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Abstract

Empirical evidence suggests the incentive value of an option is affected by other options

available during choice and by options presented in the past. These contextual effects are

hard to reconcile with classical theories and have inspired accounts where contextual influ-

ences play a crucial role. However, each account only addresses one or the other of the

empirical findings and a unifying perspective has been elusive. Here, we offer a unifying

theory of context effects on incentive value attribution and choice based on normative

Bayesian principles. This formulation assumes that incentive value corresponds to a preci-

sion-weighted prediction error, where predictions are based upon expectations about

reward. We show that this scheme explains a wide range of contextual effects, such as

those elicited by other options available during choice (or within-choice context effects).

These include both conditions in which choice requires an integration of multiple attributes

and conditions where a multi-attribute integration is not necessary. Moreover, the same

scheme explains context effects elicited by options presented in the past or between-choice

context effects. Our formulation encompasses a wide range of contextual influences (com-

prising both within- and between-choice effects) by calling on Bayesian principles, without

invoking ad-hoc assumptions. This helps clarify the contextual nature of incentive value and

choice behaviour and may offer insights into psychopathologies characterized by dysfunc-

tional decision-making, such as addiction and pathological gambling.

Author summary

Research has shown that decision-making is dramatically influenced by context. Two

types of influence have been identified, one dependent on options presented in the past

(between-choice effects) and the other dependent on options currently available (within-

choice effects). Whether these two types of effects arise from similar mechanisms remain

unclear. Here we offer a theory based on Bayesian inference which provides a unifying

explanation of both between and within-choice context effect. The core idea of the theory

is that the value of an option corresponds to a precision-weighted prediction error, where
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predictions are based upon expectations about reward. An important feature of the theory

is that it is based on minimal assumptions derived from Bayesian principles. This helps

clarify the contextual nature of incentive value and choice behaviour and may offer

insights into psychopathologies characterized by dysfunctional decision-making, such as

addiction and pathological gambling.

Introduction

Standard theories of decision-making assume that the incentive value of an option should be

independent of options presented in the past and options available during choice [1–4]. These

theories are fundamentally challenged by empirical evidence showing that expectations

(derived from past experience) about upcoming options change value attribution and choice

behaviour [5–14]. For example, in a series of recent experiments from our lab [8–10], partici-

pants made choices in blocks (i.e. contexts) associated with one of two distinct, but partially

overlapping, reward distributions. Participants’ choices were consistent with attributing a

larger incentive value to rewards (common to both contexts) in blocks associated with low

compared to high average reward. In other words, the incentive value of a reward increased

when the average was lower. In addition to the average reward of a context, evidence from a

similar task indicated that reward variance within a given context also exerts an influence

on incentive value [11]. These findings highlight contextual effects exerted by expectations

about options (induced, for example, by options available during previous choices); namely,

between-choice contextual effects.

In addition, the empirical literature has highlighted contextual influences elicited by

options available during choice; namely, within-choice context effects [6, 15–20]. Standard the-

ories of decision-making assume that the incentive value of an option should be independent

of other options available during choice [1–4]. This implies that the choice proportion between

two options, comprising a more valuable and a less valuable option, should be unaffected by

the introduction of a third [2]. However, a recent study [6] has shown that this choice propor-

tion follows a U-shape function, which diminishes as the value of a third option approaches

the value of the target options–and starts increasing thereafter (Fig 1A). This is hard to recon-

cile with standard theories and represents a form of within-choice context effect, whereby the

value of an option is affected by other options available during choice.

In this task, it is unnecessary to compare options across different attributes (single-attribute

decisions; [6]). However, other forms of within-choice context effect have been observed when

options are defined by the same set of attributes that have to be traded of against each other

(multiattribute decisions; [15–20]. For example, consider a binary choice between a high-qual-

ity and expensive car A versus a low-quality and cheap car B (Fig 1B). Imagine the values of

the attributes are such that an agent is indifferent about the two options (i.e., the higher price

of car A is exactly compensated by its quality), resulting in the same probability of choosing

options A and B. What happens if a third option is also available? Standard models (based on

the assumption that values are independent of other options) predict that the choice probabil-

ity difference will remain zero, independent of a third option. However, empirical data high-

light a so-called similarity effect [20–23], whereby preference for an option over a second

option–which is equally preferable during binary decisions–increases if a third option is avail-

able that is similar to the second option (Fig 1B). In our example, the choice probability differ-

ence between car A and car B will be positive when a third low-quality and cheap (similar to

car B) car C is also available. A form of influence called the attraction effect [15, 24–26] has also

Bayesian account of contextual effects
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been found with the availability of a third option that is characterized by a low score for one

attribute and an intermediate score for the other (Fig 1B). The presence of such a third option

favours the option with a high score for the attribute for which the third option has an inter-

mediate score. In our example, the choice probability difference between car A and car B will

be positive when a third medium-quality and expensive car D is also available. Finally, empiri-

cal data are consistent with a so-called compromise effect [17, 25, 27]. This applies when the

choice set includes two options scoring high in one attribute and low in another plus a third

option characterized by intermediate scores for both attributes. While the three options are

equally preferred (i.e., are chosen an equal amount of times) if presented in pairs during binary

choices, when they are all available, a preference for the option characterized by intermediate

scores is observed (Fig 1B). For instance, although during binary choices an average-price and

average-quality car E is not preferred over car A or over car B, car E will be favoured when pre-

sented together with both car A and car B.

Several explanations have been proposed to account for contextual effects on incentive value

and choice, with most models focusing on within-choice context effects during multiattribute

decisions [16–20, 27, 28]. Other theories have been proposed to explain between-choice context

effects [29–31], and disregard within-choice effects. We are aware of a single attempt to encom-

pass both between-choice and within-choice effects, though restricted to non-multiattribute

Fig 1. A: Empirical evidence concerning contextual effects elicited by multiple options available during choice (within-choice context effects). A: Single-

attribute choice, where there is no need to integrate multiple attributes to make a decision. Here a better target option associated with reward RH and a worse

target option associated with reward RL are available together with a third option associated with reward R3. The graph plots empirical findings [6] in terms of

the ratio between the probability of choosing the better target option (P[RH|RH,RL,R3]) and the probability of choosing the worse target option (P[RL|RH,RL,

R3]) as a function of the (normalized) reward of a third options R3 (see Fig 5C in [6]). B: Multiattribute choice, where multiple attributes need to be integrated

to make a decision. Here, we consider the difference in choice probability between a high-quality and high-price car A and a low-quality and low-price car B.

Although during binary choice this difference is zero, empirical evidence has shown this difference can be non-zero when a third option is also available. A

similarity effect favours car A over car B when a low-quality and low-price car C (similar to car B) is available. An attraction effect favours car A over car B

when a medium-quality and high-price car D is available. A compromise effect consists in favouring a medium-quality and medium-price car E over both car

A and car B during choices in which all three cars are available, despite the fact these cars are equally chosen when they are available in pairs during binary

choices.

https://doi.org/10.1371/journal.pcbi.1005769.g001
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decisions for the latter type of effects [6]. Whether models developed to explain a certain class of

context effects generalise to other effects remains unclear–and a unifying account encompassing

all known context effects is lacking. Developing a parsimonious account would represent an

important theoretical advance, as it would explain diverse empirical phenomena with the same

underlying principles.

The goal of the present paper is to describe a unifying theory, referred to as Bayesian model

of context sensitive value (BCV) that explains between-context and within-context effects, in

single and multiattribute decisions. This theory represents a generalization of a recent model

developed to explain between-choice contextual effects [11]. The key idea is that agents build a

generative model of reward within a context and, every time a new reward or option is pre-

sented, use Bayesian inference to invert this model to form a posterior belief about the underly-

ing reward distribution. Incentive value is computed during this belief update and corresponds

to a precision-weighted reward prediction error. The advantage of this theory relies on its

grounding upon simple normative principles of Bayesian statistics. In addition, the model can

explain between-choice context effects [8–11] and makes specific predictions that have been

confirmed empirically.

