6.

Table 1 also shows that the asymptotic H test can under-reject. We did verify that under-

rejections are accompanied by lower power. The MC correction solves the problem in these cases

as well, adjusting the empirical rejections under the null closer to 5%, and improving power.

Consequently, our power comparisons are restricted to the QT and MC H tests, since it does

not make sense to study the power of over-sized tests. Note that we have also reported - in some

though not all of our simulations, which we intend as reference check - a locally size corrected

H test, by replacing the χ2 critical point in the power study with its approximated counterpart

we obtained in each of the size studies. Because it is feasible, we base our analysis on the MC

correction, yet both corrections convey similar conclusions qualitatively.

How can we reconcile the finite sample behavior of the asymptotic H test with the fact that our

asymptotic analysis for the MC combined test relied on the asymptotic behavior of the individual

tests we combine, which take the same form as the H test? On face value, this suggests that
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the curse of dimensionality is the usual culprit. But deeper analysis particularly of Experiments

I-III that are designed in favour of the embedding test underscores the following. While it is clear

that the asymptotic validity of the MC method was proved in standard identified frameworks, our

proofs do not require χ2 limiting distributions. This result is clearly illustrated via the dramatic

improvements we find, in all of our experiments.

On balance, three key results emerge from our size study: (1) dimensionality does matter and

often importantly, yet the MC method corrects its size implications; (2) Asymptotic pivotality is

not necessary for the MC method, which is revealed here via our size analysis of QT relative to the

H test; (3) Identification also matters, but the MC method seems to decrease its over-size effects.

Weakly identified setting are beyond the formal scope of this paper, yet the point is worth raising.

As pointed out in Dufour (1997), likelihood ratios have the potential to be salvaged.

Turning to power, let us first consider the cases that favour the embedding test by design,

namely Experiments I and II. The question we ask in this case is whether the combined approach

is dominated by the joint test. Here, the MC approach allows us to provide useful insights into

this important problem, since no Bonferroni corrections are needed.

A close inspection of Table 2 and focusing on the MC H test (disregarding its asymptotic

counterpart) shows that the performance of QT and H is roughly comparable. The combined

approach dominates though not dramatically when the sample is small and the magnitude of the

break is also small, that is, it provides improvements when it is most needed. Table 3 broadly

conveys the same message. The major distinction between Tables 2 and 3 is that the former DGP

corresponds to a well specified alternative, whereas the latter mispecifies the priors. Comparing

these tables will shed light on the following two questions: (i) whether one of the two tests [QT

versus H] is more or less robust to mispecification, (ii) what is the general cost on power of missing

the truth when formulating priors. On (i), we find that both tests react to mispecification in the

same way, at least in Experiments I-III. This is worth verifying, even if there is no real reason for

one approach to dominate the other in this respect. Turning to question (ii), in the context of

Experiment I, we do not find significant power losses in comparing the relevant panels in Tables 2

and 3.
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In contrast, Experiment II provides a case that illustrates such losses, which is reported in

the last panel of Table 3. The salient feature of that DGP is that the location of breaks is fixed

regardless of the sample size. Our intention is to study a design where deviations from the truth

are somewhat adhoc, in which case we should expect power losses. Indeed, even when the prior

does not cover the truth but remains close enough, which is roughly achieved in our simulations,

power does not suffer. But of course when the DGP deviates arbitrarily from the truth, then as it

should be, power does drop.

The usual trade-offs between restricted and unrestricted econometric methods apply here. The

interesting result is that mispecification costs are not drastic and conform to realistic expectations.

Experiment III tightens the dimensionality in various aspects, moving particularly to three

regimes under the null. We intentionally maintain the number of priors to three, as in Experiments

I and II. In the multiple test contexts, most discussions focus on the number of combinations. The

point we aim to show here in that in the nuisance-parameter dependent case, this is not the

whole story. Table 4 confirms that the combined test QT now dominates the embedding (joint)

test relative H for all the alternatives we studied. This suggests that in addition to the number

of prior alternatives, dimensionality of the null model also importantly affects the performance

of QT relative to H. Pursuing a similar argument, Table 4 also illustrates the interaction of

mispecification and dimensionality problems. As the number of breaks under the null increases,

we find that mispecification costs are more pronounced. One result that may seem disconcerting at

face value: power costs seem less sizable in the small sample case. The fact here is that when the

sample is small, the extent of the mispecification as we introduce it is also less important since the

priors are by construction closer to the true DGP. The mispecification window is de-facto smaller

in smaller samples.

This argument is further concretized via our "many priors" experiments [Table 5]: power

does not decrease much when the priors are mispecified. Recall however that the experiments

examine breaks in β when these occur at regular short intervals within the sample. Here again

the mispecification window is not large, which explains our finding. The salient result in Tables 5

and 6 is to confirm the superiority of our combined approach. While it is (arguably) possible to
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circumvent the size problems resulting from degrees-of-freedom crunches with the embedding test,

power does bear the cost. Combination methods thus emerge as a valuable alternative, particularly

in the many-priors case.

To conclude, it is worth noting that power is low for all size-correct methods we consider in

the weak identified case, as it should be. On balance, three key results emerge from our power

study. (1) As with size, dimensionality does matter and again often importantly, in the comparison

between the embedding H test and the combined QT : even when the former is well behaved, that

is when the number of priors is small, unless the number of regimes is small under both the null

or alternatives and/or a small number of parameters break, it pays off to use MC combination

methods. (2) In the nuisance parameter dependent case, the number of combined statistics is

not the only concern for finite sample performance. This is important since a large chunk of

the literature on multiple testing examines dimensionality mostly from the number of tests angle.

We show that two factors interact, namely dimensionality of the null model, and the number of

combinations. (3) While the MC methods can and does correct the severe over-rejections of the

embedding test, this comes at a serious power disadvantage relative to the combined test. In the

combined dependent tests literature, the main-stream consensus is that power deteriorates with

the number of combinations. The MC method circumvents this problem altogether, despite the

nuisance parameter problem.

Our results interpreted collectively suggest that further work on induced MC tests holds con-

crete promise, even when joint tests are available or when the number of prior alternatives is

not small. Joint tests may perform poorly because one of the alternatives lacks fit or is weakly

identified. The MC combined approach seems much less prone to this problem.

5 Empirical Application

In this section, we illustrate how multiple break testing can be conducted using the QT -statistic by

investigating the present value theory for asset prices (see e.g. Campbell and Shiller, 1987, 1989).

Let Pt refer to the asset price series and Dt the dividend paid for owning the asset during the
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period [t, t+ 1]. Then the present value theory implies

Pt = Et
(
Pt+1 +Dt+1

Rt+1

)
, (25)

where Rt+1 is the discount factor for the period [t, t+ 1] and Et(·) is a short-hand for E(·|It), with

It denoting the information set available at t. After log-linearisation (see Campbell and Shiller,

1989 for details), (25) can be rearranged as pt = κ−Et(rt+1) + ρEt(pt+1) + (1− ρ)Et(dt+1), where

ρ = 1/(1 + ed−p), κ = (ρ − 1)log(ρ−1 − 1) − log(ρ), and d− p is the average log dividend-price

ratio. Solving by recursive substitution leads to

pt =
κ

1− ρ + (1− ρ)

∞∑
i=0

ρiEt(dt+i+1)−
∞∑
i=0

ρiEt(rt+i+1) + lim
i→∞

ρiEt(pt+i). (26)

If we assume that prices do not follow an explosive process, then limi→∞ ρiEt(pt+i) in (26) converges

to zero, and rearranging remaining terms, the dividend-price ratio is given by13

dt − pt = − κ

1− ρ +

∞∑
i=0

ρiEt(rt+i+1 −∆dt+1+i). (27)

The empirical validity of (27) corresponds to cointegration between the log-dividend process {dt}

and the log-price process {pt}.

Our empirical analysis of the above is based on the standard S&P500 prices and associated

dividend series measured at quarterly frequency over the period 1960(1) - 2014(2). The dataset is

taken from Robert Shiller’s web page (http://www.econ.yale.edu/~shiller/) while the com-

putations are executed using OxMetrics 7 (Doornik and Hendry, 2013). The dividend-price ratio

for this sample is depicted in Figure 1.

[Figure 1 about here]

We first fit an unrestricted VAR to the vector Xt = [dt, pt]
> and assess cointegration using

the eigenvalue based tests of Johansen (1991). This test leads to the rejection of (time-invariant)

13Without loss of generality, we assume that the discount factor rt = rt+1 = · · · = r is constant over time, such
that (27) simplifies to dt − pt = −κ−r

1−ρ −
∑∞
i=0 ρ

iEt(∆dt+1+i).
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cointegration, a result certainly not at odds with the dynamics of the dividend-price ratio in

Figure 1.

