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Abstract. In seismic assessment of bridges the research focus has recently shifted on the derivation of 

bridge-specific fragility curves that account for the effect of different geometry, structural system, 

component and soil properties, on the seismic behaviour. In this context, a new, component-based 

methodology for the derivation of bridge-specific fragility curves has been recently proposed by the 

authors, with a view to overcoming the inherent difficulties in assessing all bridges of a road network 

and the drawbacks of existing methodologies, which use the same group of fragility curves for bridges 

within the same typological class. The main objective of this paper is to critically assess the necessity 

of bridge-specific fragility analysis, starting from the effect of structure-specific parameters on 

component capacity (limit state thresholds), seismic demand, and fragility curves. The aforementioned 

methodology is used to derive fragility curves for all bridges within an actual road network, with a view 

to investigating the consistency of adopting generic fragility curves for bridges that fall within the same 

class and quantifying the degree of over- or under- estimation of the probability of damage when generic 

bridge classes are considered. Moreover, fragility curves for all representative bridges of the analysed 

concrete bridge classes are presented to illustrate the differentiation in bridge fragility for varying 

structural systems, bridge geometry, total bridge length and maximum pier height. Based on the above, 

the relevance of bridge-specific fragility analysis is assessed, and pertinent conclusions are drawn. 
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1 INTRODUCTION 

Reliability of road systems and their components, exposed to multiple natural hazards is at 

the front line of engineering research during the last three decades, as possible damage to 

critical components is strongly related to important direct and indirect economic losses. Bridges 

are considered to be the most critical component of urban and interurban transport systems, 

ensuring i.a. access to cities affected by a strong earthquake. In this context, numerous methods 

have been developed for the assessment of seismic vulnerability of bridges, mainly in the form 

of fragility curves. 

Bridge fragility curves are essential for the estimation of the road or railway system’s 

resilience, recovery planning, as well as pre- and post-earthquake retrofit prioritization. Both 

analytical and empirical fragility curves were proposed by various research groups, the latter 

being less frequent (e.g.  Basoz & Kiremidjian, 1999), since earthquake damage data for 

bridges is sparse. Analytical methodologies available in the literature can be classified based 

on whether they consider multiple components (Mander & Basöz (1999), Nielson & 

DesRoches (2007a), Moschonas et al. (2008), Zhang et al. (2008), Tsionis & Fardis (2012)) or 

only the most critical one (piers) in fragility analysis (Banerjee & Shinozuka, 2007). 

Classification can also be based on the procedure for estimation of component or system 

capacity (limit state thresholds) and seismic demand (analysis method used), the uncertainty 

treatment and the probabilistic model used (Table 1). Specifically, regarding component 

capacity, either local (Avşar et al. (2011), Tsionis & Fardis (2012), Choi et al. (2004))  or global 

(Shinozuka et al. (2000), Cardone (2013)) demand parameters are used, while quantification 

of damage, namely the limit state thresholds, is commonly based on experimental results (Dutta 

& Mander (1998), Berry & Eberhard (2003), HAZUS (2015)). Regarding the estimation of 

seismic demand, different analysis methods have been put forward, namely inelastic static 

(pushover) analysis (e.g. (Cardone et al. (2007), Moschonas et al. (2008)), elastic response 

spectrum method (e.g. Mander & Basöz (1999),  HAZUS (2015)) and nonlinear response-

history analysis (Mackie & Stojadinović (2007), DesRoches et al. (2012)). The maximum 

likelihood method (Shinozuka et al. 2000) and the probabilistic seismic demand model 

(Nielson & Desroches 2007b) have been used for the derivation of fragility curves. The way 

capacity and demand estimation is made in the frame of analytical methodologies for the 

derivation of fragility curves is summarised in Table 1.  

Bridge fragility curves are used in the assessment of seismic performance and losses in 

bridge stocks providing valuable data for retrofit prioritisation, also in the frame of 

transportation network recovery planning, strongly related to government investment and 

decision-making. Therefore, the need for consistent and reliable fragility curves emerges. In a 

practical context, these curves should be representative of a fairly small number of bridge 

classes. The most common approach for deriving ‘generic’ fragility curves is to classify bridges 

into different typological classes based on key structural and geometric characteristics like 

structural system, number of spans, number of columns (single or multicolumn bents), 

skewness, deck type, pier type and the pier-to-deck connection (Avşar et al. (2011), Moschonas 

et al. (2008), Mander & Basöz (1999), Tsionis & Fardis (2012), DesRoches et al. (2012)) and 

derive fragility curves for the generic bridge (representative of each class), to be used for the 

assessment of the bridge stock, under the assumption that the seismic performance of bridges 



within the same class is similar. The fragility curves proposed so far are based on analysis of 

deterministically defined bridge models, accounting for varying geometric and material 

properties within the probabilistic framework of fragility analysis. Furthermore, parametric 

vulnerability curves are proposed in the literature (Elnashai et al. 2004) introducing generic 

fragility functions based on analysis of bridges having different geometries and overstrength 

ratios. The parametric approach is rather appealing, albeit oversimplified, since neither the 

effect of different component properties on seismic demand and capacity, nor the effect of 

different structural configuration on system fragility are captured.  

Table 1: Capacity and demand estimation in analytical methodologies for the derivation of fragility curves 

Research Group  

 

Capacity Seismic Demand 

Engineering 

Demand 

Parameter 

Limit State thresholds 
Structural 

model 

Seismic 

Input 

Analysis 

Method 

1. Avşar et al. (2011) 

Piers: φ 

Beams: φ, Vu 

Bearings: δ 

[3 LS] 

Piers: Priestley et al., 

(1996),  Erduran & Yakut, 

(2004) 

Bearings: FHWA, (2006) 

3D DM 

25 accel. 

(unscale

d) 

NRHA 

2. Banerjee & 

Shinozuka (2007) 
Piers: μθ [5 LS] Dutta, (1999) 3D DM 

3 × 20 

accel. 

NRHA & 

CSM 

3a. Cardone, Perrone 

& Dolce (2007),  

Cardone, Perrone, & 

Sofia, 2011) 

Cardone (2013) 

Piers: δ 

Bearings: δ 

Abutments: δ 

[3 LS] 

Piers: δy & δu  

Bearings: γ (%) 

Konstantinidis et al. (2008) 

Abutments: δgap & δu  

MDOF→SD

OF, Adaptive 

Pushover 

Spectru

m 

CSM  

(adaptive) 

3b.Cardone, Perrone, 

& Sofia, 2011) 

Piers: μφ, V 

Bearings: δ, μδ 

Abutments: F 

[5 LS] 

Piers: δy, 50% μδ, δu  

Bearings: μδ 

Abutments: Active & 

Passive resistance  

MDOF→SD

OF, Adaptive 

Pushover 

Spectru

m 

CSM  

(adaptive) 

4. Choi et al. (2004) 

Piers: μφ 

Bearings: δ 

[5 LS] 

Piers: Dutta, (1999) 

Bearings: Experiments 
3D DM 

100 

synthetic 

accel. 

NRHA 

5. Crowley et al. 

(2011), Tsionis & 

Fardis (2012) 

Piers: θ 

Bearings: δ 

[2 LS] 

Piers: θy & θu Biskinis & 

Fardis, (2010a, b) 

Bearings: Bousias et al. 

2007 

SDOF(Long), 

Beam with 

springs 

(Trans) 

EC8 

elastic 

spectrum 

Equivalent 

Static 

6. De Felice & 

Giannini (2010) 

Piers: θ 

[2 LS] 
θy & θu Metamodels 

2 ×4 

accel. 