In brief, BCV proposes that the incentive value of a stimulus (or option) corresponds to the

change in reward expected (in any given context) when the stimulus is presented. This makes

precise predictions about choice under ideal (Bayesian) observer assumptions (with a minimal

number of free parameters). Crucially, predictions include specific forms of context effects,

and raise a question of whether these predicted effects are consistent with empirical findings.

In this paper, we applied BCV to multi-alternative choice (considering both single and multi-

attribute decisions) and ask whether the model predicts the context-effects found empirically.

We first present a theoretical extension of BCV applicable to decisions in which multiple options

are available and can be characterized by multiple attributes. We show that predictions derived

from the model are remarkably similar to empirical findings on within-choice contextual effects,

both during non-multiattribute and multiattribute decisions. We next review BCV in relation to

between-choice context effects and describe how the model can also explain these empirical find-

ings. On this basis, we offer the model as a principled description of between and within-choice

context effects.

Results

Within-choice context effects

The idea behind BCV is to establish a link between theories of value and normative accounts

of brain functioning based on Bayesian statistics [32–37]. The Bayesian brain framework rests

on the idea that an agent builds a model of the processes generating sensory cues. The genera-

tive model comprises a set of random variables (i.e., hidden states or causes of sensory out-

comes) and their causal links (i.e., probabilistic contingencies). The variables can be separated

into hidden and observable variables, the former representing the latent causes of observations,

and the latter representing sensory evidence or cues. Sensory evidence conveyed by observable

variables is combined with prior beliefs about hidden causes to produce a posterior belief

about the causes of observations. The application of this logic has proved effective in explain-

ing several empirical phenomena in perception [32–37]. For instance, psychophysical data

indicate that human perception depends on integrating different perceptual modalities (e.g.,

visual and tactile) in a manner consistent with Bayesian principles [38], where evidence is

weighted by the precision of sensory information. Furthermore, process theories that mediate

Bayesian inference (e.g., predictive coding) have a large explanatory scope in terms of neuro-

anatomy and physiology [39].

Bayesian account of contextual effects
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Inspired by a recent framework that conceptualises planning and choice as active inference

[40–45], our core proposal is that Bayesian inference drives the attribution of incentive value

to reward, and this in turn determines choice.

In a previous work, we have developed a version of BCV applicable to conditions where

past options elicit context effects by shaping expectancies before a reward is presented ([11];

see below). However, our previous formulation did not consider conditions where multiple

options (potentially characterized by multiple attributes) are available. Here we generalize

BCV to encompass conditions in which multiple options are available and options can be char-

acterized by multiple attributes. We define a multi-attribute option un (e.g., car A or car B) as a

contract that yields reward amount Ri,n relative to each attribute i (e.g., price or quality):

un ¼ fRi;ngi¼1;...;In
with Ri;n 2 R ð1Þ

An option set u is the set of options currently available:

Set u ¼ fungn¼1;...;N with unan option 8 n ð2Þ

The expected value (EV) of an option un corresponds to:

Run
¼
P

iRi;n ð3Þ

For example, the total reward for car A is equal to the reward associated with price plus the

reward associated with quality. BCV assumes that an agent builds a generative model of the

reward amounts Ri,n (Fig 2). Specifically, an agent believes that, for each attribute i, reward

amounts Ri,n across options are sampled from the same population. To distinguish among

attributes, we assume that an agent believes that an independent population of reward

amounts is associated to each attribute. For example, if two attributes characterize options,

two independent populations of reward amounts are considered by the agent (Fig 2).

Formally, for each attribute i, the average of the population of the reward amounts Ri,n is

represented by a random variable Ci, which is assumed to be sampled from a Gaussian distri-

bution with prior mean μCi and uncertainty (variance) s2
Ci:

Ci � N ðmCi; s
2

CiÞ ð4Þ

The agent assumes that μCi and s2
Ci are known but that Ci is not directly observable and

therefore needs to be inferred from observing the different instances of reward amounts Ri,n of

options for the attribute i. This is realized in the generative model by treating Ci as a hidden

cause of Gaussian variables Ri,n with mean Ci and uncertainty s2
Ri:

Ri;n � N ðCi; s
2

RiÞ ð5Þ

On the basis of the generative model, for each attribute i, the agent can estimate

Ĉi ¼ N ðm̂CijRi; ŝ
2
CijRiÞ, namely the posterior belief about the variable Ci (i.e., the average

reward amount relative to the attribute i; the hat symbol indicates estimates of unknown

quantities), given the observation of all reward amounts of all options available for the

attribute i, represented by the set Ri. In other words, an agent assumes that there is an aver-

age reward for each attribute which is unknown but can be estimated based on the reward

amounts.

According to Bayes’ rule, the posterior belief of Ci can be calculated by considering the asso-

ciated Ri,n sequentially in any order. We propose such sequential belief updating for BCV,

even if options (and the associated reward amounts) are presented simultaneously, and we

assume that the order of options considered is random (with potentially different orders for

Bayesian account of contextual effects

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005769 October 5, 2017 5 / 28

https://doi.org/10.1371/journal.pcbi.1005769


different attributes). For example, when three options characterized by two attributes are avail-

able (represented by R1,1, R1,2 and R1,3 for attribute one, and R2,1, R2,2 and R2,3 for attribute two),

inference can involve computing, in order, P(C1|R1,1), P(C1|R1,1, R1,3) and P(C1|R1,1, R1,2 R1,3)

for attribute one, and P(C2|R2,3), P(C2|R2,1, R2,3) and P(C2|R2,1, R2,2 R2,3) for attribute two. In the

example above, an agent may consider first car A and next car B when estimating the average

reward for price, and first car B and next car A when estimating the average reward for quality.

The rationale behind sequential belief updating is that the brain is equipped with a limited

computational capacity, which precludes the instantaneous (and parallel) evidence accumula-

tion, and hence requires the processing of one option after another. A similar evidence accu-

mulation process is implicit in some theories of perceptual and value-based decision-making

(e.g., [16, 46, 47]). Below, we will show that this evidence accumulation, in the form of sequen-

tial Bayesian belief updating, endows agents with the right sort of sensitivity to context. For-

mally, if Ri,n is the reward amount considered first during belief updating, in relation to

attribute i, the posterior mean m̂CijRi;n
is [48]:

m̂CijRi;n
¼ mCi þ

s2
Ci

s2
Ci þ s2

Ri

Ri;n � mCi

� �
ð6Þ

Fig 2. Example of a basic generative model underlying BCV. This is a directed acyclic graph or Bayesian

network. Circles represent random variables (shaded and white circles refer to observed and non-observed

variables respectively). An arrow denotes a conditional dependence–in which one random variable supplies the

mean of the probability distribution of its children. For each attribute i, a hidden variable Ci represents the belief

about the average reward amount across options for the attribute i. This generates the mean for Gaussian

observable variables Ri,n, corresponding to reward amounts associated with options available during choice. In

this example, three options are available and options are characterized by two attributes. Note that attributes are

independent in the generative model, as there is no arrow connecting variables associated with different attributes.

Inverting this model, given observations, furnishes posterior beliefs over the mean reward amount across options

for each attribute i. This inference is performed sequentially integrating one reward amount observation at each

inference step. When a reward observation is considered, its incentive value is conceived as (precision-weighted)

reward prediction error.

https://doi.org/10.1371/journal.pcbi.1005769.g002
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The posterior uncertainty ŝ2
CijRi;n

is:

ŝ2

CijRi;n
¼ s2

Ci �
s2
Ci

s2
Ci þ s2

Ri

s2

Ci ð7Þ

The crucial proposal we advance is that the incentive value Vi(Ri,n)–attributed to a reward

amount Ri,n in relation to the attribute i and associated with option un–is central to belief

updating (see Eq 6) and corresponds to a precision-weighted prediction error [49]; namely, to

the difference between Ri,n and the prior mean μCi, multiplied by a gain term which depends

on the uncertainty of that attribute s2
Ri and the prior uncertainty s2

Ci:

Vi Ri;n

� �
¼

s2
Ci

s2
Ci þ s2

Ri

Ri;n � mCi

� �

)

m̂CijRi;n
¼ mCi þ ViðRi;nÞ

ð8Þ

Within BCV, incentive value imbues reward and associated options with behavioural rele-

vance, by favouring either approach to (for positive incentive values) or avoidance of (for nega-

tive incentive values) these reward amounts and options.

