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2.4 Relativistic limit of the q-super-Poincaré algebra 8
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1 Introduction

The closed superstring spectrum on AdS3× S3×T4 and AdS3× S3× S3× S1 can be found

exactly in α′, in the large-volume limit, by solving a set of Bethe Equations (BEs) [1, 2],

building on earlier integrable results of these backgrounds [3–10]. These algebraic equations

follow from the exact worldsheet S matrix [11–14] upon making a Bethe Ansatz for the

energy eigenstates. The ansatz is consistent since the worldsheet S matrix satisfies the

Yang-Baxter equation. In [15] these BEs were used to determine the protected closed

string states. Agreement was found with supergravity results [16, 17], the calculation of

which was only completed in the case of AdS3 × S3 × S3 × S1 recently [17].

A physical state is made up of a number of fundamental excitations, or magnons, each

carrying a momentum, whose value is determined by solving the BEs; the energy of such

a state is the sum of the energies of the individual magnons. The dispersion relation of a

magnon is fixed by a shortening condition and takes the form

E(p) =

√
m2 + 4h2 sin2

(p
2

)
, (1.1)

in AdS3 backgrounds with R-R flux. Above, h = h(α′) =
R2

AdS
2πα′ + . . . is the coupling

constant that enters the BEs, and m is the magnon mass. In AdS3 × S3 × T4 m2 = 0 , 1,

while for AdS3 × S3 × S3 × S1 m2 = 0 , α , 1− α, where α =
R2

AdS

R2
S+

.1

In contradistinction to higher-dimensional examples, when the worldsheet theory is

decompactified, the m2 = 0 modes of AdS3 backgrounds give rise to a gapless spectrum.

This has important consequences, notably on the protected spectrum [15, 18], but also on

the Berenstein-Maldacena-Nastase (BMN) limit [19]. In this limit, the magnon momenta

are rescaled as p→ p
h and h is taken large. The dispersion relation (1.1) becomes relativistic

E(p)→
√
m2 + p2 , (1.2)

and in higher-dimensional integrable holographic models, the S matrix trivializes. The S

matrix has a perturbative expansion

S = 1 + h−2S(1) + h−4S(2) + . . . . (1.3)

The leading-order term is trivial and the corrections can be matched to α′-perturbative

worldsheet scattering computations. In AdS3 integrable models, the BMN limit is more

subtle. This is because massless magnons can be left- or right-moving relativistic mass-

less modes in this limit.2 As a result, at small momenta the all-loop massless/massless S

matrix reduces to four S matrices, depending on what worldsheet chirality the scattering

excitations have.3 The left-massless/right-massless S matrix has a conventional perturba-

1The m2 = 1 modes on AdS3 × S3 × S3 × S1 are believed to be composite [14].
2Away from the BMN limit, the dispersion relation is non-relativistic and periodic. Therefore by in-

creasing the momentum of a left-moving magnon it becomes a right-moving one.
3It is straightforward to check that the S matrices for massive/massive, massive/massless scattering has

the conventional expansion given in equation (1.3), analogously to what happens in higher dimensions. Here

too, the sub-leading corrections to these S matrices have an expansion in h which can also be compared

with perturbative worldsheet scattering computations [20–22]. In such computations, it remains to be fully

understood how to regularise certain massless divergences [23].

– 1 –
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tive expansion (1.3), which becomes trivial in the strict BMN limit. On the other hand,

left-massless/left-massless and right-massless/right-massless S matrices remain non-trivial

and non-diagonal at leading order

S = S(0) + h−2S(1) + h−4S(2) + . . . . (1.4)

The leading-order S matrices above are integrable and relativistic, and we will denote them

by SLL and SRR.4 Direct comparison of these S matrices with worldsheet perturbative

calculations is not possible: after all, massless particles of the same chirality cannot scatter

with one another since both move at the speed of light. Nevertheless, viewed as an algebraic

object, the S matrices are well defined.

This is exactly the situation which is described in [24] and corresponds to

how Zamolodchikov proposed to interpret massless scattering in relativistic integrable

1 + 1-dimensional systems. The right-right and left-left amplitudes turn out to be com-

pletely non-perturbative and the expectations based on the Feynman diagrammatic expan-

sion fail. Nevertheless, such amplitudes are essential to obtain the description of critical

points of the massless trajectories. As reviewed in [2, 25, 26], such S matrices carry an

inherent scale invariance, due to the same-sign shift in the rapidities of the two scattering

particles (in the process of obtaining the massless scattering from a massive relativistic

one). Such S matrices are therefore exclusively characterised by the properties of the in-

frared fixed point of the theory, and one can think of them as encoding the non-perturbative

dynamical information of the critical theory. While, for instance, in the case of the flow

from the tricritical to critical Ising model [27], the right-right and left-left S matrices are

indeed trivial and the mixed ones drive the genuine flow, in the opposite situation of the

su(2)k theory with k = 1 [24] the right-right and left-left amplitudes are non-trivial and

the mixed ones instead trivialise: the TBA describes in this case a theory at its CFT point

for all values of the cylinder radius, as the left and right modes entirely decouple.

To recapitulate, on a decompactified worldsheet the AdS3 closed string spectrum is

gapless and its small-momentum excitations are massless relativistic left- and right-movers

equipped with difference-form S matrices SLL and SRR, with SLR trivial. This closely re-

sembles the integrable description of certain CFT2’s that arise as infra-red (IR) fixed-points

of renormalization-group flows [28]. In a similar line of reasoning, we therefore conclude

that the small-momentum excitations are described by a two-dimensional conformal field

theory, which we will denote by CFT
(0)
2 .

The energy spectrum of CFT
(0)
2 is determined through the BEs that follow from SLL

and SRR, up to wrapping corrections. When the worldsheet is compactified, Lüscher-type

corrections involving exchanges of virtual particles that wrap the compact worldsheet spa-

tial direction need to be accounted for. In integrable theories this can be done through the

Thermodynamic Bethe Ansatz (TBA) [28], which in the context of integrable holographic

models was found in [29–33]. These latter TBAs have been used to construct the Quan-

tum Spectral Curve (QSC) [34–37], a powerful method for determining the exact spectrum

4Since in this limit the theory is relativistic, SLL and SRR depend only on the difference in rapidities of

the two excitations.

– 2 –
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including wrapping corrections (see for example [38–46] and the review [47]). Such meth-

ods are at present unavailable for the AdS3 integrable models, also due to the presence of

gapless excitations [48].

In this paper we will investigate wrapping effects on the low-momentum CFT
(0)
2 states.

Since SLL and SRR are relativistic, we will be able to adapt conventional methods to write

down a TBA and use it to calculate the central charge of CFT
(0)
2 . We expect that once

a complete non-relativistic TBA for the AdS3 models is found, it should reduce at small

momenta to the relativistic TBA for CFT
(0)
2 that we find here. As a result, the relativistic

TBA we construct here should provide guidance on the way in which massless modes should

be incorporated into the complete AdS3 TBA.

The integrable description of CFT
(0)
2 that we present in this paper, has a number of

striking similarities to the massless N = 2 super-sine-Gordon model [49–51] at β2
N=2 = 16π.

Recall that at this point, the S matrix of the massless N = 2 super-sine-Gordon model is

a tensor product of two massless (N = 0) sine-Gordon S matrices at βN=0 = β∗, where

we define

β2
∗ ≡ 16π/3 . (1.5)

As is well known, at this point the massless sine-Gordon model in fact describes a free

compact boson at r2 = 3
4 .5 We show that the matrix part of the CFT

(0)
2 S matrix is almost

identical to (two copies of) the massless N = 2 super-sine-Gordon model at β2
N=2 = 16π;

the only differences come from certain constant phases related to the statistics of the

excitations. Furthermore, we find that the dressing factor of CFT
(0)
2 is the square of the

corresponding bosonic sine-Gordon factor — the square being due to the doubling of nodes

in the Dynkin diagram. What is more, the TBA equations for the ground state of CFT
(0)
2

and its central charge turn out to be identical to (two copies of) those of the super-sine-

Gordon model at β2
N=2 = 16π.

On general grounds we expect the spectrum of CFT
(0)
2 to be that of four free bosons

with zero winding and momentum and their superpartners. Therefore, finding a TBA

that comes from an S matrix for two copies of the massless sine-Gordon theory at the free

boson point, together with the fact that the energies of certain excited states are integer

multiples of 2π/R, provides a strong consistency check on the validity of our approach.

Additionally, we would like to emphasize that, although the theory is expected to be free,

the free excitations emerging from the TBA are by no means the scattering excitations

used to construct the S matrix. The same phenomenon occurs in the su(2)k=1 model [24].

Based on these insights, a further analysis of the degeneracies of the spectrum, as well as

the inclusion of winding and momentum modes deserves to be undertaken. We intend to

return to these issues in the future.

This paper is organised as follows. In section 2 we derive explicit expressions for the

matrix parts of SLL and SRR in the relativistic limit. In sections 3 and 4 we show how in

the BMN limit, the massless dressing factor [2] reduces to the well-known dressing factor

found by Zamolodchikov and Zamolodchikov [52]. In section 5 we formulate the TBA and

5This is the value of the radius for which the free boson theory has N = 2 supersymmetry, which should

not be confused with the N = 2 supersymmetry of the super-sine-Gordon model itself.
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use it to compute the central charge of CFT
(0)
2 , as well as the energies of the first excited

states. We conclude in section 6 and present some of our technical findings in appendices.

2 Massless R matrix

Worldsheet excitations on AdS3×S3×T4 with RR flux have mass m2 = 1 or m2 = 0. Both

types of excitations transform in short representations of the centrally-extended su(1|1)4
c.e.

algebra of symmetries that commute with the Hamiltonian [11, 12]. The structure of the

central extensions is such that su(1|1)4
c.e.
∼=
(
su(1|1)2

c.e.

)2
. As a result, short representations

can be written as tensor products of two short representations of su(1|1)2
c.e., and for the

most part we will focus on this smaller algebra.

In this section we begin by reviewing the su(1|1)2
c.e. algebra, its massless short repre-

sentations, as well as the S matrix for scattering two such excitations.6 We then review

the relativistic limit of the massless S matrix and finally we summarize how the above

structure can be understood in terms of the quantum super-Poincaré algebra introduced

in [53].

2.1 The exact massless R matrix

The centrally extended su(1|1)L × su(1|1)R algebra has non-zero commutators

{QL,SL} = HL , {QR,SR} = HR , {QL,QR} = P , {SL,SR} = K , (2.1)

where on the right-hand sides we have the four central elements.7

A representation of (2.1) on a boson-fermion doublet {|φ〉, |ψ〉} takes the form

QL = −SR =

√
h sin

p

2

(
0 0

1 0

)
, SL = −QR =

√
h sin

p

2

(
0 1

0 0

)
,

HL = HR = −P = −K = h sin
p

2
. (2.2)

Above, p is the momentum, which takes values in [0 , 2π], while H = HL+HR is the energy.

The shortening condition implies that the dispersion relation for a massless excitation is

H = 2
∣∣∣h sin

p

2

∣∣∣ . (2.3)

6Since all m2 = 0 short representations are isomorphic to one another, we will write all the expressions

using only the so-called ρL(m = 0) representations [12]. In order not to clutter the notation, we will drop

the subscript L from most expressions. Note that the labels L and R are not related to worldsheet chirality.
7This algebra is in fact the conventional N = 2 supersymmetry algebra in 1+1 dimensions upon identi-

fying

QL → Q+, GL → Q−, QR → Q̄+, GR → Q̄− ,

and has appeared in relation to integrability before, for example in [54]. Our central extensions P and K

correspond to 2∆W and 2∆W ∗ — see for instance equation (2.1) of [54]), where the algebra is specialised

to a massive relativistic dispersion relation). We would like to thank Paul Fendley and Matthias Gaberdiel

for discussions related to this point.
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Up to an overall dressing factor, the R matrix R is given by

R|φ〉 ⊗ |φ〉 = |φ〉 ⊗ |φ〉,
R|φ〉 ⊗ |ψ〉 = −Ap1,p2 |φ〉 ⊗ |ψ〉+Bp1,p2 |ψ〉 ⊗ |φ〉,
R|ψ〉 ⊗ |φ〉 = Ap1,p2 |ψ〉 ⊗ |φ〉+Bp1,p2 |φ〉 ⊗ |ψ〉,
R|ψ〉 ⊗ |ψ〉 = −|ψ〉 ⊗ |ψ〉 ,

(2.4)

where

Ap1,p2 = csc
p1 + p2

4
sin

p1 − p2

4
, Bp1,p2 = csc

p1 + p2

4

√
sin

p1

2
sin

p2

2
. (2.5)

This form of the R matrix is fixed by compatibility with the centrally extended su(1|1)2

symmetry

∆op
N (a)R = R∆N (a) , ∀ a ∈ su(1|1)2

c.e. . (2.6)

Above ∆op
N = Π(∆N ), with Π the graded permutation on the tensor-product algebra Π(a⊗

b) = (−)|a||b|b⊗ a. The coproducts are specified as follows:

∆N (P) = P⊗ ei
p
2 + e−i

p
2 ⊗P, ∆N (K) = K⊗ ei

p
2 + e−i

p
2 ⊗ K,

∆N (HR) = HR ⊗ ei
p
2 + e−i

p
2 ⊗ HR, ∆N (HL) = HL ⊗ ei

p
2 + e−i

p
2 ⊗ HL,

∆N (QL) = QL ⊗ ei
p
4 + e−i

p
4 ⊗QL, ∆N (SL) = SL ⊗ ei

p
4 + e−i

p
4 ⊗SL ,

∆N (QR) = QR ⊗ ei
p
4 + e−i

p
4 ⊗QR, ∆N (SR) = SR ⊗ ei

p
4 + e−i

p
4 ⊗SR .

(2.7)

Since p appears on the r.h.s. above, we will also require

∆N (p) = p⊗ 1 + 1⊗ p . (2.8)

The above coproducts provide a prescription for how the symmetry algebra acts on two-

particle states, in such a way that it is a representation of (2.1). R satisfies the Yang-Baxter

equation and braiding unitarity : Π(R)(p2, p1)R(p1, p2) = 1⊗1. The R matrix also satisfies

Π(R)(p2, p1) = R(p1, p2). To describe the scattering of massless AdS3 modes, R needs

to be multiplied by a suitable dressing factor, which we will denote by Φ, whose form

is determined by a crossing equation [2] up to CDD factors. Dressed in this way and

evaluated in the physical region of momenta, R represents (up to a permutation of the

outgoing particles) the physical S matrix, scattering particles 1 and 2 — with momenta p1

and p2, respectively.

2.2 The relativistic limit of the massless R matrix

In investigating worldsheet S matrices it is useful to consider the relativistic, or near-BMN

regime

p→ ε q, h→ c

ε
, with ε→ 0 . (2.9)

In this limit it is well known that S matrices describing the scattering of massive exci-

tations become proportional to the identity, and sub-leading terms can be matched to

– 5 –
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perturbative worldsheet scattering processes (α′ corrections) [20]. Similarly, the S matri-

ces for mixed massive/massless scattering trivialise in this limit.8 The relativistic limit of

massless/massless scattering is more subtle [2] because it depends on the relative sign of

the momenta of the two excitations. When p1 > 0 and p2 < 0, or vice versa, to leading

order in ε the S matrix is proportional to identity with sub-leading perturbative correc-

tions, much as in the massive case. On the other hand when p1, p2 > 0 or p1, p2 < 0 the S

matrix remains non-trivial as ε → 0. It is this novel behaviour of the massless worldsheet

S matrix in the relativistic limit that is the main focus of this paper.