NRHA -

RSM 

7. Dukes (2013) 

Piers: μφ 

Bearings: δ 

Abutments: δ 

[4 LS] 

Piers: Dutta, (1999) 

Bearings - Abutments: 

Caltrans (2010) 

Metamodels  
3 ×40 

accel. 

NRHA -

RSM 

8. Elnashai et al. 

(2004) 
Piers: δ δy & δu (Pushover Curve) 3D DM 

7accel. 

(scaled) 
NRHA 

9. Ghosh et al. (2013) 

Piers: μφ 

Bearings: δ 

Abutments: δ 

[4 LS] 

Nielson & DesRoches 

(2007b) 
Metamodels 

24 accel. 

(Wen&

Wu) 

NRHA -

RSM 



10. Hwang et al., 

(2001) 

Piers: C/D factors 

or μδ 

[5 LS] 

Piers: δy & δu 3D DM 
100 acc. 

synthetic 
NRHA 

11. Karim & 

Yamazaki 

(2001,2003) 

DI=(μδ+βμh)/μu 

(Park-Ang) 

[5 LS] 

DI=0.00~1.00 SDOF 
250 

accel. 

Nonlinear 

Static/NRH

A 

12. Mackie & 

Stojadinović (2004) 
Drift (%) Berry & Eberhard (2003) 3D DM 80 accel. NRHA 

13. Mander & Basöz 

(1999) 

Piers: δ/h (%) 

Bearings: δ 

[5 LS] 

Dutta, (1999) SDOF 
Elastic 

spectrum 
CSM 

14. Moschonas et al. 

(2008) 

Bridge: δ [5 LS] 

[5 LS] 

Piers: δy & δu (Pushover 

curve) 

Bearings: δ (γ %) 

3D DM 
Elastic 

spectrum 
CSM 

15. Nielson & 

DesRoches (2007a, 

b) 

Piers: μφ 

Bearings: δ 

Abutments: δ 

[4 LS] 

Piers: HAZUS (1997), 

FHWA (2006) 

Bearings, Abutments : Choi 

(2004) 

3D DM 
48 accel. 

(3 bins) 
NRHA 

16. Ramanathan, 

(2012) 

Piers: μφ 

Bearings: δ 

Abutments: δ 

[4 LS] 

Piers: Berry & Eberhard 

(2003), 

Bearings, Abutments : 

Caltrans (2010) 

3D DM 

320 

accel. (4 

bins) 

NRHA 

17. Shinozuka et al. 

(2000) 

Piers: μδ 

[3 LS] 
1.0 ≤ μδ  ≤ 2.0 3D DM 80 accel. NRHA 

18. Tavares et al., 

(2012) 

Piers: μφ 

Bearings: δ 

Abutments: δ 

[4 LS] 

HAZUS (1997) 3D DM 
Syntheti

c Accel. 
NRHA 

19. Yi et al.   (2007) 
Piers: μφ 

Bearings: δ 

Choi (2004) 2D Model 60 accel. NRHA 

20. Zhong et al. (2012) 
Piers: Drift (%) 

 

Probabilistic model (closed 

form relationship) 
3D DM 

Elastic 

spectrum 
CSM 

* 3D DM: 3D Detailed Model, NRHA: Nonlinear Response History Analysis CSM: Capacity Spectrum Method 

 

It is clear that the accuracy and consistency of the assumption that fragility curves of a 

generic bridge can be used for all bridges within the same class depend on the scope and size 

of the classification scheme adopted. Moreover, it should be noted that component demand and 

capacity vary and are related to component-specific properties, while bridge fragility was found 

to be highly dependent on structure-specific parameters, like deck and pier geometry (Avşar et 

al. (2011), Tavares et al. (2012), Elnashai et al. (2004)), structural system, which is related to 

the topography and the construction method selected (Zhang et al., 2008), material and 

geometric properties of components, as well as parameters related to the foundation soil and 

the earthquake ground motion selection. The use of modification factors to account for the 

effect of skewness and site conditions has been proposed (Mander & Basöz, 1999), an 

appealing but rather oversimplified approach, as discussed in Dukes (2013). As an alternative, 

the concept of bridge-specific fragility analysis has been put forward (Dukes (2013), 

Stefanidou & Kappos (2015, 2017)), duly accounting for the effect of component-specific 

properties on bridge fragility. However, the methodology proposed by Dukes (2013) focuses 



on the correlation of component demand and structure-specific parameters, providing demand 

models as a function of multiple design parameters in the frame of the ‘metamodeling’ concept, 

not accounting for their effect on component capacity and limit state thresholds. On the other 

hand, Stefanidou & Kappos (2017) proposed a holistic methodology for the estimation of 

bridge-specific fragility curves providing empirical relationships for the estimation of 

component-specific limit state thresholds, uncertainty treatment and demand estimation, the 

amount of effort depending on the application scale (single bridge or bridge stocks). 

The main objective of this paper is to put into context the relevance of bridge-specific 

fragility analysis when an entire stock is addressed. Initially the effect of structure-specific 

parameters on component capacity (limit state thresholds), seismic demand, and fragility 

curves is established. The effect of pier properties on limit state thresholds is evaluated for 

different concrete pier types, considering both local and global demand parameters. The 

recently proposed (by the authors) methodology (Stefanidou & Kappos, 2017) is then applied 

(using ad-hoc developed software) for the estimation of fragility curves for all bridges of an 

actual road network, using the simplified approach, while uncertainty in demand estimation is 

quantified based on the detailed approach entailing advanced analysis. Bridge-specific fragility 

curves for all representative bridges of the different concrete bridge classes are presented, to 

highlight the effect of structural system (different pier, deck and pier-to-deck connection types) 

on bridge fragility. The effect of bridge geometry, namely total bridge length and maximum 

pier height, on bridge fragility is evaluated through analysis of all bridges (and bridge classes) 

of the road network under consideration. Subsequently, the consistency of adopting generic 

fragility curves for bridges that fall within the same category is assessed, by quantifying the 

degree of over- or under- estimation of the probability of damage when generic bridge classes 

are used. The conclusions of this study refer to the concrete bridge stock studied (described in 

detail in §4.2.1), which is typical of Southern Europe motorways. Nevertheless, the proposed 

methodology for bridge-specific fragility analysis has a broad application range and could be 

used for the seismic assessment of any other bridge stock. 

2 METHODOLOGY FOR DERIVING BRIDGE-SPECIFIC FRAGILITY CURVES 

The methodology proposed by the authors for the derivation of bridge-specific fragility 

curves and the successive steps for its implementation are described in detail elsewhere 

(Stefanidou & Kappos, 2017). It is noted that a key aspect of the methodology is that it does 

not depend on the structural system and bridge properties, minimising the need for 

classification to typological classes. The methodology, outlined in the flowchart of Fig.1, is 

component-based and entails closed-form relationships for defining component-specific limit 

state thresholds (component database) and two alternatives for the calculation of seismic 

demand based on analysis of a detailed or simplified bridge model, depending on whether a 

single bridge or a bridge stock is addressed.  Obviously, the question of whether bridge-specific 

analysis is really necessary arises when entire stocks are analysed, hence the basic principles 

for the estimation of component capacity (database development) and seismic demand briefly 

described in the remainder of this section refer to this case; more details of both versions of the 

methodology are found in Stefanidou & Kappos (2017).  