This implies two fundamental forms of contextual normalization. First, a subtractive nor-

malization is exerted when μCi is different from zero. For example, if we assign positive and

negative numbers to rewards (i.e., Ri,n> 0) and punishments (i.e., Ri,n< 0) respectively, their

corresponding incentive values will change in sign, depending on whether punishment (i.e.,

μCi< 0) or reward (i.e., μCi> 0) is expected a priori. Small rewards may appear as losses in

contexts where large rewards are expected. Second, a divisive normalization depends on con-

sidering the gain term
s2
Ci

s2
Ciþs2

Ri
. This implies that the positive and negative value of profits (i.e.,

Ri,n> μCi) and losses (i.e., Ri,n< μCi) are magnified by a large gain term, when we have precise

beliefs about the average reward of the population.

Sequential Bayesian belief updating means that inference proceeds by considering one

reward amount at a time. If Ri,n is considered at step t+1 and Ri,t is a set containing all reward

amounts already seen up until step t for attribute i, then a posterior mean mCijRi;t ;Ri;n
is obtained

at step t+1 equivalent to (Bishop, 2006):

m̂CijRi;t ;Ri;n
¼ m̂CijRi;t

þ
ŝ2
CijRi;t

ŝ2
CijRi;t
þ s2

Ri

Ri;n � m̂CijRi;t

� �
ð9Þ

Implying a value for the reward amount Ri,n:

Vi Ri;n

� �
¼

ŝ2
CijRi;t

ŝ2
CijRi;t
þ s2

Ri

Ri;n � m̂CijRi;t

� �
ð10Þ

For each attribute i, incentive values are accumulated in memory until inference is com-

pleted (i.e., all reward amounts have been considered). We can assume that inference proceeds

in sequence or in parallel across attributes; however, this has no impact on incentive values, as

the agent believes that attributes are associated with independent reward populations (for-

mally: P(C1,C2,. . .,CI|R) = P(C1|R1), P(C2|R2),. . .,P(CI|RI)).

When all attributes for an option un have been considered, we assume that the incentive

value of the option corresponds to the sum of the incentive values of associated reward

Bayesian account of contextual effects
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amounts:

VðunÞ ¼
P

i¼1
ViðRi;nÞ ð11Þ

Inference proceeds until, for all attributes i, the posterior expectation about rewards m̂CijRi is

evaluated and, at this point, a choice is realized following a softmax rule based on the incentive

values of the available options [2].

In summary, BCV is based on the following assumptions:

1. Each attribute is associated with an average reward (which is a hidden variable).

2. Average rewards for different attributes are independent.

3. For each attribute, the rewards offered (or observed rewards) are treated as samples that

depend on the average reward.

4. The observed rewards are used to invert the model and infer the average reward.

5. During inference, observed rewards are considered sequentially.

6. During inference, an incentive value is calculated for each observed reward that corre-

sponds to a precision-weighted prediction error.

7. Incentive values are summed across observed rewards and attributes, and choice follows a

softmax rule.

Below these assumptions are discussed in detail. Assumptions (i), (iii), and (iv) are implicit

in adopting a Bayesian scheme. Assumption (vii) is based on a standard approach in which

incentive values are summed and a softmax choice rule is adopted. Assumption (ii) captures

the notion of multiple attributes, in other words it enables an agent to link rewards to their

attributes. Assumption (vi) (sequential belief updating or evidence accumulation) reflects the

real world constraint that people have to evaluate available options and rewards one by one. In

other words, agents cannot magically and instantaneously assimilate all the options on offer–

they have to accumulate evidence for the underlying payoffs by evaluating each in turn. This

notion plays a central role since we will see that context effects emerge because a reward is con-

textualized by previous rewards encountered during inference. This underlies assumption (v)

that associates incentive value with a precision-weighted prediction error–a central construct

in Bayesian inference. Heuristically, this scheme implies that an option is more likely to be

selected if it increases expectations of reward, and will be avoided if it decreases expectations.

In other words, an option is more likely to be selected if it suggests the situation is better than

indicated by options considered previously during belief updating.

Note that a Bayesian perspective may suggest that incentive value corresponds to a posterior

belief–rather than a precision-weighted prediction error. As an example, this would imply that

the value of the same dish will be perceived as ‘higher’ in a ‘better’ restaurant. However, empir-

ical data are consistent with the opposite notion that (adopting the same example) the value of

the same dish is perceived as lower in a better restaurant [6–14]. This evidence motivated our

proposal that incentive value corresponds to a precision-weighted prediction error, and not to

a posterior belief.

In sum, BCV provides a principled explanation for how Bayesian inference, assigning a key

role to prior expectation and uncertainty, might underlie value computation and choice. The

key role of uncertainty is reflected in the precision-weighting of prediction errors. The hypoth-

esis we entertain here is that the mechanisms postulated by BCV may be general and explain

multiple forms of context effects. We have previously applied BCV to explain between-choice

Bayesian account of contextual effects
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context effects; namely, those elicited by options presented in the past [11]. Here, we explore

the possibility of applying the same model to within-choice effects, which arise when multiple

options are available. In what follows, we will consider single and multiattribute choices under

this Bayesian formalism.

Single attribute decisions

Here, we apply BCV to explain within-choice contextual influences during non-multiattribute

decisions. These comprise choices in which trading-off different attribute is not required, as

for instance when options are defined by a single attribute. Consider first how different prior

expectations μC (i.e., the prior expectation over the average reward of the attribute) and reward

uncertainty s2
R affect the choice between two options characterized by a single attribute (Fig 3).

We can examine the predicted proportion of choosing a better option (associated with high

reward RH) compared to a worse option (associated with low reward RL), as a function of prior

expectation μC and reward uncertainty s2
R. Classical theories predict a flat function because

they do not model an influence of the prior mean μC and reward uncertainty s2
R [1–4]. In con-

trast, BCV predicts bell-shape functions over prior expectations, that peak at the prior mean of

μC = (RH–RL)/2 (Fig 3). In this setting, the reward uncertainty s2
R determines the width of the

function (larger uncertainties produce narrower functions). Below, we analyse conditions

where more than two options are available–and within-choice context effects come into play.

Classical decision-making models predict that, during choice, the choice ratio between two

options should not be affected by the reward associated with a third option [1–4]. However, a

recent study has challenged this hypothesis, highlighting within-choice context effects [6].

Adopting a choice task in which three options were available during choice, this study showed

that the choice proportion between a more valuable and a less valuable target option dimin-

ished as a third option value increased towards the value of the target options (Fig 1A). After

this point, the choice proportion started increasing (Fig 1A).

Fig 3. A: Generative model involved during choice between two options (characterized by a single attribute), one associated with high reward (RH = 10) and

the other with low reward (RL = 6). B: Proportion of choices of the better over choices of the worse option predicted by BCV (P[RH|RH,RL]/P[RL|RH,RL], as a

function of prior expectation μC and reward uncertainty s2
R (100000 trials are simulated for each condition; s2

C = 1 for simulations). BCV assumes a softmax

choice rule (with inverse temperature parameter equal to one for all simulations) and an equal probability for each option of being considered during the first

inference step. This shows bell-shape functions where peaks correspond to a prior mean expectation of (RH–RL)/2 and where the reward uncertainty s2
R

determines the width of the function (smaller uncertainties are connected with narrower functions).

https://doi.org/10.1371/journal.pcbi.1005769.g003
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Here, we examine the implications of applying BCV in this scenario. Fig 4 illustrates the

predictions of BCV of the ratio of choices of the two target options (a better target option RH
and a worse target option RL) as a function of the reward of a third option R3 and as a function

of the agent’s prior belief about the average option reward μC and about the reward uncertainty

s2
R. This figure shows that all these variables exert an influence. First, for certain values of

reward uncertainty s2
R and prior mean μC, the reward of a third option R3 influences the choice

proportion between the two target options according to a U-shape function, in a way that is

consistent with empirical findings (Fig 1A). Second, the impact exerted by the reward of a

third option R3 decreases as the reward uncertainty s2
R increases. In other words, within-choice

context effects emerge only with small reward uncertainty s2
R. This can be explained by the fact

that a small s2
R magnifies reward prediction error (RPE), enabling contextual effects to emerge.