Our analysis spans through three historical stylized-fact shocks: the Black Monday in 1987,

the dot-com burst at the turn of the century, and the latest sub-prime and sovereign debt crises

(global financial crises). We thus analyze the relevance of these shocks, in the context of a G3R

regression with four lags and unrestricted constant. Table 7 presents four combined tests reported

in panels labelled A - D. The underlying alternatives and corresponding individual p-values are

also reported in each panel. Each of the four combined tests is size-correct in its own right whereas

all four are not combined. Also note that test D is itself a single test; the reported p-value under

the Q-heading is the MC p-value, which we deem more reliable than its χ2 counterpart in view of

our simulation results.

Tests A and B assess stability against three alternatives each representing a single break at each

of the above locations. In contrast to B, test A imposes stability of the adjustment coeffi cients.

Comparing the outcome of both tests suggests breaks in both cointegration and adjustment coef-

ficients. Indeed, recall that time-invariant cointegration was rejected; we thus proceed to interpret

tests B - D. Test C assesses stability against two priors: (i) three breaks [1987(3), 1999(3), and

2007(4)]; (ii) two breaks [1999(3) and 2007(4)]. Test D confronts the latter two priors, assessing

(i) as a null against (ii). Interpreted individually or combined via an equal-split Bonferroni adjust-

ment14 at 10%, the conjunction of tests B, C and D suggests a breaking relation, with breaks at

1999(3) (dot-com boom) and 2007(4) (global financial crisis). This is in line with the conventional

wisdom regarding the short-lived impact of the 1987(3) Black Monday.

[Table 7 about here]

On balance, our findings suggest an alternative perspective to the bubbles motivated approach

as in Phillips et al. (2011), Phillips et al. (2015a), and Phillips et al. (2015b). These authors

test for temporary explosiveness of the price process due to financial bubbles, i.e. whether bt =

limi→∞ ρiEt(pt+i) explodes. Instead, our results suggest a breaking cointegrating relationship

between the price and dividend time series.
14 We interpret decisions via this adjustment because the null hypothesis of test D differs from that of the other

tests.
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These results should however be considered acknowledging the substantial literature on the

present value theory, that has not led to a "consensus" view empirically. We bring in evidence of

breaks within a bivariate system, which may raise interpretation issues. A changing relation may

challenge the present-value model for asset prices, which typically presumes a stable cointegrating

vector. Whether a stable adjustment coeffi cient is required for a structural (e.g. in the sense of

Lucas) model interpretation is beyond the scope of our analysis. We do not aim to take a firm view

towards the specification retained nor any underpinning financial theories. Our empirical exercise

would not do justice to this research topic, in view of the sizable related literature. Instead,

our results may be viewed as a motivation for experts in macro/finance to envisage a changing

relation. Econometric tool kits such as those we propose here may in fact assist towards its

empirical validation.

6 Conclusion

In this paper we proposed a multiple testing technique to assess stability of cointegrating relations,

building on the VECMG3R framework of Hansen (2003). We extended the test of Hansen (2003) to

accommodate various prior alternatives via a simulation-based approach, and proved its asymptotic

validity analytically.

The finite sample properties of proposed procedures are analyzed through an extensive Monte

Carlo simulation. Results suggest that a large number of priors can be effectively combined, cir-

cumventing Bonferroni-type corrections. An application to the S&P500 prices and dividends series

suggests a breaking cointegration relation, in the context of an enduring present-value motivated

empirical asset pricing problem.

A Proof of Theorem 1

To prove Theorem 1, it is convenient to first demonstrate two lemmas.

Lemma A.1 (Continuity of p-value function). Under notation (12), (13), (11) and Assumption
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1, set Q̄TB(θ, x, α1) = P
[
ŜTB(x|θ) ≤ α1

]
, 0 ≤ α1 ≤ 1. For any θ, θ0 ∈ Θ, x ∈ R, the inequality

|GT [y|θ]−GT [y|θ0]| ≤ η, ∀y ∈ (x− δ, x+ δ), δ > 0, (28)

entails the inequality |Q̄TB(θ, x, α1)−Q̄TB(θ0, x, α1)| ≤ 3C(N,α1)η, where C(B,α) = B
∑[α1B]

k=0

(
B
k

)
.

Proof. Using Assumption 1 (i.i.d.),

Q̄TB(θ, x, α1) = P

[
B∑
i=1

1 (QT i(θ) ≥ x) ≤ α1N

]
=

[α1B]∑
k=0

(
B
k

)
ḠT (x|θ)k[1− ḠT (x|θ)]B−k,

where ḠT (x|θ) = P [1 (QT i(θ) ≥ x) = 1] = P (QT i(θ) ≥ x) = 1 − GT (x|θ). Since (using (28))

|ḠT (x|θ)− ḠT (x|θ0)| = |GT (x|θ)−GT (x|θ0)| ≤ η,

|Q̄TB(θ, x, α1)− Q̄TB(θ0, x, α1)| =

=

∣∣∣∣∣∣
[α1B]∑
k=0

(
B
k

){
ḠT (x|θ)k[1− ḠT (x|θ)]B−k − ḠT (x|θ0)k[1− ḠT (x|θ0)]B−k

}∣∣∣∣∣∣
≤

[α1B]∑
k=0

(
B
k

) [
|ḠT (x|θ)k − ḠT (x|θ0)k|+ |[1− ḠT (x|θ)]B−k − [1− ḠT (x|θ0)]B−k|

]

≤
[α1B]∑
k=0

(
B
k

) [
k
∣∣ḠT (x|θ)− ḠT (x|θ0)

∣∣+ (B − k)|[1− ḠT (x|θ)]− [1− ḠT (x|θ0)]|
]
≤ C(B,α1)η.

Lemma A.2 (Convergence of Bootstrap p-values). Under the notation (12), (13), (11) and As-

sumptions 1-5, as T → +∞, |Q̄TB(θ̂T , QT0, α1)− Q̄TB(θ0, QT0, α1)| p−→ 0.

Proof. Since QT0
p−→ Q0 (Assumption 5), (QT0, θ̂T )

p−→ (Q0, θ0) and the same holds for

any subsequence {(QT̄k0, θ̂T̄k) : k = 1, 2, . . .} of {(QT0, θ̂T ) : T ≥ I0}: (QT̄k0, θ̂T̄k)
p−→ (Q0, θ0),

as k → +∞. Since QT0 and θ̂T , T ≥ I0, are random variables (or vectors) on the sample space

Ω, we can write QT0 = QT0 (ω), θ̂T = θ̂T (ω), and Q0 = Q0 (ω) , ω ∈ Ω. By Assumption 5

(equation (15)), the event A0 = {ω : Q0(ω) ∈ D0 and QT0(ω) ∈ D0, T ≥ I0} has probability

one. Moreover, convergence in probability of (QT0, θ̂T ) implies that the subsequence (QT̄k0, θ̂
′
T̄k

)′
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contains a further subsequence (QTk0, θ̂
′
Tk

)′, k ≥ 1 such that (QTk0, θ̂
′
Tk

)′
T→+∞−→ (Q0, θ0) a.s.. It

follows that the set C0 = {ω : Q0(ω) ∈ D0, limk→+∞QTk0(ω) = Q0(ω) and limk→+∞ θ̂Tk(ω) = θ0}

has probability one. Now let η > 0. By Assumption 5 (equation (16)), for any x ∈ D0, given a

sequence θT
T→∞−→ θ0, we can find T (x, η) > 0 and an open neighborhood B(x, η) of x such that,

for T > T (x, η), |GT (y|θT ) − GT (y|θ0) | ≤ η, ∀y ∈ B(x, η) ∩ D0.Furthermore, for ω ∈ C0 (by

the definition of C0), θ̂Tk(ω)
k→+∞−→ θ0 and we can find k0 s.t. QTk0(ω) ∈ B(Q0(ω), η) ∩ D0 for

k ≥ k0, so that Tk > max{T (Q0(ω), η), Tk0} implies |GTk [QTk0(ω)|θ̂Tk(ω)] − GTk [QTk0(ω)|θ0]| ≤

η. Thus limk→+∞{GTk [QTk0(ω)|θ̂Tk(ω)] − GTk [QTk0(ω)|θ0]} = 0 for ω ∈ C0. By Lemma A.1,

limk→+∞ |Q̄TkB(θ̂Tk (ω) , QTk0 (ω) , α1)− Q̄TB(θ0, QT0 (ω) , α1)| = 0, i.e.

lim
k→+∞

|Q̄TkB(θ̂Tk , QTk0, α1)− Q̄TB(θ0, QT0, α1)| = 0 a.s..

This shows that any subsequence of the sequence |Q̄TB(θ̂T , QT0, α1)− Q̄TB(θ0, QT0, α1)|, T ≥ I0,

contains a further subsequence which converges a.s. to zero. This is equivalent to |Q̄TB(θ̂T , QT0, α1)−

Q̄TB(θ0, QT0, α1)| p−→ 0.