 
Fig. 1 – Flowchart of the component-based methodology for the derivation of bridge-specific fragility 

curves applied to a population of bridges 

2.1 Bridge capacity  

As depicted in Table 1, different global or local demand parameters (EDP) are utilised in 

existing methodologies for the quantification of component damage, while threshold values are 

in most cases based on experimental results. Whenever analytical estimation of limit state 

thresholds is proposed, component-specific analysis is required, rendering the methodology 

case-dependent and increasing the computational cost. 

In the frame of the proposed methodology, bridge piers, abutments and bearings are 

considered as critical components affecting the system’s seismic performance, and limit state 

thresholds for four limit states are explicitly defined based on inelastic analysis results and/or 

experimental data, depending on the component examined. The milestone of the proposed 

methodology as far as capacity estimation is concerned, is that the user can define component 

limit state thresholds considering all different component properties that may affect inelastic 

behaviour, without performing inelastic analysis for each component. To this end, a database 

of different components has been developed, based on multiple parametric inelastic analyses 

(considering different possible failure modes) to derive limit state thresholds. Based on 

regression analysis of the results, closed-form relationships were derived for limit state 

thresholds, based on various parameters affecting capacity of different component types. 

Hence, irrespectively of the procedure followed for fragility estimation, a reliable methodology 

for limit state threshold (capacity) estimation is provided.  

Regarding the component which is usually the most critical for the seismic response, namely 

bridge piers, the procedure followed for the development of the database is presented in Fig. 2. 

The steps for the compilation of the database are:  



(a) Consideration of different concrete pier types, encompassing practically all common 

types found in a European bridge stock. Cylindrical, hollow cylindrical, rectangular, 

hollow rectangular and wall-type piers are considered herein. It should be mentioned 

that hollow rectangular and wall piers are commonly designed to remain elastic 

(especially in bridges with pier-to-deck connection through bearings), nevertheless their 

inelastic behaviour was studied to quantify all limit state thresholds.  

 

 

Fig. 2 – Procedure for development of database for bridge piers  

(details provided in Stefanidou & Kappos (2017)) 

(b) Consideration of pier cross section parameters, namely dimensions, longitudinal and 

transverse reinforcement ratio, normalised axial force, and material properties. Section 

analyses are performed for all relevant combinations of parameters considering confined 

and unconfined concrete material laws. Specifically, for confined concrete the Mander 

et al. (1988) model is used for cylindrical sections, the Priestley & Ranzo (2000) model 

for hollow cylindrical sections, and the Kappos (1991) model for rectangular, hollow 

rectangular, and wall sections. Parametrically defined input cross section files are set up 

and multiple section analyses are performed using the software AnySection 

(Papanikolaou, 2012). Pier damage is initially defined at cross section level, using local 

demand parameters (section curvature, φ), related to experimentally estimated damage 

(e.g. crack widths) via section analysis, therefore limit state thresholds in curvature 

(local) terms (Table 2) are defined within this step.  

(c) Consideration of a sufficiently broad range of heights for each pier section type and 

parametric setup of an inelastic cantilever model in order to perform pushover analysis 

and define limit state thresholds in terms of a global demand parameter (displacement 

of control point). Plastic hinge formation is considered at the cantilever base (lumped 

plasticity model), whereas the M-φ curve, calculated at step (b), is used as input. 



Inelastic static analysis is performed for all sections considered (strong and weak section 

direction analysed separately) paired with all different pier heights, using a Matlab-

based code developed for the setup of input files, and Opensees (McKeena & Fenves, 

2015) for inelastic static analysis. Limit state thresholds in global terms (displacement 

of control point for limit states 1 to 4) are correlated to local ones (curvature for limit 

states 1 to 4), using the results of inelastic pushover analysis, additionally considering 

P-delta effects. 

(d) Check for shear failure, calculating the displacement when shear strength Vu is 

developed (dV), considering reduced concrete contribution in the inelastic range (Fig. 

2(D)); dV is compared with the displacement at flexural failure (dfl) and the minimum 

value is considered as threshold value for the limit state (Table 2).  Vu is calculated 

according to Priestley et al. (1996), i.e. 

                                         u c w p
V V V V  

                             

(1) 

where, Vc is the shear resistance of concrete mechanisms, Vs the contribution of the 

transverse reinforcement and Vp is the shear carried by the axial load.  

Based on inelastic static analysis results, limit state thresholds are defined in displacement 

terms for all different pier types, section properties and heights considered (d1 to d4 for all cases 

described within steps a-d), and regression analysis is performed to derive closed-form 

relationships for each pier type and limit state.  

(e) Since all previous steps are based on the analysis of an inelastic cantilever model, the 

effect of different boundary conditions on limit state thresholds should also be 

considered. In general, bridge piers are restrained at the top (depending on the type of 

pier-to-deck connection and the rotational stiffness of the deck) and at the bottom, the 

latter depending on the foundation type and ground properties. The tip displacement of 

the equivalent cantilever (height equal to the height of contraflexure point calculated for 

each case as pier top to bottom moment ratio, from elastic analysis) is related to the 

displacement of the restrained pier, as shown in Fig. 2(E). 

For the quantification of abutment and bearing damage, threshold limit state values are 

defined in terms of displacement of the component control point, based on experimental data 

and other information from the literature, as described in Stefanidou & Kappos (2017) and 

summarised in Table 2.  

Threshold displacement values for seat-type abutments are related to the curvature ductility 

(for LS1) and backwall height (for LS2 to LS4); integral abutments are not considered herein. 

Since curvature ductility is related to backwall inelastic performance and properties (M-φ 

curve), correlation to gap size (of the abutment joint) is also made, to allow easy definition of 

the threshold limit state value for LS1, avoiding inelastic analysis of the backwall in each 

application. To this end, parametric analyses of abutment (component) models were performed, 

considering varying backwall heights and section properties, as well as different backfill soil 

properties. Based on these analyses, the displacement corresponding to μφ=1.5 was found to be 

approximately equal to 1.1dgap (values ranged from 1.04 to 1.2dgap) (Table 2).  

 



Table 2. Limit state thresholds for critical structural components 

Limit State 
R/C Piers / EDP: d (m) Abutments Bearings 

Local Global EDP: d (m) EDP: γ (%) 

LS 1 – 

Minor/Slight 

damage 

φ1: φy d1: 
1

1

( )
min

(V )

d

d

 
 
 


 

1
1.1

gap
d d   

,bw
( 1.5)


   

20 

1
( 0.02 )

br
d h   

LS 2 – 

Moderate 

damage 

φ2: min (φ: 0.004
c
  , 

φ: 0.015
s
 ) 

d2: 
2

2

( )
min

(V )

d

d

 
 
 


 2

0.01
bw

d h   
100 

2
( 0.1 )

br
d h   

LS 3 – 

Major/Exten-

sive damage 

φ3: min (φ: 

0.004

1.4

c

yw

w

cc

f

f

 

 




 

φ: 0.06
s
  ) 

d3: 
3

3

( )
min

(V )

d

d

 
 
 


 3

0.035
bw

d h   
200 

3
( 0.2 )

br
d h   

LS 4 – 

Failure/Collap

se 

φ4: min (φ: 

max
0.90M M  , φ:

0.075
s
  ) 

d4: 
4

4

( )
min

(V )

d

d

 
 
 


 4

0.1
bw

d h   
300 

4
( 0.3 )

br
d h   

         *bw: backwall 

Threshold displacement values for elastomeric bearings are related to shear strain, estimated 

from experimental data (Table 2). For the case of lead rubber bearings, limit state thresholds 

are differentiated mainly regarding LS1 (Stefanidou & Kappos, 2017), associated with the 

shear strain corresponding to lead core yielding. It should be noted that for both elastomeric 

and lead rubber bearings, attainment of the buckling load (Pcr) is also checked, while pot 

bearings, allowing sliding in one or both directions are not considered as critical components. 