Fig 4. A: Generative model involved during choice between two options, one associated with high reward (RH = 10) and the other with low reward (RL =

6) when a third option (associated with reward R3) is also available [6]. B: Proportion of choices of the better over choices of the worse option predicted

by BCV (P[RH|RH,RL,R3]/P[RL|RH,RL,R3]), as a function of the third option reward R3 and prior expectation μC (100000 trials are simulated for each

condition; s2
C = 1 for simulations). Here, the reward uncertainty s2

R was set to 0.1; C: The same simulation is reported except that the reward uncertainty

s2
R was set to one. D: The same simulation is reported except that the reward uncertainty s2

R was set to ten.

https://doi.org/10.1371/journal.pcbi.1005769.g004
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Third, when the reward uncertainty s2
R is sufficiently small, the prior mean μC comes into play.

Overall, a larger prior mean μC increases the choice proportion between the two target options

(independently of the reward of a third option R3). Furthermore, the prior mean μC exerts a

modulatory influence on the effect of the reward of a third option R3, as the effect exerted by

R3 is enhanced with a larger prior mean μC. Note that context effects exerted by R3 are obtained

with μC = 0, which can be considered a default value for this parameter.

Collectively, these simulations provide proof of principle that BCV can explain within-

choice contextual effects in single-attribute decisions that are remarkably similar to those seen

in empirical studies [6]. In what follows, we now extend the explanatory scope of BCV to mul-

tiattribute problems.

Multiattribute decisions

Empirical studies of multi-attribute decisions have highlighted three forms of effects, including

the similarity [20–23], attraction [15, 24–27], and compromise effect [17, 25, 27]. Here, we

apply BCV to multi-attribute decisions and ask whether the predictions that emerge from the

model reproduce the context effects found empirically. To this aim, we consider two options

(e.g., the two cars A and B described above) defined by two attributes (e.g., price p and quality

q). Considering the reward amounts of car A, we assign Rp,A = 1 to price (low scores indicate

high price) and Rq,A = 10 to quality. Conversely, when considering the reward amounts of car

B, we assign Rp,B = 10 to price and Rq,B = 1 to quality. We now consider the choice probability

difference between option A and option B as a function of the reward amounts Rp,K and Rq,K of

a third option K.

Empirical evidence is hard to reconcile with standard models of choice, which predict that

the choice probability difference between option A and option B should not depend on the

value of a third option K. Fig 5A summarises the empirical findings by plotting the probability

of choosing A minus the probability of choosing B as a function of the attributes of a third

option K. This graph shows conditions in which the choice probability difference is bigger or

smaller than zero, illustrating both a similarity and an attraction effect. Specifically, a similarity

effect favours option A when option K is good in price and bad in quality (top-left of the

graph), and favours option B when option K is bad in price and good in quality (bottom-right

of the graph). An attraction effect favours option A when option K is bad in price and has an

average quality (bottom-middle of the graph), and favours option B when option K has an

average price and is bad in quality (middle-left of the graph).

We can now apply BCV to model choices in this scenario by analysing the influence on the

choice probability (difference between option A and option B) of the prior mean μC (we use an

equal prior mean for both attributes price and quality; formally: μCp = μCq), the reward uncer-

tainty s2
R (we use an equal reward uncertainty for both attributes price and quality; formally:

s2
Rp ¼ s2

Rq), and the reward amounts Rp,K and Rq,K, associated with price and quality respec-

tively, of option K.

Fig 5B illustrates the choice probability difference (between option A and option B) with

prior mean μC = 0 and reward uncertainty s2
R ¼ 0:1. Focusing on areas of the graph where a

similarity effect can be tested (i.e., top-left and bottom-right), we see that the similarity effect is

reproduced by BCV. Moreover, focusing on areas of the graphs where an attraction effect can

be tested (i.e., bottom-middle and middle-left), we can see that this effect can also be explained

by BCV. Collectively, these simulations provide proof of principle that, for some sets of values

of the prior mean μC and of the reward uncertainty s2
R, BCV explains both a similarity and an

attraction effect. Note that these effects are obtained with μC = 0, which can be considered a

default value for this parameter.
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Fig 6A and 6B examines the effects of adopting other values of the prior mean μC (fixing the

reward uncertainty s2
R to 0.1) in this scenario. This figure shows that an attraction effect is

obtained when the prior mean μC is smaller (μC = −2 in our simulation), but no similarity effect

emerges. Conversely, a similarity effect is evident when the prior mean μC is larger (μC = 2 in

our simulation), but the attraction effect vanishes.

Fig 5. A: Empirical evidence (derived from integrating data from available studies as in [19]) concerning the difference in probability between

choosing option A and option B when a third option K is available (P[A|A,B,K] − P[B|A,B,K]). Here options are characterized by two attributes (price p

and quality q). For car A, we assign Rp,A = 1 to price (low scores indicate high price) and Rq,A = 10 to quality. For car B, we assign Rp,B = 10 to price

and Rq,B = 1 to quality. The graph considers the choice probability difference between option A and option B as a function of the reward amounts Rq,K

(for quality; x axis) and Rp,K (for price; y axis) of a third option K. Green areas indicate values for which no difference is expected based on empirical

evidence; orange and blue areas indicates values for which a positive and negative difference is expected, respectively. B: The same analysis is

performed with data simulated using BCV (100000 trials are simulated for each condition; μC = 0; s2
R ¼ 0:1; s2

C = 1 for simulations).

https://doi.org/10.1371/journal.pcbi.1005769.g005
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Fig 6C and 6D illustrates the choice probability difference (between option A and option B)

for different values of the reward uncertainty s2
R (the prior mean μC was fixed to zero). We can

see that both similarity and attraction effects are not detectable when reward uncertainty s2
R is

high. For smaller values of uncertainty, a similarity effect emerges but there is no attraction

effect. Both effects can be obtained only when the reward uncertainty s2
R is sufficiently low (Fig

5B). This highlights the role of the reward uncertainty s2
R in determining the degree of contex-

tual effects.

In summary, our analyses show that, when simulating multi-attribute decisions with BCV,

similarity and attraction effects emerge for appropriate values of the prior mean μC and the

reward uncertainty s2
R. The first parameter regulates the balance of the two effects, as an attrac-

tion effect (but no similarity effect) is obtained when the prior mean μC is small, while a

Fig 6. Predictions of BCV about the difference in probability between choosing option A and option B when a third option K is available (P[A|A,B,

K] − P[B|A,B,K]). Here options are characterized by two attributes (price p and quality q). For car A, we assign Rp,A = 1 to price (low scores indicate high

price) and Rq,A = 10 to quality. For car B, we assign Rp,B = 10 to price and Rq,B = 1 to quality. The graph considers the choice probability difference between

option A and option B as a function of the reward amounts Rq,K (for quality; x axis) and Rp,K (for price; y axis) of a third option K (100000 trials are simulated

for each condition; s2
C = 1 for simulations). Different parameter sets are shown. A: Simulation using μC = −2 and s2

R ¼ 0:1. B: Simulation using μC = 2 and

s2
R ¼ 0:1. C: Simulation using μC = 0 and s2

R ¼ 1. D: Simulation using μC = 0 and s2
R ¼ 10.

https://doi.org/10.1371/journal.pcbi.1005769.g006
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similarity effect (but no attraction effect) is obtained when the prior mean μC is large. Both

effects emerge for intermediate values of the prior mean μC, including a prior mean μC = 0,

which is a default value for this parameter. The reward uncertainty s2
R plays a key role too,

because context effects vanish when this parameter is high. Decreasing levels of reward uncer-

tainty s2
R reveal a similarity effect first and then an attraction effect. These results indicate that

the similarity and attraction effects arise naturally from BCV, without any ad-hoc assump-

tions–and under natural values of model parameters (prior mean μC reward uncertainty s2
R).