Proof of Theorem 1 Thanks to independence of θ̂T and QT0 from QT1(θ), . . . , QTB(θ),

|P
[
ŜTB(QT0|θ̂T ) ≤ α1

]
− P

[
ŜTB(QT0|θ0) ≤ α1

]
| =

= |E
{
P
[
ŜTB(QT0|θ̂T ) ≤ α1|(θ̂T , QT0)

]
− P

[
ŜTB(QT0|θ0) ≤ α1|(θ̂T , QT0)

]}
|

≤ E
∣∣∣Q̄TB(θ̂T , QT0, α1)− Q̄TB(θ0, QT0, α1)

∣∣∣ .
So, applying the dominated convergence theorem and thanks to Lemma A.2, the result follows.

Equation (17) follows from the definition of p̂TB (x|θ) .

B Proof of Theorem 2

Let QT0 = QT (θ0) = 1 − min
1≤i≤n

[1 − Fi(LRT,i(θ0))], where Fi(·) is the CDF of a χ2(qi). QT0

and LRT,i(θ0) refer to the test statistics in (10) computed from the observed data when the true

parameter is θ0. Let GT (y|θ) = P (QT (θ) ≤ y) denote the distribution of QTb(θ), b = 1, . . . , B,
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where QTb(θ) are the simulation-based counterparts of the test statistics as in Steps 2 to 3 above.

Along the same lines, GT (y|θ0) will refer to the distribution ofQT (θ0). To extend Theorem 1, which

pertains to the level of a test based on p̂TB(QT0|θ̂T ), Assumptions 1-5 need to hold. Assumptions 1-

4 require that: (i) the above definedQT1(θ), . . . , QTb(θ), . . . , QTB(θ) are i.i.d. according toGT (y|θ),

∀θ ∈ Θ; (ii) θ̂T and QT0 are measurable; (iii) GT (QT0|θ̂T ) is a random variable; and (iv) θ̂T is

consistent for θ0 with convergence rate T−1/2. Assumptions 1-4 are verified by definition. To prove

Assumption 5, we need to show that QT0
p−→

T→∞
Q0 and, given any sequence of parameters θT −→

T→∞

θ0 with convergence rate T−1/2, D0 a subset of R s.t. P [Q0 ∈ D0 and QT0 ∈ D0 for all T ≥ I0] = 1

and ∀x ∈ D0, ∀η > 0, there exists an open neighborhood B(x, η) of x such that

lim sup
T→∞

{
sup

y∈B(x,η)∩D0
|GT (y|θT )−GT (y|θ0) |

}
≤ η. (29)

First, Theorem 10 in Hansen proves that (under Assumptions 1-4 in Hansen (2003)) LRT,i(θ)
d−→

T→∞

Xi ∼ χ2
qi , where qi corresponds to the reduction of free parameters between the model under the

null and the model under the considered alternative. From the proof of Theorem 10 in Hansen

(2003), it is apparent that the convergence of the likelihood ratios is not only in distribution but

also in probability, namely, LRT,i(θ)
p−→

T→∞
Xi ∼ χ2

qi .Differently from convergence in distribution,

convergence of two (or more) sequences in probability implies joint convergence in probability

(see, e.g., Lemma 3.4 in Kallenberg (1997)). This implies that the vector of likelihood ratios

(LRT,1(θ), . . . , LRT,n(θ)) jointly converges in probability to the vector (X1, . . . , Xn) . It thus fol-

lows that the joint distribution of (LRT,1(θ), . . . , LRT,n(θ)) converges to the joint distribution of

(X1, . . . , Xn) . Convergence of the test statistic

QT (θ) = 1− min
1≤i≤n

[1− Fi (LRT,i (θ))] = h (LRT,1(θ), . . . , LRT,n(θ)) , (30)

follows from the continuous mapping theorem. So, denoting Q0 = h (X1, . . . , Xn), we have that

QT0
p−→

T→∞
Q0. Next, considering D0 = (0, 1), it follows immediately that P [Q0 ∈ D0 and QT0 ∈

D0 for all T ≥ 1] = 1. Finally, in order to prove (29), it is convenient to rewrite the test statistic

as QT (θ) = g[XT (θ)], where the function g(·) is the composition of the functions underlying the
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definition of the test statistic (10), as summarized in Step 2 of the algorithm. The distribution of

XT (θ) is the joint likelihood Lθ(x) = L(x, θ).

Now consider P (QT (θ) ≤ y) = P (g[XT (θ)] ≤ y) = P (XT (θ) ∈ Ry), where Ry = {x ∈ RTp : g(x) ≤

y} is the pre-image of the set (−∞, y], y ∈ R. We can always write

|GT (y|θT )−GT (y|θ0)| = |P (QT (θT ) ≤ y)− P (QT (θ0) ≤ y)|

= |
∫
Ry

LθT (x)dx−
∫
Ry

Lθ0(x)dx|

≤ Eθ0

[∣∣∣∣LθT (XT )

Lθ0(XT )
− 1

∣∣∣∣ I(XT ∈ Ry)
]

≤

√√√√Eθ0

[(
LθT (XT )

Lθ0(XT )
− 1

)2
]
,

where we denote by Eθ0 [·] the expected value with respect to the true distribution Pθ0 . The last

quantity does not depend on y so we have that

sup
y∈(0,1)

|GT (y|θT )−GT (y|θ0)| ≤

√√√√Eθ0

[(
LθT (XT )

Lθ0(XT )
− 1

)2
]
. (31)

Recall now that the likelihood is given by

Lθ(XT ) =
T∏
t=1

1

(2π)p/2|Ω|1/2
exp

[
−1

2
(Z0t −AB′Z1t − CZ2t)

′Ω−1(Z0t −AB′Z1t − CZ2t)

]
,

with θ = (A,B,C,Ω) where correct specification implies zero mean variates. So we consider

the sequence θT to satisfy the same property. Let us now focus on the right-hand side of (31).

LθT (XT ) corresponds to the likelihood for a Np(0,ΩT ) and Lθ0(XT ) to the likelihood for a

Np(0,Ω0). In the following, we denote these likelihoods LA and L0, respectively. Now, LA =∏T
t=1

1
(2π)p/2|ΩT |1/2

exp
[
−1

2y
′
tΩ
−1
T yt

]
, which may be written in the canonical exponential form as

LA = 1
(2π)Tp/2

exp
(
−1

2

∑T
t=1 tr(yty

′
tKT ) + T

2 ln |KT |
)
, with KT = Ω−1

T . The same applies to L0.
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Thanks to Lemma 1 in Nielsen and Nock (2013) we thus can write

Eθ0

[(
LθT (XT )

Lθ0(XT )
− 1

)2
]

= e−(T/2) ln |2KT−K0|+T ln |KT |−(T/2) ln |K0| − 1

= |2KT −K0|−T/2|KT |T |K0|−T/2 − 1,

where we denoted KT = Ω−1
T . In terms of the original parameter, this corresponds to

E

[(
Lθ(XT )

Lθ0(XT )
− 1

)2
]

= |2Ω−1
T − Ω−1

0 |−T/2|Ω
−1
T |

T |Ω−1
0 |−T/2 − 1,

where ΩT is a sequence of variance-covariance matrices s.t. ΩT → Ω0. Now consider the term

|2Ω−1
T − Ω−1

0 |−T/2|Ω
−1
T |

T |Ω−1
0 |−T/2 = |2Ω−1

T − Ω−1
0 |−T/2|Ω2

T |−T/2|Ω−1
0 |−T/2

=
1

(|2I − ΩTΩ−1
0 ||ΩTΩ−1

0 |)T/2

=
1

|2MT −M2
T |T/2

,

where MT = ΩTΩ−1
0 . It follows that

E

[(
Lθ(XT )

Lθ0(XT )
− 1

)2
]

=
1

|2MT −M2
T |T/2

− 1 =
1

(|MT ||2I −MT |)T/2
− 1.

We thus need to prove that

|MT ||2I −MT | ≥
1

(1 + η2)2/T
. (32)

Now, denote by λi,T the eigenvalue ofMT , i.e. λi,T is a solution to |MT−λi,T I| = 0, so that |MT | =∏p
i=1 λi,T . Notice that λi,T − 2 is the eigenvalue of MT − 2I so (32) becomes

∏p
i=1 λi,T

∏p
i=1(2 −

λi,T ) ≥ 1
(1+η2)2/T

, which is the same as
∏p
i=1 λ

∗
i,T ≥ 1

(1+η2)2/T
, λ∗i,T = λi,T (2 − λi,T ). Notice now

that λ∗i,T = −(λi,T −1)2 + 1 and thus
∏p
i=1

[
−(λi,T − 1)2 + 1

]
≥ 1−

∑p
i=1(λi,T −1)2, so we are left

to prove that
∑p

i=1(λi,T −1)2 ≤ 1− 1
(1+η2)2/T

. Now 1− 1
(1+η2)2/T

= 1−e− 2
T

ln(1+η2) ' + 2
T ln(1+η2),

so that for condition (29) to hold, it is requested that ΩT − Ω0 = O(T−1/2). This is exactly the

rate of convergence of the estimator Ω̂T (see Johansen (1995)).