In the relativistic limit (2.9), with p > 0, the su(1|1)2
c.e. generators are

QL = −SR =

√
cq

2

(
0 0

1 0

)
, SL = −QR =

√
cq

2

(
0 1

0 0

)
,

HL = HR = −P = −K ≡ e0 =
cq

2
, (2.10)

and the dispersion relation (2.3) becomes that of a conventional massless left-moving (on

the worldsheet) relativistic excitation

H = cq . (2.11)

With p1, p2 > 0, the R matrix (ignoring for the moment the scalar factor) reduces to9

R|φ〉 ⊗ |φ〉 = |φ〉 ⊗ |φ〉,

R|φ〉 ⊗ |ψ〉 = −q1 − q2

q1 + q2
|φ〉 ⊗ |ψ〉+

2
√
q1q2

q1 + q2
|ψ〉 ⊗ |φ〉,

R|ψ〉 ⊗ |φ〉 =
2
√
q1q2

q1 + q2
|φ〉 ⊗ |ψ〉+

q1 − q2

q1 + q2
|ψ〉 ⊗ |φ〉,

R|ψ〉 ⊗ |ψ〉 = −|ψ〉 ⊗ |ψ〉.

(2.12)

Introducing the relativistic rapidity

q = eθ, (2.13)

the R matrix takes the difference form

R|φ〉 ⊗ |φ〉 = |φ〉 ⊗ |φ〉,

R|φ〉 ⊗ |ψ〉 = − tanh
ϑ

2
|φ〉 ⊗ |ψ〉+ sech

ϑ

2
|ψ〉 ⊗ |φ〉,

R|ψ〉 ⊗ |φ〉 = sech
ϑ

2
|φ〉 ⊗ |ψ〉+ tanh

ϑ

2
|ψ〉 ⊗ |φ〉,

R|ψ〉 ⊗ |ψ〉 = −|ψ〉 ⊗ |ψ〉 ,

(2.14)

where

ϑ ≡ θ1 − θ2 . (2.15)

We will denote by R both the non-relativistic R matrix, and its relativistic limit, since it

should be clear from the context which R matrix we mean.
8Because of complications related to regularising massless particles in loops, matching to perturbative

computations remains an outstanding challenge [23].
9Similar expressions can be found when p1, p2 < 0.
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2.3 The q-super-Poincaré algebra and boosts

In [53], an algebraic reformulation of the results summarised in section 2.1 was given in

terms of two copies of a 1+1 dimensional q-deformed super-Poincaré algebra. Each copy

satisfies the following relations:

{QR,SR} = HR, {QL,SL} = HL, [JR, p] = iHR,

[JL, p] = iHL, [JA,HB] =
eip − e−ip

2µ
,

[JA,QB] =
i

2
√
µ

ei
p
2 + e−i

p
2

2
QB, [JA,SB] =

i

2
√
µ

ei
p
2 + e−i

p
2

2
SB ,

{QL,QR} = P , {SL,SR} = K,

[JL,P] = [JR,P] = [JL,K] = [JR,K] =
e−ip − eip

2µ
, (2.16)

where µ ≡ 4
h2

, (A,B) = (L,L), (R,R) and the boost operators act as

JR = iHR ∂p, JL = iHL ∂p . (2.17)

The (suitably normalised) quadratic Casimir is given by

C2 ≡ H2 − 4h2 sin
p

2
.

The massless representation is characterised by the vanishing of the Casimir eigenvalue

(massless dispersion relation). The coproduct for the boost operator, say, JL reads (cf. [55])

∆N (JL) = JL ⊗ ei
p
2 + e−i

p
2 ⊗ JL +

1

2
QL e

−i p
4 ⊗SL e

i p
4 +

1

2
SL e

−i p
4 ⊗QL e

i p
4 . (2.18)

The result of [56] were used to introduce a geometric picture in the scattering problem.

The equations

∆N (JL)(R) = 0 = ∆op
N (JL)(R), (2.19)

for R normalised as in (2.4), can be re-written in the form of a covariant derivative on a

2-dimensional manifold B with coordinates (p1, p2),10

DMR ≡
[

∂

∂pM
+ ΓM

]
R = 0, M = 1 , 2 . (2.20)

Above

ΓM = gM
[
E+ ⊗ E− + E− ⊗ E+

]
, (2.21)

with

g1 = −1

4

√
sin p2

2

sin p1
2

csc
p1 + p2

4
, g2 = −g1(p2, p1) , (2.22)

10The two equations (2.20) are related since Π(R)(p2, p1) = R(p1, p2). Alternatively, starting from

equations (2.20), one can derive Π(R)(p2, p1) = R(p1, p2). Braiding unitarity is then a constraint equation.
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and

E+ ≡ E12 =

(
0 1

0 0

)
, E− ≡ E21 =

(
0 0

1 0

)
.

From (2.20) we can write an integral formula for the R matrix, in terms of the line-integral

over any given (suitably differentiable) curve γ(λ) : [0, 1]→ B:

R
[
γ(λ)

]
= Πs P exp

(∫ γ(λ)

γ(0)
dpMΓM

)
, (2.23)

where Πs is the graded permutation operator acting on two-particle states as Π(|v〉⊗|w〉) =

(−)|v||w||w〉 ⊗ |v〉, and P exp denotes the path-ordering of the exponential.11 The starting

point of integration is chosen to reproduce the property R(p, p) = Πs. The putative

connection ΓM is locally flat (pure gauge), since its curvature FMN is vanishing:

F12 = ∂1Γ2 − ∂2Γ1 + [Γ1,Γ2] = 0. (2.25)

Including a dressing factor Φ in the R matrix modifies (2.20) in a straightforward way[
∂

∂pM
+ ΓM −

∂

∂pM
log Φ

]
R̃ = 0, R̃ ≡ ΦR . (2.26)

The R matrix undergoes crossing when one of the momenta leaves the physical region and

was not discussed previously. We analyse this effect on the above differential equation and

connection in the next section.

2.4 Relativistic limit of the q-super-Poincaré algebra

We conclude this summary by considering the effect of the relativistic limit on the q-super-

Poincaré algebra. The boost operators become equal to one another and we denote them

by b

JA →
ib

2ε
, where b = cq

∂

∂q
. (2.27)

The coproduct reduces to

∆N (JA)→ i

2ε
(b⊗ 1 + 1⊗ b) =

ic

2ε

(
q1∂q1 + q2∂q2

)
→ ic

2ε

(
∂θ1 + ∂θ2

)
, (2.28)

i.e. the R matrix, which satisfies ∆N (J)R = 0 [56], has to become of difference form in

the strict relativistic limit. This is indeed the case, as we saw explicitly in equation (2.14).

Notice also that ∆(J) and ∆op(J) become coincident in the relativistic limit.

In the relativistic limit, the covariant derivatives in equation (2.20) reduce to

DM →
δM
ε
, δM = ∂qM + γM , (2.29)

11The sign in the exponent of (2.23) is justified since we extracted Πs in front for convenience, and one has

{Πs,ΓM} = 0,

[
∂

∂pM
− ΓM

]
Πs ◦R = 0, Π2

s = 1⊗ 1 . (2.24)
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with

γ1 = −
√
q2

q1

(
E+ ⊗ E− + E− ⊗ E+

)
q1 + q2

, γ2 =

√
q1

q2

(
E+ ⊗ E− + E− ⊗ E+

)
q1 + q2

. (2.30)

One can verify that

δMR = 0 , M = 1, 2 . (2.31)

Equivalently, in terms of rapidities θM , we have

dMR = 0, dM = ∂θM +AM , (2.32)

with

A1 = −1

2
sech

θ1 − θ2

2

(
E+ ⊗ E− + E− ⊗ E+

)
= −A2. (2.33)

Just as the R matrix (2.14), the connection AM is also of difference form.

Let us remark that equation (2.31) would be rather hard to detect starting from the

strict relativistic case, but it emerges quite naturally when deriving it from the q-Poincaré

algebra. As a matter of fact, because of the difference form imposed by ∆(J)R = 0, both

conditions (2.31) coincide with the single ordinary differential equation[
∂

∂ϑ
− 1

2
sech

θ

2

(
E+ ⊗ E− + E− ⊗ E+

)]
R(ϑ) = 0, ϑ ≡ θ1 − θ2, (2.34)

which can be immediately integrated to

R(ϑ) = Πs e
−
(
E+⊗E−+E−⊗E+

)
gd
(
ϑ
2

)
, (2.35)

where

gd(x) ≡
∫ x

0

dy

cosh y
= 2 arctan tanh

x

2
(2.36)

is the Gudermannian function. By explicitly working out (2.35), we obtain

R =


1 0 0 0

0 sinσ cosσ 0

0 cosσ − sinσ 0

0 0 0 −1

 , σ ≡ −gd

(
ϑ

2

)
,

which can be seen to coincide with (2.14).

3 Dressing factor and crossing

In this section we discuss the crossing symmetry that is used to determine the R matrix

dressing factor. We begin by explaining how crossing is implemented in the geometric

formulation of the R matrix reviewed in section 2.3. We then show that the massless

dressing factor found in [2] reduces to the famous sine-Gordon scalar factor that enters the

S matrix for solitons and anti-solitons [52].
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3.1 Crossing and the q-super-Poincaré algebra

With p ∈ [0, 2π], the supercharges in the crossed region are defined as

Qstr
L̄,−p =−CQL,pC

−1 =−i
√
hsin

p

2
E− , Sstr

L̄,−p =−CQL,pC
−1 = i

√
hsin

p

2
E+,

Qstr
R̄,−p =−CQR,pC

−1 =−i
√
hsin

p

2
E+ , Sstr

R̄,−p =−CQR,pC
−1 = i

√
hsin

p

2
E−, (3.1)

where the supertranspose of a matrix M is defined as

M str
ij = (−)ij+iMji , (3.2)

and the charge conjugation matrix as

C =

(
1 0

0 i

)
. (3.3)

Up to a dressing factor, the R matrix for the scattering of a crossed particle with an

uncrossed one is given by

Rc|φ〉 ⊗ |φ〉 = −Ap1,p2 |φ〉 ⊗ |φ〉 −Bp1,p2 |ψ〉 ⊗ |ψ〉,
Rc|φ〉 ⊗ |ψ〉 = |φ〉 ⊗ |ψ〉,
Rc|ψ〉 ⊗ |φ〉 = −|ψ〉 ⊗ |φ〉,
Rc|ψ〉 ⊗ |ψ〉 = −Bp1,p2 |φ〉 ⊗ |φ〉+Ap1,p2 |ψ〉 ⊗ |ψ〉,

(3.4)

where p1 is in the crossed region and p2 in the physical region. Rc satisfies

∆op
N (a)Rc = Rc ∆N (a) , ∀ a ∈ su(1|1)2

c.e. . (3.5)

The crossing equation reads

RLL
[
C−1 ⊗ 1

]
Rstr1
L̄L,(−p1,p2)

[
C ⊗ 1

]
=

sin p2+p1
4

sin p2−p1
4

1⊗ 1 . (3.6)

Similarly to R, the crossed R matrix can be shown to satisfy

∆N (JL)(Rc) = ∆op
N (JL)(Rc) = 0 , (3.7)

with an analogous expression for JR. As in the previous section, this condition can be

re-written in a more geometrical form[
∂

∂pM
− ΓM

]
Rc = 0, M = 1, 2 . (3.8)

We perform the continuation to the crossed region according to
√

sin p1/2 = i
√
| sin p1/2|.

Integrating along a contour γ gives the following expression for the Rc-matrix:

Rc
[
γ(λ)

]
= ΘP exp

(∫ γ(λ)

γ(0)
dpMΩM

)
, (3.9)
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where the path starts at (p, p) and ends at (p1, p2), and the matrix Θ is defined as

Θ = E+ ⊗ E+ − E− ⊗ E− + E11 ⊗ E22 − E22 ⊗ E11,

with12

E11 ≡

(
1 0

0 0

)
, E22 ≡

(
0 0

0 1

)
. (3.10)

Including a dressing factor, which we call Ψ to distinguish it13 from Φ — the difference

being the arbitrarily chosen normalisation of (3.4) w.r.t. (2.4) — we write[
∂

∂pM
+ ΩM −

∂

∂pM
log Ψ

]
R̃c = 0, R̃c = ΨRc . (3.11)

In fact, in order for (3.6) to be compatible with crossing symmetry, one needs to impose

Φ(p1,p2) Ψ(−p1,p2) =
sin p2−p1

4

sin p2+p1
4

≡ f−1
p1,p2 , (3.12)

where the continuation to negative momenta was described in detail in [2].

3.2 Relativistic limit and crossing

In the relativistic limit, crossing symmetry on superalgebra generators (3.1) takes the form

Qstr
L̄,−q = −CQL,qC

−1 = −i
√
cq

2
E− , Sstr

L̄,−q = −CQL,qC
−1 = i

√
cq

2
E+,

Qstr
R̄,−q = −CQR,qC

−1 = −i
√
cq

2
E+ , Sstr

R̄,−q = −CQR,qC
−1 = i

√
cq

2
E−, (3.13)

where the crossing map reduces to the familiar relativistic one

q → −q, θ → iπ + θ . (3.14)

Ignoring the dressing factor, the relativistic limit of the crossed R matrix Rc (3.4) is

Rc|φ〉 ⊗ |φ〉 = − tanh
ϑ

2
|φ〉 ⊗ |φ〉 − sech

ϑ

2
|ψ〉 ⊗ |ψ〉,

Rc|φ〉 ⊗ |ψ〉 = |φ〉 ⊗ |ψ〉,
Rc|ψ〉 ⊗ |φ〉 = −|ψ〉 ⊗ |φ〉,

Rc|ψ〉 ⊗ |ψ〉 = −sech
ϑ

2
|φ〉 ⊗ |φ〉+ tanh

ϑ

2
|ψ〉 ⊗ |ψ〉 ,

(3.15)

and it satisfies the differential equation[
∂

∂ϑ
+

1

2
sech

ϑ

2

(
E+ ⊗ E+ + E− ⊗ E−

)]
Rc(ϑ) = 0 , (3.16)

which can be solved analogously to equation (2.35).

12We have again used the fact that {Θ,ΩM} = 0 to extract the matrix Θ in front and adjust the sign of

the exponent in (3.9).
13The simple relationship between Φ and Ψ will be fixed in section 4.2.
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Expanding on an idea put forward in [56], we consider the two expression for the R

matrix, namely (2.14) and (3.15), as pertaining to two separate patches of a fiber bundle,14

with the R matrix being a covariantly-constant section, and the connection being simply

read-off from (2.34) and (3.16), respectively. Going from one patch to the other amounts to

a non-trivial transformation on the matrices. One can also implement such transformation

by the constant transition function

Rc(ϑ) = PR(ϑ)P−1, (3.17)

with

P =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0

 . (3.18)

Turning to the dressing factors, the full crossing equation reads

R(ϑ)
[
C−1 ⊗ 1

]
Rstr1c (iπ + ϑ)

[
C ⊗ 1

]
= − coth

ϑ

2
1⊗ 1, (3.19)

hence the dressing factors need to satisfy

Φ(ϑ) Ψ(ϑ+ iπ) = − tanh
ϑ

2
. (3.20)

4 Relativistic limit of the massless dressing phase

In this section, we derive the relativistic limit of the phase for massless-massless scattering

constructed in [2]. In a large-h expansion, the two leading terms in the dressing phase [2]

are referred to as Arutyunov-Frolov-Staudacher (AFS) [57] and Hernández-López (HL) [58]

phases, and they correspond to the O(h) and O(1) orders, respectively. Since the AFS term

tends to 1 in the relativistic limit, we shall focus on the HL term in what follows. The

higher order terms become trivial in the relativistic limit.

In order to solve the crossing equation, a specific path was chosen [2] along which to

perform the analytic continuation of the phase from the physical region Re(p) ∈ (0, 2π)

into the crossed region Re(p) ∈ (−2π, 0). Such a path in the p-plane was singled out as

going from a real p ∈ (0, 2π) to −p, intersecting the imaginary axis for Im(p) < 0.

