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Abstract 

Many machine-learning algorithms learn rules of 
behavior from individual end users, such as task-
oriented desktop organizers and handwriting 
recognizers. These rules form a “program” that tells 
the computer what to do when future inputs arrive. 
Little research has explored how an end user can 
debug these programs when they make mistakes. We 
present our progress toward enabling end users to 
debug these learned programs via a Natural 
Programming methodology. We began with a 
formative study exploring how users reason about and 
correct a text-classification program. From the results, 
we derived and prototyped a concept based on 
“explanatory debugging”, then empirically evaluated 
it. Our results contribute methods for exposing a 
learned program’s logic to end users and for eliciting 
user corrections to improve the program’s predictions. 

1. Introduction 
Machine learning techniques are increasingly used 

in software adapted to end users’ own data, such as 
SPAM filters, recommender systems, and predictive 
text tools. These applications generate rules of 
behavior that are statistically derived via a particular 
user’s idiosyncratic patterns of behavior. We refer to 
these generated rules as machine-learned programs. 
While such programs can become fairly accurate, due 
to their statistical nature, they also remain fallible. 

Who can fix a mistake made by a machine-learned 
program? The machine learning specialist who wrote 
the generator algorithm cannot fix every generated 
program for each individual user. Only one person is in 
a position to judge the correctness of the generated 
program: the very end user from whom the program 
has been learned. 

End users, however, are given little power to correct 
a learned program’s errors. For example, SPAM filters 
confine user corrections to implicit approval and 
explicit disapproval. The user is permitted to scold the 
algorithm when it is wrong, but cannot tell the system 
why it was wrong. 

This situation partly exists because enabling end 
users to debug machine-learned programs is hard. 
Learned programs use complex logic and, as generated 
programs, have no “source code” to directly represent 
this logic. Nevertheless, end users are capable of 
providing descriptive corrections beyond the binary 
scoldings commonly available today [12, 19].  

We present and evaluate a new Explanatory 
Debugging approach to harness this capability. Our 
approach supports debugging of learned programs by 
an iterative exchange of explanations between the 
program and the end user: the program explains how it 
arrived at its decisions, and the user explains where, in 
that decision-making process, it went wrong. We call 
this “explanatory” because it supports debugging via a 
give and take of explanations relating to existing or 
new machine learning features based on the user’s 
natural descriptions of concepts. (Features are 
elements used by machine learning reasoning, e.g., 
words, punctuation, etc.) 

1.1. Domain: Coding in qualitative research 
Our domain is coding—labeling segments of a 

transcript with codes for analysis in qualitative 
research—a common task for social scientists and HCI 
researchers. Such codes are developed based on the 
study’s research questions, so a code set is rarely 
reused in its entirety. Research involving coding of 
subjects’ verbalizations is labor-intensive, requiring 
hours of painstaking work. If a computer could “learn” 
from early examples how to code the remainder of an 
experiment’s transcripts, the time saved could be 
enormous. We refer to this possibility as auto-coding. 

This domain is ideal for considering end-user 
debugging of machine-learned programs for three 
reasons. First, auto-coding is representative of a 
popular domain (text classification) that figures heavily 
in machine learning applications, e.g. SPAM filtering 
and predictive text technology. Second, debugging the 
program’s coding is needed because most studies have 
only a few subjects, resulting in too little data to 
reliably train the program. Third, if users can teach the 
program how to code well, the timesaving will be 
significant. If, however, they spend too long fixing the 



 

machine, the effort might exceed the time it takes to 
code everything by hand. Thus, the exchange between 
the program and the user must facilitate an accurate 
mental model of the program’s logic and must enable 
the user to explain how the coding should be done, so 
the learned program can benefit from these corrections. 

2. Related work 
There are systems that try to auto-code, e.g. the 

TagHelper system [5]. While TagHelper can be highly 
accurate with lots of training data, obtaining a large set 
of coded examples is both expensive (because manual 
coding is time-consuming), and unrealistic (because 
data sets in qualitative analysis are usually small).   