Finally, QT (θ0) and θ̂T are both independent of QT1(θ), . . . , QTB(θ), by construction. Theorem
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2 then entails that for 0 ≤ α ≤ 1

lim
T→∞

{
P
[
p̂TB

(
QT0|θ̂T

)
≤ α

]
− P [p̂TB (QT0|θ0) ≤ α]

}
= 0. (33)

We can therefore apply Proposition 2.4 in Dufour (2006) as follows. This proposition proves

that P [p̂TB (QT0|θ0) ≤ α] = I[α(B+1)]
B+1 , because of exchangeability of the observed and simulated

statistics. Substituting this expression in (33) proves the theorem.

C Proof of Theorem 3

Proof. First, we show that the limiting distribution exists and is pivotal. The proof of the existence

of the limiting distribution follows along the lines of the proof of Theorem 2. To prove asymptotic

pivotality, it is useful to note that the test statistic can be represented as (see proof of Theorem 10

in Hansen (2003)) LRT,i(θ) = ηTMT,i(θ)η + op (1) , i = 1, 2, ..., n, where η = Σ−1/2ε ∼ N (0, ITp),

ε = vec (ε1, ..., εT ) , Σ = var (ε) , andMT,i = PAC,i−PAC,0+PB,i−PB,0, with PAC,i, PAC,0, PB,i, PB,0

projection matrices such that PACPB = op (1), so that each alternative is tested against the null

hypothesis by LRT,i(θ) = η′ (PAC,i − PAC,0 + PB,i − PB,0) η + op (1) .

Now consider LRT,i(θ) − LRT,i−1(θ) = η′ (PAC,i − PAC,i−1 + PB,i − PB,i−1) η + op (1) . Since

Hi−1 is nested in Hi (i = 1, ..., n), PAC,i − PAC,i−1 and PB,i − PB,i−1 are p.s.d.. It thus follows

that LRT,i(θ) − LRT,i−1(θ) →d Yi ∼ χ2
qi−qi−1 , where we have denoted by Yi the limit r.v.. Now,

for j < i, LRT,j(θ) − LRT,j−1(θ) and LRT,i(θ) − LRT,i−1(θ) are asymptotically independent as

(PAC,j − PAC,j−1 + PB,j − PB,j−1) (PAC,i − PAC,i−1 + PB,i − PB,i−1) = op (1) .

The joint vector of likelihood ratios (LRT,1(θ), ..., LRT,n(θ)) can thus be written as a linear

transformation of (LRT,1(θ), LRT,2(θ)− LRT,1(θ), ..., LRT,n(θ)− LRT,n−1(θ)), which has asymp-

totically independent components and hence it is asymptotically pivotal. Thus, it follows that

(LRT,1(θ), ..., LRT,n(θ)) is asymptotically pivotal, i.e. (LRT,1(θ), ..., LRT,n(θ)) →d (X1, ..., Xn),

where Xi ∼ χ2
qi (qi denoting the reduction of free parameters between the alternative and the

null model) and (X1, ..., Xn) jointly pivotal. Hence, also the test statistic QT (θ) is asymptotically

pivotal. We denote by Q0 = h (X1, ..., Xn) the limit (pivotal) random variable, so QT (θ)→d Q0.
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Next, we prove the validity of the asymptotic MCT directly showing that Assumptions (6.1)-

(6.4) in Dufour (2006) hold in this case. Assumptions (6.1)-(6.3) require that: (i) the statistics

QT1(θ), ..., QTb(θ), ..., QTB(θ) are i.i.d. according toGT (y|θ), ∀θ ∈ Θ; (ii)Θ is a nonempty subset of

Rk; and (iii) θ̂T and QT0 are measurable, and GT (QT0|θ̂T ) is a random variable. These assumptions

are verified by definition. Assumption (6.4) states that ∀η0 > 0, ∀η1 > 0, ∃δ > 0 and a sequence

of open subsets DT0 (η0) in R such that lim infT→∞ P [QT0 ∈ DT0 (η0)] ≥ 1− η0 and

||θ − θ0|| ≤ δ =⇒ lim sup
T→∞

sup
y∈DT0(η0)

|GT (y|θ)−GT (y|θ0)| ≤ η1.

Noting that we can take DT0 (η0) =(0, 1) as QT0 ∈ [0, 1], the above condition is equivalent to:

∀η1 > 0, ∃δ > 0 and ∃T1 > 0 such that

∀y ∈ (0, 1) ,∀θ : ||θ − θ0|| ≤ δ,∀T > T1 = T1 (θ) |GT (y|θ)−GT (y|θ0)| ≤ η1. (34)

Notice that T1 = T1 (θ) as the condition is not uniform in θ. That is limT→∞ |GT (y|θ) −

G (y) | = 0, at all continuity points y of G, i.e., given θ, ∀η > 0, ∀y ∈ (0, 1) ∃T1 : T > T1,

|GT (y|θ) − G (y) | < η, where we denoted by G (y) = P (Q0 ≤ y) the asymptotic distribution.

Since the function h (·) is a composition of monotonic functions, it is (piecewise) monotonic, so

that Q0 is an absolutely continuous random variable. Thus, Polya’s Theorem ensures that, given

θ, the convergence is uniform in y, i.e. supy∈(0,1) |GT (y|θ)−G (y) | → 0, which means that ∀ε > 0,

∃T1 : T > T1 = T1 (θ): supy∈(0,1) |GT (y|θ)−G (y) | ≤ η. So, finally, the inequality

|GT (y|θ)−GT (y|θ0)| ≤ |GT (y|θ)−G(y)|+ |GT (y|θ0)−G(y)|,

shows that condition (34) is satisfied. The final result then follows along the same lines as in the

proof of Theorem 2.
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Table 1: Empirical size for Experiments I, II, and III.

α1 = −1 α2 = 0 α1 = −0.2 α2 = 0 α1 = −0.01 α2 = 0 α1 = −0.5 α2 = 0.5
T QT H (H-BT) QT H (H-BT) QT H (H-BT) QT H (H-BT)

Experiment I
H0 : no breaks, H1 : (T/2) ∪ (T/2− T/5) ∪ (T/2 + T/5)

100 5.1 5.6 (4.8) 5.4 11 (5.5) 7.4 30.3 (7.4) 5.2 7 (4.9)
200 5.3 6.3 (5.6) 5.7 9.3 (6.1) 7.3 26.8 (7.5) 5 6.1 (5.7)
300 5.1 6.6 (6) 5.7 7.5 (6.4) 6 27.1 (8.5) 5.7 5.9 (6.1)
400 6.2 5.3 (5.4) 5.4 6.4 (5.2) 6.5 21.7 (6.1) 4.4 5.6 (5.1)
500 5.4 4.7 (4.2) 5.7 5.8 (5.5) 4.9 22.5 (6.1) 5.3 4.9 (4.6)

H0 : no breaks, H1 : (T/2) ∪ (T/2− 20) ∪ (T/2 + 20)
100 5.1 5.6 (4.8) 5.4 11 (5.5) 7.4 30.3 (7.4) 5.2 7 (4.9)
200 5.7 5.5 (5.5) 5.2 8 (5.7) 7.8 23 (8.2) 4.6 4.9 (4.4)
300 5.2 5.6 (5.6) 5.3 7.8 (5.8) 7 20 (5.6) 6.4 4.8 (4.9)
400 5.6 6.2 (6.2) 5.4 7.6 (6.6) 6 18.1 (6.8) 5 5.6 (7.2)
500 5.3 4.4 (4.6) 5.5 4.8 (4.4) 4.8 12.7 (5.6) 5.9 5 (5.2)

Experiment II
H0 : T1 = T/2, H1 : (T1, T1 + T/5) ∪ (T1, T1 − 3T/10) ∪ (T1, T1 − T/4, T1 + T/5)

100 6.4 5.9 (6.2) 6 10.1 (6.2) 9.1 23.9 (9.9) 5.3 6.6 (5.5)
200 6.3 6.4 (6.8) 5.7 7.1 (5.2) 10.1 22 (9.8) 4.5 5.1 (4.6)
300 7.2 6.8 (7.4) 8.1 7.6 (9.9) 7.7 19.1 (8.5) 5.2 5 (5.2)
400 7 5.9 (7.9) 5.8 6.9 (6.7) 9.5 17 (10) 6.6 5.8 (6.4)
500 6.8 4.5 (6.3) 5.4 4.9 (4.7) 7.9 16.1 (8.1) 7 4.9 (5.5)