In the relativistic limit (2.9) the physical region in the q-plane is the entire half-plane

Re(q) > 0, and the path used for crossing goes from a real q > 0 to −q, intercepting the

imaginary axis for Im(q) < 0. In terms of the rapidity variable θ defined in equation (2.13),

the physical region is mapped into the strip Im(θ) ∈ (−π
2 ,

π
2 ) in the θ-plane, and the path

used for crossing goes from a real θ ∈ (−∞,∞) to θ − iπ, intercepting the lower branch

cut Im(θ) = −π
2 .

Below we obtain the relativistic limit of the massless dressing phase and show that it

reduces to the famous scalar factor of the sine-Gordon model obtained by the Zamolod-

chikovs [52].

14We thank Jock McOrist for discussions on this point.
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4.1 Integral representation

The massless HL phase has the following integral representation [2]

θHL(x±, y±) =

1+iε∫
−1+iε

dz

4π
G−(z, y+)

(
g(z, x+)− g(z, x−)

)

−
1−iε∫
−1−iε

dz

4π
G+(z, y−)

(
g(z, x+)− g(z, x−)

)
− i

2

(
G−

(
1

x−
, y+

)
−G+

(
1

x+
, y−

))
,

(4.1)

where x+x− = 1 = y+y− and15

G± (z, y) ≡ log (±i (y − z))− log

(
±i
(
y − 1

z

))
,

g(z, x) ≡ ∂

∂z
G±(z, x) =

1

z − x
− 1

z − 1
x

+
1

z
.

(4.2)

In the relativistic limit we define

x+ = e
ip1
2h , y− = e

ip2
2h , (4.3)

and take the limit h→∞, while keeping the real part of the momenta p1, and p2 positive.

Relegating the details to appendix A.1, we find

θHL
rel(p1, p2) ≡ lim

h→∞
θHL(x± , y±) =

2

π

i∞∫
0

dr
p1 log p2−r

p2+r

p2
1 − r2

− π

2
. (4.4)

Introducing massless rapidity variables

p1 = eθ1 , p2 = eθ2 , r = ieφ , (4.5)

we may write

θHL
rel(θ1, θ2) =

2i

π

∞∫
−∞

dφ
eθ1+φ

e2θ1 + e2φ
log

(
eθ2 − ieφ

eθ2 + ieφ

)
− π

2
. (4.6)

Redefining the integration variable φ→ φ+ θ2 we have

θHL
rel(θ1, θ2) ≡ θHL

rel(ϑ) =
2i

π

∞∫
−∞

dφ
eϑ+φ

e2ϑ + e2φ
log

(
1− ieφ

1 + ieφ

)
− π

2
, (4.7)

with ϑ = θ1 − θ2 showing that in the relativistic limit the dressing phase is of difference

form, as expected for a relativistic theory. The corresponding relativistic dressing factor is

defined for rapidities in the physical strip as

σHL
rel(p1, p2) ≡ σHL

rel(ϑ) = exp

(
i

2
θHL
rel(ϑ)

)
. (4.8)

15The function g does not depend on the choice of sign ± that enters G±.
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The dressing phase (4.7) takes the form of a conventional Riemann-Hilbert type inte-

gral (A.1), with a cut along the imaginary momentum axis. We may use the Sochocki-

Plemelj theorem [59, 60] to determine the value of the dressing factor after analytically

continuing through the cut at Im(ϑ) = π
2

σHL
rel

(
ϑ+ i

(π
2
− ε
))

= − coth

(
ϑ+ iπ

2

2

)
σHL

rel

(
ϑ+ i

(π
2

+ ε
))

. (4.9)

Similarly, continuing through the cut at Im(ϑ) = −π
2 we have

σHL
rel

(
ϑ− i

(π
2
− ε
))

= − tanh

(
ϑ− iπ

2

2

)
σHL

rel

(
ϑ− i

(π
2

+ ε
))

. (4.10)

From these relations we can immediately deduce the crossing equations

σHL
rel(ϑ)σHL

rel(ϑ+ iπ) = i tanh
ϑ

2
, σHL

rel(ϑ)σHL
rel(ϑ− iπ) = i coth

ϑ

2
. (4.11)

Using equations (4.9) and (4.10), and the fact that the integral (4.7) can be computed for

any value of ϑ, the dressing factor on the whole rapidity plane is given by the value of the

integral times the terms one picks up by crossing the cuts16

σHL
rel(ϑ) = e

i
2
θHL
rel

(ϑ)
tanhn(ϑ)

(
−ϑ

2

)
. (4.12)

Above, n(ϑ) is defined in terms of the ceiling function17

n(ϑ) = −
⌈

Im

(
ϑ

π

)
− 1

2

⌉
. (4.13)

4.2 Comparison with Zamolodchikov’s phase factor

We shall now compare the relativistic limit of the dressing factor, which we have obtained

in the previous sections, with the famous scalar factor obtained by Zamolodchikov for the

sine-Gordon model (sG), with the coupling set to β∗ given in equation (1.5), and find them

to agree. At this value of the coupling the sine-Gordon scalar factor, which multiplies the

scattering matrix between a sG soliton and a sG anti-soliton [52] (see [61] for a recent

review) can be written as18

S(ϑ) =
∞∏
`=1

Γ2(`− τ) Γ(1
2 + `+ τ) Γ(−1

2 + `+ τ)

Γ2(`+ τ) Γ(1
2 + `− τ) Γ(−1

2 + `− τ)
, (4.14)

16The two equations given in (4.11) are equivalent to one another upon shifting the rapidity ϑ by ±iπ as

long as the dressing factor is explicitly meromorphic. We have checked that both relations are satisfied by

our expression (4.8) in order to ensure that the apparent cuts do not spoil this property.
17The ceiling of a real number x is defined as the smallest integer greater than or equal to x, and is

denoted by dxe.
18One obtains this formula by setting

γ = 16π ⇐⇒ β2 = β2
∗ =

16π

3

in formula (4.11) of [52] and redefining the rapidity variable to include a minus sign.
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where

τ ≡ ϑ

2πi
. (4.15)

Expression (4.14) solves the crossing equation

S(ϑ)S(ϑ+ iπ) = i tanh
ϑ

2
, (4.16)

which is the same as what the relativistic limit of the HL phase satisfies (4.11). Therefore,

the two dressing factors can differ by at most CDD factors. We have in fact verified

numerically that the formula (4.14) exactly reproduces the relativistic limit of the massless

phase we derived in the previous sections. More precisely,

σHL
rel(ϑ) = S(ϑ) , Im(ϑ) ∈ (−π/2, π/2) , (4.17)

Φ(ϑ) = S(ϑ) , Ψ(ϑ) = iS(ϑ) . (4.18)

As far as we are aware, the integral expression (4.7) for the Zamolodchikov dressing factor

has not previously appeared in the literature and is different from other known integral

formulæ such as those given in [62] or [63, 64].

4.3 Comparison with the literature on 2D N = 2 theories

Our S matrix is closely related to the S matrix of the massless N = 2 super-sine-Gordon

model [49–51] at a special value of its coupling.19 The difference between our R matrix

and the massless N = 2 super-sine-Gordon R matrix at coupling β = β∗, where β∗ has

been introduced in equation (1.5), is located in the entries

|φ〉 ⊗ |ψ〉 → |φ〉 ⊗ |ψ〉 , and |ψ〉 ⊗ |φ〉 → |ψ〉 ⊗ |φ〉 . (4.19)

In our case these R matrix entries can be read off from equation (2.14)

∓ Φ(ϑ) tanh
ϑ

2
. (4.20)

On the other hand, the corresponding entries of the massless N = 2 super-sine-Gordon

model S matrix [49–51, 62] at β = β∗, are both equal to

− iΦ(ϑ) tanh
ϑ

2
. (4.21)

This difference comes from different statistics of the scattering particles, and results in

different braidings of the coproducts.20 This is in fact the only difference between our S

19Similar S matrices have appeared in other contexts. This is to be expected since the super-algebras

used to fix the S matrices are the same (see section 2.1). For example, the matrix RLL in the relativistic

limit (2.14) coincides with a subsector of the R matrix obtained in [54] for the scattering of solitons in

integrable deformations of N = 2 minimal models, though the theory considered there is massive. The

massless N = 2 super-sine-Gordon S matrix appears, for example, in the study of integrable flows of N = 2

Landau Ginzburg theories [65].
20We thank Paul Fendley for communication about this point.
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matrix and the super-sine-Gordon one, because, as we found in section 4.2, our dressing

factor matches the corresponding sine-Gordon one.

Recall that the S matrix of the N = 2 super-sine-Gordon model at any coupling βN=2

factorises into two sine-Gordon S matrices

SssG(βN=2) = SsG(βN=0)⊗ SsG(βN=0 = β∗) , (4.22)

where one of the sine-Gordon factors is at the particular value of the coupling constant β∗
given in equation (1.5), while the second factor’s coupling constant βN=0 is related to the

N = 2 coupling constant by [49–51, 66]

β2
N=2 =

β2
N=0

1− β2
N=0
8π

. (4.23)

This type of factorisation is familiar from other supersymmetric integrable models; see for

example [67–70]. Notice that at β2
N=2 = 16π, or equivalently at β2

N=0 = 16π/3, SssG is a

tensor product of two sine-Gordon S matrices at the special point β∗. It is well known [71]

that at this value of the coupling the massless sine-Gordon theory corresponds to a free

boson, with the S matrix reducing to the non-perturbative S matrices of the type introduced

by Zamolodchikov [24]. Since the massless N = 2 sine-Gordon S matrix at β2
N=2 = 16π is

just a tensor product of two such “free” factors, we expect it will also give an integrable

description of a free CFT. As we discussed above, the relativistic S matrix for CFT(0) is

very similar to the one of the massless N = 2 super-sine-Gordon theory at β2
N=2 = 16π.

We take this as evidence that the CFT(0) will analogously be a free theory, with the natural

candidate the zero-momentum, zero-winding subsector of the supersymmetric T4 theory.

Furthermore, as we shall show in the next section, the similarity with N = 2 super-

sine-Gordon will extend also to the Thermodynamic Bethe Ansatz (TBA) equations: in

particular, for the ground state we shall get equations identical to those of the N = 2

super-sine-Gordon model [65] in the massless limit, though we expect that the excited

states will be different, due to the differences at the level of S matrix and Bethe equations.

5 Thermodynamic Bethe ansatz

In this section, we provide the TBA equations [28] (see [72] for a recent review) restricted

to the massless sector. Having established a relationship with a standard relativistic field-

theory construction related to N = 2 theories, we would like to exploit this to move the

first steps into the finite-size program for this sector. It will eventually be necessary to

extend this framework to the whole theory in order to completely solve the model, as it

was done for higher-dimensional cases [29–33] (see also the review [73]).

Let us get inspiration from the treatment of [62, 65], where the TBA was used to

obtain the Casimir energy of the 2D theory compactified on a spatial circle of length R.

According to Zamolodchikov’s idea [28], one can use the asymptotic data of the scattering

problem to derive integral equations for the finite-size spectrum, utilising the principle

of the double Wick-rotation. This amounts to exchanging space with time, turning a
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problem which is periodic with period R in space and infinite time L→∞, into one which

is decompactified in space and with periodic time, i.e. at finite temperature 1
R . Thanks to

relativistic invariance, we are guaranteed to be able to use the same principle of double

Wick-rotation in our relativistic-limit situation.

Based on this reasoning, the ground-state energy of the original model (which is the

leading contribution to the partition function at large time) can be read-off from the min-

imum free energy Fmin at large L of the doubly Wick-rotated model:

E0(R) = lim
L→∞

RFmin

L
. (5.1)

For N = 2 theories, for instance, this procedure reproduces the correct central charge

for the massless flows which [65] were concerned about. The massless scattering theory

describes a renormalisation group flow between a UV and an IR fixed point, and the TBA

computes the ground state energy at arbitrary intermediate points along the flow. This

ground state (Casimir) energy then is shown to correctly approach the UV and IR CFT

central charges at the two respective extrema of the flow.

The first fundamental ingredient to perform a similar analysis in our case is the for-

mulation of a set of Bethe equations describing the large volume spectrum of the massless

sector in the relativistic limit, that is the subject of the next section.

5.1 Relativistic Bethe equations

The Bethe equations can be constructed employing the tool of the transfer matrix, which is

built as the trace of a string of S matrices for an ordered sequence of interacting particles.

Let us briefly outline the calculation in our case.

If one considers N particles, taken to be all bosonic for the moment, on a circle of length

L, interacting one with each other via an integrable scattering matrix, one is brought to

impose the following quantisation conditions on the momenta:

eipkL T (pk|p1, . . . , pN )|ψ〉 = |ψ〉, k = 1, . . . , N, (5.2)

where pi is the momentum of the i-th particle on the circle

pi = eθi , (5.3)

while

T (p0|p1, . . . , pN ) = tr0M(p0|p1, . . . , pN ) (5.4)

is the transfer matrix, namely the trace over the auxiliary 0-th space of the monodromy

matrix[
M b
a(p0|p1, . . . , pN )

]d1...dN
c1...cN

=
∑
{k}

Sd1k1ac1 (θ0 − θ1)Sd2k2k1c2
(θ0 − θ2) . . . SdN bkN−1cN

(θ0 − θN ), (5.5)

and S is the two-body S matrix. Equations (5.2), (5.4) and (5.5) are saying that revolving

each particle around the circle of length L, while scattering all the other ones in sequence,

amounts to the identity acting on an eigenstate |ψ〉 of the transfer matrix. Normally one
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would exclude the same particle k in the scattering sequence, however we can include it

since Sdbac(0) = δdaδ
b
c, which acts by effectively permuting the two scattering particles and

has the result of cutting the product (5.5) precisely in correspondence with particle k, as

it is needed.

From this treatment it is clear that the next task is to find the eigenstates |ψ〉 of the

transfer matrix. For non-diagonal scattering, when the S matrix is not just a scalar but,

as in our case, it does transform non-trivially the particles’ internal degrees of freedom,

diagonalisation is best achieved via the so-called Algebraic Bethe Ansatz (ABA) technique.

One can prove that, if one constructs the tensor

Σij = Sdbac(θi − θj)Eba ⊗ Edc, (5.6)

where Exy are the standard matrix unities, then

Σij = Rij (5.7)

and

Σ0N . . .Σ01 =
[
M b
a(p0|p1, . . . , pN )

]d1...dN
c1...cN

Eba ⊗ Ed1c1 ⊗ . . .⊗ EdN cN . (5.8)

In the supersymmetric case, we therefore now take

R0N . . . R01 (5.9)

as the appropriate definition of the monodromy matrix to be used, and switch to the

supertrace. We perform the full algebraic Bethe Ansatz (ABA) for the transfer matrix

resulting from such definition in appendix A. The result is as follows:

T (p0|p1, . . . ,pK0)|q1, . . . , qM 〉= Λ|q1, . . . , qM 〉

Λ = Λ(q1, . . . , qM ;p0|p1, . . . ,pK0) =

(
1−

K0∏
i=1

tanh
θ0−θi

2

) K0∏
i=1

Φ(θ0−θi)
M∏
i=1

coth
βi−θ0

2
,

(5.10)

where M ≡ K1+K3 = 0, 1, 2, . . . is the total number of level-1 magnons with momenta qi =

eβi . These are magnon excitations created by the upper-triangular entry of the monodromy

matrix M, which we call B(qi|p1, . . . , pK0), over the pseudo-vacuum |0〉 = |φ〉 ⊗ . . . ⊗ |φ〉
formed out of K0 bosons with momenta pk:

|q1, . . . , qM 〉 = B(q1|p1, . . . , pN ) . . . B(qM |p1, . . . , pN )|0〉 . (5.11)

From the point of view of the nested Bethe ansatz, the K0 particles work at the next level

as an effective new chain, of length K0 and with impurities pi, where the level-1 magnons

now move. That is why the K0 particles are also called frame particles, when regarded

under this light. The situation is conveniently captured by a diagram of the type in figure 1.