For users to debug the learned program’s logic, they 
must be able to see it. Explanations of learned 
programs’ logic have taken a variety of forms, such as 
relating user actions and the resulting predictions [2], 
detailing why a program made a particular prediction 
[14], or explaining how an outcome resulted from user 
actions [8, 23, 24]. Much of the work in explaining 
probabilistic machine learning algorithms has focused 
on the naïve Bayes classifier [1, 11, 12] and, more 
generally, on linear additive classifiers [18], because 
explanations of these systems are relatively 
straightforward. More sophisticated but 
computationally expensive explanations exist for 
general Bayesian networks [13]. However, these 
explanations are limited to account for the learned 
program’s behavior and do not extend to accepting 
user corrections to adapt future behavior.  

Debugging involves two-way communication; once 
the program explains its logic, there needs to be a way 
for the user to adjust it. Some research has begun to 
shed light on supporting end users in fixing simple 
learned programs [12, 19, 20]. Other systems explore 
building a program from the ground up by allowing 
users to specify the features it should employ [15]. 
Research has also aimed at supporting experienced 
users in debugging more complex ensemble [22], 
sequential [4] and non-sequential [3] classifiers. None 
of this work has explored how to successfully engage 
end users in a two-way exchange in which they can 
introduce new machine learning features to fix 
complex learned logic. 

3. Study #1: Explanations in debugging 
Following the Natural Programming methodology 

[17], we began with a formative study (Study #1). 
Natural Programming is a user-centered methodology 
for designing programming languages and systems. It 
investigates users’ existing mental models 
(descriptions of existing concepts and processes) for a 
given task, and avoids influencing how participants 
think they are expected to do said task. The new system 
is designed to fit the users’ existing mental models. 

Using this methodology, we investigated: 

RQ1: Natural Explanations: How do end users 
“naturally” describe how to fix machine-learned 
programs? 

RQ2: Existing Mental Models: How do end users 
think machine-learned programs make decisions? 

RQ3: Mental Model Mutability: Can new 
information change end users’ existing mental models 
of machine-learned programs? 

3.1. Participants, procedure, and tasks  
Nine Psychology and HCI students (five female, 

four male) participated in our study; none had any 
experience with machine learning. Five participants 
had coded transcripts before, and all were familiar with 
Excel (required to understand the transcripts’ content).  

The pre-task introduction involved practicing 
coding to become familiar with the technique and our 
codes, and completing a background demographic 
questionnaire. For the main task, we asked participants 
to help improve the accuracy of a system by judging 
the correctness of each code, fix the code when 
necessary, and to explain their reasoning. 

We gave participants coded transcripts on printouts 
which they could mark-up using pens, colored pencils, 
etc., as they preferred. We also asked participants to 
“think aloud” and recorded their verbalizations, 
prompting them if their remarks were unclear. 

The first 30 minutes of the main task aimed at 
eliciting natural participant responses and probing their 
existing mental models (RQ1 and RQ2). Participants 
worked on coded transcripts without explanations, then 
answered how they believed the computer did make its 
decisions and what information it should use. The final 
20 minutes aimed at determining how explanations 
might influence users’ existing mental models (RQ3). 
This involved a variant of the coded transcript with 
explanations, after which participants told us how they 
now believed the computer made its decisions. 

3.2. Materials 
The transcripts came from an unrelated study about 

debugging spreadsheet errors. Although we told our 
participants that a computer had coded these 
transcripts, they had been hand-coded by a researcher 
using four codes: Seeking Information, Information 
Gained, Information Lost, and None. To elicit 
participant corrections, we introduced errors by 
randomly changing 30% of the expert’s codes.  

We used paper printouts instead of a software 
prototype to elicit participant corrections in any form 
participants deemed appropriate, thus avoiding a tool 
that would restrict their range of expression. 

Figure 1 (left) shows a transcript for the first part of 
the study, with no explanations of the reasoning behind 
the codes. Figure 1 (right) includes the explanations 
from the second part.  These explanations were 
inspired by the Whyline [9], which supports end-user 



 

debugging by answering questions about program 
behavior, and was recently adapted to explain machine 
learning to end users [12, 14]. Each explanation 
included two reasons why the segment was classified 
as a particular code, plus two reasons each why it was 
not classified as the other codes. The explanations used 
10 types of features and sequential relationships that 
learning algorithms can use for classification. 
(Sequential relationships are features derived from 
nearby features, e.g., a question mark observed in 
segment #4 increases the probability of a certain code 
appearing in segment #5.) Our explanations drew on 
relationships within segments twice as frequently as 
relationships between segments, but distributed other 
feature types and relationships evenly. 