H0 : T1 = T/2, H1 : (T1, T1 + 20) ∪ (T1, T1 − 30) ∪ (T1, T1 − 25, T1 + 20)
100 6.4 5.9 (6.2) 6 10.1 (6.2) 9.1 23.9 (9.9) 5.3 6.6 (5.5)
200 7.2 7.2 (7.6) 6.7 8.2 (6.7) 10.4 17.4 (9.8) 5.9 4.9 (5)
300 5.7 5 (5.6) 8.1 5.8 (7.3) 6.4 12.3 (7.1) 5.3 5.5 (6.2)
400 8.3 6.8 (8.4) 6.5 7 (6.9) 10 12.9 (10.1) 6.4 6.3 (6.8)
500 7.1 4.6 (7.1) 4.4 5.1 (3.9) 6.2 9 (6.8) 5.8 5.2 (5.6)

H0 : T1 = 20, H1 : (T1, T1 + 20) ∪ (T1, T1 − 30) ∪ (T1, T1 − 25, T1 + 20)
100 7.5 0.7 (7.4) 6.6 1 (6.7) 8.1 3.4 (8.3) 4.4 0.3 (4.4)
200 9.7 1.6 (9.7) 8.2 1.6 (8.2) 9.2 2.6 (10.4) 5.7 0.4 (5.8)
300 6.4 0.9 (6.4) 6.9 1.4 (7) 6.4 1.9 (6.8) 6.9 0.5 (6.9)
400 8.6 0.9 (8.4) 6.1 1 (6) 10.2 1.7 (10.1) 6.5 0.5 (6.5)
500 6.4 0.6 (6.5) 4.2 0.9 (4.2) 6 1.2 (6.9) 6.7 0.1 (6.7)

H0 : T1 = T/5, H1 : (T1, T1 + T/5) ∪ (T1, T1 − 3T/10) ∪ (T1, T1 − T/4, T1 + T/5)
100 7.5 0.7 (7.4) 6.6 1 (6.7) 8.1 3.4 (8.3) 4.4 0.3 (4.4)
200 6.3 0.7 (6.4) 6.1 0.7 (5.9) 9.5 3.4 (9.5) 5.6 0.7 (5.5)
300 6.8 0.7 (6.7) 6.9 0.5 (6.6) 6.5 2.3 (7) 8.1 0.9 (8.3)
400 8.9 1 (8.9) 6.5 0.5 (6.6) 9.9 2.5 (9.5) 6.2 0.5 (6.3)
500 7.1 0.3 (6.8) 4.9 0.6 (5.2) 6.8 2.2 (7) 7 0.3 (6.9)

Experiment III
H0 : T1 = T/2, T2 = 2T/3, H1 : (T1, T2, T1 + 20) ∪ (T1, T2, T2 − 5, T1 + 15) ∪ (T1, T2, T1 + 10, T1 − 10, T2 − 5)

100 6.7 7.9 (6.2) 6.5 10.1 (5.7) 7 16.5 (7.1) 6.4 7.8 (5.7)
200 7.1 6.5 (6.3) 7.2 8.6 (5.6) 7.7 14.8 (8.5) 5.3 5.2 (4.9)
300 7 5.8 (6.3) 9 7.4 (8.4) 7.3 11.7 (7) 6.8 5.3 (5.2)
400 7.7 7.1 (7.9) 8.4 7.9 (7.8) 8.9 11.4 (9.3) 6.9 5.1 (6)
500 5.9 4.5 (7) 4.3 4.8 (5.4) 4.6 9.1 (6.2) 4.6 3.6 (4.4)

H0 : T1 = 20, T2 = 2T/3, H1 : (T1, T2, T1 + 20) ∪ (T1, T2, T2 − 5, T1 + 15) ∪ (T1, T2, T1 + 10, T1 − 10, T2 − 5)
100 5 8 (6.6) 5.9 11.8 (5.4) 9.1 25.2 (10.2) 4.8 6.4 (4.9)
200 8.2 6.2 (6.4) 7.7 8 (5.9) 10.1 13.8 (11) 4.3 5 (5.1)
300 7.1 6.2 (7.2) 7.4 7.3 (7.2) 6.7 10.6 (7.2) 6.1 5.3 (5.9)
400 7.8 5.8 (7.2) 7.9 6.5 (7.2) 11.4 11.7 (12.3) 8.2 5.9 (7.1)
500 7.1 5.9 (7.8) 4.9 6.1 (6.2) 6.2 8.6 (8.5) 5.4 3.3 (4.9)

H0 : T1 = T/2, T2 = T − 20, H1 : (T1, T2, T1 + 20) ∪ (T1, T2, T2 − 5, T1 + 15) ∪ (T1, T2, T1 + 10, T1 − 10, T2 − 5)
100 5.9 7.2 (6.3) 5.3 10 (4.7) 9.2 23.8 (9.7) 5.4 6.5 (5)
200 7.1 6.9 (6.3) 6.4 8 (6.3) 10.2 18.8 (9.8) 6.2 6.2 (5.6)
300 5.2 4.7 (5.8) 5 6.7 (6.1) 7.6 12.4 (7.3) 5.2 4.6 (4.4)
400 7.2 6.4 (7.3) 6.4 6.9 (6.9) 11.1 12.5 (11) 6 5.6 (6.8)
500 6.3 5.5 (7.4) 4.7 6.1 (5.1) 5.4 10 (7) 4.9 5 (5.3)

Note: Nominal level used to compute the empirical rejection frequencies is 5%. “QT” indicates
QT -statistic, “H”Hansen’s asymptotic test statistic, and "H-BT" bootstrapped Hansen’s asymptotic
test.
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Table 2: Empirical power for Experiments I and II (DGP corresponds to one of the alternatives)

α1 = −1 α2 = 0 α1 = −0.2 α2 = 0 α1 = −0.01 α2 = 0 α1 = −0.5 α2 = 0.5

Experiment I
QT H (H-c; H-BT) QT H (H-c; H-BT) QT H (H-c; H-BT) QT H (H-c; H-BT)

DGP:(T1 = T/2), H0 : no breaks, H1 : (T1) ∪ (T1 − T/5) ∪ (T1 + T/5)

β2 T = 100

1.1 66 63.8 (61; 60.7) 9.3 14.8 (7.2; 7.5) 6.7 29.9 (5; 7.4) 35.4 33.4 (31.6; 30.4)
1.3 98.5 98.2 (97.8; 97.5) 35.7 41.8 (29.7; 30.4) 7.1 30 (5.1; 7.8) 84.1 82.2 (80.9; 79.8)
1.5 100.0 100 (99.9; 99.8) 58.8 64.6 (52.7; 52.6) 6.5 29.7 (5; 7.5) 95.7 95 (94.4; 94.1)
2.0 100 100 (100; 100) 89.8 90.3 (85.3; 85.9) 7.4 30.5 (4.9; 8.1) 99.8 99.7 (99.7; 99.7)
β2 T = 300

1.1 98.1 97.3 (97.1; 97.1) 34.5 32.4 (27.3; 28.9) 6.0 26.5 (4.8; 8.4) 76.3 74 (71.9; 73.6)
1.3 100.0 100 (100; 100) 85.0 83.1 (79.9; 80.2) 5.7 27.1 (4.5; 7.9) 99.9 99.8 (99.8; 99.8)
1.5 100.0 100 (100; 100) 97.8 97.4 (96.5; 96.8) 6.7 27.3 (5.1; 8.3) 100.0 100 (100; 100)
2.0 100.0 99.9 (99.9; 99.9) 99.0 99.7 (99.7; 99.7) 10.3 30.9 (6.4; 10.8) 100.0 100 (100; 100)

Experiment II
QT H (H-BT) QT H (H-BT) QT H (H-BT) QT H (H-BT)
DGP:(T1 = T/2, T1 + T/5), H0 : T1, H1 : (T1, T1 + T/5) ∪ (T1, T1 − 3T/10) ∪ (T1, T1 − T/4, T1 + T/5)

β2 T = 100

2.1 52.3 52.6 (50.5) 9.0 14.1 (8.0) 6.8 23.9 (5.1) 15.6 17.2 (14.3)
2.3 89.1 87.8 (87.1) 29.2 33.2 (25.4) 6.5 23.9 (5) 54.5 54.3 (52)
2.5 97.0 97 (96.8) 46.6 51.3 (43.0) 6.5 24.3 (5.2) 74.6 73.3 (72.1)
3.0 99.1 100 (100.0) 73.7 75.8 (69.5) 7.1 24.9 (5.3) 96.5 96.2 (95.9)
β2 T = 300