There is also a quantisation condition for the level-1 magnon momenta (level-1 Bethe

equations):
K0∏
i=1

tanh
βk − θi

2
= 1, k = 1, . . . ,M, (5.12)
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Figure 1. The transfer matrix is obtained by identifying a = b in the monodromy matrix, and

summing over
∑

a. The indices a and b are in the auxiliary 0-th space, while the indices ci and di
pertain to the chain of frame particles (often referred to as the quantum space).

meaning that the level-1 magnons only interact with the K0 frame particles (impurities on

the level-1 chain), but not one with each other.

It is now clear that

Λ(q1, . . . , qM ; pk|p1, . . . , pK0) =

K0∏
i=1

Φ(θk − θi)
M∏
i=1

coth
βi − θk

2
, (5.13)

since one of the products is simply entirely annihilated by one of the factors being 0,

specifically tanh θk−θk
2 . We see therefore that (5.2) can be replaced by the following system

of equations:

eiLe
θk

K0∏
i=1

Φ(θk − θi)
M∏
i=1

coth
βi − θk

2
= 1, k = 1, . . . ,K0, (5.14)

quantising the momenta when the system is in the eigenstate characterised by M level-1

magnons with rapidities βi, subject to (5.12).

The same set of Bethe equations can be obtained directly by applying the relativistic

limit to the all-loop Bethe equations for the massless sector [1, 2]:

1 =

K0∏
j=1

y1,k − z+
j

y1,k − z−j
, (5.15)

eipkL =

K0∏
j=1

j 6=k

σ2
◦◦(z

±
k , z

±
j )
z+
k − z

−
j

z−k − z
+
j

K1∏
j=1

z−k − y1,j

z+
k − y1,j

K3∏
j=1

z−k − y3,j

z+
k − y3,j

, (5.16)

1 =

K0∏
j=1

y3,k − z+
j

y3,k − z−j
. (5.17)

The relativistic limit corresponds to taking the following small momentum limit on the

dynamical variables

z±k = e±iεpk , yi,k = eiεvk , with ε→ 0 , pk = e±θk , vk = eβk . (5.18)
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Figure 2. The Dynkin diagram associated to the Bethe equations (5.19)–(5.21): the central node

corresponds to the momentum carrying variable θ, while the crossed nodes denote the fermionic

nodes associated to the auxiliary variables β1 and β3.

Applying this limit to the Bethe eqs. (5.15)–(5.17), we get scattering phases depending on

differences of rapidities and in particular, for the right-movers (pk = eθk)

1 =

K0∏
j=1

tanh

(
β1,k − θj

2

)
, (5.19)

eiLe
θk = (−1)K0−1

K0∏
j=1

j 6=k

S2(θk − θj)
K1∏
j=1

coth

(
β1,j − θk

2

) K3∏
j=1

coth

(
β3,j − θk

2

)
, (5.20)

1 =

K0∏
j=1

tanh

(
β3,k − θj

2

)
, (5.21)

where S(θ) is the Zamolodchikov’s sine-Gordon scalar factor, as shown in section 4.2. It

is easy to check that we get exactly the same Bethe equations as (5.12) and (5.14), corre-

sponding to the Dynkin diagram represented in figure 2. It is this form of the quantisation

condition which we shall submit to the TBA analysis of section 5.2, following [24].

Similar Bethe equations were studied in [74] and [62], for example. As in those cases,

the auxiliary fermionic Bethe roots β1,k (β3,k) organize on two lines at z1,k + iπ/2 (z3,k +

iπ/2) and z1,k − iπ/2 (z3,k − iπ/2), with z1,k (z3,k) real. Then we shall use the notation

±1 (±3) to denote the Bethe roots of type 1 (3) placed at ±iπ/2 respectively.

If we had started from the dual Bethe equations, also derived in [1, 2], for the so-

called “fermionic grading”, in the relativistic limit we would have obtained slightly different

equations for the momentum carrying node:

eiLe
θk =

K0∏
j=1

j 6=k

S2(θk − θj)
K̃1∏
j=1

tanh

(
β1,j − θk

2

) K3∏
j=1

coth

(
β3,j − θk

2

)
. (5.22)

However, the differences with respect to (5.20) will not imply any change in the procedure

exposed in the next section, also since we are allowed to simply relabel the auxiliary

variables: in the dual frame the roots previously labelled by +1 can be mapped to roots of

type −1 and vice versa.
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It is also possible to derive the dual Bethe equations directly in the relativistic limit,

following section 3.2 of [2]. It is sufficient in fact to adopt the same duality transformation

employed there, taken in the relativistic limit and switching off the massive roots. If one

sets N2 = N2̄ = 0 in P (ζ), formula (3.20) in [2], one obtains

P (ζ) =

K0∏
j=1

(ζ − z+
j )ν

− 1
2

j −
K0∏
j=1

(ζ − z−j ). (5.23)

This polynomial clearly vanishes when evaluated on the auxiliary Bethe roots x1,k, by

virtue of the auxiliary Bethe equations (5.15), and also when evaluated at ζ = 0, because

of the level matching condition:

P (x1,k) = 0, P (0) = 0. (5.24)

Since P is a polynomial of degree K0 − 1 (the highest power cancels out), it must be

P (ζ) = ζ

K1∏
k=1

(ζ − x1,k)

K0−K1−1∏
k=1

(ζ − x̃1,k). (5.25)

This means that it must simultaneously happen, from (5.23) and (5.25), that

P (z+
i )

P (z−i )
=
z+
i

∏K1
k=1(z+

i − x1,k)
∏K0−K1−1
k=1 (z+

i − x̃1,k)

z−i
∏K1
k=1(z−i − x1,k)

∏K0−K1−1
k=1 (z−i − x̃1,k)

=
−
∏K0
j=1(z+

i − z
−
j )∏K0

j=1(z−i − z
+
j )ν

− 1
2

j

. (5.26)

The second equality can be used to convert the factor
∏K1
k=1

z+i −x1,k
z−i −x1,k

in the momentum-

carrying equation (5.16) in terms of the dual roots x̃.

In the relativistic limit, it is enough to parametrise the roots in the same way as

in (5.18): set

ζ = eiε e
u
, (5.27)

and let ε→ 0. The factors of ν in (5.23) tend to 1 being exponential of momenta, then one

is left with

P (ζ)→ (iε)K0

( K0∏
j=1

(eu − eθj )−
K0∏
j=1

(eu + eθj )

)
= (5.28)

(iε)K0

K1∏
k=1

2 e
u−β1,k

2 sinh

(
u− β1,k

2

)K0−K1−1∏
k=1

2 e
u−β̃1,k

2 sinh

(
u− β̃1,k

2

)
≡ Q(u) ,

where we have used the same argument based on the auxiliary Bethe equations (5.19). One

does not have a polynomial in the limit, therefore we have used the sinh function, which

has the appropriate zeroes and periodicity. We can now use the fact that the limit of
P (z+i )

P (z−i )

is (−1)K0+1 to obtain

(−1)K0+1 =
Q(θi)

Q(θi + iπ)
=

∏K1
k=1 sinh

(
β1,k−θi

2

)∏K0−K1−1
k=1 sinh

(
β̃1,k−θi

2

)
∏K1
k=1 cosh

(
β1,k−θi

2

)∏K0−K1−1
k=1 cosh

(
β̃1,k−θi

2

) , (5.29)

which can now be used to dualise the momentum-carrying equation (5.20).
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5.2 Thermodynamics

Now, let us consider the thermodynamic limit of (5.19)–(5.21), whereby

L→∞, K0 →∞, K1,K3 →∞. (5.30)

In this limit, the system (5.19)–(5.21) is replaced by a set of integral equations. Taking

the logarithm of (5.19)–(5.21), and then applying the thermodynamic limit, amounts to

introducing the density ρ0(θ) = ∆n
∆θ of allowed frame particle states per unit rapidity, and

analogously ρ±1, ρ±3 for level-1 magnons, corresponding respectively to pairs of solutions

β±n,i = zi ± iπ
2 , n = 1, 3. Actually, ρ0 and ρ±1, ρ±3 include the densities of both particles

and holes

ρ0(θ) = ρr0(θ) + ρh0(θ) =
∆n

∆θ
, (5.31)

ρ±1(z) = ρr±1(z) + ρh±1(z) =
∆m±1

∆z
, (5.32)

ρ±3(z) = ρr±3(z) + ρh±3(z) =
∆m±3

∆z
, (5.33)

and satisfy the following integral equations (see appendix C for a derivation)

ρ0 =
eθ

2π
+2

∫ ∞
−∞

dθ′φ0(θ−θ′)ρr0(θ′)+
∑
±,n=1,3

∫ ∞
−∞

dzφ±(θ−z)ρr±n(z), (5.34)

ρr±n(z)+ρh±n(z) =∓
∫ ∞
−∞

dθφ±(z−θ)ρr0(θ) ; n= 1,3 , (5.35)

where the kernels are given by

φ0(θ) ≡ 1

2πi

d

dθ
logS(θ) =

θ

2π2 sinh θ
,

φ±(θ) ≡ 1

2πi

d

dθ
log tanh

θ ± iπ2
2

= ∓ 1

2π cosh θ
.

(5.36)

Due to (5.12), the level-1 magnons are effectively free (apart from their interaction with

the frame particles), then they cannot form bound states and there are only densities of

fundamental particles ρ±n appearing in (5.36), and not infinite towers of bound states

densities as in [24], for instance. If we define a unique kernel φ ≡ φ− = 1
2π cosh(θ) for the

interactions with and among auxiliary densities ρ±n, then the densities equations assume

a simpler form:

ρr0(θ) + ρh0(θ) =
eθ

2π
+ 2φ0 ∗ ρr0 +

∑
n=1,3

φ ∗ (ρr−n − ρr+n) (5.37)

ρr±n(β) + ρh±n(β) = φ ∗ ρr0 ; n = 1, 3 , (5.38)

where we introduced the symbol ∗ to denote the standard convolution. Now we can use the

property φ0 = φ∗φ and (5.38) to simplify further the equation for ρ0 in the following way:21

ρr0(θ) + ρh0(θ) =
eθ

2π
+
∑
n=1,3

φ ∗ (ρr−n + ρh+n) , (5.39)

where we basically managed to get rid of the self-interacting convolution of ρ0.

21This is one of the main differences with the case studied in [74], where one would have ρ0 = eθ

2π
+∑

n=1,3 φ ∗ (ρr−n) instead.
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The procedure continues by minimising the free energy, which, as advertised at the

beginning of the section, returns the ground state energy of the original model before the

double Wick rotation. The free energy F in the thermodynamic limit gets two contribu-

tions:22

Z = tr e−RẼ →
∫
N e−RẼ =

∫
e−RẼ+logN , (5.40)

hence

− F = −R Ẽ + logN . (5.41)

The measure term N gives an entropy factor, accounting for the combinatorics of all the

possible ways the allowed states ∆n = ρ0(θ)∆θ — respectively, ∆m±n = ρ±n(z)∆z — are

filled by the available frame particles ∆`0 = ρr0(θ)∆θ — respectively, level-1 magnons with

densities ∆`i = ρri (θ)∆θ — namely(
∆ni
∆`i

)
=

(
∆ni

)
!

∆`i!
(
∆ni −∆`i

)
!

(5.42)

for each species i = 0,±n. By applying Stirling’s approximation of the factorial due to the

large occupation numbers, one gets

logN = S ∼
∑
i

∫ [
ρi log ρi − ρri log ρri − (ρhi ) log(ρhi )

]
. (5.43)

However, the energy turns out to receive contributions only from the frame particles, and

not from the level-1 magnons, which are only contributing to the entropy:

Ẽ = M

∫
dϑ eϑ ρr0(ϑ). (5.44)

Minimising the free energy (5.41) in the thermodynamic limit, subject to the con-

straints (5.39) and (5.38), gives a system of 10 variations, i.e. with respect to ρr0, ρh0 ,

ρr±n and ρh±n, with n = 1, 3. The resulting TBA equations read (see appendix C for a

derivation)

ε0 = ν0(θ)−
∑
n=1,3

φ ∗ (L+n + L−n) ; ε±n = −φ ∗ L0, n = 1, 3 , (5.45)

where we have defined

ν0(θ) ≡MReθ , εA ≡ log
ρhA
ρrA

, LA ≡ log(1 + e−εA) , (5.46)

with the multi-index A = (0,±n). In a case with generic chemical potentials γA, the

definition of LA would simply generalise to LγA ≡ log(1 + eiγA−εA).

In terms of the solutions of (5.45), the exact ground-state energy for right-movers is

given by

E0,right(R) = −M
2π

∫
dθeθ log(1 + e−ε0(θ)) , (5.47)

22We denote the energy of the Wick-rotated theory in the thermodynamic limit as Ẽ, to avoid confusion

with the energy E of the physical theory.
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Figure 3. The diagram associated to the TBA equations (5.45): the central node correspond to

ε0, the crossed nodes correspond to the fermionic pseudoenergies ε±n with n = 1, 3 and the lines

represent the equations linking the pseudoenergies via the kernel φ.

while the total ground-state energy reads

E0(R) = E0,left(R) + E0,right(R)

= −M
2π

∫
dθ(eθ + e−θ) log(1 + e−ε0(θ)) = −M

π

∫
dθeθ log(1 + e−ε0(θ)) .

(5.48)

Actually, taking into account that our theory contains two massless momentum-carrying

roots, the total ground state energy is 2E0(R), with E0(R) given by (5.48).

5.3 Central charge from the TBA

Equations (5.45) can be represented by the D̂4-type diagram in figure 3, associating the

pseudoenergies to the nodes and the equations to the lines of the diagram.

The same TBA-diagram describes the ground state TBA equations for the UV limit

of N = 2 super-sine-Gordon (ssG) [49–51] with β2
N=2 = 16π (β2

N=0 = β2
∗ = 16π/3) [65, 66].

Therefore, we expect that our TBA will give as a result the same central charge c = 3, at

least in the case with trivial chemical potentials.

In order to calculate the central charge from the TBA equations (5.45), we use the

well known “dilogarithm trick” (see for example [26] for an explanation), for which it is

necessary to fix the values of the pseudoenergies at θ = ±∞. Obviously, ε0 is constant for

fixed values of θ, then the equations for ε±n reduce to

ε±n = −1

2
log(1 + e−ε0) . (5.49)

At θ = +∞, in particular, the driving term ν0(θ) in the first of (5.45) diverges and then

we have ε0(∞) = ∞, and ε±n(∞) = 0 from (5.49). At θ = −∞, instead, the driving

term of the central node equation vanishes, leaving the following equation for ε0(−∞) at

constant ε±n(−∞):

ε0(−∞) = −2 log(1 + e−ε±n(−∞)) . (5.50)

A real solution of (5.49) and (5.50) is ε0,min ≡ ε0(−∞) ∼ 2 ε±n,min = −∞. Now, taking

the derivative of the first of (5.45), we can replace eθ in (5.48) by

eθ =
ε′0 + 4φ ∗ L′1

MR
, (5.51)
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where, for simplicity, we called L1 ≡ L±n, since the TBA equations (5.45) tell us that all

the ε±n are equal, and we denote them by ε1 ≡ ε±n. In this way we get

E0(R) = − 1

πR

∫
dθ(ε′0L0 − 4ε1 ∗ L′1) , (5.52)

where we replaced φ ∗ L0 by −ε1, as given by the second of (5.45). This integral can be

written as

E0(R) = − 1

πR

∫ +∞

ε0,min

dε0L0 −
4

πR

∫ 0

ε0,min
2

dε1
e−ε1ε1

1 + e−ε1
. (5.53)

The first integral above gives − π
6R −

ε20,min

2πR as a result, while the second one yields − π
3R +

ε20,min

3πR , so the divergences exactly compensate each other. Given the definition of central

charge in terms of the partition function Z(R,L) = Tre−RHL of a (1 + 1)-dimensional

theory on a torus with infinite spatial dimension L and euclidean time R = 1/T , where T

is the temperature, and its relation to the ground state energy

c ≡ lim
L→∞

6R

πL
log Tre−RHL = −6R

π
E0(R) , (5.54)

we obtain c = 3, as expected. Finally, since in our case the total ground state energy is

given by 2E0(R), the total central charge is actually doubled to c = 6.