A compromise effect [17, 25, 27] has been observed when the choice set includes two

options scoring high in one attribute and low in another, in addition to a third option with

intermediate scores for both attributes. Crucially, the three options are equally preferred (i.e.,

are chosen an equal amount of times) if presented in pairs during binary choices. However,

when they are available altogether, a preference for the option characterized by intermediate

scores is seen. We model this scenario by manipulating the distance between attributes for two

options A and B, namely assigning Rp,A = 5 − d and Rq,A = 5 + d for option A, and Rp,B = 5 + d
and Rq,B = 5 − d for option B, where the proximity parameter d varies (across simulations)

from zero to four. To represent the option with intermediate scores for both the two attributes,

we assign Rp,K = 5 and Rq,K = 5.

Fig 7A, 7B and 7C shows the prediction of BCV using these settings during binary choices

between option K and option A, using different parameters for the prior mean μC and the

reward uncertainty s2
R. The results indicate that the choice probability difference is always zero,

irrespective of the values of the proximity parameter d or the parameters of the model (prior

mean μC and reward uncertainty s2
R). Fig 7D, 7E and 7F shows the choice probability difference

between option K and option A, when option B is also available. For certain values of the

parameters (prior mean μC and reward uncertainty s2
R), this difference is zero with d = 0 and

increases with the proximity parameter d. This effect disappears when reward uncertainty s2
R is

too large or when the prior mean μC is too small. Overall, these results show that the compro-

mise effect emerges naturally from BCV, without any ad-hoc assumptions and under default

values of the parameters (prior mean μC and reward uncertainty s2
R). Interestingly, these simula-

tions predict a correlation between the compromise effect and the proximity parameter d,

reflecting differences between the intermediate and extreme options. This phenomenon is pre-

dicted by another model of the compromise effect [19] but remains to be validated empirically.

In summary, these simulations provide proof of principle that BCV predicts within-choice

contextual effects during multiattribute decisions that are remarkably similar to those seen in

empirical studies. In other words, the similarity, attraction and compromise effects seen

empirically are all emergent properties of BCV. In the next section, we turn from within choice

effects and consider between-choice context effects.

Between-choice context effects

To characterize between-choice context-effects [11], BCV uses the same generative model as

above, characterized by a prior belief μC (here we consider only options defined by a single

attribute) over reward (with uncertainty s2
C) and by an observation of reward amount R (with

uncertainty s2
R). Here, the generative model is extended to include a Gaussian observation var-

iable O that reflects contextual information provided before an option is presented (Fig 8A).

This depends on the hidden cause C and is endowed with uncertainty s2
O (as for the reward

amount):

O � N ðC; s2

OÞ ð12Þ
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As above, we assume that an agent infers the posterior expected reward of options afforded

by a given context, based on the reward amount but also now on contextual information (i.e.,

m̂CjO;R). Since the latter is provided before the option, we assume that the agent infers m̂Cj0 first

and then m̂CjO;R, when the option is presented. Assuming a prior mean equal to zero μC = 0,

then:

m̂Cj0 ¼
s2
C

s2
C þ s2

O

O ð13Þ

Fig 7. Predictions of BCV related to the compromise effect, involving option A, B and K. Here, in relation with option A, we assign Rp,A = 5 − d for price

and Rq,A = 5 + d for quality; in relation with option B, we assign Rp,B = 5 + d for price and Rq,B = 5 − d for quality. The proximity parameter d varies across

simulations from zero to four. To represent the option K with intermediate scores for both the two attributes, we assign Rp,K = 5 and Rq,K = 5 (100000 trials are

simulated for each condition; s2
C = 1 for simulations). A: The difference in probability between choosing option K and option A during binary choice (P[K|A,K] −

P[A|A,K]). The reward uncertainty s2
R is set to 0.1 and different values of the prior mean μC are considered. B: The same simulation is reported except that the

reward uncertainty s2
R was set to one. C: The same simulation is reported except that the reward uncertainty s2

R was set to ten. D: The difference in probability

between choosing option K and option A during choices in which option B is also available (P[K|A,B,K] − P[A|A,B,K]). The reward uncertainty s2
R is set to 0.1

and different values of the prior mean μC are considered. E: The same simulation is reported except that the reward uncertainty s2
R was set to one. F: The

same simulation is reported except that the reward uncertainty s2
R was set to ten.

https://doi.org/10.1371/journal.pcbi.1005769.g007
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And the posterior uncertainty:

ŝ2

CjO ¼ s2

C �
s2
C

s2
C þ s2

O

s2

C ð14Þ

The mean of the posterior distribution P(C|O,R) corresponds to:

m̂CjO;R ¼ m̂Cj0 þ
ŝ2
CjO

ŝ2
CjO þ s2

R

R � m̂Cj0

� �
ð15Þ

Implying the following incentive value for the option:

V Rð Þ ¼
ŝ2
CjO

ŝ2
CjO þ ŝ2

R

R � m̂Cj0

� �
ð16Þ

This shows that, other things being equal, information about context (reflected in the value

of O) induces subtractive value normalization. For instance, when contextual cues O supports

a larger reward, m̂Cj0 will be larger and hence the reward prediction error (i.e., R � m̂Cj0) will be

smaller.

Fig 8. A: Generative model where a contextual variable C reflects a prior expectancy of zero over the reward

mean, and a noisy observation O of the context value is provided. B: Generative model where context is

organized hierarchically and comprises a high level (HC; e.g., a neighbourhood) and a low level (LC; e.g., a

restaurant), both associated with noisy observations (HO and LO respectively).

https://doi.org/10.1371/journal.pcbi.1005769.g008
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An extension of this generative model is illustrated in Fig 8B, where contexts are organized

hierarchically. Combining the influence of reward expectancies within a hierarchy allows the

generative model to explain the impact of context at multiple levels. For instance, the value

attributed to a certain dish may depend on the reward distribution associated with a restaurant

(a more specific context), integrated with the reward distribution associated with a city (a

more general context). In detail, a higher-level prior belief about the average reward amount of

options (e.g., at the level of the neighbourhood) is represented by a Gaussian distribution with

mean μHC equal to zero and uncertainty s2
HC, from which a value HC is sampled. Contextual

information about HC is provided and represented by HO that is sampled from a Gaussian

distribution with mean HC and uncertainty s2
HO. A lower-level belief about the average reward

amount of options (e.g., the restaurant) is represented by a (Gaussian) distribution with mean

HC and uncertainty s2
LC, from which a value LC is sampled. Contextual information about LC

is provided and represented by LO, which is sampled from a Gaussian distribution with mean

LC and uncertainty s2
LO. A reward is obtained and sampled from a Gaussian distribution with

mean LC and uncertainty s2
R.

We propose that agents infer the posterior expectation m̂LCjHO;LO;R P(LC|HO,LO,R) sequen-

tially by estimating m̂HCjHO, m̂LCjHO, m̂HCjHO;LO and finally m̂LCjHO;LO;R. This produces an equation

for incentive value with the following form (see Materials and Methods for derivation):

VðRÞ ¼ KðR � tLOLO � tHOHOÞ ð17Þ

Three normalization factors are implicit here. The first (τLOLO) is a subtractive normaliza-

tion factor proportional to the value LO observed at the low contextual level. The second

(τHOHO) is a subtractive normalization factor proportional to the value HO observed at the

high contextual level. The terms τ represent gain-dependent effects and describe the relative

precision of information conveyed by the low-level (τLO) and high-level (τHO) observations.

Finally, a third factor (K) implements divisive normalization and depends on a gain term

which includes reward uncertainty (see Materials and Methods for details).