2.1 84.6 87.3 (84.5) 24.1 26.6 (20.4) 7.1 19.3 (5.4) 50.3 47.5 (48.1)
2.3 95.2 99.3 (99.3) 67.1 69 (64.1) 7.3 19.8 (5.1) 90.2 89.2 (89.5)
2.5 97.3 99.9 (99.9) 80.7 86 (83.2) 8.5 21 (5.0) 97.6 97.7 (97.7)
3.0 96.9 99.6 (99.6) 88.6 97.5 (96.7) 10.8 24.4 (6.9) 98.2 100 (100.0)

DGP:(T1 = 20, T1 + 20), H0 : T1, H1 : (T1, T1 + 20) ∪ (T1, T1 − 30) ∪ (T1, T1 − 25, T1 + 20)

β3 T = 100

2.1 58.1 41.5 (59.0) 10.5 2.2 (10.2) 5.8 3.5 (5.1) 19.2 5.2 (21.7)
2.3 89.8 86.1 (92.7) 33.3 17.9 (32.9) 5.9 3.7 (4.9) 64.0 44.5 (65.3)
2.5 98.2 96.1 (98.6) 54.4 38.2 (54.0) 5.9 3.6 (5.1) 85.3 69.9 (86.6)
3.0 99.1 99.6 (100.0) 79.9 70.6 (80.2) 6.7 3.4 (5.3) 98.5 96.8 (99.2)
β3 T = 300

2.1 64.3 48.7 (64.6) 10.6 2.7 (10.4) 4.7 2 (5.4) 25.2 9.7 (22.7)
2.3 88.3 87.3 (93.4) 37.5 23.4 (39) 4.8 1.7 (5) 70.4 55.9 (70)
2.5 97.5 97.5 (99.3) 59.0 47.3 (62.4) 5.5 1.6 (4.9) 87.5 78.3 (87.9)
3.0 95.9 99.6 (99.8) 77.6 76.8 (84.2) 6.3 2.4 (7) 98.5 96.8 (98.9)

Note: Nominal level used to compute the empirical rejection frequencies is 5%. “QT”indicates QT -
statistic, “H”Hansen’s asymptotic test statistic, "H-c" Hansen’s asymptotic test with size correction,
and "H-BT" bootstrapped Hansen’s asymptotic test.
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Table 3: Empirical power for Experiments I and II (DGP does not correspond to any of the alternatives)

α1 = −1 α2 = 0 α1 = −0.2 α2 = 0 α1 = −0.01 α2 = 0 α1 = −0.5 α2 = 0.5

Experiment I
QT H (H-c; H-BT) QT H (H-c; H-BT) QT H (H-c; H-BT) QT H (H-c; H-BT)

DGP:(2T/3), H0 : no breaks, H1 : (T/2) ∪ (T/2− T/5) ∪ (T/2 + T/5)

β2 T = 100

1.1 62.1 59.5 (57.2; 56.8) 8.9 15.2 (7.7; 8.5) 7.4 30 (5.2; 7.7) 32.2 31.5 (30.1; 29.6)
1.3 96.2 95.8 (94.7; 95.2) 30.8 37.3 (25.9; 24.3) 7.3 30.2 (5; 7.6) 77.6 75.9 (74.1; 73.7)
1.5 98.8 99.1 (99.0; 98.5) 47.8 54.9 (41.8; 41.2) 7.0 30.6 (5.7; 8.3) 92.3 91 (90.5; 90.1)
2.0 92.6 95.6 (95.3; 92.8) 72 78.4 (68.7; 66.8) 8.4 30.9 (5.6; 7.9) 99.3 99.3 (99.2; 99.3)
β2 T = 300

1.1 95.8 94.7 (94.3; 95.1) 30.3 30.3 (24; 26.5) 6.0 26.4 (5; 8.7) 74.9 71.8 (70.2; 71.9)
1.3 100.0 100 (100; 100) 79.6 77.3 (73.1; 74.4) 6.4 27.2 (4.8; 8.4) 98.5 98.5 (98.2; 98.4)
1.5 100.0 100 (100; 100) 91.5 91.7 (89.9; 89.9) 7 27.1 (4.9; 8.1) 100 99.9 (99.9; 99.9)
2.0 95.4 97.9 (97.5; 95.6) 87.6 91.6 (90.4; 87.7) 9.1 30.2 (5.4; 9.7) 100.0 100 (100; 100)

Experiment II
QT H (H-BT) QT H (H-BT) QT H (H-BT) QT H (H-BT)

DGP:(T1 = T/2, 2T/3), H0 : T1, H1 : (T1, T1 + T/5) ∪ (T1, T1 − 3T/10) ∪ (T1, T1 − T/4, T1 + T/5)

β2 T = 100

2.1 43.1 43.4 (41.2) 7.5 12.1 (6.6) 6.7 23.9 (5.1) 12.3 13.9 (11)
2.3 82.5 82.2 (81.5) 19.1 22.8 (15.6) 6.3 23.5 (5) 46.3 46.5 (43.7)
2.5 94.1 92.9 (92.2) 31.2 34.9 (25.8) 6.8 23.6 (5) 67.9 66.5 (64.7)
3.0 97.8 98.1 (97.8) 52.5 55.9 (46.2) 7.3 23.4 (5) 92.8 92.1 (90.9)
β2 T = 300

2.1 79.7 79.5 (76.1) 16.3 19.1 (13.3) 7.2 19.1 (5) 40.6 37.7 (38.4)
2.3 94.4 97.4 (96.8) 53.4 57 (49.8) 8.0 20.1 (5) 83.5 80.5 (81)
2.5 97.2 99.5 (99.4) 71.5 76.9 (71) 7.8 20.1 (4.8) 92.7 94.2 (94.3)
3.0 97.7 99.7 (99.5) 79.2 86.8 (83.5) 9.5 20.6 (5.8) 98.6 99.5 (99.6)

DGP:(T1 = 20, 2T/3), H0 : T1, H1 : (T1, T1 + 20) ∪ (T1, T1 − 30) ∪ (T1, T1 − 25, T1 + 20)

β3 T = 100

2.1 28.4 10.8 (28.6) 7.0 1.2 (5.9) 5.5 3.6 (5.1) 8.4 0.8 (9.6)
2.3 52.8 31.2 (53.4) 10.0 2.2 (9.0) 6.1 3.5 (4.8) 28.7 9.4 (30.1)
2.5 53.4 35.8 (55.3) 12.5 4.7 (12.3) 5.0 3.7 (5.1) 44.7 21.2 (46.7)
3.0 46.2 32.6 (49.3) 18.0 8.8 (17.8) 4.9 3.2 (4.7) 80.5 59.8 (82)
β3 T = 300

2.1 15.9 4.6 (15.9) 4.9 1.3 (4.6) 5.3 2.2 (5.5) 8.9 0.9 (7.6)
2.3 23.8 12.4 (24.5) 5.3 1.5 (5.7) 4.7 1.8 (4.7) 18.4 5 (15.8)
2.5 20.9 11.5 (22) 6.8 1.9 (6.5) 4.6 1.6 (4.8) 26.1 9.8 (24.1)
3.0 14.6 7.1 (15.8) 8.3 3.3 (11.3) 4.2 1.6 (4.8) 61.1 37.6 (58.2)

Note: Nominal level used to compute the empirical rejection frequencies is 5%. “QT”indicates QT -
statistic, “H”Hansen’s asymptotic test statistic, "H-c" Hansen’s asymptotic test with size correction,
and "H-BT" bootstrapped Hansen’s asymptotic test.
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Table 4: Empirical power for Experiment III

α1 = −1 α2 = 0 α1 = −0.2 α2 = 0 α1 = −0.01 α2 = 0 α1 = −0.5 α2 = 0.5

Experiment III
QT H (H-c; H-BT) QT H (H-c; H-BT) QT H (H-c; H-BT) QT H (H-c; H-BT)

DGP covered by one of the alternatives
DGP:(T1 = T/2, T2 = 2T/3, T3 = T1 + 20), H0 : (T1, T2), H1 : (T1, T2, T1 + 20) ∪ (T1, T2, T2 − 5, T1 + 15) ∪ (T1, T2, T1 + 10, T1 − 10, T2 − 5)

β2 T = 100

1.6 26.7 26.9 (21.5; 22.3) 6.2 11.3 (5.4; 5.3) 5.2 16.5 (4.7; 5.8) 9.5 10.8 (8; 8.5)
1.8 67.1 66.7 (62.7; 62.9) 13.4 17.6 (10.0; 10.6) 5.2 16.9 (5.1; 5.9) 31.2 30 (26.8; 26.8)
2.0 81.3 81.2 (78.9; 79.0) 26.4 28.9 (20.6; 21.0) 5 17 (5.5; 6.5) 48.6 47.2 (44.5; 44.2)
2.5 91.4 91.5 (90.8; 90.7) 52.7 55.2 (45.4; 44.7) 4.9 16.3 (5.5; 6.1) 70.9 69.7 (67.2; 67.0)
β2 T = 300