In fact, in this way we are calculating the ground state energy of the sector with an-

tiperiodic boundary conditions on the fermions [75], see [31, 76] for a discussion in the AdS5

case. The ground state energy of the sector with periodic fermions, instead, is calculated

by Witten’s index [77], rather than the usual free energy as in (5.1). Witten’s index is ob-

tained by adding non-trivial chemical potentials to the auxiliary fermionic pseudoenergies,

so that, in our case, ε±n → ε±n ± iπ.

A consistent solution of the ground-state TBA equations (5.45) with these chemical

potentials is given by the constants ε0 = +∞, ε1 = 0. These yield E0(R) = 0 exactly,

for any value of R, as expected for the vacuum energy in a supersymmetric theory with

periodic fermions. More details about this solution and more general chemical potentials

will be discussed in the next section.

5.4 Twisted theory and excited states

In the case of generic chemical potentials iγ±n added to the fermionic pseudoenergies, our

ground state TBA equations for the right-movers (5.45) become

ε0 = ν0(θ)−
∑
n=1,3

φ ∗ (log(1 + eiγ+ne−ε+n) + log(1 + eiγ−ne−ε−n)) ;

ε±n = −φ ∗ L0, n = 1, 3 ,

(5.55)

where γ±n are real constants. In what follows these will be called twists, for shortness sake,

and we shall consider the right-movers’ sector only.

The main motivation for us to consider such twisted version of the ground state TBA

equations (5.45) is to calculate the energies of the excited states. Equations (5.55), indeed,
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turn out to be very similar to those studied in [75] to determine the excited states’ energies

of the sine-Gordon model at its N = 2 supersymmetric point, i.e. at β = β∗ given in

equation (1.5), in the massless limit: the only difference is that we have two more equations

for the additional auxiliary fermionic variables of type 3. Thanks to this similarity, in this

section we shall follow the analysis performed in section 4 of [75] (see also [71]) for the

massless limit.

We shall then consider the case23 γ+1 = γ+3 = −γ−1 = −γ−3 = γ and allow the

Y-functions Y0 ≡ e−ε0 and Y±n ≡ e−ε±n to develop zeros as γ increases. It is then useful

to derive from the TBA equations (5.55) a set of functional relations connecting the Y-

functions, the so-called Y-system, valid also when Y0 and Y1 have zeros:

Y0

(
θ +

iπ

2

)
Y0

(
θ − iπ

2

)
=
∏
n=1,3

(1 + eiγ+nY+n(θ))(1 + eiγ−nY−n(θ)) , (5.56)

Y±n

(
θ +

iπ

2

)
Y±n

(
θ − iπ

2

)
= 1 + Y0(θ) . (5.57)

At the level of TBA equations, instead, if Y0 and Y±n have zeros in the strip |Im(θ)| ≤ π/2,

then they satisfy a modified set of twisted TBA equations, given by

logY0(θ) =−ν0(θ)+2

J∑
j=1

log tanh

(
θ−xj

2

)
−2
(
φ∗log[(1+eiγY1)(1+e−iγY1)]

)
(θ) , (5.58)

logY1(θ) =

K∑
k=1

log tanh

(
θ−yk

2

)
+(φ∗L0)(θ) , (5.59)

where, as in the previous section, since all the Y±n(θ) are equal, we denote them all as

Y1(θ), and the positions of the zeros {xj}Jj=1 and {yk}Kk=1 are fixed by

Y0

(
xj +

iπ

2

)
= −eiγ or− e−iγ ; Y1

(
yk +

iπ

2

)
= −1 . (5.60)

These conditions follow from the Y-system (5.57) evaluated at the locations of the zeros,

and, using (5.58)–(5.59), they can be written as integral equations

eyk = −(2Nk + 1)π − 2i

J∑
j=1

log tanh

(
yk − xj

2
+
iπ

4

)

−
∫
dθ

π

ln
[
(1 + eiγY1(θ))(1 + e−iγY1(θ))

]
sinh(yk − θ)

, (5.61)

γ − (2Mj + 1)π = i

K∑
k=1

log tanh

(
xj − yk

2
+
iπ

4

)
+

∫
dθ

2π

ln (1 + Y0(θ))

sinh(xk − θ)
. (5.62)

23This case corresponds also to the UV limit of a twisted version of the N = 2 super-sine-Gordon with

β = β∗, mentioned in sections 4.3 and 5.3, with twists αF = (k + 2)αT = γ and k = 0 in the notations

of [65]. This means also that more general twists are possible, and then other sectors of excited states may

remain to be explored.
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Figure 4. Finite solutions chosen for Y0(−∞) and Y1(−∞) from equations (5.63), and the solution

chosen for Y0(∞) from (5.64), in the interval γ ∈ (0, 4π).

We shall adopt the same conjecture of [75] about all the zeros coming from θ = −∞.

Therefore, in order to understand at which values of γ they come into play, it is essential

to solve the TBA system (5.58)–(5.59) at θ = −∞:

Y 2
0 (−∞) =

[
1 + 2 cos(γ)Y1(−∞) + Y 2

1 (−∞)
]2

; Y 2
1 (−∞) = 1 + Y0(−∞) , (5.63)

with Y0(−∞) = e−ε0,min and Y1(−∞) = e−ε1,min .

In the opposite limit (θ →∞), we get

Y0(∞) = ±4 cos2
(γ

2

)
e−e

θ
; Y1(∞) = ±1 . (5.64)

This tells us that the positions of Y0(θ)’s zeros can reach infinity at γ = (2k + 1)π, k =

0, 1, . . . , while those of Y1(θ) cannot go to infinity for any value of γ.

For γ ∈ (0, π/2), equation (5.63) has no finite solutions and ε0,min ∼ 2 ε1,min = −∞ as

for the untwisted case studied in section 5.3. So, no zeros can come from θ = −∞ and the

energy is given by

Eright(R, γ) = − 1

2πR

∫ +∞

ε0,min

dε0 L0 −
1

πR

∫ 0

ε1,min

dε1

(
eiγ−ε1ε1

1 + eiγ−ε1
+

e−iγ−ε1ε1

1 + e−iγ−ε1

)
. (5.65)

Using the singular solutions found for ε0,min and ε1,min, then (5.65) gives as a result

Eright(R, γ) = − π

4R
+

γ2

4πR
=

2π

R

(
γ2

4π2
− 1

8

)
. (5.66)

For γ > π/2, instead, (5.63) have a pair of finite solutions:

1) (ε0,min, ε1,min) = (−2 log(tan γ),− log(− sec γ)) ; (5.67)

2) (ε0,min, ε1,min) = (− log(− sin2 γ),− log(− cos γ)) . (5.68)
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Figure 5. Comparison of our numerical results with analytic formulas (5.66), (5.69) and (5.76),

for R = 1.

In particular, for γ ∈ (π/2, π) we choose the first solution (5.67), since it is connected at

γ = π/2 with the singular one found above for γ ∈ (0, π/2). Plugging it into formula (5.65),

one gets

Eright(R, γ) = −(γ − π)2

2πR
= − π

2R

(γ
π
− 1
)2

, (5.69)

so that at γ = π we have the expected Witten’s index E(R, π) = 0.

Equations (5.63) imply that the zeros of Y0(θ) enter from −∞ at γ = (2k + 1)π,

k = 0, 1, . . . , while zeros of Y1(θ) cannot enter from −∞ for γ < π.

At γ = π, Y0(−∞) is zero, but actually Y0(θ) is zero at any θ. As in [75], this means

that the first zero x1 of Y0(θ) at γ = π enters at −∞ and goes straight to +∞, ensuring

that Y0(θ) = 0 for any θ, and its effect is just to change the sign of Y0(θ), or equivalently

to add a −iπ in the r.h.s. of the TBA equation for ε0:

ε0 = ν0(θ)− iπ − 2φ ∗ ln
[
(1 + eiγY1(θ))(1 + e−iγY1(θ))

]
. (5.70)

Also the second equation of (5.63) has to be modified accordingly, by changing sign of

Y0(−∞) in the l.h.s. This implies that we have to choose the solution (5.68) for the lower

limits (ε0,min, ε1,min), so that (5.65) gives

Eright(R, γ) =
(γ − π)2

2πR
; for γ ∈ (π, 3π/2) . (5.71)

At γ = 3π/2, the first zero y1 of Y1(θ), corresponding to the solution of Y0(y1 +iπ/2) = −1,

enters from θ = −∞, then the TBA equations for ε±n in (5.55) have to be modified as

in (5.59) with K = 1, and the (right-movers) energy formula changes as

REright(R, γ) =

K∑
k=1

eyk − 1

2π

∫
dθ eθ L0(θ) , (5.72)
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where the positions of the zeros yk are determined by solving (5.61). In particular, since

y1 enter from −∞, equation (5.61) for K = 1 simplifies to 2N1 + 1 = 1, then N1 = 0. In

general, xj and yk will enter from θ = −∞ at γ = jπ and γ = kπ/2 respectively, and at

these values equations (5.61)–(5.62) simplify respectively to

(2Nk + 1) = J ; γ − (2Mj + 1)π = −πK , (5.73)

that are solved by Nk = k − 1 and Mj = j − 1. We verified this structure of the zeros and

computed the energy (5.72) also numerically for R = 1 (see appendix D.1 and figure 5), by

solving iteratively (5.58)–(5.62). However, it is possible to derive analytically a relatively

closed formula for the energy at any value of γ (see appendix D for the derivation): the

result reads

REright(R, γ) = − 1

2π

∫ ∞
ε0,min

dε0 L0 −
1

πR

∫ 0

ε1,min

dε1

(
eiγ−ε1ε1

1 + eiγ−ε1
+

e−iγ−ε1ε1

1 + e−iγ−ε1

)
− 1

2π
log((−1)K) log(Y 2

0 (−∞)) + 2(J − 1)Kπ

+ 2

J∑
j=J∞+1

(γ − (2Mj + 1)π)−
K∑
k=1

2Nkπ , (5.74)

where J∞ is the number of zeros xj at +∞, the lower limits of integration ε0,min = 2 ε1,min =

∞ for γ ∈ (0, π/2), while they have to be chosen as in (5.67) for γ ∈ (π/2, π) and as

in (5.68) for γ ≥ π (see figure 4). These choices for the lower limits have been verified

also numerically. Moreover, the two integrals in (5.74) can be easily evaluated in terms of

dilogarithms:

REright(R, γ) =
1

2π

{
Li2[−Y0(−∞)] + 2Li2[−eiγY1(−∞)] + 2Li2[−e−iγY1(−∞)

}
− 1

2π

{
2Li2(−eiγ) + 2Li2(−e−iγ)− log[Y 2

0 (−∞)] log[(−1)KY1(−∞)]
}

+ 2(J − 1)Kπ + 2

J∑
j=J∞+1

(γ − (2Mj + 1)π)−
K∑
k=1

2Nkπ . (5.75)

Now, let us explain how formula (5.75) matches the results (5.66) for γ ∈ (0, π/2), (5.69)

for γ ∈ (π/2, π), and gives

Eright(R, γ) =
(γ − π)2

2πR
(5.76)

for γ ∈ (π, 4π), by taking into account the behaviour of the Y-functions’ zeros, that has

been also verified numerically (see appendix D.1).

• In fact, for γ < 3π/2 there are no zeros, except for the first atypical zero x1 at

+∞, then J = J∞ = 1, K = 0 and the energy is given by the first two lines

of (5.75), using Y0(−∞) = Y 2
1 (−∞) = ∞ for γ ∈ (0, π/2) and Y0(−∞) = tan2(γ),

Y1(−∞) = − sec(γ) for γ ∈ (π/2, π).
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• For γ ∈ (3π/2, 2π), instead, K = 1, but the discrete contributions still vanish since

J = J∞ = 1 and N1 = 0, while we need to take into account the last term of the

second line in (5.75) with K = 1.

• For γ ∈ (2π, 5π/2), we have the appearance of the first finite zero x2, with M2 = 1,

then J = J∞ + 1 = 2 and we have to add a total contribution 2π + 2γ − 6π.

• For γ ∈ (5π/2, 3π), a second zero y2 with N2 = 1 enters, then the contribution from

the last term of the second line vanishes, while we have to add 4π + 2γ − 6π − 2π.

• For γ ∈ (3π, 7π/2), the zero x2 has gone to ∞, but a third zero x3 appears with

M3 = 2, then J = J∞ + 1 = 3. Therefore, we have to add 8π + 2γ − 10π − 2π.

• Finally, for γ ∈ (7π/2, 4π), a third zero y3 enters, then we have to take again into

account the last term of the second line in (5.75), while the discrete terms give

12π + 2γ − 10π − 6π.

Let us notice that, from γ = 2π to γ = 4π, to get the result (5.76) we have to add simply

2γ − 4π to the first two lines of (5.75).

These results have been tested, for R = 1, by the numerical analysis discussed in

appendix D.1, see figure 5, and let us guess that formula (5.76) is valid for any value of

γ ≥ π. This let us also conjecture that the energies of some excited states belonging to the

sector with periodic (antiperiodic) fermions can be calculated by E(γ,R) = 4Eright(γ,R) =

2 (π−γ)2

πR at odd (even) integer values of γ/π ≥ 2:

En(R) = E(nπ,R) =
2π

R
(1− n)2 , n = 2, 3, . . . . (5.77)

6 Conclusions

In this paper we have investigated AdS3/CFT2 states whose energies are closest to the

BMN vacuum. On a decompactified world-sheet these correspond to the gapless (massless)

excitations that distinguish AdS3/CFT2 from higher-dimensional holographic duals. At

low energies, they behave as massless relativistic left- or right-movers on the world-sheet.

Remarkably, in this limit the exact worldsheet S matrix remains non-trivial. More precisely,

while massless left/right, massive and mixed-mass scattering does trivialise, the scatter-

ing of massless excitations of the same worldsheet chirality is described by a non-trivial

integrable relativistic S matrix.

This S matrix is essentially non-perturbative in its form: after all, relativistic excita-

tions moving at the speed of light in the same direction cannot scatter with one another!

Instead, as first proposed by Zamolodchikov [24], the S matrix should be thought of as an

auxiliary algebraic tool which can be used to determine the spectrum of the gapless exci-

tations using Bethe Ansatz methods. Since the S matrix for left/right massless scattering

is trivial in the low-energy limit, we further conclude, following Zamolodchikovs’ approach,

that the low-energy spectrum should be that of a two-dimensional conformal field theory,

which we have denoted as CFT
(0)
2 .
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In order to understand the CFT
(0)
2 further, we have analysed how finite-size, or wrap-

ping, corrections enter the spectral problem in the low-energy limit. Since the theory is

relativistic in this limit, we were able to construct the TBA and corresponding Y-system

both for the ground-state and for the excited states building on some of the original con-

structions in the integrable literature [71, 75]. We find that the central charge of CFT
(0)
2

is c = 6 from calculating the vacuum energy for antiperiodic fermions — with the vacuum

energy being zero for periodic fermions in agreement with a supersymmetric theory — and

that some excited states energies are given by integer multiples of 2π/R. These findings,

together with the target-space supersymmetry of the spectrum in the relativistic limit,

point towards CFT
(0)
2 being a free CFT2, perhaps just a space-time supersymmetric T 4

theory. We hope to return to a more detailed analysis of the exact identification of CFT
(0)
2

in the future.

An outstanding problem in integrable AdS3/CFT2 holography has been the challenge

of incorporating finite-size effects, with perturbative calculations proving difficult due to

the presence of gapless/massless excitations [78]. Our analysis shows that to overcome

these obstacles one needs to adopt an essentially non-perturbative approach. We were able

to do this at low energies and have shown that wrapping effects do not spoil integrability.