At this stage of development the database does not include ‘old-type’ steel bearings found in 

pre-1980 concrete bridges or special isolation bearings other than lead rubber ones. 

Based on the above, a database of critical components was developed, providing 

component-specific limit state thresholds (as described in §3), for calculating component 

capacity and the associated uncertainty βC. A website is currently being developed, providing 

all information regarding the database compilation, namely software developed for multiple 

parametric inelastic static component analysis and analytical limit state threshold definition 

(Stefanidou, 2017), experimental data collected for quantitative damage definition, etc. The 

site will eventually provide an online platform, allowing component-specific limit state 

threshold quantification (based on the closed-form relationships provided in §3) in the frame 

of fragility analysis, avoiding both time-consuming inelastic analyses and the need for 

approximate definition of capacity regardless of the properties of the component, which affect 

the reliability of fragility analysis. Moreover, it will be interactive allowing input from 

users/contributors with a view to enriching the database and receiving feedback.  

2.2 Seismic demand 

In the frame of the ‘general’ methodology, the calculation of seismic demand at the 

component control point is differentiated depending on the application scale (single bridge or 

bridge stock). Bridge-specific fragility curves for a single bridge entail nonlinear response 



history analysis of a detailed inelastic model, using an enhanced IDA procedure described in 

Stefanidou & Kappos (2017) (IDA combined with multiple stripe analysis), in order to estimate 

seismic demand at component control points for different levels of earthquake intensity. 

Uncertainty in seismic demand (logarithmic standard deviation βD) is calculated for each 

critical component (with random properties), also accounting for record-to-record variability. 

Since the application of the methodology to bridge stocks for the derivation of bridge-specific 

fragility curves is computationally demanding, the procedure proposed for bridge stock 

analysis (described in Stefanidou & Kappos (2017)) is applied, and response spectrum analysis 

of a simplified elastic model using the Eurocode 8 spectrum for varying levels of earthquake 

intensity is invoked (scaling PGA, typically from 0.1g to 1g) to estimate seismic demand at 

component control points; the evolution of damage with earthquake intensity is plotted for each 

component considered (mean value). Bridge-specific fragility curves are plotted assuming 

lognormal distribution, while uncertainty in seismic demand (βD), calculated for generic 

bridges representative of a specific bridge class according to the classification system proposed 

by Moschonas et al. (2008), is used as dispersion value. It is clear that in practical fragility 

analysis it is not feasible (nor desirable) to estimate uncertainty through Monte Carlo analysis 

(even with reduced sampling) of each individual bridge; β values should inevitably come from 

a classification-based approach. 

 

Fig. 3 – Software for bridge-specific fragility curves (input data – cases of open/closed gap) 

For bridge stock analysis, a Matlab-based software is developed for the derivation of 

bridge-specific fragility curves. The software is based on a generic (parametrically defined), 

simplified 3D bridge model created using the OpenSees platform (McKeena & Fenves, 2015) 

according to bridge-specific, user-defined properties. The methodology described in 

Stefanidou & Kappos (2017) for single bridge analysis is embedded in the software; 

component-specific limit state thresholds are calculated based on user-defined properties and 

multiple response spectrum analyses for varying levels of earthquake intensity are performed 

for demand estimation. Different boundary conditions at abutments are considered for the case 

of open and closed gap, while fragility curves are automatically derived and plotted for each 

component, separately for the longitudinal and transverse directions. Bridge-specific fragility 

curves for the entire bridge are calculated and plotted, under the assumption of series 
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connection between components (lower bound), except for LS4, where piers or abutments are 

considered as critical components. Detailed description of the software developed can be found 

elsewhere (Stefanidou, 2017). 

3 SEISMIC CAPACITY ASSESSMENT (DATABASE FOR LIMIT STATE 

THRESHOLDS) 

The first step to gain insight into the relevance of bridge-specific fragility analysis, is to 

evaluate the effect of varying properties on component capacity, which is related to the limit 

state thresholds, or, in other words, to component damage for the limit states considered. To 

this end, different pier types and properties are considered, in the frame of the methodology 

proposed by Stefanidou & Kappos (2017), with a view to developing a database encompassing 

practically all common concrete pier types found in a bridge stock. The effect of varying pier 

properties on limit state thresholds is evaluated herein for different pier types and the results, 

considering both local and global demand parameters, are discussed. 

 A broad range of different section properties, namely dimensions, longitudinal and 

transverse reinforcement ratio, normalised axial force and material properties are considered, 

and section analysis is performed as described in §2.1(b). Damage is initially quantified using 

material strain values, namely εc and εs corresponding to experimentally observed crack widths, 

and moment corresponding to loss of bearing capacity for limit state 4 (post-peak M=0.9∙Mmax). 

Based on cross section analysis, moment-curvature curves are calculated (and bilinearised) and 

curvature values corresponding to the aforementioned material strains are defined. Hence, 

damage is initially defined in curvature terms (local EDPs φ1, φ2, φ3, φ4), and M-φ curves as 

well as effective stiffnesses EIeff (My/φy), needed for pushover analysis, are defined. 

Section analysis results for all possible parameter combinations (nearly 8000 section 

analyses for each pier type considering weak and strong section axes separately), are obtained 

for each pier type and regression analysis is performed. As an example, closed-form 

relationships for φy, φu and Μy, Mu are presented in Table 3 for cylindrical piers; relevant 

relationships are available for all different pier types, however a detailed presentation is beyond 

the scope of this paper (it will be made available on the aforementioned website).  

 

Table 3. Closed-form relationships for the estimation of moment vs curvature for cylindrical piers 

 

 

 
 

  

 

 

 

-5.716 -0.734 -0.017 +0.309 +0.089 

 

-2.331 -0.602 -0.582 -0.049 +0.602 

 

-0.369 -0.633 +0.225 +0.551 +0.053 

 

-0.269 -0.645 +0.217 +0.559 +0.054 

 

The effect of varying cross section parameters on local demand parameters (φ or μφ values) 

is depicted in Figures 4 and 5 for cylindrical piers and Fig. 6 for different pier types, 
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highlighting the over- or under-estimation of threshold values in case that a uniform value, 

irrespective of section properties, is considered.  

  
D=2.0 (m), fc= 33 (MPa), fy= 550 (MPa), v=0.20 D=2.0 (m), fc= 33 (MPa), fy= 550 (MPa), v=0.20 

Fig. 4 – Effect of longitudinal and transverse reinforcement ratio on yield (left) and ultimate (right) curvature of 

cylindrical sections 

  
D=2.0 (m), fc= 33 (MPa), ρw= 0.010, v=0.20 D=2.0 (m), ρl= 0.015, ρw= 0.010, v=0.20 

Fig. 5 – Effect of steel strength and longitudinal reinforcement ratio on curvature ductility (left) and steel and 

concrete strength on ultimate curvature (right) of cylindrical sections 

As shown in Fig. 4, yield curvature increases for increasing longitudinal reinforcement ratio 

(ρl), while the effect of transverse reinforcement ratio (ρw) is negligible. On the contrary, 

ultimate curvature is highly affected (increased for increasing transverse reinforcement), due 

to the relevant increase in ultimate concrete strain (εcu) caused by confinement. The effect of 

concrete and steel strength on ultimate curvature is depicted in Fig. 5(right). Based on the 

above, curvature ductility decreases for increasing longitudinal reinforcement ratio (μφ=φu/φy 

– Fig. 5(left)), while this effect is more pronounced for ρl >0.01. 