In recent studies [8–11], we have investigated the nature of contextual influence on incentive

value that depends on reward expectations established before choice presentation (between-

choice effects). In these studies, we have used a simple decision-making task, where participants

had to repeatedly choose between a sure monetary reward and a fifty-fifty gamble. These options

comprised double the sure monetary reward and a zero outcome, ensuring that the two options

had equivalent expected reward or value (EV). Across blocks, we manipulated the distribution of

EVs, such that these distributions overlapped. We analysed choice behaviour with EVs common

to both contexts to examine whether incentive value attributed to the objective EV changed

according to BCV predictions.

In one experiment (Fig 9A and 9B; [8, 9]), in different blocks, the sure monetary gain was

drawn from one of two distinct, but partially overlapping, distributions of rewards (low-aver-

age and high-average context). Choice behaviour was consistent with attributing a larger

incentive value to common EVs in the low average compared to high-average context. This

and similar evidence [5–14, 50] suggests that incentive values are, to some extent, rescaled to

the average reward expected in a given context, such that they increase (resp. decrease) with

smaller (resp. larger) average reward expectations.

These data fit within predictions of BCV. In addition, BCV postulates a between-choice

influence of expected reward variance on incentive values (Fig 9C and 9D). In a recent study

[11], we used the same gambling task described above and manipulated contextual variance on

two levels; one associated with blocks where two target trial EVs were presented (low-variance

context), and another with blocks where the same two target trial EVs plus a larger and a
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smaller EV were presented (high-variance context). Crucially, this ensured that the two con-

texts had equivalent average reward but different variance. BCV predicts that the incentive

value of the smaller target trial EV will be lower in the low-variance compared to the high-vari-

ance context, and the incentive value of the larger target trial EV will be higher in the low-vari-

ance compared to the high-variance context. In other words, BCV predicts a larger value

difference between the two target trial EV in the low compared to high-variance context. This

derives from the gain term, which depends on contextual reward variance. Specifically, low

variance magnifies the reward prediction error and hence further reduces the value of rewards

that are lower than expected and enhances the value of rewards that are larger than expected.

We have previously provided data that are consistent with this prediction [11].

This latter study supports the hypothesis that between-choice reward variance influences

incentive value consistent with BCV. In the same study (Fig 9E and 9F; [11]), we also reported

that between-choice context effects can be expressed at different hierarchical levels, in line

with predictions of BCV. Participants played a computer-based task, where two decks of cards

(representing a low-level context) appeared. Each card was associated with a monetary reward,

and decks contained cards with different average rewards. A card was drawn from a selected

deck and participants had to choose between half of the card reward for sure and a gamble

between the full reward and a zero outcome, each with 50% chance. Two sets of decks (repre-

senting a high-level context) alternated in a pseudo-random way. The empirical data showed

Fig 9. Between-choice effects (predicted by BCV) that depend on contexts with different averages. Contexts are associated with certain distribution

of rewards presented sequentially over trials (arranged in blocks for each context). A: Example with a single hierarchical level, where two contexts have

different average rewards. In blocks associated with a low-average context (LA; in lighter grey), possible rewards are x, x+1 and x+2; in blocks associated

with a high-average context (HA; in darker grey), possible rewards are x+1, x+2 and x+3. B: BCV prediction of the incentive value attributed to rewards

depending on these contexts. Larger values are predicted in the LA compared to the HA for amounts common to both contexts. C: Effects predicted by

BCV dependent on contexts with different variance. In blocks associated with a high-variance context (HV; in lighter grey), possible rewards are x, x+1 x+2

and x+3; in blocks associated with a low-variance context (LV; in darker grey), possible rewards are x+1 and x+2. D: BCV prediction of the incentive value

attributed to rewards depending on these contexts. Considering rewards common to both contexts, BCV predicts higher incentive value for x+1 in the high-

variance context and for x+2 in the low-variance context. E: Example with two hierarchical levels (low-level (LL) contexts, represented by filled rectangles,

and high-level (HL) contexts, represented by frames). Blocks associated with HL contexts comprise several sub-blocks associated with LL contexts having

specific average reward. In the HL context with low-value (HL-LA; light frame), a LL context with low average (LL-LA, where rewards are x, x+1 and x+2)

and a LL context with medium average (LL-MA, where rewards are x+1, x+2 and x+3) alternate. In the HL context with high-value (HL-HA; dark frame), a

LL-MA context and a LL context with high average (LL-HA, where rewards are x+2, x+3 and x+4) alternate. F: BCV prediction of the incentive value

attributed to rewards depending on these contexts. The fill colour of bars represent the LL context condition, the outline colour represent the HL context

condition. BCV predicts that incentive values derive from integrating both hierarchical levels, with larger values emerging when average reward is lower at

both context levels.

https://doi.org/10.1371/journal.pcbi.1005769.g009
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that the lowest incentive values were attributed when both high-value decks and deck-sets

were simultaneously presented, while the highest incentive values were attributed when low-

value decks and deck-sets were simultaneously presented. Intermediate incentive values were

attributed when decks and deck-sets had one high value and the other low value.

Collectively, these empirical studies provide evidence consistent with between-choice con-

textual effects on incentive value that depends on beliefs about the average reward and vari-

ance expected across choices at multiple hierarchical levels. Furthermore, the empirical

findings endorse the predictions derived from BCV.

Discussion

We advance BCV as a unifying theory of contextual effects in value-based choice under the

normative principles of Bayesian statistics. BCV assumes that the brain calls on Bayesian infer-

ence to invert a generative model and compute (independently for each attribute) the average

reward based on observing different reward amounts of options that are available in a given

context. Our key proposal is that incentive value emerges during this inferential process, and

corresponds to a precision-weighted reward prediction error. Here, we show that these princi-

ples are sufficient to explain a wide range of between-choice and within-choice contextual

influences; in the latter case encompassing both single and multiattribute effects. To our

knowledge, this is the first time a theory has been applied to the full range of context effects.

An important advantage of BCV is its grounding in normative principles of Bayesian statis-

tics [32–37]. Several arguments have been made in support of a Bayesian approach. These are

based on a formal and clear definition of the functions that motivate cognitive processes,

which are formulated as Bayesian inference and learning. This allows BCV to establish a direct

link with Bayesian schemes in other domains–a step towards formulating a unifying theory of

brain function. Remarkably, we show that the same basic processes postulated by BCV can be

applied to a wide range of conditions in which contextual effects on value and choice are

involved. Beyond explaining the available empirical evidence, this scheme can generate new

hypotheses (see below). Indeed one of our previous studies [11] was motivated by testing pre-

dictions arising out of our initial formulations of BCV.

BCV is associated with planning as inference and active inference [40–45]. The basic idea is

that an agent considers the rewards on offer as samples drawn from a population. The latter is

not known directly, but can be inferred based on the rewards on offer. Heuristically, agents are

interested in inferring how much reward is available on a given trial, which they estimate by

combining prior expectations with observations of available rewards. On this view, agents pri-

marily aim to infer–and not maximize–the reward; implying that utility-maximization is an

emergent process. We argue that an advantage of this perspective is that it offers a normative

interpretation of contextual effects, which emerge from the inferential treatment offered here.

Although our theoretical treatment is grounded in Bayesian inference one might argue that

the Bayesian gloss is unnecessary to understand the particular inferential mechanisms we have

called upon [51]. To a certain extent, there is tautology in Bayesian explanations for behaviour.