3.3. Analysis methodology  
Four researchers established an initial code set for 

analysis of the marked-up printouts and study 
transcripts, extending a code set used to research 
simpler machine learning approaches [19]. Two 
researchers iteratively coded small sections of a 
transcript, adjusting the code set to clarify application. 
Inter-coder reliability between the two researchers on 
the final code set (applied to a different, complete 
transcript) was calculated by the Jaccard index as 81%. 
Given this acceptable level of code robustness, the two 
researchers coded the transcripts and questionnaire 
data. Table 1 shows the final code set.  

3.4. Results: How should the program reason?  
We first consider how participants explained how a 

learned program should reason (RQ1). As Figure 2 
shows, before having seen the explanations, 
participants mainly discussed 1) single or multiple 
words and punctuation, and 2) entire segments of text. 
When talking about this information, participants were 
about three times as likely to mention its presence than 
its absence as a reason for applying a code. These 
information types hold three implications for enabling 
end-user debugging of learned programs. 

First, participants’ emphasis on entire segments 
suggests that learned programs need to reason about 
them as well. Second, although punctuation comments 
were few, they suggest that it cannot be carelessly 
removed when a learned program preprocesses data.  

Third, although text classification algorithms tend 
to deal with individual words, participants talked more 
about word combinations (e.g., P6: “‘Why does’ is a 

key phrase that should tip us off that they’re seeking 
information”). This further motivates the need to pair 
end user debugging with machine-learned intelligence: 
attending to all possible combinations of n consecutive 
words would introduce many irrelevant features to the 
program’s logic. Similarly, the algorithm designer 
cannot elicit relevant word combinations for each end 
user’s specific needs. Instead, we can allow end users 
to teach the program about the specific multi-word 
phrases it should attend to. 

Relationships among different words or segments 
(e.g., P1: “So is this part a continuation of this?”) 
were used 44 times. An implication is that learned 
programs should support sequential relationships 
among data, but this is not done by many machine 
learning systems, including the naïve Bayes algorithm 
often used for text classifiers. In addition, sequential 
classifiers typically use relationships between adjacent 
segments, whereas relationships suggested by end 
users may be of greater distance. There is a rich space 
of sequential relationships that could be used by the 
algorithm, but as in the multi-word case, it is infeasible 
for the program to reason about every possibility. Here 
again, end-user debugging is needed to explain to the 
machine which relationships matter. 

Finally, participants used the process of elimination 
34 times, e.g. P2: “It’s really neither looking for info, 
it’s not losing info, they’re just looking at it so I’d go 

 
Figure 1: Paper prototypes without (left) and with (right) explanations.  

Table 1: Code set for data analysis. Gray entries are 
parameters for the top-level codes (white). 

Code: 
    (Parameter) Participant talked about… 

Word/Punctuation: 
    (Single) …a single word!s presence/absence. 
    (Multiple) …multiple words! presence/absence. 
    (Punctuation) …punctuation!s presence/absence. 
    (Adjustment) …a change in word(s) importance. 
    (Process) …how features should be processed. 
Segment ...a segment as a whole. 
Relationship:  
    (Word) …relationship between words. 
    (Segment) …relationship between segments. 
    (QA-Pair) …a question-answer segment pair. 
    (Reference) …some other portion of the transcript. 
    (Double code) …one statement spanning two segments. 
Code  
Elimination 

…the segment not fitting into any of the 
other codes. 

Probabilities …the statistical nature of reasoning. 
Other Other or unclear. 



 

with ‘None’.” This is evidence that in some cases 
participants want to guide the learned program to 
reason by exclusion, especially when dealing with 
incomplete or uncertain information.  

3.5. Results: How did the program reason?  
In this section, we consider how participants 

thought the computer did reason (RQ2), emphasizing 
how the program’s explanations were able to refine 
participant’s mental models about its logic (RQ3). 

As Table 2 shows, before explanations were 
provided, almost all participants thought the computer 
made decisions based on the presence of single 
keywords. At that point, only two participants talked 
about multiple keywords. Almost half of the 
participants said punctuation was also important. 