It is evident from Fig. 6 that an increase in compressive axial load (νd) results in decrease of 

curvature ductility, due to the associated increase in compression zone depth (xu). Moreover, 

as shown in Fig. 6, the effect of transverse reinforcement on available curvature ductility is 

more pronounced for lower values of compressive axial load.   
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Cylindrical Piers Hollow Rectangular Piers Rectangular Piers 

   

D=2.0 (m, fc= 33 (MPa), fy= 550 (MPa), 

v=0.20 

H=6.0 (m), B=3.0 (m), t=0.6 (m), fc= 33 

(MPa), fy= 550 (MPa), v=0.20 

H=0.8 (m) , B=1.0 (m) , fc= 33 (MPa), fy= 

550 (MPa), v=0.20 

Fig. 6 – Effect of normalised axial force and transverse reinforcement ratio on curvature ductility of cylindrical, 

hollow cylindrical and rectangular sections 

Table 4. Closed-form relationships for limit state thresholds of different pier types 
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All different pier sections considered within the database are paired with a sufficiently 

broad range of pier heights, and pushover analyses are performed (Fig. 2) to correlate local to 

global demand parameters and quantify damage in terms of displacement of the control point 

(global parameter values d1, d2, d3, and d4). The possibility of different failure modes (flexure, 

shear) as well as P-delta effects are accounted for, while the number of analyses varies from 

30000 to approximately 78000, depending on pier type and range of heights considered. It 

should be noted that various equivalent cantilever heights should additionally be considered, 

to account for different boundary conditions as described in §2.1(e) and Fig. 2(E). From 

equivalent cantilever analysis, closed-form relationships are derived for each pier type and limit 

state (d1, d2, d3, d4), given in Table 4. The pertinent coefficient values (βi) for all pier types and 

both strong and weak direction can be found in Annex A; as an illustration, βi values are 

provided for cylindrical piers in Table 5. 

The effect of varying cross section parameters on global demand parameters (δ or μδ) is 

depicted in Figures 7 and 8; similar remarks apply as in the case of local demand parameters. 

Threshold values in terms of drift for limit state 4 increase for increasing transverse 

reinforcement ratio (ρw) due to the increase in ultimate curvature, while the effect of 

longitudinal reinforcement ratio (ρl) is negligible. The latter remark is consistent with pertinent 

experimental results (Lu et al., 2005). On the contrary, regarding limit state 1, the effect of 
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longitudinal reinforcement ratio (ρl) on drift value is more significant, as this affects the yield 

curvature. 

Table 5 – Limit state thresholds for cylindrical piers (in global demand terms) 
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0

  
1

  2
  3

  
4

  5
  R2 

1
H  -6.524 -0.876 -0.018 -0.688 +0.086 +0.292 0.87 

2
H  -6.016 -0.674 -0.265 -0.076 +0.030 -0.072 0.88 

3
H  -3.872 -0.572 -0.238 -0.470 +0.505 -0.108 0.89 

4
H  -3.663 -0.542 -0.381 -0.518 +0.439 +0.001 0.85 

 

  
H=10 (m), D=2.0 (m), fc= 33 (MPa), fy= 550 (MPa), 

v=0.20 

H=10 (m), D=2.0 (m), fc= 33 (MPa), fy= 550 (MPa), v=0.20 

Fig.7 –Effect of longitudinal and transverse reinforcement ratio on δ1/h (left) and δ4/h (right) value of cylindrical 

sections 

Displacement ductility increases for increasing transverse reinforcement ratio (ρw) and 

slightly decreases for increasing longitudinal reinforcement ratio (ρw) as depicted in Fig. 8 and 

supported by experimental results (Lee et al., 2014). Moreover, increase in compression axial 

load and shear span length results in decreased displacement ductility, again consistently with 

pertinent experimental findings (Lee et al., (2014), Erduran & Yakut, (2004)) and standard 

mechanics. 

  
H=10 (m), D=2.0 (m), fc= 33 (MPa), fy= 550 (MPa), 

vd=0.20 

H=10 (m), D=2.0 (m), fc= 33 (MPa), fy= 550 (MPa), vd=0.20 

Fig. 8 – Effect of longitudinal and transverse reinforcement ratio (ρl and ρw), shear span ratio (L/D) and 

normalised axial load (νd) on displacement ductility of cylindrical piers (EDP: μδ) 
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4 SEISMIC DEMAND ASSESSMENT (UNCERTAINTY IN SEISMIC DEMAND) 

In bridge fragility analysis the seismic demand at component control points (see section 2) 

has to be defined. The methodology proposed for bridge-specific fragility analysis entails two 

alternative approaches for demand estimation, related to whether a single bridge or a bridge 

stock is addressed. Within bridge stock analysis (simplified approach), component demand is 

calculated based on elastic response spectrum analysis results of the simplified model 

(described in Fig. 3), while a reliable estimation of uncertainty in seismic demand (βD) is based 

on single bridge analysis (detailed approach). To this end a classification-based procedure is 

used to quantify uncertainty in seismic demand for the representative bridges of the most 

frequent classes based on nonlinear response history analysis results of the inelastic model and 

eventually provide βD values for bridge-specific fragility analysis of bridge stocks using the 

simplified model and elastic response spectrum analysis. This is the most refined method for 

βD quantification, based on analysis results, rather than literature recommendations (many past 

studied relied on HAZUS, 2015). 

The bridge inventory considered herein is part of Egnatia Motorway in Greece, a typical 

modern motorway in Southern Europe. Bridge-specific fragility curves for all bridges of the 

road network are provided in a following section (§5) based on the simplified approach, while 

the variation of dispersion value βD (uncertainty in demand) within different bridge classes 

(and critical components) is discussed herein, based on the detailed approach and inelastic 

dynamic analysis of refined bridge models. Representative bridges of three common classes in 

the stock are considered and the effect of structural configuration and component-specific 

properties on uncertainty in demand is evaluated at component and system level.  

4.1 Classification of bridge stock  

The bridges of the inventory, classified into categories according to an enhanced version of 

the classification scheme proposed by Moschonas et al. (2009) are summarised in Table 6; the 

scheme is tailored to the typologies common in medium and high seismicity areas of Europe. 

A code number (X1X2X3) is defined for each bridge according to the pier, deck, and pier-to-

deck connection, type. It is noted that, in principle, classification of bridges is not necessary 

for the application of the methodology proposed for the derivation of bridge-specific fragility 

curves. However, for reasons of practicality (explicit quantification of uncertainty is time 

consuming), bridges that fall within the same category are assumed to have the same 

uncertainty in demand; hence the need for classification.  

All different bridge classes of the studied section of Egnatia Motorway are presented in Fig. 

9. Prestressed concrete box-girder bridges with hollow rectangular piers monolithically 

connected to the deck, constructed using the cantilever method, constitute the most frequent 

typology (25%) due to the site topography (mountainous area). Simply-supported bridges, 

where the prestressed concrete beam deck is supported on hollow rectangular piers through 

elastomeric bearings, are the second most frequent class in the stock, while single span 

overpasses and box-girder bridges with cylindrical single-column or multi-column piers 

monolithically connected to the deck are also frequently encountered in this stock. 