It would be very interesting to extend our findings beyond the relativistic limit, to a

complete TBA and QSC for the theory, as for the higher dimensional AdS/CFT spectral

problems [29–37].

Throughout this paper we have focussed on the AdS3 × S3 × T4 theory supported by

RR flux. It would be particularly interesting to generalise our analysis to backgrounds

supported by NSNS flux. In the presence of non-zero RR moduli, the exact worldsheet

S matrix of this theory is known [79]. In the low-energy limit the S matrix of massless

modes remains non-trivial and we are currently investigating the resulting CFT
(0)
2 [80].

This should also lead to a better understanding of the pure NSNS theory in the limit of

zero RR modulus. Here, the non-perturbative massless S matrices SLL and SRR remain

non-trivial and non-diagonal. A careful analysis of this limit should help to provide an

integrable description of the WZW theory, as well as determine the status of a recent

proposal based on an almost trivial S matrix [81]. Given the non-perturbative nature of

our findings, one may additionally hope to shed light on the k = 1 theory and its relation

to the symmetric orbifold CFT2, as recently investigated in [82, 83]. It would also be

interesting to identify the role these gapless excitations play in the Higgs branch spin-

chain [84]. Finally, generalising our construction to the AdS3 × S3 × S3 × S1 background

supported by RR flux should be straightforward and one may also consider extending the

analysis to mixed-flux backgrounds [13, 14, 85–87].
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A Relativistic dressing phase

In this appendix we collect the computational details used to determine the relativistic

limit of the HL dressing factor.

A.1 Relativistic limit of integral expression for HL phase

The integral representation of the HL phase (4.1) takes the form of a Riemann-Hilbert

integral, schematically given by

φ(w) =

∫
C

ϕ(ζ)

ζ − w
, (A.1)

with ϕ an analytic function. Crossing is closely related to the Sochocki-Plemelj theorem [59,

60] with the value of φ jumping as w goes from one side of the contour C to the other. It

is helpful to split the integration interval in equation (4.1) into two

z ∈ [−1, 1] =
[
−1, e−1

]
∪
[
e−1, 1

]
. (A.2)

In the relativistic limit the momenta p1 and p2 are small (compared to h) and so crossing

can only take place for z ∈ [e−1, 1] since we can always increase the value of h to ensure

this. The integrals over z ∈ [−1, e−1] then involve analytic functions only and can be

performed by expanding the integrands at large h. For z ∈ [−1, 0] integrals we find

0+iε∫
−1+iε

dz

4π
G−(z,y+)

(
g(z,x+)−g(z,x−)

)
−

0−iε∫
−1−iε

dz

4π
G+(z,y−)

(
g(z,x+)−g(z,x−)

)

=

0+iε∫
−1+iε

dz

4π

(
2ip1

h(z−1)2
+O

(
1

h3

))(
− ip2 (z+1)

2h(z−1)
+log(i(z−1))−log

(
i
(

1

z
−1
))

+O
(

1

h3

))

−
0−iε∫
−1−iε

dz

4π

(
− 2ip1
h(z−1)2

+O
(

1

h3

))(
− ip2(z+1)

2h(z−1)
+log(i(z−1))−log

(
i
(

1

z
−1
))

+O
(

1

h3

))
=−p1p2

2h2 −
p1p2

(
p22−p21

)
192h4 +. . . . (A.3)
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Similarly for z ∈
[
0, e−1

]
integrals we have

e−1+iε∫
0+iε

dz

4π
G−(z,y+)

(
g(z,x+)−g(z,x−)

)
−

e−1−iε∫
0−iε

dz

4π
G+(z,y−)

(
g(z,x+)−g(z,x−)

)

=

0+iε∫
−1+iε

dz

4π

(
2ip1

h(z−1)2
+O

(
1

h3

))(
− ip2(z+1)

2h(z−1)
+log(i(z−1))−log

(
i
(

1

z
−1
))

+O
(

1

h3

))

−
0−iε∫
−1−iε

dz

4π

(
− 2ip1

h(z−1)2
+O

(
1

h3

))(
− ip2 (z+1)

2h(z−1)
+log(i(z−1))−log

(
i
(

1

z
−1
))

+O
(

1

h3

))
=

4πp1
(e−1)h

− 2ep1p2

(e−1)2h2
− e(1+e)πp31

6(e−1)3h3
+
ep1p2

((
1+e+e2

)
p21+ep22

)
12(e−1)4h4

+. . . . (A.4)

Since the integrals over z ∈ [−1, e−1] are trivial under crossing in the large-h limit, they

give rise to a (sub-leading) CDD-factor,

θCDD(p1, p2) =
4πp1

(e− 1)h
− (1 + e)2p1p2

2(e− 1)2h2
+O

(
1

h3

)
. (A.5)

On the other hand, the integral over z ∈ [e−1, 1] does contribute to crossing in the

relativistic limit. We define a new integration variable

z = e
ir
2h . (A.6)

Further, for z ∈ [e−1, 1] we can take ε → 0 in the integrals, as this was introduced to

regularize the singularity at z = 0. Then expanding the integrand gives

1∫
e−1

dz

4π

(
G−(z, y+)−G+(z, y−)

) (
g(z, x+)− g(z, x−)

)

=

0∫
2ih

dr

π

2p1(log(p2 + r)− log(p2 − r))
p2

1 − r2

+
1

24h2

p1((p2
1 − r2)(log(p2 − r)− log(p2 + r))− 2p2r)

p2
1 − r2

+O
(

1

h4

)
.

(A.7)

The leading large-h term, when combined with the non-integral part of the HL phase to

ensure anti-symmetry, then gives equation (4.4).

A.2 The dilogarithm form of the HL phase

We can obtain another useful expression for the relativistic phase in terms of dilogarithms,

starting from the expression for the HL phase given in [88]

χ1(x,y)≡ 1

π

[
log

y−1

y+1
log

x− 1
y

x−y +Li2

√
y−
√

1
y

√
y−
√
x
−Li2

√
y+
√

1
y

√
y−
√
x

+Li2

√
y−
√

1
y

√
y+
√
x
−Li2

√
y+
√

1
y

√
y+
√
x

]
,
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valid for

|xy| > 1, Re(
√
x
√
y) > 1 . (A.8)

The dressing phase can be then expressed in terms of the function

χ(x, y) =
1

2

[
χ1(x, y)− χ1(y, x)

]
(A.9)

as

Φ = e2iχ. (A.10)

We set

x = ei
p1
2 , y = ei

p2
2 , (A.11)

and take the simultaneous relativistic limit

pi ∼ ε qi, h ∼ c

ε
. (A.12)

In doing this, however, we make a specific choice. By relying on the fact that the final

answer will have to display difference-form in the variable θ because of ordinary relativistic

invariance, we use the freedom of setting

qi = eθi , θ1 = log 2− iπ

2
+ i0, θ2 = − iπ

2
+ θ,

where we restrict to

Im(θ) ∈
(

0,
π

2

)
. (A.13)

This means that we are sending x to 1 from real values greater than 1, and y to 1 from

values of the real part greater than 1, which also means that both x and y are consistently

approaching the boundary of the region (A.8). As they do, the variable v1 ≡ u1 − 2

approaches the branch cut on the positive real axis from above. Specifically,

x ∼ 1 + ε+ i0, y ∼ 1 + κ ε, κ ≡ eθ

2
, (A.14)

with

Re(κ) > 0, Im(κ) > 0. (A.15)

Relativistic invariance will imply that the dependence we obtain in the sole variable θ will

account for the whole dependence on θ1 − θ2.

The leading order in the ε-expansion reads

χ(x,y)→ 1

2π

[
log

κε

2
log

1+κ

1−κ
+Li2

2κ

κ−1
−Li2

4

ε(κ−1)
+Li2

κε

2
+Li2

4

ε(1−κ)
−Li2

ε

2

−log
ε

2
log

κ+1

κ−1
−Li2

2

1−κ

]
. (A.16)

We now can use the fact the we are in the region Re(κ) > 0 ∪ Im(κ) > 0, and that

Li2(z) ∼ z, z → 0,

Li2(z) ∼ π2

6
+ (1− z) log(1− z), z → 1,

Li2(z) ∼ −π
2

6
− 1

2
log2(−z), |z| → ∞.

– 34 –



J
H
E
P
1
0
(
2
0
1
8
)
1
7
7

Moreover, we set the branch cut of the logarithm on the negative real axis, with argument

approaching +iπ from above and −iπ from below. Taking all of this into account, a careful

analysis allows to reduce the expression (A.16) to

χ0(κ) =
1

2π

[
log κ log

1 + κ

1− κ
+ Li2

2κ

κ− 1
+ iπ log

1

1− κ
+
π2

2
+ iπ log 2−Li2

2

1− κ

]
, (A.17)

which is manifestly a finite limit. Recalling that

κ =
eθ

2
, (A.18)

and by the arguments laid out earlier, formula (A.17) is the relativistic limit of the massless

phase as a function of θ = log 2− θ1 + θ2 = log 2− ϑ.

Let us investigate the discontinuities of χ0 and relate it to the relativistic crossing

equation. It is convenient to continue working with the variable κ, which we now con-

sider approaching the positive real axis from above, where it meets a branch cut of the

phase (A.17). The idea is that we can continue the expression for the phase and see what

values it approaches when we reach the branch cut from below. For this, we not only

need the branch cut discontinuity of the logarithm, but also that the function Li2(z) has a

branch cut along z ∈ (1,∞) with

Li2(z − i0)→ Li2(z), z > 1,

Li2(z + i0)→ Li2(z) + 2iπ log z, z > 1. (A.19)

When this information is all put together, there is still a difference in the contribution to

the jump-discontinuity of the phase, depending on whether Re(κ) ∈ (0, 1) or Re(κ) > 1 as

Im(κ) approaches 0. We shall focus for convenience on the region

Re(κ) ∈ (0, 1), Re(ϑ) > 0. (A.20)

In this region, the contributions to the discontinuity come only from the term − 1
2πLi2

2
1−κ ,

and the difference between the limit from above and the limit from below the cut is

χ0|θ+i0 − χ0|θ−i0 = −i log
2

1− κ
, θ < 0. (A.21)

Now, following the argument spelled out in [2], we continue the r.h.s. of (A.21) to the

crossed value of κ:

− i log
2

1− (−κ)
= i log

1 + κ

2
. (A.22)

Moreover, we get the following functional identity

χ0(κ) + χ0(−κ) =
i

2
log

1

1− κ
+
i

2
log

1

1 + κ
+
π

4
+ i log 2 , (A.23)

by applying repeatedly the dilogarithm-identity

Li2(z) + Li2

( z

z − 1

)
= − i

2
log2(1− z), z ∈ C \ (0,∞) . (A.24)
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Therefore, adding the r.h.s. of (A.22) and (A.23), we obtain

(A.22) + (A.23) =
i

2
log

1 + κ

1− κ
+
π

4
= − i

2
log tanh

ϑ

2
+
π

4
. (A.25)

On the other hand, from (A.14), (A.10) and (3.20) with Ψ(ϑ) = iΦ(ϑ), we obtain

χ(ϑ) + χ(ϑ+ iπ) = − i
2

log tanh
ϑ

2
+
π

4
, (A.26)

which is precisely what is given by (A.25), hence providing a solution to the crossing

equation.

B Algebraic Bethe Ansatz

In this appendix we summarise the Algebraic Bethe Ansatz procedure needed in section 5.1.

We shall follow [89, 90].

B.1 General formulation

To begin with, we define two functions

a(ϑ) = sech
ϑ

2
, b(ϑ) = tanh

ϑ

2
, (B.1)

such that the R matrix (2.14) can be written as

R(ϑ) = E11⊗E11−E22⊗E22−b(ϑ)
(
E11⊗E22−E22⊗E11

)
−a(ϑ)

(
E12⊗E21−E21⊗E12

)
.

(B.2)

The N -fold transfer matrix T (trace of the monodromy matrix M), is given by

T
(
θ0|~θ

)
= str0M

(
θ0|~θ

)
, M

(
θ0|~θ

)
=

N∏
i=1

R0i(θ0 − θi) (B.3)

and it is associated with the propagation of an auxiliary 0-th particle with rapidity θ0

through an array of i = 1, . . . , N particles with rapidities θi — collectively grouped into a

vector ~θ. The trace is taken in the auxiliary 0 space.

Notice that the transfer matrix we define in this appendix differs from formula (5.9)

in the main text by the ordering of the quantum spaces. Nevertheless, one can show that

the two definitions are related by a similarity transformation, followed by a permutation of

the rapidities θi associated to the quantum spaces. We will show in what follows that the

eigenvalues of T and the Bethe-equation constraints are all of product form, hence they

are invariant under permutations of the variables in the quantum spaces. This implies that

the set of eigenvalues, which is all that it is needed for the thermodynamic Bethe ansatz

(see section 5.1), will be the same for (5.9) as for the transfer matrix we will diagonalise

here below.24

24An alternative way of seeing this occurrence is as follows. Both definitions of the monodromy matrix

satisfy the fundamental RTT relations (B.8) with the same R matrix. Although their respective entries

are different, hence their eigenvectors will be different, nevertheless their eigenvalues and the corresponding

Bethe equations are going to be derived purely relying on the RTT relations, hence they will be the same

in both cases.
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One then chooses a pseudo-vacuum, namely a highest-weight eigenvector of the transfer

matrix which may serve as a starting point. A natural choice in this case is the simple

N -fold tensor-product state

|0〉 = |φ〉 ⊗ . . .⊗ |φ〉. (B.4)

It is not difficult to see that such a state is an eigenstate of the transfer matrix, with

eigenvalue

T
(
θ0|~θ

)
|0〉 = Λ

(
θ0|~θ

)
|0〉, Λ

(
θ0|~θ

)
= 1−

N∏
i=1

b(θ0 − θi). (B.5)

At this stage, one writes the monodromy matrix in the form

M
(
θ0|~θ

)
= E11 ⊗A

(
θ0|~θ

)
+ E12 ⊗B

(
θ0|~θ

)
+ E21 ⊗ C

(
θ0|~θ

)
+ E22 ⊗D

(
θ0|~θ

)
, (B.6)

where one has separated the 0-th space upfront, with A, B, C and D being now opera-

tors acting exclusively on the physical spaces 1, . . . , N . One postulates that the generic

eigenvector of the transfer matrix is given by the M -magnon state

|β1, . . . , βM 〉 =
M∏
n=1

B
(
βn|~θ

)
|0〉. (B.7)

One can show that this state is an eigenvector of the transfer matrix for arbitrary M , by

using the commutation relations of the operators A, B, C and D. These commutation

relations, in turn, follow from the fundamental relation

R00′(θ0 − θ′0)M
(
θ0|~θ

)
M
(
θ′0|~θ

)
=M

(
θ′0|~θ

)
M
(
θ0|~θ

)
R00′(θ0 − θ′0), (B.8)

written for two auxiliary spaces and N physical ones. In terms of (B.6), and using the

fact that

a(θ)2 + b(θ)2 = 1, (B.9)

(B.8) implies for instance

A
(
θ0|~θ

)
B
(
θ′0|~θ

)
=
a(θ0 − θ′0)

b(θ0 − θ′0)
B
(
θ0|~θ

)
A
(
θ′0|~θ

)
− 1

b(θ0 − θ′0)
B
(
θ′0|~θ

)
A
(
θ0|~θ

)
(B.10)

and the same with D replacing A. It is then possible to commute the transfer matrix

T = A−D (B.11)

through all the B’s in the M -magnon state, and accumulate an eigenvalue

T
(
θ0|~θ

)
|β1, . . . , βM 〉 = ΛM

(
θ0|~β |~θ

)
|β1, . . . , βM 〉+X,

Λ
(
θ0|~β |~θ

)
=

[
1−

N∏
i=1

b(θ0 − θi)

]
M∏
n=1

1

b(βn − θ0)
, (B.12)

where we have used elementary properties of the functions a(θ) and b(θ) to cancel terms

in the intermediate steps. Of course, only for X = 0 we can claim that |β1, . . . , βM 〉 is an
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eigenstate. Since X collects the contributions from the first term on the r.h.s. of (B.10),

one realises that it is possible to set X = 0 by requiring the level-1 Bethe equations

N∏
i=1

b(βm − θi) = 1, ∀ n = 1, . . . ,M. (B.13)

One finally needs to multiply the eigenvalues we have found here by the product over the

quantum spaces of the dressing factors, namely

N∏
i=1

Φ(θ0 − θi), (B.14)

reinstating the correct normalisation for the R matrix (B.2).