1.6 64.5 60.4 (59.7; 58.5) 11.1 11.8 (10.1; 9.6) 5.8 11.7 (5.1; 5.4) 27.7 23.7 (23.4; 22.9)
1.8 91.5 90.2 (89.7; 87.9) 38.6 37.3 (33.9; 32.0) 6.2 11.4 (5; 5.9) 68.5 61.0 (60.8; 61.0)
2.0 96.2 97.5 (97.3; 94.7) 56.9 57.1 (53.8; 51.5) 5.7 11.2 (5.4; 5.8) 83.7 78.2 (78; 78.2)
2.5 96.2 99.7 (99.7; 96.1) 75.0 80.3 (78.3; 71.9) 7.2 13 (6.3; 7.1) 97.1 96.6 (96.6; 94.9)
DGP:(T1 = 20, T2 = 2T/3, T3 = T2 − 5), H0 : (T1, T2), H1 : (T1, T2, T1 + 20) ∪ (T1, T2, T2 − 5, T1 + 15) ∪ (T1, T2, T1 + 10, T1 − 10, T2 − 5)

β2 T = 100

1.6 30.5 32.4 (26.4; 28.5) 7.2 13 (6.2; 5.9) 8.1 25.9 (4.9; 8.5) 7.4 9.0 (7.2; 7.2)
1.8 71 71.7 (68.0; 69.0) 17 22.6 (14.6; 15.6) 7.5 24.4 (4.5; 8.6) 27.4 28.2 (25.7; 25.6)
2.0 83.4 83.4 (81.3; 81.7) 28.9 35.7 (25.9; 26.0) 7.1 24.3 (4.2; 8.0) 48.6 47.6 (44.6; 44.0)
2.5 94 94.0 (92.5; 92.0) 55.7 59.2 (51.8; 52.1) 6.8 23 (4.5; 8.7) 77.6 76.5 (75.1; 75.9)
β2 T = 300

1.6 45.9 45.9 (43.5; 41.6) 7 8.3 (6.5; 7.1) 4.6 11.1 (5.7; 5.7) 15.3 12.1 (11.8; 12.4)
1.8 77.2 79.8 (78.9; 75.9) 23.0 25.9 (23.0; 20.7) 4.6 11.2 (5.9; 6.0) 47.7 46.1 (45.7; 46.2)
2.0 84.6 87.2 (86.7; 83.7) 43.3 45.1 (42.1; 40.0) 4.3 11.5 (5.8; 5.9) 67.1 64.4 (64.0; 63.4)
2.5 92.1 95.4 (95.1; 91.6) 65.9 71.0 (69.7; 65.0) 5.2 11.2 (5.3; 6.4) 85.1 84.5 (84.4; 83.5)

DGP not covered by any of the alternatives (misspecified case)
DGP:(T1 = T/2, T2 = 2T/3, T3 = 5T/6), H0 : (T1, T2), H1 : (T1, T2, T1 + 20) ∪ (T1, T2, T2 − 5, T1 + 15) ∪ (T1, T2, T1 + 10, T1 − 10, T2 − 5)

β2 T = 100

1.6 11.9 10.5 (6.6; 8.1) 5.7 10.7 (4.7; 4.4) 5.4 16.9 (5.1; 6.1) 6.9 8.2 (5; 6.3)
1.8 32.5 24.3 (18.2; 17.5) 6.4 10.6 (5.1; 5.1) 5.5 17.3 (5.4; 7.1) 9.1 8.4 (6.9; 6.7)
2.0 42.4 30.5 (24.4; 23.7) 9.2 12.4 (6.7; 7.0) 5.1 16.8 (5.3; 6.6) 11 7.7 (6.1; 6.1)
2.5 43.7 30.6 (23.1; 20.1) 15.9 20.3 (13.1; 12.3) 5.2 15.8 (5.2; 6.2) 15.6 8.7 (6.3; 6.4)
β2 T = 300

1.6 3.5 2.7 (2.3; 2.9) 5.5 6.9 (4.4; 5.2) 5.9 11.4 (4.7; 5.3) 5.3 4.2 (4.2; 4.3)
1.8 2.1 1.3 (1.3; 1.6) 6.4 8.1 (5.5; 5.9) 6.2 11.3 (5; 5.6) 3.7 2.5 (2.4; 2.3)
2.0 2.8 3.2 (2.5; 2.1) 10.5 13.9 (11.9; 10.1) 5.4 11.2 (4.8; 5.2) 3.1 1.9 (1.9; 1.8)
2.5 2.7 3.2 (3.1; 2.3) 15.9 23.5 (20.1; 16.7) 4.6 10.8 (4.5; 5.3) 1.8 1.3 (1.3; 1.2)

DGP:(T1 = 20, T2 = 2T/3, T3 = 5T/6), H0 : (T1, T2), H1 : (T1, T2, T1 + 20) ∪ (T1, T2, T2 − 5, T1 + 15) ∪ (T1, T2, T1 + 10, T1 − 10, T2 − 5)

β2 T = 100

1.6 3.7 6.1 (3.7; 4.3) 5.6 11.8 (5.1; 5.3) 8.3 25.5 (5.1; 8.7) 4.4 5.7 (4.5; 4.4)
1.8 2.4 3.1 (1.5; 2) 5.3 10.2 (3.9; 3.7) 7.3 24.5 (4.3; 7.7) 3.4 4.3 (3.3; 3.3)
2.0 1.5 1.8 (0.7; 1.2) 4.2 8.5 (3.4; 3.6) 7.1 25.2 (4.6; 8.8) 2.7 3.3 (2.7; 2.5)
2.5 0.9 1 (0.6; 0.4) 3.8 8.7 (3.7; 3.4) 6.4 23.1 (4; 8.1) 1.4 1.4 (1; 1.1)
β2 T = 300

1.6 2.7 2.8 (2.6; 2.2) 5.1 6.6 (4.8; 5.4) 4.6 11 (5.4; 5.4) 5.6 4.5 (4.4; 4.4)
1.8 1.1 1.1 (0.8; 0.7) 4.7 5.7 (4.5; 4.3) 4.3 10.6 (5.7; 5.9) 3.1 2.7 (2.4; 2.9)
2.0 1.0 0.5 (0.4; 0.3) 5.7 6.9 (5.3; 4.7) 4.5 10.7 (5.7; 5.6) 2.7 1.6 (1.6; 2.1)
2.5 0.7 0.6 (0.6; 0.3) 7.0 10.9 (8.1; 6.7) 4.1 10.3 (5; 5.2) 2.6 1.2 (1.2; 1.3)

Note: Nominal level used to compute the empirical rejection frequencies is 5%. “QT”indicates QT -
statistic, “H”Hansen’s asymptotic test statistic, "H-c" Hansen’s asymptotic test with size correction,
and "H-BT" bootstrapped Hansen’s asymptotic test.
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Table 5: Empirical size and empirical power for Experiment IV (breaks in β only).

α1 = −1 α2 = 0 α1 = −0.2 α2 = 0 α1 = −0.01 α2 = 0 α1 = −0.5 α2 = 0.5
Experiment IV
Empirical size

T QT H (H-BT) QT H (H-BT) QT H (H-BT) QT H (H-BT)
H0 : no breaks, H1 : 5 ∪ 10 ∪ 15 ∪ .... ∪ 45 ∪ 50

100 5.7 9.4 (4.9) 5.7 17.4 (5.4) 7.7 32.2 (9) 4.6 9.9 (5.2)
H0 : no breaks, H1 : 5 ∪ 10 ∪ 15 ∪ .... ∪ 90 ∪ 95

100 5.2 19.8 (6.2) 5.6 53.1 (6.8) 7.4 69.9 (8.2) 4.4 22.2 (4.4)
H0 : no breaks, H1 : 5 ∪ 6 ∪ 7 ∪ .... ∪ 93 ∪ 94 ∪ 95

100 5.6 - 3.1 - 4.7 - 5.8 -

Empirical power
QT H (H-c; H-BT) QT H (H-c; H-BT) QT H (H-c; H-BT) QT H (H-c; H-BT)