Their before-explanation models were generally 
focused on word and punctuation presence. Nobody 
thought the computer used absence of words or 
punctuation, and only one participant thought it 
reasoned about relationships. Note that these mental 
models of how they thought the computer did make 
decisions were much simpler than how they thought 
the program should make decisions (Section 3.4). 

After working with the explanations, however, most 
participants’ mental models included more complex 
types of reasoning. Seven participants now thought 
sequential relationships mattered, five thought word 
combinations were used, and five implied the 
machine’s reasoning was probabilistic, e.g. P1: 
“...Uses probabilities of certain codes occurring 
before and/or after other codes.” 

A problem, however, arose with the participants’ 
perception of how probabilities worked. Their 
conceptualization was that probabilities are consistent 
rules. This reflects a nuance of statistical reasoning 
called the outcome approach: a tendency to interpret 
probabilities as binary, rather than the likelihood of a 
particular response [10]. Thus, while participants 
understood that the computer was using probabilities, 
they still expected it to obey binary rules, e.g. P6: 
“...and goes with the code with the strongest keyword 
or situation.” 

That participants changed their mental models after 
learning new information contradicts findings by [23], 
whose participants’ mental models were persistent 

(possibly because counter-evidence was not presented 
early enough for them to discard already entrenched 
mental models). In our study, presenting participants 
with explanations resulted in the integration of new 
details into their mental models. While no participant’s 
post-study mental model could be considered 
complete, the fact that they were mutable is a key 
prerequisite for incrementally explaining a program’s 
logic to end users, and is an underpinning for our 
Explanatory Debugging approach. 

4. An Explanatory Debugging approach 
As per the Natural Programming methodology, we 

used the results from Study #1 to design our 
Explanatory Debugging approach. Recall that the 
elements of Explanatory Debugging are an interactive 
give and take of explanations relating to existing or 
new machine learning features based on the user’s 
natural descriptions of concepts. Our AutoCoder 
prototype instantiates this approach and supports all of 
the results from Study #1 except for the Code 
Elimination feedback type, which we could not 
implement in the time available. This section points 
out these ties to Study #1 as it describes the prototype.  

The basic coding and reasoning functionalities, 
which provide the context for Explanatory Debugging, 
are as follows. AutoCoder allows users to code 
segmented text transcripts (Figure 3 A) with the same 
predefined codes as in Study #1 (Figure 3 B). 
AutoCoder colors the codes to give users an overview 
of their coding activity. The navigation scrollbar then 
uses these colors to indicate each code’s occurrence 
over the whole transcript (Figure 3 C). The user can 
manually code any segment; in machine learning 
parlance, these are training data. After the user assigns 
three codes, the computer will predict codes for the 
remaining segments. Because sequential relationships 
between words and segments mattered in Study #1, our 
prototype uses a variant of the naïve Bayes algorithm 

 
Figure 2: Number of occurrences for each feedback type. 
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that supports sequential information. If the user 
changes a code, the change becomes additional training 
data and the learned program updates its predictions. 

For this coding and reasoning context, we devised 
facilities to support Explanatory Debugging. These 
facilities, described next, allow (but do not require) a 
two-way exchange about why the program or user has 
made a coding decision.  

Two debugging strategies used by professional 
programmers are inspecting code and evaluating 
program runtime data (testing); recent research shows 
that end users also heavily employ both [21]. To enable 
each strategy, our approach supports two-way 
exchanges about both “source code” and runtime 
outputs. Learned programs have no obvious source 
code for end users to look at, but there are learned 
“rules” that represent the logic the program follows. 
Prior research [6, 20] has shown that users want to 
understand this logic. Our approach supports 
exchanging explanations about such “source code” 
(program logic), and exchanging explanations about 
runtime data (program outputs). 

4.1. Explanations about logic 
Participants in Study #1 expressed fixes in a variety 

of forms, including single words, word combinations, 
punctuation, segments, and relationships. 