 



Table 6 – Classification scheme for concrete bridges  

X1 X2 X3 

Pier Type Deck type Pier-to-deck connection 

Code 

Number 

Description Code 

Number 

Description Code 

Number 

Description 

1 Single column - 

Cylindrical section 

1 Slab (solid or with 

voids) 

1 Monolithic 

2 Single column - 

Hollow section 

2 Box girder 2 Through bearings 

3 Multi-column bent 3 Simply-supported 

precast post-

tensioned beams 

3 Combination of 

monolithic and 

bearing connections 
4 Wall-type 

5 V-type   

 

 
Fig. 9 – Different bridge classes in Egnatia Motorway, Western Macedonia section 

4.2 Uncertainty in seismic demand for different bridge classes  

The detailed approach (single bridge analysis) was applied to three case-study bridges 

(assigned to different classes according to the classification system described in §4.1) to 

quantify uncertainty in seismic demand, also considering uncertainty due to record-to-record 

variability. The calculation of seismic demand in the case of single bridge assessment is based 

on the results of nonlinear response history analysis of a detailed inelastic model. Specifically, 

seismic demand is calculated at the control point of each critical component (piers, bearings 

and abutments) for different levels of earthquake intensity, using an enhanced IDA procedure 

(see §2.2). Multiple analyses of statistically different, yet nominally identical, bridge samples 

are performed and displacements of component control points are recorded and compared to 

limit state thresholds to calculate the mean ag for each limit state. The dispersion in seismic 

demand, i.e. the logarithmic standard deviation (βD), is also calculated for each component. As 

noted earlier, the calculation of dispersion is computationally demanding, and in the context of 

bridge stock analysis, βD can be assumed to be the same for bridges within the same class.  

  

Fig. 10– Case Studies of Egnatia Motorway Bridges (category type 232(left), category type 221(right)) 



 
 

Fig. 11 – Case Study of Egnatia Motorway Bridges (category type 121) 

The three different case-study bridges analysed herein, are representative bridges of the 

classes: simply-supported girder bridge (type 232), prestressed concrete box girder bridge (type 

221) and overpass (type 121) (Figures 10, 11). Uncertainty in seismic demand is calculated for 

different levels of earthquake intensity and all critical components, and the relevant results are 

presented in Table 7 for a common bridge type (232) and Fig. 12 for bridge type 121 (values 

given for each component and level of earthquake intensity). It is seen that uncertainty in 

seismic demand varies, depending on the bridge type, the component considered, and 

earthquake intensity. In general, uncertainty in demand increases for increased earthquake 

intensity. It is emphasised that the variation in βD values is mainly due to record-to-record 

variability (three earthquake groups and different earthquake motion selection criteria for each 

group as described in Stefanidou & Kappos, (2017)), while it is also affected by the level of 

inelasticity in the component studied. 

 

Table 7. Component and system βD values for typical simply-supported bridge (type 232) 

 
 

 



 

Fig. 12 – Component and system βD values for typical overpass (type 121) 

Uncertainty in seismic demand, i.e. βD values for all critical components and bridge types 

considered, are summarised in Table 8 based on bridge-specific fragility analysis of the 

representative bridge in each class. As shown in Table 8, the βD value for the system is related 

to the most critical component (varying with the structural system), while the assumption of a 

uniform (average) βD value for the longitudinal and transverse direction in each bridge class 

appears to be consistent, since differences are mainly up to 15%. Nevertheless, it should be 

noted that this consistency should be related to the consideration of a uniform βD value for the 

system at all levels of earthquake intensity; note that using a single value for all curves is not 

only simpler but also prevents the not uncommon situation of intersecting fragility curves (due 

to the different βD), which lacks physical meaning and leads to inconsistent results.  

Table 8. Component and system βD values for some common bridge types  

Bridge 

Class 

βD 

Longitudinal Direction Transverse Direction 

Piers  Bearings  Abutments  Bridge 

System 
Piers  Bearings  Abutments  Bridge 

System 

#232 0.88 0.73 0.67 0.73 0.86 0.71 0.59 0.71 

#221 0.74 0.62 0.86 0.74 0.80 0.82 0.77 0.80 

#121 0.76 0.59 0.79 0.76 0.81 0.64 0.69 0.81 

 

4.3 Total Uncertainty for different bridge classes of a bridge stock 

The fragility curve for the bridge system should be drawn for the βtot value of the most 

critical component under the series connection assumption; the latter is typically the bearings 

in simply-supported bridges, and the piers in monolithic bridges (Nielson, 2005). As discussed 

in Stefanidou & Kappos (2017), the total uncertainty value is calculated at a component level 

according to equation 2, under the assumption of statistical independence, while the estimation 

of total uncertainty at system level is related to the structural system of the bridge; it is governed 

by pier (total) uncertainty for the case of monolithic bridge to deck connection, by bearings for 

simply supported bridges, and by abutments in single-span bridges. 

                          
2 2 2

tot C D LS
                                                     (2) 



Details for the estimation of βC and βLS can be found elsewhere (Stefanidou & Kappos, 

2017). Briefly, βC values for bridge piers (based on analysis results) were found to vary from 

0.31 to 0.41, according to the pier type, namely cylindrical, hollow cylindrical, rectangular, 

hollow rectangular and wall-type piers. Regarding βLS for critical components, namely bridge 

piers, bearings and abutments, the values 0.35, 0.17 and 0.40 are proposed, respectively. 

Finally, as discussed in §4.2, a uniform (mean) βD value for the longitudinal and transverse 

direction is recommended for the critical components of each bridge type. Comparing βD values 

of bridge types 232, 221 and 121 (Table 8), it is obvious that the most critical issue for the 

uncertainty quantification is the structural system; monolithic bridges (types 221 and 121) have 

almost equal total uncertainty (0.64 and 0.62 respectively), while the uncertainty for simply 

supported varies, as expected, since different components are deemed critical in each structural 

system. Therefore, in order to estimate βD for each component of the bridge types of a road 

network, based on the results of detailed analysis of the representative bridges of three frequent 

bridge types, differentiation according to the structural system is proposed (i.e. βD values of 

bridge type 221 are used for monolithic pier-to-deck connection and values of bridge type 232 

for the case of pier-to-deck connection through bearings).  

Based on the above, the total uncertainty values (βtot) for all bridge types in the stock are 

calculated according to equation 1 and summarised in Table 9. The total uncertainty for the 

bridge system (βtot), calculated from bridge-specific fragility analysis, was found to vary from 

0.72 to 0.82, values higher than 0.6 that is usually proposed in literature; it should be noted that 

these values also include uncertainty due to record-to-record variability. 

 

Table 9. Component and system βtot values for all bridge types of the inventory 

Bridge type Piers  Bearings Abutments βtot 

232 0.87 0.72 0.60 0.72 

221 0.81 0.63 0.75 0.81 

121 0.80 0.61 0.73 0.80 

122 0.88 0.72 0.60 0.72 

311 0.82 0.63 0.75 0.82 

111 0.82 0.63 0.75 0.82 

223 0.81 0.72 0.60 0.81 

112 0.88 0.72 0.60 0.72 

432 0.89 0.72 0.60 0.72 

411 0.82 0.63 0.75 0.82 

112 − 0.69 0.74 0.74 

Single Span 0.87 0.72 0.60 0.72 

 

5 BRIDGE-SPECIFIC VS. GENERIC FRAGILITY CURVES  

Bridge-specific fragility curves for all bridges in the analysed stock are derived, following 

the methodology developed for bridge populations, to assess the relevance of bridge-specific 

fragility analysis. First, the effects of structural configuration (different pier, deck and pier-to-

deck connection type), as well as of varying geometric properties, like pier height and bridge 

length, on bridge fragility are evaluated. Then, the differentiation of seismic fragility within 



the same typological class is investigated, quantifying the range within which the damage 

thresholds vary for a given typological class and comparison of bridge-specific and generic, 

referring to the representative bridge of each class, fragility curves is performed, highlighting 

the importance of the bridge-specific approach in assessing a bridge stock.   