DGP covered by one of the alternatives
β2 DGP : T1 = 50, H0 : no breaks, H1 : 5 ∪ 10 ∪ 15 ∪ .... ∪ 45 ∪ 50
1.1 60.7 55.1 (47.6; 46.6) 7.3 19 (7; 6.5) 7.3 32.2 (5.2; 8.5) 30.3 29.8 (19.7; 20.2)
1.3 97.2 95.7 (94; 93.8) 28.6 38.6 (20; 18.5) 7 31.5 (4.7; 8.3) 79.9 72.3 (64.4; 65.2)
1.5 100 99.9 (99.4; 99.4) 52.4 57.1 (36.8; 36) 6.7 30.6 (4.2; 7.8) 94.2 89.9 (86.5; 87.5)
2.0 100 100 (100 ; 100) 86.5 83.1 (70; 69.5) 7.1 29.7 (4.6; 7.5) 99.6 99.4 (99; 99.2)
β2 DGP : T1 = 50, H0 : no breaks, H1 : 5 ∪ 10 ∪ 15 ∪ .... ∪ 90 ∪ 95
1.1 58.3 57.4 (36.7; 37.5) 7.4 53.7 (5.5; 7.7) 7.7 70.6 (5; 8.5) 28.3 38.3 (17.3; 13.9)
1.3 96.8 94.6 (86.2; 87.4) 23.3 63.5 (8.5; 11.2) 7.7 71.1 (5; 8.8) 77.4 72.2 (55.6; 53)
1.5 99.9 99.6 (97.9; 97.9) 46.5 71.5 (17.2; 19.2) 6.8 70.6 (4.8; 7.8) 93.1 88.5 (78.4; 78.7)
2.0 100 100 (100; 100) 81.9 85.4 (40.4; 47.2) 5.9 71.1 (4.7; 8.7) 99.6 98.9 (96.8; 97)
β2 DGP : T1 = 50, H0 : no breaks, H1 : 5 ∪ 6 ∪ 7 ∪ .... ∪ 93 ∪ 94 ∪ 95
1.1 55.3 - 5.2 - 5.7 - 27.1 -
1.3 96.3 - 10.5 - 5 - 75.6 -
1.5 99.7 - 30.5 - 4 - 92.9 -
2.0 99.8 - 63.7 - 3.3 - 99.5 -

DGP not covered by any of the alternatives (misspecified case)
β2 DGP : T1 = 55, H0 : no breaks, H1 : 5 ∪ 10 ∪ 15 ∪ .... ∪ 45 ∪ 50
1.1 54.1 47.9 (39.6; 38.6) 6.6 18.6 (5.8; 6) 7.5 31.9 (4.7; 8.4) 24.6 23.6 (15.1; 15.4)
1.3 94.7 88.2 (84.5; 83.6) 17.2 26.9 (11.9; 10.3) 7.4 31.2 (4.1; 8.1) 72.4 61.4 (52; 51.9)
1.5 99.3 96.8 (94.5; 92.5) 33.8 37.2 (18; 15.6) 7.5 31.4 (4.8; 7.9) 89.4 80.1 (71.4; 70.5)
2.0 98.9 93.7 (90.7; 84.6) 64.7 59.7 (37.9; 35.5) 6.7 28.9 (4.3; 7.4) 98.6 94.8 (90.3; 89.6)

Note: Nominal level used to compute the empirical rejection frequencies is 5%. “QT” indicates
QT -statistic, “H”Hansen’s asymptotic test statistic, and "H-BT" bootstrapped Hansen’s asymptotic
test.
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Table 6: Empirical size and empirical power for Experiment V (breaks in α1 and β).

Experiment V
Empirical size

α1 = −1, α2 = 0 α1 = −0.01, α2 = 0
T QT H (H-BT) QT H (H-BT)

H0 : no breaks, H1 : 5 ∪ 10 ∪ 15 ∪ .... ∪ 45 ∪ 50
100 4.3 35.5 (4.1) 6.6 96.4 (6.5)

H0 : no breaks, H1 : 5 ∪ 10 ∪ 15 ∪ .... ∪ 90 ∪ 95
100 4.2 49.3 (4.6) 9.5 99.9 (8.2)

Empirical power
α12 = −0.02 α12 = −1.1 α12 = −1.3 α12 = −1.5 α12 = −2.0

QT H (H-c; H-BT) QT H (H-c; H-BT) QT H (H-c; H-BT) QT H (H-c; H-BT) QT H (H-c; H-BT)
DGP covered by one of the alternatives

β2 DGP : T1 = 50, H0 : no breaks, H1 : 5 ∪ 10 ∪ 15 ∪ .... ∪ 45 ∪ 50
1.1 7.6 96.6 (4.6; 6.2) 63.6 71.8 (39; 36.3) 82.2 83.8 (58; 56.4) 98 94.8 (80.4; 78.3) 100 100 (99.9; 99.9)
1.3 7 96.1 (4.8; 6.5) 97 98.2 (92.7; 89.7) 99.3 99.6 (97.3; 96.4) 100 100 (99.2; 99.2) 100 100 (100; 100)
1.5 7.3 95.9 (5 ; 6.4) 99.9 99.9 (99.5; 98.8) 100 100 (99.9; 99.9) 100 100 (100; 100) 100 100 (100; 100)
2.0 9.3 96.1 (5.1; 7.1) 100 100 (100; 100) 100 100 (100; 100) 100 100 (100; 100) 100 100 (100; 100)
β2 DGP : T1 = 50, H0 : no breaks, H1 : 5 ∪ 10 ∪ 15 ∪ .... ∪ 90 ∪ 95
1.1 59.4 72.2 (25.4; 22.9) 80.1 78.7 (36.2; 33.9) 97.3 88 (52.8; 50.8) 100 99.3 (97.3; 96.8)
1.3 96.9 98.5 (79.9; 75.4) 99.4 99.1 (87.7; 84.7) 100 99.2 (94.2; 93.1) 100 100 (100; 100)
1.5 99.7 99.9 (97; 94.3) 100 100 (98.6; 97.7) 100 100 (99.7; 99.4) 100 100 (100; 99.9)
2.0 100 100 (100; 99.7) 100 100 (100; 99.8) 100 100 (100; 100) 100 100 (100; 100)

DGP not covered by any of the alternatives (misspecified case)
β2 DGP : T1 = 55, H0 : no breaks, H1 : 5 ∪ 10 ∪ 15 ∪ .... ∪ 45 ∪ 50
1.1 7.1 95.9 (4.9; 5.7) 54 65.1 (29.1; 25.5) 72.4 76.7 (43; 39.3) 94 90.1 (66; 63) 100 100 (100; 99.6)
1.3 6.9 96 (4.9; 6.4) 94.2 95.6 (79.8; 71) 97.6 97.9 (87.1; 81.6) 99.8 99.3 (93.7; 90.6) 100 100 (100; 99.9)
1.5 6.9 95.7 (4.4; 6.6) 99.2 99.2 (93.6; 81.7) 99.7 99.7 (95.9; 85.1) 100 100 (98.2; 91) 100 100 (100; 100)
2.0 7.4 95.7 (4.6; 6.2) 99.6 99.9 (94.3; 73.3) 99.9 99.9 (94.3; 72.6) 100 100 (95.8; 77.8) 100 100 (99.9; 99.9)

Note: Nominal level used to compute the empirical rejection frequencies is 5%. “QT”indicates QT -
statistic, “H”Hansen’s asymptotic test statistic, "H-c" Hansen’s asymptotic test with size correction,
and "H-BT" bootstrapped Hansen’s asymptotic test.
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Table 7: QT -statistic results

A. Breaks in β
# breaks Break1 Break2 Break 3 log-lik LR(H0|H1) DoF p-value

H0 0 1681.3 0 0 0
H11 1 1987(3) 1681.4 0.2319 1 0.6301
H12 1 1999(3) 1684.2 5.8025 1 0.0160
H13 1 2007(4) 1682.2 1.7152 1 0.1903

QT p-value = 0.20736

B. Breaks in α and β
# breaks Break1 Break2 Break 3 log-lik LR(H0|H1) DoF p-value

H0 0 1681.3 0 0 0
H11 1 1987(3) 1681.4 0.2988 3 0.9603
H12 1 1999(3) 1685.3 8.0054 3 0.0459
H13 1 2007(4) 1692.7 22.7650 3 0.0000

QT p-value = 0.08027∗

C. Breaks in α and β
# breaks Break1 Break2 log-lik LR(H0|H1) DoF p-value

H0 0 1681.3 0 0 0
H11 2 1999(3) 2007(4) 1698.5 34.4850 6 0.0000
H12 3 1987(3) 1999(3) 2007(4) 1699.5 36.4970 9 0.0000

QT p-value = 0.03345∗∗

D. Breaks in α and β
# breaks Break1 Break2 log-lik LR(H0|H1) DoF p-value

H0 2 1999(3) 2007(4) 1698.5 0 0 0
H11 3 1987(3) 1999(3) 2007(4) 1699.5 2.012 3 0.5699

QT p-value = 0.53846

Note: For each test the number of break dates under the null and the alternative hypotheses is reported together
with the location of the breaks. Under the column labelled “Log-lik” the value of the maximised log-likelihood
function for the corresponding model is reported while LR(H0|H1) denotes the value of the likelihood-ratio test
of the null hypothesis against each scenario. “**” and “*” denotes rejection of the null hypothesis at 5% and
10% level, respectively. The QT -statistic p-values are obtained by parametric bootstrap (see Section 3.2) with 299
replications.
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