To explain the logic behind a user’s code 
assignment, the user can highlight single and 
consecutive words, plus punctuation (Figure 4 W4). 
These explanations can be complex, introducing 
features the learned program did not use before. 
Combinations of non-consecutive words in either the 
same or adjacent segments are allowed, modeling 
relationships between words and segments, e.g., “‘?’ in 
the preceding segment followed by ‘OK’ in this 
segment often means this segment is ‘Info Gained’”.  

System-generated explanations of AutoCoder’s 
logic are similar to the explanations in Study #1, which 
were inspired by the “Why” explanations in [12]. Why-
oriented explanations have shown success in other 
studies about learned programs [14], and they 
improved the complexity of participant mental models 
in Study #1. Because Study #1 showed that 
participants had problems with the probabilistic nature 
of learned programs, we worded explanations to make 
clear that the logic is open to uncertainty.  

AutoCoder shows the most influential features 

(Figure 4 W1) that governed each prediction, 
expandable to a full list ordered by influence. A 
computer icon identifies the explanation as being 
generated by the machine (W1), and a user icon 
identifies logic corrections the user entered (W4). User 
explanations are incorporated into the machine 
learning system as new features with high weight for 
predicting the user-specified code. The user can delete 
any logic that seems wrong. 

Because Study #1 showed that participants did not 
realize that absence of features mattered to the 
program, the machine’s explanations cover absent 
features (Figure 4 W2), e.g. “The absence of ‘?’ often 
means that a segment is ‘Info Gained’”. Expressing 
how absent features affect the machine’s predictions to 
users has previously had mixed success [12, 19]. 

One logic rule may be relevant to many segments, 
so AutoCoder shows counts (Figure 4 W5) of how 
many segments each rule potentially affects (i.e., how 
many segments contain this suggestion’s features). 
This impact is also displayed graphically: when a user 
selects a logic rule, AutoCoder responds by 
highlighting segments affected by it. 

4.2. Explanations about runtime outputs 
Professional programmers use testing and 

debugging steppers to see the effects of their logic 
changes on program outputs. AutoCoder also shows 
runtime effects on logic changes users make. 

As soon as new data or rules are entered, the 
classifier outputs new predictions. To help users 
understand the runtime effects of their last action, 

 
Figure 3: The basic AutoCoder prototype showing a 

series of segments (A), their corresponding codes (B), 
and an overview of the transcript!s codes (C). 

 
Figure 4: Widgets supporting debugging: Machine-

generated Explanation (W1); Absence Explanation (W2); 
Prediction Confidence (W3); User-generated Suggestion 
(W4); Impact Count (W5); Change History Markers (W6); 

Popularity Bar (W7). 



 

Change History Markers (Figure 4 W6) provide 
feedback on where changes in the program’s 
predictions occurred: a black dot is displayed adjacent 
to predictions that changed. As the user makes changes 
that do not alter the prediction for a segment, its 
change marker gradually fades away. 

In addition to predictions themselves, learned 
programs generate data about their certainty in each 
prediction. Thus, we designed a Prediction Confidence 
(Figure 4 W3) widget. This is a pie graph showing the 
program’s probability of coding a given segment as 
each of the possible codes. A graph containing 
similarly sized wedges for each code (color) indicates 
the program cannot confidently determine which code 
to apply. This further supports users’ needs to 
understand the probabilistic nature of learned programs 
(from Study #1), as well as alerting users to predictions 
whose uncertainty suggests they may be incorrect. 

Finally, the Popularity Bar (Figure 4 W7) addresses 
a problem with learned programs called class 
imbalance, in which a classifier’s training data is 
unrealistically biased toward a single class (in this 
case, a class imbalance results in the learned program 
predicting one code far more than it should). Our 
Popularity Bar represents proportions of each code 
amongst the user-coded and machine-predicted 
segments. The left bar represents the proportion of 
each code the user has manually applied to segments, 
while the right bar contrasts the proportion of codes the 
machine is predicting for remaining segments. We 
included this runtime information because prior work 
has shown users falling prey to class imbalance when 
they are not aware of it [12]. 

5. Study #2: How well did Explanatory 
Debugging work?  

In order to investigate how Explanatory Debugging 
supports end users fixing machine-learned programs, 
we conducted an empirical study exploring the 
following research questions: 

RQ4: Effectiveness: Which kinds of information 
(logic, runtime, or both) enabled end users to most 
effectively debug the learned program? 