5.1 Effect of structural configuration on bridge fragility  

The methodology for bridge populations was applied to all bridges of the studied bridge 

stock, to derive structure-specific fragility curves. The effect of different pier, deck, pier-to-

deck connection type and eventually the selected classification scheme on bridge fragility is 

depicted in Figures 13 to 17. The fact that these figures depict system fragility estimated under 

the assumption of series connection between components, should also be taken into account 

when interpreting the results.    

Bridge fragility curves of the generic bridges of typological classes 111, 311, and 411, 

namely bridges with single-column cylindrical, multi-column cylindrical, and wall type piers, 

respectively, monolithically connected to the slab-type deck are depicted in Fig.13. The effect 

of different pier type on system fragility for the longitudinal and transverse direction of bridges 

having the same deck type and pier-to-deck connection is clear; bridges with single column 

piers are more vulnerable than bridges with multi-column cylindrical or wall-type piers. The 

most critical components in the case of monolithic pier-to-deck connection are bridge piers and 

abutments, therefore the relatively higher vulnerability in the transverse direction is due to the 

more unfavourable boundary conditions in this direction of the piers (close to cantilever action, 

hence higher bending moment). The use of multi-column bents results in lower seismic demand 

for each pier and, eventually, lower vulnerability, whereas wall-type piers have higher flexural 

and shear capacity (but higher seismic demand as well) compared to cylindrical single-column 

piers. Bridges with multi-column piers monolithically connected to the slab of the deck are less 

vulnerable in the longitudinal direction than bridges having the same deck and pier-to-deck 

connection type, but wall-type piers, whereas this is not the case for the transverse direction 

(strong axis of wall-type pier). Comparing the bridge-specific fragility curves of bridges with 

different pier types it is clear that the differences are important, mainly in the transverse 

direction and the lower limit states; seismic fragility of bridges with wall-type piers can be 60% 

(or more) lower than the relevant of bridges with single column piers. Therefore, the effect of 

pier type on seismic fragility is deemed important and the use of generic fragility curves is not 

appropriate; bridge-specific fragility curves are recommended instead.  

  



Fig. 13 – Fragility curves for the longitudinal (x) and transverse (y) direction of bridge classes 111, 

311, and 411 (effect of pier type: single-column cylindrical, multi-column cylindrical, and wall type) 

Comparing bridges with single-column cylindrical and hollow rectangular pier sections 

monolithically connected to the box-girder deck (classes 121 and 221, Fig. 14), the main 

finding is that bridges with hollow rectangular piers are less vulnerable, while the differences 

may become significant for the transverse direction and the higher limit states. Piers and 

abutments are the most critical components for the bridge classes considered herein. The 

differences are larger for LS1 and the longitudinal direction, since yielding of cylindrical piers 

occurs sooner, while the minor differences for the longitudinal direction and LS3 and LS4 are 

attributed to the critical component for the specific limit state (abutments); this is not the case 

if component fragilities are compared since the pier type is different. Differences in the 

transverse direction and LS3 and LS4 should be interpreted considering pier geometry and 

orientation of hollow rectangular pier in the transverse direction (strong axis). Based on the 

above remarks (and referring to Fig. 13), the effect of pier type on bridge fragility is considered 

important, mainly regarding the lower limit states, and should be duly accounted for. 

 

  

Fig. 14 – Fragility curves for the longitudinal and transverse direction of bridge classes 221 and 121 

(effect of pier type: hollow rectangular vs. single-column cylindrical) 

 

The differences in system fragility for the case of simply-supported bridges having hollow 

rectangular or wall-type piers connected through elastomeric bearings to the prestressed 

concrete beam deck (types 232 and 432, Fig. 15) are small, more so in the longitudinal 

direction; the main reason is that in this case bearings are the most critical component for most 

limit states. To this end, the use of generic fragility curves could, in principle, be acceptable 

for the case of simply-supported bridges with different pier types; namely for the case that wall 

type and hollow rectangular piers are used. 

 



  
Fig. 15 – Fragility curves for the longitudinal and transverse direction of bridge classes 432 and 232 

(effect of pier type: hollow rectangular vs. wall-type) 

 

The effect of different deck type namely slab or box girder, on the fragility of bridges having 

single-column cylindrical piers connected to deck through elastomeric bearings (classes 122 

and 112), is in general minor, as shown in Fig. 16. It should be noted, though, that the effect is 

larger for the longitudinal direction. The use of generic fragility curves for the case of simply-

supported bridges with different deck type is, in general, acceptable, mainly for the transverse 

direction. 

 

  
Fig. 16 – Fragility curves for the longitudinal and transverse direction of bridge classes type 112, type 

122 (effect of deck type: slab or box girder) 

Finally, the effect of pier-to-deck connection (monolithic or through elastomeric bearings) 

on bridges having single-column cylindrical piers and slab-type deck, is depicted in Fig. 17 

(types 112 and 111). It is seen that fragility of monolithic bridges is lower for all limit states 

and in both directions. The latter is due to the fact that different components, namely bearings 

and piers, are critical for the seismic performance of each bridge class, mainly in the 

longitudinal direction.  



  
Fig. 17 – Fragility curves for the longitudinal and transverse direction of bridge classes 112 and 111 

(effect of pier-to-deck connection: monolithic vs. through bearings). 

 

From the comparison of bridge-specific fragility curves derived for the generic bridge in 

each typological class, it is concluded that bridge fragility varies among different classes, which 

establishes the importance of the classification scheme adopted. Among the features considered 

in defining the typological classes, the pier type and pier-to-deck connection type were found 

to affect bridge fragility the most, compared to the deck type (which is the most critical bridge 

component when non-seismic loads are considered). The maximum differentiation in fragility 

curves of different bridge classes was found in the case of monolithic pier-to-deck connection 

and varying pier types, because in that case piers are the most vulnerable component and their 

type (single-column cylindrical, multi-column cylindrical, hollow rectangular, wall, etc.) 

strongly affects the dynamic characteristics of the bridge and, hence, its seismic performance.  

5.2 Effect of geometric properties on bridge fragility  

The effect of pier height(s) and total bridge length on bridge fragility is evaluated comparing 

the bridge-specific limit state thresholds (mean PGA values) for all bridges and each bridge 

class of the inventory (Figures 20 to 22). The variation of threshold values is clear, highlighting 

the effect of bridge geometry (pier height and total length) on seismic fragility and the 

importance of bridge-specific fragility curves in the seismic assessment of a bridge stock. In 

Fig. 20, the variation of limit state threshold values in PGA terms with varying maximum pier 

height is presented. Since the range of pier heights and the number of piers are not accounted 

for, an equivalent height (Hequiv) is proposed (Eq. (3) and Fig. 21), considering the heights of 

all piers (hi) and the number of piers (n), in order to evaluate the effect of pier height on system 

fragility; clearly this is a simplified way to address the issue, not appropriate for extreme cases, 

such as the presence of a short pier in the middle of the bridge (found in some poorly designed 

existing bridges). 

                          3
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As seen in Fig. 21, bridges having shorter piers (lower heq) are in general more vulnerable, 

however it should be highlighted that the threshold values refer to the bridge system rather than 

the individual components. The general trend and the relevant limit state threshold variation is 

depicted in Fig. 21 for different bridge classes and limit states (piers are the most critical 

components for the cases shown). 



 

 
Fig. 20 – Effect of maximum pier height on seismic fragility of different bridge classes (mean PGA values for 

LS4) 

 
Fig. 21– Effect of equivalent pier height on seismic fragility of different bridge classes 

Finally, based on Fig. 22, it appears that the effect of total length on bridge system fragility 

varies, depending on the bridge class and structural system; no clear trends can be identified in 

this case, as several other factors affect the calculated PGA thresholds. 