B.2 Lowest-level eigenstates

In this subsection, we show how the Algebraic Bethe Ansatz we have performed in the

previous subsection determines the transfer-matrix eigenstates in some specific example

with low values of N .

B.2.1 Two physical sites

Let us begin with N = 2. It is easy to directly diagonalise the transfer matrix

T = str0R01(θ0 − θ1)R02(θ − θ2). (B.15)

We find for the bosonic eigenstates

T |φ〉 ⊗ |φ〉 = (1− b01b02)|φ〉 ⊗ |φ〉, T |ψ〉 ⊗ |ψ〉 = (−1 + b01b02)|ψ〉 ⊗ |ψ〉, (B.16)

having defined

aij ≡ a(θi − θj), bij ≡ b(θi − θj). (B.17)

The (un-normalised) fermionic eigenstates are slightly more involved:

T
(
|φ〉⊗|ψ〉±e±

θ1−θ2
2 |ψ〉⊗|φ〉

)
=
[
±e±

θ1−θ2
2 a01a02+b01−b02

](
|φ〉⊗|ψ〉±e±

θ1−θ2
2 |ψ〉⊗|φ〉

)
.

(B.18)

The fact that the eigenstates do not depend on θ0 is a hallmark of integrability: the trans-

fer matrix commutes with itself at different values of the spectral parameter, generating

therefore all the charges in involution.

This is perfectly reproduced by the Algebraic Bethe ansatz. Clearly |φ〉⊗|φ〉 = |0〉 is the

pseudo-vacuum (lowest-weight vector), whose eigenvalue is reproduced by formula (B.12)

at M = 0. Subsequently, we should look at the solutions of the auxiliary Bethe equations

b(β − θ1)b(β − θ2) = 1, i.e. β = ±∞, (B.19)

and use such solutions to construct the 1-particle eigenstates as

B(β|θ1, θ2)|0〉. (B.20)
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Explicit evaluation of the B operator from the monodromy matrix gives

B(β|θ1, θ2)|0〉 = −a(β − θ2)
(
|φ〉 ⊗ |ψ〉+

a(β − θ1)b(β − θ2)

a(β − θ2)
|ψ〉 ⊗ |φ〉

)
. (B.21)

Plugging in β = ±∞ produces

B(±∞|θ1, θ2)|0〉 ∝
(
|φ〉 ⊗ |ψ〉 ± e±

θ1−θ2
2 |ψ〉 ⊗ |φ〉

)
. (B.22)

Finally, acting with B(∞|θ1, θ2)B(−∞|θ1, θ2) produces a state proportional to |ψ〉 ⊗ |ψ〉:
we have reached the highest-weight vector, and the spectrum is complete. Given that

b(±∞) = ±1, (B.23)

we also recover exactly all the eigenvalues from formula (B.12), as it can be verified by

explicit calculation using (B.18) and the hyperbolic-function identities.

B.2.2 Three physical sites

For N = 2 only solutions at infinity are found of the auxiliary Bethe equations, while for

N = 3 one finds that

b(β − θ1)b(β − θ2)b(β − θ3) = 1 (B.24)

is solved by

β =∞, e
β
2 = −e−i

π
2
±iπ

4

√
z1z2z3

|~z|
, (B.25)

where we have defined

~z = (z1, z2, z3), zi = e
θi
2 . (B.26)

Let us define as y the solution with the + sign in the second formula of (B.25): the solution

with the minus sign will therefore be equal to −iy. Correspondingly, the associated values

of β differ by iπ2 .

The eigenvalues (B.12) can be expressed, using the auxiliary Bethe equations which

appear in the formula as a multiplier, in terms of the location of their zeroes, which are

precisely the auxiliary roots. The remainder of the formula, bearing the M -dependence,

simply extracts one zero and adds another one at a different location. Let us show how it

works. One can verify that, if one defines

µ = e
θ0
2 , (B.27)

then

Λ(θ0|~θ) =
−2|~z|∑3

i=1(µ2 − z2
i )

(µ2 − y2)(µ2 + y2)

M∏
n=1

1

b(βn − θ0)

≡ ∆(µ)(µ2 − y2)(µ2 + y2)
M∏
n=1

1

b(βn − θ0)
.

(B.28)
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There are N zeroes (3 in this case) in the variable µ2, including the one at infinity. One

also has, correspondingly,

b(β − θ0) = 1, b(β − θ0) =
y2 − µ2

y2 + µ2
, b(β − θ0) =

y2 + µ2

y2 − µ2
(B.29)

respectively for the 3 solutions in (B.25). If we now list the eigenvalues associated to the

eigenstates built adding auxiliary roots we obtain the following:

M = 0 : aux. roots none eigenv. ∆(µ)(µ2 − y2)(µ2 + y2),

M = 1 : aux. roots ∞ eigenv. ∆(µ)(µ2 − y2)(µ2 + y2),

M = 1 : aux. roots y eigenv. ∆(µ)(µ2 + y2)2,

M = 1 : aux. roots − iy eigenv. ∆(µ)(µ2 − y2)2,

M = 2 : aux. roots (∞, y) eigenv. ∆(µ)(µ2 + y2)2,

M = 2 : aux. roots (∞,−iy) eigenv. ∆(µ)(µ2 − y2)2,

M = 2 : aux. roots (y,−iy) eigenv. ∆(µ)(µ2 − y2)(µ2 + y2),

M = 3 : aux. roots (∞, y,−iy) eigenv. ∆(µ)(µ2 − y2)(µ2 + y2), (B.30)

where for instance (y,−iy) means that y and −iy are both chosen. The explicit form of

the eigenstates is quite complicated, and we shall not report it here. However it is easy to

see that the Algebraic Bethe Ansatz reproduces the complete spectrum of 8 states.

B.2.3 Higher values of N

It becomes very rapidly quite cumbersome to present the spectrum of the transfer matrix

for higher values of N . Let us simply point out that N = 4 is still characterised by

auxiliary Bethe equations having solutions where only one pair of roots of the type (y,−iy)

is present (besides the roots at infinity). When one reaches N = 5, two distinct pairs of

solution appear, namely (y1,−iy1) and (y2,−iy2), characterised by two distinct centres.

One also has a single root at +∞, making a total of 5 possibilities to choose from for the

auxiliary roots.

The spectrum is then built accordingly, taking all possible combinations of M out of

these 5 roots, with M = 0, . . . , 5. The total number of states is therefore
∑5

M=0

(
5
M

)
=

32 = 25.

The eigenvalue can be written as

Λ(θ0|~θ) =
−2|~z|∑5

i=1(µ2 + z2
i )

(µ2 − y2
1)(µ2 + y2

1)(µ2 − y2
2)(µ2 + y2

2)
M∏
n=1

1

b(βn − θ0)

≡ ∆′(µ)(µ2 − y2
1)(µ2 + y2

1)(µ2 − y2
2)(µ2 + y2

2)
M∏
n=1

1

b(βn − θ0)
, (B.31)

and the same mechanism as in the N = 3 case ensures that it is always a polynomial

with 5 zeroes in the variable µ2 (including the zero at infinity), and the various choice

– 40 –



J
H
E
P
1
0
(
2
0
1
8
)
1
7
7

of M auxiliary roots extract zeroes and add other zeroes. Let us list for example a few

significant cases:

M = 0 : aux. roots none eigenv. ∆′(µ)(µ2−y2
1)(µ2+y2

1)(µ2−y2
2)(µ2+y2

2),

M = 1 : aux. roots∞ eigenv. ∆′(µ)(µ2−y2
1)(µ2+y2

1)(µ2−y2
2)(µ2+y2

2),

M = 1 : aux. roots y1 eigenv. ∆′(µ)(µ2+y2
1)2(µ2−y2

2)(µ2+y2
2),

M = 1 : aux. roots −iy1 eigenv. ∆′(µ)(µ2−y2
1)2(µ2−y2

2)(µ2+y2
2),

etcetera

M = 3 : aux. roots (y1,−iy1,y2) eigenv. ∆′(µ)(µ2−y2
1)(µ2+y2

1)(µ2+y2
2)2,

M = 3 : aux. roots (y1,−iy1,−iy2) eigenv. ∆′(µ)(µ2−y2
1)(µ2+y2

1)(µ2−y2
2)2,

etcetera. (B.32)

C Derivation of the TBA equations

First, let us take the logarithm of equations (5.19)–(5.21), divide them by i and define the

counting functions so that they give integer multiples of 2π/L when evaluated at the Bethe

roots or holes:

Z(θk) =
2πnk
L

, Z±1(β±1,k) =
2πm±1,k

L
, Z±3(β±3,k) =

2πm±3,k

L
. (C.1)

Moreover, the counting functions should be conventionally defined in a way to be mono-

tonically increasing functions; then we try to define them as follows

Z(θ) ≡ eθ +
2

iL

N∑
i=1

logS(θ − θi) +
1

iL

M+
1∑

i=1

log coth
z1,i + iπ/2− θ

2

+
1

iL

M−1∑
i=1

log coth
z1,i − iπ/2− θ

2
+

1

iL

M+
3∑

i=1

log coth
z3,i + iπ/2− θ

2

+
1

iL

M−3∑
i=1

log coth
z3,i − iπ/2− θ

2
(C.2)

Z±n(β) ≡ ∓ 1

iL

N∑
i=1

log tanh
zn,i ± iπ/2− θ

2
; n = 1, 3 . (C.3)

Therefore

L(Z(θk)− Z(θj)) = 2π(nk − nj) , (C.4)

L(Z±1(β±1,k)− Z±1(β±1,j)) = 2π(m±1,k −m±1,j) , (C.5)

L(Z±3(β±3,k)− Z±3(β±3,j)) = 2π(m±3,k −m±3,j) , (C.6)

and the numbers of roots (holes) contained in the infinitesimal intervals dθ, dβ±1, dβ±3

are given by Lρr0(θ)dθ (Lρh0(θ)dθ) and Lρr±1(β)dβ (Lρh±1(β)dβ), Lρr±3(β)dβ (Lρh±3(β)dβ)
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respectively, where the densities are defined as

ρ0(θ) = (ρr0(θ) + ρh0(θ)) ≡ 1

2π

dZ(θ)

dθ
, (C.7)

ρ±1(β) = (ρr±1(β) + ρh±1(β)) ≡ 1

2π

dZ±1(β)

dβ
, (C.8)

ρ±3(β) = (ρr±3(β) + ρh±3(β)) ≡ 1

2π

dZ±3(β)

dβ
. (C.9)

In the thermodynamic limit the sums become integrals as 1
L

∑
i →

∫
dθρr(θ), then defini-

tions (C.2)–(C.3) become

Z(θ) = eθ +
2

i

∫
dθ′ logS(θ − θ′)ρr0(θ′)

+
1

i

∑
±,n=1,3

∫
dβ log coth

β − θ ± iπ/2
2

ρr±n(β) , (C.10)

Z±n(β) = ∓1

i

∫
dθ log tanh

β − θ ± iπ/2
2

ρr0(θ) ; n = 1, 3 . (C.11)

Let us then take the derivatives of the counting functions in their respective arguments:

because of (C.7)–(C.9), we get the nonlinear integral equations (5.34)–(5.35) for the den-

sities.

In order to derive the TBA equations, we start writing a generic expression of the free

energy F

F (T ) = Ẽ − TS ; Ẽ =

∫
dθ ε(θ) ρr0(θ) = M

∫
dθ eθρr0(θ) , (C.12)

where ε(θ) is the energy density and S is the entropy, defined as

S =
∑
A

∫
dθρA(θ) log ρA(θ)− ρrA(θ) log ρrA(θ)− ρhA(θ) log ρhA(θ) . (C.13)

Now, taking the variation of F with respect to the densities and using the following varia-

tions of the densities equations (5.37)–(5.39)

δρh0(θ) = −δρr0(θ) +
∑
n=1,3

φ ∗ (δρr−n + δρh+n) , (C.14)

δρh−n(β) = −δρr−n(β) + φ ∗ δρr0 ; n = 1, 3 , (C.15)

δρr+n(β) = −δρh+n(β) + φ ∗ δρr0 ; n = 1, 3 , (C.16)

we get

δF =

∫
dθ

Ẽ(θ)δρr0(θ)−T

log
ρ0(θ)

ρh0(θ)

∑
n=1,3

φ∗(δρr−n+δρh+n)

(θ)+log
ρh0(θ)

ρr0(θ)
δρr0(θ)

+
∑
n=1,3

log
ρ−n(θ)

ρh−n(θ)
(φ∗δρr0)(θ)+log

ρh−n(θ)

ρr−n(θ)
δρr−n(θ)

+
∑
n=1,3

log
ρ+n(θ)

ρr+n(θ)
(φ∗δρr0)(θ)+log

ρr+n(θ)

ρh+n(θ)
δρh+n(θ)

 .

(C.17)
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Exchanging θ and θ′ in the terms involving the convolution φ∗δρr0 =
∫
φ(θ−θ′)δρ0(θ′) and

setting to zero the part of δF proportional to δρr0, we get the TBA equation for ε0 ≡ log
ρh0
ρr0

:

ε0(θ) = Reθ −
∑
n=1,3

φ ∗
[
log(1 + e−ε−n) + log(1 + eε+n)

]
, (C.18)

where we introduced also the pseudo-energies ε±n ≡ log
ρh±n
ρr±n

. Analogously, exchanging θ

with θ′ also in the convolutions φ ∗ (δρr−n + δρh+n) =
∫
φ(θ − θ′)(δρr−n + δρh+n)(θ′) and

imposing that the terms of (C.17) proportional to δρr−n and δρh+n vanish, implies

ε+n(β) = φ ∗ log(1 + e−ε0) ; n = 1, 3 , (C.19)

ε−n(β) = −φ ∗ log(1 + e−ε0) ; n = 1, 3 . (C.20)

Changing sign to ε+n → −ε+n and defining LA ≡ log(1+e−εA), the TBA equations (C.18)–

(C.20) can be compactly rewritten as equations (5.45).