RQ5: User Attitudes: How did users react to the 
availability of logic and runtime debugging 
information? 

5.1. Procedure, participants, and materials  
Our prototype supported debugging exchanges 

about logic and runtime information. To investigate 
these aspects independently, we developed four 
versions, VC (control), VL (logic), VR (runtime), and 
VLR (logic and runtime), each embedding specific 
widgets targeted at supporting Explanatory Debugging. 
The control version (VC) provided machine-generated 
explanations, user suggestions, and change history 
markers, as these were considered the bare essentials 

necessary to correct a learned program. Table 3 
summarizes the widgets added to each version.  

We recruited 74 participants (40 males, 34 females) 
from the local student population and nearby residents. 
None had experience with machine learning algorithms 
and only one had prior experience with coding. 

A 30-minute hands-on tutorial taught participants 
the concept of coding, the codes, and the prototype’s 
functionalities. An hour-long main task followed. In 
the first half, participants coded a transcript with one 
version of the prototype; the final half consisted of a 
brief tutorial about a second version of the prototype 
and coding a second transcript. Versions and transcript 
orders were counter-balanced across participants. 

After each part, participants answered free-form 
questions about how they believed the program made 
its decisions, plus Likert questions regarding the 
usefulness of each widget and participants’ perceived 
accuracy of the program. They also answered the 
NASA-TLX survey [7] to evaluate difficulties and 
their perceived success. Afterward, participants told us 
which of the prototypes they preferred. 

5.2. Results: Debugging effectiveness  
Did the participants’ debugging improve the learned 

program? We measured the accuracy of each learned 
program by calculating its F1 score. This evaluation 
metric uses precision (the count of correct 
classifications divided by the count of all 
classifications) and recall (the count of correct 
classifications divided by the count of classifications 
that should have been made). We can summarize the 
tradeoff between precision and recall as an F1 score (0 
being worst and 1 being best), where 
F1=(2*precision*recall) / (precision+recall). 

We compared the F1 scores of a baseline algorithm 
against an algorithm that took user corrections into 
account [16]. The baseline used participants’ code 
changes only, whereas our algorithm used both the 
code changes and participants’ detailed explanations. 

As Figure 5 suggests, participants debugging with 
VR improved the learned program significantly over 
the baseline, with a mean improvement of 18% and 
range of -33% to 204% (Wilcoxon rank-sum test, Z= 
-2.53, p<.02). Participants who used VC, VL or VLR 
did not succeed as well—many of their changes did 
more harm than good. Ultimately, participants using 
VC, VL, and VLR did not significantly change the 

Table 3: The widgets included in each version of the 
AutoCoder prototype. Gray: common to all prototypes. 

 W1 W2 W3 W4 W5 W6 W7 
VC ##    ##   ##   
VL ##  ##   ##  ##  ##   
VR ##   ##  ##   ##  ##  

VLR ##  ##  ##  ##  ##  ##  ##  



 

accuracy of their learned programs. VR’s leading 
position may be explained by participants’ attitudes 
about it, as we discuss next. 

5.3. Results: Participant attitudes toward 
Explanatory Debugging  

Via participants’ questionnaire responses, we 
analyzed reactions to individual logic- and runtime-
oriented widgets. As Figures 6 and 7 suggest, reactions 
relating to runtime information were more positive 
than reactions relating to logic information. 

5.3.1. Logic-oriented explanations (VL, VLR) 
Recall that the logic-oriented explanations depicted 

underlying logic, akin to a traditional program’s source 
code. Significantly more participants scored two logic-
oriented widgets, W2 (Absence Explanations) and W5 
(Impact Counts), as “unhelpful” than would be the case 
in a uniform distribution of attitude scores (Figure 6), 
(!2(1,70)=6.91, p<.009 and !2(1,63)=8.39, p<.004, 
respectively). As others [19] have reported, many 
participants had trouble understanding how absence of 
something played a role in the program’s decision-
making. As one participant explained: 
P10: “[Absence explanations were] very confusing 
and provided no help.” 