This follows from the complete class theorem (i.e., for every loss function and behaviour there

is a prior belief that renders the behaviour Bayes optimal) [52]. In other words, in principle,

everything is Bayes optimal under some priors. This means that the interesting questions

reduce to the form of prior beliefs that constitute a subject’s generative model. Our focus has

been on the form of these models and the particular role of precision weighting in belief updat-

ing and choice. The results of our analysis are consistent with empirical data on several forms

of context effect, and hence may contribute to a clarification of the computational principles at

play.
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In BCV incentive value, and in turn choice behaviour, emerges from Bayesian belief updat-

ing. Under continuous state space models of the hidden causes of reward values, belief updates

and incentive value can be cast as precision-weighted (reward) prediction error. A possibility

consistent with BCV is that action is steered by (precision-weighted) prediction errors and is

oriented to error cancellation, with approach and avoidance responses elicited by positive and

negative prediction errors, respectively. The crucial role of prediction error highlights a per-

spective in which incentive value is inherently relative with respect to reward expectation. Elic-

iting approach and avoidance behaviour in response to positive and negative prediction errors

can be conceived as a basic error-cancellation process (crystallized during evolution of biologi-

cal organisms), which is a core tenet of active inference schemes.

BCV postulates that the two fundamental determinants of incentive value are prediction

error and relative precision. A prediction error is determined by the difference between the

observed and expected reward which, in BCV, derives from integrating different expectations

under contextual uncertainty. Relative precision depends on the (relative) precision or prior

confidence–and ensures that the prediction error is normalised and (Bayes) optimally

weighted in relation to uncertainty about both context and reward cues. BCV predicts preci-

sion exerts an influence in two ways. First, at high hierarchical levels, precision determines the

optimal integration of multiple contextual representations–as it mandates that contexts char-

acterized by a high precision (greater reliability) will exert more influence on reward expec-

tancy. For instance, if we assume that subjects have very precise beliefs about the low-level

context (e.g., the card deck in the final experiment on between-choice context effects), then

the effect of the high-level (e.g., the deck set) will disappear. Formally, this is because in the

hierarchical model the low-level context constitutes a Markov blanket for the posterior expec-

tation about the reward option (Bishop, 2006). In other words, the effect of the high-level con-

text tells us that if subjects are using a hierarchical model, there must be posterior uncertainty

about the low-level context. Heuristically, even though they can see which deck they are cur-

rently playing with, they still nuance their expectations about this deck based upon the deck-

set from which it came. Second, at the lowest hierarchical level, precision determines the gain

assigned to the prediction error and hence is a direct determinant of incentive value.

Within BCV, the ratio between reward uncertainty and prior uncertainty determines the

gain term (or relative precision) which is used for belief updating (see Eq 6). This means that

manipulating the prior uncertainty produces exactly opposite effects compared to manipulat-

ing the reward uncertainty, meaning that varying one during simulations is sufficient for test-

ing the predictions of the model (above, we manipulated reward uncertainty and kept the

prior uncertainty constant). Thus BCV has only two parameters; namely, the prior mean and

reward uncertainty. The role of the latter is straightforward, as context effects are allowed only

with small reward uncertainty, and the size of these effects decreases with this reward uncer-

tainty. The role of the prior mean is more complex: for instance, a large prior mean permits a

similarity effect but interferes with an attraction effect, while a small prior mean allows an

attraction effect but interferes with a similarity effect. Notably, all contextual effects are

expressed when setting the prior reward expectation to zero, which can be considered the

default value. In short, relying on only two parameters endows BCV with simplicity and con-

strains the predictions that can be derived, making BCV easy to validate or falsify (see below).

Comparison with other models

We have shown that the principles underlying BCV can explain a wide range of empirical find-

ings on the context sensitivity of value-based choice. Several previous accounts have focused

on a single context effect, especially during multiattribute decisions. Some models have been
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developed explicitly for explaining the similarity effect [20, 53–55], other models for explaining

the attraction effect [56, 57], and other models for the compromise effect [27]. However, a

shortcoming of these models is their inability to explain all three effects within a single formal

framework. More recently, adopting connectionist architectures, the multi-alternative decision

field theory [16, 58, 59] and the leaky competing accumulator [19, 59, 60] have been able to

reproduce all three effects (see also [61]). The first model [16, 58] is based on a process model-

ling attentional switches across attributes and a comparator mechanism which, for the attri-

bute under attention, computes the difference between the reward of each option and the

mean reward across options. The second model [19, 59, 60] is similar, except that the compara-

tor applies a non-linear asymmetric (loss-averse) value function to the difference. Although

these models fit remarkably with empirical literature and shed light on the neural mechanisms

underlying choice, we argue that BCV presents several advantages. First, it is based on norma-

tive principles of Bayesian inference. This constrains the model in terms of empirical predic-

tions. In other words, the similarity, attraction and compromise effect are implicit in the way

the model works. In fact, these effects arise when defaults parameters are used. Second, BCV is

a more parsimonious model; as the number of free parameters is much lower (essentially, the

prior mean and the reward uncertainty). Third, without any further assumptions, BCV applies

to a wider range of phenomena including single-attribute decisions and also accounts for

between-context effects. Overall, while previous connectionist models are informative espe-

cially at the implementation level, BCV helps clarify context sensitivity at the algorithmic and

computational level.

The concept of wealth in expected utility theory [3] and status quo in prospect theory [62]

have been recently re-casted in terms of average expected reward [29]. This formulation opens

the possibility of context effects dependent on changes in reward expectation. In line with this

view, empirical evidence indicates a between-choice context effect that depends on the average

contextual reward (as for example inferred from past choices), consisting in attributing larger

incentive values in contexts characterized by lower reward. A similar idea has inspired decision

by sampling theory [14, 31], which evokes a few basic cognitive processes to explain choice

behaviour. According to this model, each choice option elicits retrieval from memory (in the

form of random sampling) of stimuli encountered in the past, especially those associated with

the current context. A set of binary comparisons follows between the option and the samples,

and the number of comparisons in which the option is favoured over each sample is recorded.

This number corresponds to the incentive value of the option and is computed for all options

available, hence determining their relative preference. Since samples are drawn from memory,

they depend on past experience and therefore reflect the distribution of options and outcomes

characterizing the environment of an agent. This model can account for an attribution of

larger incentive value to the same reward in contexts where lower compared to higher reward

is expected before options are provided. This effect is explained by a decreased likelihood,

in the former compared to the latter context, of sampling stimuli from memory that are pre-

ferred to rewards common to both contexts (assuming a recency effect in memory sampling;

[14, 31]. BCV extends these views by appealing explicitly to Bayesian principles (i.e. Bayesian

belief updating and evidence accumulation), with implications for empirical predictions. For

instance, contrary to BCV and empirical findings, it remains unclear whether these previous

models can account for between-choice contextual influence of reward variance or any within-

choice contextual effects.

Divisive normalization theory [6, 63–68] has been proposed recently to explain both

between-choice and within-choice contextual effects during single attribute decisions. Divisive

normalisation was first proposed in the sensory domain to explain phenomena such as neural

adaptation within the retina to stimuli of varying intensity [63]. There is evidence that similar
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principles can explain higher-order cognitive processes, such as selective attention and percep-

tual decision-making [63, 69]. Recently, divisive normalisation has been extended to contextual

adaptation effects in value-guided choice [6], and proposes that incentive value corresponds to

the reward divided by the average reward of past or current choices. This can explain contextual

influences elicited both within-choice effects during non-multiattribute decisions and between-

choice effects that depend on the average contextual reward. Though this scheme relies on a

normalization scheme similar to BCV, different empirical predictions arise. It remains unclear

whether this divisive normalization scheme is able to explain between-choice effects deriving

from reward variance, and can explain data on multi-attribute choices. In addition, BCV, but

not divisive normalization theory, is based on normative principles of Bayesian statistics. How-

ever, an attractive aspect of divisive normalization theory is the explicit connection with mecha-

nisms characterizing biological neural processes [63]. A similar connection can be motivated

for BCV, given several proposals showing how Bayesian inference (the framework of BCV) is

compatible with neuronal processes [49, 70, 71].