D Derivation of the excited states’ energy formula

Basically, in order to derive a closed formula for the energies of the excited states, we have

to solve the system of equations given by (5.58), (5.59), (5.61) and (5.62), and plug the

solutions for ε0 and yk into the excited states’ energy formula

REright(R, γ) =
K∑
k=1

eyk − 1

2π

∫
dθ eθ log(1 + e−ε0(θ)) . (D.1)

As done in section 5.3 for the ground state, the starting trick consists in taking the first

derivative of (5.58) and solving it for eθ, so that we can plug

eθ = ε′0(θ)− 4iπ
J∑

j=J∞+1

φ

(
xj − θ +

iπ

2

)
+ 2

[
φ ∗ (Lγ1)′

]
(θ) (D.2)

into (D.1), where we defined Lγ1(θ) ≡ log[1 + eiγY1(θ)][1 + e−iγY1(θ)] and took into account

that the xj ’s at ∞ do not contribute. Next, we can replace φ ∗ L0 by using (5.59), so that

the second term of (D.1) becomes

− 1

2π

∫
dθeθ log(1+e−ε0(θ)) =− 1

2π

∫ ∞
ε0,min

dε0L0−
1

π

∫ 0

ε1,min

dε1

(
eiγ−ε1

1+eiγ−ε1
+

e−iγ−ε1

1+e−iγ−ε1

)

+2i

J∑
j=J∞+1

(φ∗L0)

(
xj+

iπ

2

)

+
1

π

K∑
k=1

∫
dθ

[
log tanh

(
θ−yk

2

)
(Lγ1)′(θ)

]
. (D.3)
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Integrating by parts the last term, we get

1

π

K∑
k=1

∫
dθ

[
log tanh

(
θ − yk

2

)
(Lγ1)′(θ)

]
= i

K∑
k=1

[φ ∗ (Lγ1)]

(
yk +

iπ

2

)
− 1

2π
log[(−1)K ] log[Y 2

0 (−∞)] . (D.4)

Now, using (5.62) and knowing that the second term in its r.h.s. can be written as i(φ ∗
L0)(xj + iπ/2), we can replace the third term in (D.3) by

2i
J∑

j=J∞+1

(φ ∗ L0)

(
xj +

iπ

2

)
= 2

J∑
j=J∞+1

(γ − (2Mj + 1)π)

− 2i

J∑
j=J∞+1

K∑
k=1

log tanh

(
xj − yk + iπ

2

2

)
. (D.5)

Similarly, we use (5.61) to write the first term in the r.h.s. of (D.4) as

i

K∑
k=1

(φ∗Lγ1)

(
xk+

iπ

2

)
=−

K∑
k=1

(2Nk+1)π−2i

K∑
k=1

J∑
j=1

log tanh

(
yk−xj+ iπ

2

2

)
−

K∑
k=1

eyk .

(D.6)

Now, taking into account that

− 2i

J∑
j=J∞+1

K∑
k=1

log tanh

(
xj − yk + iπ

2

2

)
− 2i

K∑
k=1

J∑
j=1

log tanh

(
yk − xj + iπ

2

2

)
= 2JKπ

(D.7)

and that for γ > π the addition of −iπ to the r.h.s. of (5.58) implies the replacements

2Nk + 1→ 2Nk and J → J − 1 in (D.6), the expression (D.3) simplifies to (5.74).

Formula (5.74) can be then rewritten in a form more similar to equation (43) of [75],

by changing the integration variables as e−ε0 → u, e−ε1 → v and integrating by parts the

second integral in the r.h.s. of (5.74):

REright(R, γ) =
1

2π

∫ ∞
Y0(−∞)

du
log(1 + u)

u
+

1

2π

∑
a

∫ 0

Y1(−∞)
dv

log(1 + λav)

v
(D.8)

+
1

2π
log[Y 2

0 (−∞)] log[(−1)KY1(−∞)] + 2(J − 1)Kπ

+ 2
J∑

j=J∞+1

(γ − (2Mj + 1)π)−
K∑
k=1

2Nkπ .

As we saw in section 5.4, it is possible to evaluate the first two integrals in terms of

dilogarithms as in (5.75), while it is common in the TBA literature to write the energy in

terms of Rogers dilogarithms, defined as

L(x) ≡ −1

2

∫ x

0
dt

[
log(1− t)

t
+

log(t)

1− t

]
. (D.9)
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Formula (D.8) assumes then the form

REright(R,γ) =
1

2π

{
L[−Y0(−∞)]+2L[−eiγY1(−∞)]+2L[−e−iγY1(−∞)]+

5π2

24
+log2(eiγ)

}
− log2(−e4iγ)

16π
+2(J−1)Kπ+2

J∑
j=J∞+1

(γ−(2Mj+1)π)−
K∑
k=1

2Nkπ , (D.10)

that can be also compactly rewritten as

REright(R, γ) =
1

2π

{
L[−Y0(−∞)] + 2L[−eiγY1(−∞)] + 2L[−e−iγY1(−∞)]

}
+
γ2

2π
+ (2J − 2K − 1)

γ

2
+ (6K − 6J + 1)

π

6
. (D.11)

Analogously, for γ ∈ (π/2, π) we get

REright(R,γ) =
1

2π

{
L[−Y0(−∞)]+2L[−eiγY1(−∞)]+2L[−e−iγY1(−∞)]+

π2

3
+log2(eiγ)

}
+
γ−π

2
− i

4
log(Y1(−∞)2) , (D.12)

where we recall that Y0(−∞) = tan(γ)2 and Y1(−∞) = −1/ cos(γ), while for γ ∈ (0, π/2)

REright(R,γ) =
1

2π

{
L[−Y0(−∞)]+2L[−eiγY1(−∞)]+2L[−e−iγY1(−∞)]+

π2

3
−log2(e−iγ)

}
−γ− i

4
log(Y1(−∞)2) , (D.13)

where Y0(−∞) = Y1(−∞)2 =∞.

D.1 Numerics

Numerically, we started by solving the ground state TBA (5.55) for γ ∈ (0, π) and R = 1:

the result confirms nicely the analytic results (5.66) and (5.69), as one can see in figure 5.25

• For γ ∈ (π, 3π/2), we adopted the prescription discussed in section 5.4 (the additional

−iπ in the equation for ε0 (5.70)) and got perfect matching with the analytic predic-

tion (5.71), except for γ close to 3π/2, where the numerical algorithm becomes sensitive to

the approaching of a new zero.

• For γ ∈ (3π/2, 2π), we took then into account the first zero y1 of Y1 and solved iteratively

the following equation for y1:26

y
(n)
1 = log

−
∫
dθ

π

ln
[
(1 + eiγY1(θ))(1 + e−iγY1(θ))

]
sinh

(
y

(n−1)
1 − θ

)
 , (D.14)

together with the TBA equations (5.70) and (5.59) for K = 1. In this way we got Eright(R =

1, γ = 2π) = π/2, for example, then a total energy E(R = 1, γ = 2π) = 2π.

25Our numerical results turned out to be in agreement with the expected values of E(R = 1, γ), calculated

by (5.66), (5.69) and (5.76), at least up to the second decimal digit.
26We were always considering large negative real values for the initial conditions y

(0)
k and x

(0)
j , even

though we verified that the numerical algorithm remained stable by using other choices.
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• In order to push the numerics beyond γ = 2π, we had to consider a second zero x2 of

Y0(θ), with M2 = 1, entering from θ = −∞ at γ = 2π. Then we needed to add an equation

for x2, solving iteratively

i log tanh

(
x

(n)
2 − y1

2
+
iπ

4

)
= γ − 3π −

∫
dθ

2π

ln (1 + Y0(θ))

sinh
(
x

(n−1)
2 − θ

) , (D.15)

together with (5.59) for K = 1, (5.70) with the additional term −2 log tanh [(θ − x2)/2] in

the r.h.s., and modifying (D.14) as follows:

y
(n)
1 = log

−2i log tanh

(
y

(n)
1 − x2

2
+
iπ

4

)
−
∫
dθ

π

ln
[
(1 + eiγY1(θ))(1 + e−iγY1(θ))

]
sinh

(
y

(n−1)
1 − θ

)
 .

(D.16)

• A second zero y2 of Y1(θ), with N2 = 1, enters at γ = 5π/2, then we need to add the

following equation for y2

y
(n)
2 = log

−2π−2i log tanh

(
y

(n−1)
2 −x2

2
+
iπ

4

)
−
∫
dθ

π

ln
[
(1+eiγY1(θ))(1+e−iγY1(θ))

]
sinh

(
y

(n−1)
2 −θ

)


(D.17)

to the iterative algorithm, to modify equation (D.15) by inverting

i

2∑
k=1

log tanh

(
x

(n)
2 − yk

2
+
iπ

4

)
= γ − 3π −

∫
dθ

2π

ln (1 + Y0(θ))

sinh
(
x

(n−1)
2 − θ

) , (D.18)

and (5.59) by considering K = 2.

We recall that the structure of the zeros are suggested by the behaviour of the zeros of

Y0(±∞) and Y1(±∞) deduced by equations (5.63) and (5.64), as discussed in section 5.4,

see figure 4.

• In particular, the zero of Y0(+∞) at γ = 3π suggests us that x2 goes to +∞, but a zero

of Y0(−∞) for the same value of γ implies that a new zero, x3, enters from θ = −∞ with

M3 = 2. Then we have to solve the following equation for x3

i

2∑
k=1

log tanh

(
x

(n)
3 − yk

2
+
iπ

4

)
= γ − 5π −

∫
dθ

2π

ln (1 + Y0(θ))

sinh
(
x

(n−1)
3 − θ

) , (D.19)

to add the term27 −2iπ − 2 log tanh [(θ − x3)/2] to the r.h.s. of (5.70) and to modify ac-

cordingly equations (D.16) and (D.17):

y
(n)
1 = log

2π−2i log tanh

(
y

(n−1)
1 −x3

2
+
iπ

4

)
−
∫
dθ

π

ln
[
(1+eiγY1(θ))(1+e−iγY1(θ))

]
sinh

(
y

(n−1)
1 −θ

)
 ,

y
(n)
2 = log

−2i log tanh

(
y

(n−1)
2 −x3

2
+
iπ

4

)
−
∫
dθ

π

ln
[
(1+eiγY1(θ))(1+e−iγY1(θ))

]
sinh

(
y

(n−1)
2 −θ

)
 ,

where x2 at ∞ contributes with a +2π w.r.t. (D.16) and (D.17).

27The −2iπ is due to x2 gone to ∞.

– 46 –



J
H
E
P
1
0
(
2
0
1
8
)
1
7
7

• Finally, the zero y3 enters at γ = 7π/2: then we have to use (5.59) with K = 3, add the

term i log tanh[(x3 − y3)/2] to the l.h.s. of the equation for x3 (D.19), and solve iteratively

also

y
(n)
3 = log

−2π−2i log tanh

(
y

(n−1)
3 −x3

2
+
iπ

4

)
−
∫
dθ

π

ln
[
(1+eiγY1(θ))(1+e−iγY1(θ))

]
sinh

(
y

(n−1)
3 −θ

)
 .

In summary, we solved numerically the system of equations (5.58), (5.59), (5.61) and (5.62)

for R = 1 and up to γ = 4π, taking into account the structure of zero discussed here and

in section 5.4. The corresponding results are plotted in figure 5.
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of AdS3/CFT2, Phys. Rev. D 88 (2013) 066004 [arXiv:1306.2512] [INSPIRE].

[11] R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefański Jr., Towards the All-Loop
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[84] O. Ohlsson Sax, A. Sfondrini and B. Stefański Jr., Integrability and the Conformal Field

Theory of the Higgs branch, JHEP 06 (2015) 103 [arXiv:1411.3676] [INSPIRE].

[85] B. Hoare and A.A. Tseytlin, On string theory on AdS3 × S3 × T 4 with mixed 3-form flux:

tree-level S-matrix, Nucl. Phys. B 873 (2013) 682 [arXiv:1303.1037] [INSPIRE].

[86] B. Hoare and A.A. Tseytlin, Massive S-matrix of AdS3 × S3 × T 4 superstring theory with

mixed 3-form flux, Nucl. Phys. B 873 (2013) 395 [arXiv:1304.4099] [INSPIRE].

[87] B. Hoare, A. Stepanchuk and A.A. Tseytlin, Giant magnon solution and dispersion relation

in string theory in AdS3 × S3 × T 4 with mixed flux, Nucl. Phys. B 879 (2014) 318

[arXiv:1311.1794] [INSPIRE].

– 51 –

https://doi.org/10.1016/0550-3213(90)90674-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B344,665%22
https://doi.org/10.1016/0550-3213(91)90175-W
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B354,57%22
https://doi.org/10.1016/0550-3213(90)90287-N
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B346,409%22
http://etheses.dur.ac.uk/4329/
https://doi.org/10.1088/1751-8113/49/32/323005
https://doi.org/10.1088/1751-8113/49/32/323005
https://arxiv.org/abs/1606.02951
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.02951
https://doi.org/10.1007/s11005-011-0512-y
https://arxiv.org/abs/1012.3995
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3995
https://doi.org/10.1016/0550-3213(91)90422-T
https://doi.org/10.1016/0550-3213(91)90422-T
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B358,497%22
https://doi.org/10.4310/ATMP.1997.v1.n2.a2
https://doi.org/10.4310/ATMP.1997.v1.n2.a2
https://arxiv.org/abs/hep-th/9706161
https://inspirehep.net/search?p=find+EPRINT+hep-th/9706161
https://doi.org/10.1016/j.physletb.2009.06.069
https://doi.org/10.1016/j.physletb.2009.06.069
https://arxiv.org/abs/0906.0499
https://inspirehep.net/search?p=find+EPRINT+arXiv:0906.0499
https://doi.org/10.1016/0550-3213(82)90071-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B202,253%22
https://doi.org/10.1016/j.nuclphysb.2015.02.022
https://doi.org/10.1016/j.nuclphysb.2015.02.022
https://arxiv.org/abs/1412.6380
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6380
https://doi.org/10.1007/JHEP05(2018)101
https://doi.org/10.1007/JHEP05(2018)101
https://arxiv.org/abs/1804.02023
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.02023
https://doi.org/10.1103/PhysRevD.98.021902
https://arxiv.org/abs/1804.01998
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.01998
https://doi.org/10.1007/JHEP08(2018)204
https://arxiv.org/abs/1803.04420
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.04420
https://doi.org/10.1007/JHEP05(2018)085
https://doi.org/10.1007/JHEP05(2018)085
https://arxiv.org/abs/1803.04423
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.04423
https://doi.org/10.1007/JHEP06(2015)103
https://arxiv.org/abs/1411.3676
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.3676
https://doi.org/10.1016/j.nuclphysb.2013.05.005
https://arxiv.org/abs/1303.1037
https://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1037
https://doi.org/10.1016/j.nuclphysb.2013.04.024
https://arxiv.org/abs/1304.4099
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4099
https://doi.org/10.1016/j.nuclphysb.2013.12.011
https://arxiv.org/abs/1311.1794
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1794


J
H
E
P
1
0
(
2
0
1
8
)
1
7
7

[88] G. Arutyunov and S. Frolov, On AdS5 × S5 String S-matrix, Phys. Lett. B 639 (2006) 378

[hep-th/0604043] [INSPIRE].

[89] L.D. Faddeev, How algebraic Bethe ansatz works for integrable model, hep-th/9605187

[INSPIRE].

[90] F. Levkovich-Maslyuk, The Bethe ansatz, J. Phys. A 49 (2016) 323004 [arXiv:1606.02950]

[INSPIRE].

– 52 –

https://doi.org/10.1016/j.physletb.2006.06.064
https://arxiv.org/abs/hep-th/0604043
https://inspirehep.net/search?p=find+EPRINT+hep-th/0604043
https://arxiv.org/abs/hep-th/9605187
https://inspirehep.net/search?p=find+EPRINT+hep-th/9605187
https://doi.org/10.1088/1751-8113/49/32/323004
https://arxiv.org/abs/1606.02950
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.02950

	Introduction
	Massless R matrix
	The exact massless R matrix
	The relativistic limit of the massless R matrix
	The q-super-Poincaré algebra and boosts
	Relativistic limit of the q-super-Poincaré algebra

	Dressing factor and crossing
	Crossing and the q-super-Poincaré algebra
	Relativistic limit and crossing

	Relativistic limit of the massless dressing phase
	Integral representation
	Comparison with Zamolodchikov's phase factor
	Comparison with the literature on 2D N = 2 theories

	Thermodynamic Bethe ansatz
	Relativistic Bethe equations 
	Thermodynamics 
	Central charge from the TBA
	Twisted theory and excited states

	Conclusions
	Relativistic dressing phase
	Relativistic limit of integral expression for HL phase
	The dilogarithm form of the HL phase

	Algebraic Bethe Ansatz
	General formulation
	Lowest-level eigenstates
	Two physical sites
	Three physical sites
	Higher values of N


	Derivation of the TBA equations
	Derivation of the excited states' energy formula
	Numerics