Although not described as confusing, many 
participants did not recall or seem to care about the 
information presented by the Impact Counts: 

P11: “The number in the circle means nothing to me.” 
These results are consistent with participants’ 

preference for each prototype. Figure 7 (middle) 
illustrates that participants rarely preferred VL to other 
versions, and (right) that they expressed significantly 
more frustration, mental demand, and effort (from the 
NASA-TLX survey) when working with VL, as 
compared to other versions (!2(3,69)=7.92, p<.05). 
However, participants’ responses improved when 
runtime-oriented information was included alongside 
the logic, as in VLR (Figure 7, middle). Thus, 
providing logic-oriented information alone was 
confusing and appeared to be of little use to 
participants, but its presence did not deter participants 
from continuing to find runtime information helpful. 

5.3.2. Runtime-oriented explanations (VR, VLR) 
As Figure 7 shows, participant reactions to runtime-

oriented explanations were fairly positive. The two 
treatments explaining runtime information (VR and 
VLR) scored reasonably well in terms of preference 
and being less challenging to debug (Figure 7, middle). 
Attitudes toward the Popularity Bar were split but still 
higher than the logic-oriented widgets (Figure 6), and 
significantly more participants found the Confidence 
graphs helpful than would be expected in a uniform 
distribution (!2(1,59)=7.47, p<.007). 

Interestingly, the runtime-oriented widgets may 
have influenced participants’ debugging behavior 
beyond our intent. Some participants in Study #1 
commented on being uncertain how to code certain 
segments. The Prediction Confidence widget may have 
led participants to be over-confident in the program’s 
choices. As one participant phrased it: 
P12: “If I was undecided, the pie would help me 
decide.”  

Some participants, on the other hand, did not 
appreciate the computer’s help: 
P13: “I felt like I HAD to agree with the program.” 

Similarly, the Popularity Bar influenced some 
participants’ behavior in unintended ways: 
P14: “I had an internal drive to want to teach the 
computer to be equal. I think this caused me to favor 
one answer over the next.” 

Finally, given participants’ positive attitudes toward 
the runtime widgets, the success of VR over VLR is 
intriguing. Recall that VR had only a subset of the 
VLR widgets, yet participants working with VR 
performed better than those working with VLR. 
Possibly having so many widgets present in VLR 
confused participants into giving corrections that 
harmed the system’s accuracy. The remedy does not 
seem to be a straightforward “just use VR”, because 
VLR had advantages over VR (e.g., Figure 7, middle). 
A better solution may involve guiding participants 
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Figure 5: The average change in F1 scores after 

participants corrected their learned programs. 

 
Figure 6: For the widgets we manipulated across 

versions, the percentage of participants who rated each 
as “very unhelpful” (darkest) to “very helpful” (lightest). 

   
Figure 7: The percentage of participants picking each 
version in which they felt most successful (left: more is 

better), they most preferred (middle: more is better), and 
in which they felt most burdened and frustrated (right: 

less is better). 

Runtime Logic 



 

toward providing corrections that do more good than 
harm, a challenging open question.  

6. Conclusion  
This paper presented a new Explanatory Debugging 

approach for debugging machine-learned programs. 
Explanatory Debugging is based on the notion 
debugging is a two-way exchange of information, 
introducing new facts along the way and using 
descriptions both parties understand. 

Explanatory Debugging supports exchanges about 
logic (to support debugging’s code inspection aspects) 
and about outputs (to support debugging’s testing 
aspects). Our prototype let users see why the computer 
produced the outputs it did and explain their 
corrections. These explanations can introduce new 
features, such as non-contiguous word combinations. 
As per Natural Programming, explanations’ form and 
content were derived from a formative study so as to 
use descriptions of concepts natural to the users. 

Our support for runtime debugging was the most 
effective, but whether these results stem from the way 
our widgets represented information or the logic vs. 
runtime distinction requires further investigation. 
Results were mixed when logic and runtime were 
combined, and lowest when participants had the logic-
oriented version alone. Participants were most effective 
using the runtime version, and held the most positive 
attitudes about this system and its widgets.  

Most important, when using the Explanatory 
Debugging runtime-only variant, participants improved 
their programs significantly more than the current state 
of the art (changing labels). How to guide users toward 
the most helpful corrections remains an open question, 
but this paper illustrates that a substantive exchange 
between an end user and their learned program is 
viable for users and can lead to more accurate 
machine-learned programs. 
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