The manner in which BCV conceptualizes incentive value is similar to recent economic

models that postulate incentive value is adapted to the statistics of the expected reward distri-

bution [29, 30]. These theories can be broadly classified into those based on subtractive nor-

malization, which assume that incentive value corresponds to the reward minus a reference

value [29], and those based on divisive normalization, assuming that incentive value corre-

sponds to the reward divided (or multiplied) by the range of an expected distribution of

rewards [30]. An important difference between BCV and these theories is the derivation of the

former but not the latter from normative assumptions of Bayesian inference. From Bayesian

belief updating, BCV derives the proposition that incentive value corresponds to precision-

weighted prediction error, hence implying both a subtractive normalization to the expected

reward and a divisive normalization with respect to the reward uncertainty. Importantly, these

predictions are not ad hoc but derive from Bayesian assumptions, distinguish BCV from other

models, and have been recently supported empirically [11]. In addition, while these recent eco-

nomic models focus on between-choice context effects, BCV is more general as it can repro-

duce within-choice effects in both single and multiattribute decisions.

Like BCV, a recent proposal has interpreted multi-attribute within-choice effects based on

the notion that perception of reward is stochastic [72]. The idea is that, for each attribute, an

agent forms noisy observations of reward amounts and of the ordinal positions of the reward

amounts. Multi-attribute effects can then be obtained by integrating these two observations

[72]. Though there are analogies between BCV and the model of Howes et al. [72], we empha-

size several important differences. First, the latter does not employ a Bayesian framework,

since it is not based on integrating prior beliefs and observations, nor it is based on optimal

weighting of different sources of information (as in multi-sensory integration). Second, the

model of Howes et al. [72] has been applied to aspects of multi-attribute effects (such as the

impact on reaction times), which remain to be explored with BCV. On the other hand, the

model of Howes et al., [72] remains to be explored in relation to within-choice effects involv-

ing a single attribute and in relation to between-choice effects.

Predictions and limitations of BCV

Specific empirical predictions can be derived from BCV, and here we highlight some of these.

Standard economic theories assume that choice should be independent of whether options are

presented simultaneously or sequentially. However, the latter case remains largely to be inves-

tigated. BCV may inspire this investigation, as it predicts that a higher value will be attributed

to an option after presentation of lower value options. This because BCV proposes a sequential
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belief updating in which options considered so far contextualize the option observed now. Other

predictions involve interactions regarding between- and within-choice effects. For example, con-

sider the example above in which an agent usually evaluates equally car A (expensive and high

quality) and car B (cheap and low quality). One may design an experiment where participants are

first exposed to a set of cars having a fixed level of quality and varying on price. BCV predicts that

this manipulation would determine a lower reward uncertainty for quality compared to price. In

other words, quality would become more salient than price, predicting a preference for car A

over car B. In addition, BCV predicts other forms of interactions regarding between- and within-

choice effects dependent on manipulations of the reward uncertainty and the prior mean (see

above), which also remain to be explored empirically. Finally, BCV may be relevant for research

on the neural underpinnings of decision-making. A main aspect of this theory is the idea that

incentive value corresponds to a precision-weighted reward prediction error. Interestingly,

reward prediction error is reflected in activity of brain regions involved in reward processing

[73]. BCV raises the possibility that a stimulus which elicits a stronger prediction error response

in the brain will be attributed a higher incentive value.

There are shortcomings to BCV, though we argue that the same framework may be fruit-

fully used to address some of these shortcomings. A shortcoming of our current formulation

assumes that model parameters are given. In reality, these parameters need to be learned in the

first place. Questions about the mechanisms that might underpin learning of generative mod-

els adopted for Bayesian inference are still largely open, though substantial contributions exist,

particularly in the context of structure learning [74–80]. A second shortcoming is that here we

have assumed that choices occur after inference has considered all observations. An important

extension of BCV is a consideration that action tendencies actually develop during evidence

accumulation, and this speaks to models of choice that focus on action dynamics, sequential

policy optimisation and reaction times [16, 46, 47]. Another important extension of BCV

would be to generalize to domains outside incentive value computation. Context effects similar

to those observed in value-based decision-making have been reported in many other condi-

tions during perception and judgement [81–84]. Notably, multi-attribute context effects have

been recently shown outside incentive value computation [85, 86], suggesting that they may

derive from a general way in which the brain works [61].

Conclusions

We offer BCV as a unifying theory of contextual effects during choice behaviour based on

Bayesian normative principles. BCV predictions are in line with available empirical evidence

about context sensitivity seen empirically both within and between-choice. These different

effects are explained using the same simple set of principles, invoking minimal assumptions.

We argue that strengths of this model are its foundation on normative principles, simplicity,

the link with other influential models of brain function, and the ability to explain a wide range

of empirical data. This theory may help clarify the nature of incentive value attribution and

choice behaviour. This is particularly prescient when trying to understand ecological phenom-

ena and psychopathologies characterized by dysfunctional choice, such as addiction.

Materials and methods

Here we derive Eq 17 from the generative model shown in Fig 9B. A higher-level contextual

variable (e.g., a neighbourhood containing several restaurants) is represented by a Gaussian

distribution with mean μHC equal to zero and uncertainty s2
HC, from which a value HC is sam-

pled. Sensory evidence about HC is provided and represented by HO which is sampled from a

Gaussian distribution with mean HC and uncertainty s2
HO. A lower-level contextual variable
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(e.g., one of the restaurants) is represented by a (Gaussian) distribution with mean HC and

uncertainty s2
LC, from which a value LC is sampled. Sensory evidence about LC is provided

and represented by LO, which is sampled from a Gaussian distribution with mean LC and

uncertainty s2
LO. A reward is obtained and sampled from a Gaussian distribution with mean

LC and uncertainty s2
R. The posterior distribution P(LC|HO,LO,R) can be inferred sequen-

tially in the order P(HC|HO), P(LC|HO), P(LC|HO,LO), and P(LC|HO,LO,R). The posterior

mean of P(HC|HO) is:

m̂HCjH0 ¼
s2
HC

s2
HC þ s2

HO

HO ð18Þ

And the posterior uncertainty:

ŝ2

HCjH0
¼ s2

HC �
s2
HC

s2
HC þ s2

HO

s2

HC ð19Þ

The posterior mean of P(LC|HO) is equal to m̂HCjH0 (m̂LCjH0 ¼ m̂HCjH0), while the posterior

uncertainty is:

ŝ2

LCjH0
¼ ŝ2

HCjH0
þ s2

LC ð20Þ

The posterior mean of P(LC|HO,PO) is:

m̂LCjHO;LO ¼ m̂LCjH0 þ
ŝ2
LCjHO

ŝ2
LCjHO þ s2

LO

LO � m̂LCjH0

� �
ð21Þ

And the posterior uncertainty:

ŝ2

LCjH0;LO ¼ ŝ2

LCjH0
�

ŝ2
LCjHO

ŝ2
LCjHO þ s2

LO

ŝ2

LCjH0
ð22Þ

The posterior mean of P(LC|HO,LO,R) is:

m̂LCjHO;LO;R ¼ m̂LCjHO;LO þ
ŝ2
LCjHO;LO

ŝ2
LCjHO;LO þ s2

R

R � m̂LCjHO;LO

� �
ð23Þ

Finally, with few rearrangements, we obtain the following incentive value for a reward

offer:

V Rð Þ ¼
ŝ2
LCjHO;LO

ŝ2
LCjHO;LO þ s2

R

R �
ŝ2
LCjHO

ŝ2
LCjHO þ s2

LO

LO �
s2
LO

ŝ2
LCjHO þ s2

LO

s2
HC

s2
HC þ s2

HO

HO

 !

ð24Þ

This equation implements three normalization factors: (i) a subtractive normalization fac-

tor
ŝ2
LCjHO

ŝ2
LCjHO

þs2
LO
LO

� �

proportional to the value LO observed at the low contextual level, (ii) a

subtractive normalization factor
s2
LO

ŝ2
LCjHO

þs2
LO

s2
HC

s2
HCþs2

HO
HO

� �

proportional to the value HO

observed at the high contextual level, (iii) a divisive normalization factor
ŝ2
LCjHO;LO

ŝ2
LCjHO;LO

þs2
R

� �

that

captures the weighting dependent on the (relative) reward uncertainty. If we define the three

factors as τLO and τHO and K respectively, we obtain Eq 17.
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