 
Fig. 22 – Effect of total bridge length on seismic fragility of different bridge classes 

Summarising, the effect of geometric properties on bridge fragility is found to be significant, 

as the limit state thresholds for bridges classified within the same class may differ by up to 

60%; hence, the necessity for bridge-specific fragility analysis clearly emerges. 

5.3 Differentiation of seismic fragility within the same typological class 

As already mentioned, most of the available methodologies in the literature propose the use 

of generic fragility curves for all bridges that fall within the same category, under the 



assumption that the seismic performance of all bridges in the category is similar. The 

limitations of this assumption are investigated here, by considering the bridge-specific fragility 

curves for all bridges within the two most common classes of the studied road network (types 

232 and 221, Fig. 12).  

Table 10. Limit state thresholds in PGA terms for all bridges of typological class 232 (both directions)  

232 

Fragility (Direction x) Fragility (Direction y)   

LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4 Lspan (m) Hpier (m) Ltot (m) 
Hmax 

(m) 

1 (repr.) 0.12 0.36 0.75 1.01 0.15 0.37 0.65 1.26 40 21.0÷50.60 280 50.6 

2 0.13 0.37 0.75 1.50 0.13 0.38 0.74 1.68 36.3÷37.50 9.4÷26.92 335.1 26.92 

3 0.11 0.28 0.53 0.90 0.11 0.23 0.65 1.45 36 11.4÷41.01 216 41.01 

4 0.12 0.32 0.80 0.93 0.16 0.32 0.70 0.94 40 12.94÷38.24 200 38.24 

5 0.14 0.28 0.79 1.51 0.20 0.45 0.95 1.61 
36.95÷38.0

5 
16.3÷30.27 150 30.27 

6 0.15 0.40 0.89 1.44 0.22 0.45 0.89 1.78 39.1÷39.50 12.75÷30.98 157.2 30.98 

7 0.15 0.45 0.89 1.41 0.18 0.38 0.75 1.45 40 12.75÷30.98 200 30.98 

8 0.13 0.30 0.75 1.33 0.12 0.28 0.55 1.49 39.1÷39.50 12.75÷30.98 157.2 30.98 

mean 0.13 0.35 0.77 1.25 0.16 0.36 0.74 1.46 

  

211.94 35.00 

standar

d 

deviatio

n 

0.015 0.061 0.113 0.262 0.039 0.077 0.131 0.263 65.39 7.80 

COV 11.11% 17.67% 14.66% 
20.90

% 
24.61% 21.65% 17.84% 18.06% 30.85% 

22.29

% 

Table 11. Limit state thresholds in PGA terms for all bridges of typological class 221 (both directions) 

221 

Fragility (Direction x) Fragility (Direction y)   

LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4 Lspan (m) Hpier (m) Ltot (m) 
Hmax 

(m) 

1 (repr.) 0.35 0.68 0.86 1.33 0.30 0.75 1.19 2.02 61.5÷112.1 41.30÷45.23 234.1 45.23 

2 0.30 0.76 0.83 1.07 0.48 0.70 1.21 2.38 94.5÷160 55.00÷58.00 349 58 

3 0.36 0.93 1.23 1.74 0.54 0.77 1.36 2.58 80÷120 34.20÷36.41 290 36.41 

4 0.16 0.59 0.98 1.81 0.24 0.55 0.97 1.39 75.6÷120 28.12÷63.39 636.2 63.39 

5 0.33 0.79 1.12 1.33 0.41 0.77 1.36 2.58 60.75÷101.5 34÷63.03 426 63.03 

6 0.24 0.89 1.13 1.39 0.45 0.70 1.17 2.40 91÷144 39÷45.10 326 45.10 

7 0.36 0.72 0.95 1.35 0.35 0.77 1.34 2.32 61÷107 29.12÷87.83 457 87.83 

8 0.37 0.76 0.96 1.50 0.30 0.62 1.09 2.30 64.3÷118.6 35.86÷44.89 247.2 44.89 

9 0.36 0.72 0.95 1.35 0.47 0.72 0.95 2.50 85 32.47 170 32.47 

10 0.29 0.75 1.04 1.80 0.43 0.62 1.09 2.32 80÷86 46.08 166 46.08 

11 0.41 0.65 0.82 1.42 0.42 0.75 1.29 2.05 75÷80 38.37 155 38.37 

mean 0.32 0.75 0.99 1.46 0.40 0.70 1.18 2.26 

  

314.23 50.98 

standard 

deviation 
0.070 0.098 0.131 0.231 0.091 0.074 0.147 0.341 147.49 15.97 

COV 21.97% 13.09% 13.28% 15.81% 22.81% 10.60% 12.44% 15.11% 46.94% 31.32% 

 

 

  



Table 12. Differentiation (%) in fragility of type 232 bridges compared to the representative bridge of the class. 

Bridge 
LS thresholds (Direction x) LS thresholds (Direction y) 

LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4 

1 Representative bridge of class 232 Representative bridge of class 232 

2 -8 -3 0 -49 13 -3 -14 -33 

3 8 22 29 11 27 38 0 -15 

4 0 11 -7 8 -7 14 -8 25 

5 -17 22 -5 -50 -33 -22 -46 -28 

6 -25 -11 -19 -43 -47 -22 -37 -41 

7 -25 -25 -19 -40 -20 -3 -15 -15 

8 -8 17 0 -32 20 24 15 -18 

 

Limit state thresholds for all bridges of classes 232 and 221 (namely bridges with hollow 

rectangular piers connected through bearings to prestressed beam deck and monolithically 

connected to box-girder bridge deck, respectively) are presented in Tables 10 and 11 in PGA 

terms. Mean, standard deviation and coefficient of variation (COV) values based on statistical 

analysis of results are presented and differentiation (percentage) of the bridge-specific limit 

state threshold compared to the relevant value of the representative bridge, is additionally 

provided (Tables 12 and 13) for each limit state and both longitudinal and transverse direction. 

The total bridge and span length, as well as the range of pier heights and maximum pier height, 

are also provided (Tables 10 &11) to highlight the effect of different geometric properties of 

fragility curves of bridges classified within the same class. 

Table 13. Differentiation (%) in fragility of type 221 bridges compared to the representative bridge of the 

class. 

Bridge 
LS thresholds (Direction x) LS thresholds (Direction y) 

LS1 LS2 LS3 LS4 LS1 LS2 LS3 LS4 

1 Representative bridge of class 221 Representative bridge of class 221 

2 14 -12 3 20 -60 7 -2 -18 

3 -3 -37 -43 -31 -80 -3 -14 -28 

4 54 13 -14 -36 20 27 18 31 

5 6 -16 -30 0 -37 -3 -14 -28 

6 31 -31 -31 -5 -50 7 2 -19 

7 -3 -6 -10 -2 -17 -3 -13 -15 

8 -6 -12 -12 -13 0 17 8 -14 

9 -3 -6 -10 -2 -57 4 20 -24 

10 17 -10 -21 -35 -43 17 8 -15 

11 -17 4 5 -7 -40 0 -8 -1 

It is seen that the differentiation of limit state thresholds among bridges of the same category 

is typically up to 35%; however, for the case of bridges with hollow rectangular piers connected 

through bearings to the prestressed concrete beam deck (type 232) the underestimation may 

reach 50% and for bridges with hollow rectangular piers monolithically connected to the box-

girder deck, the underestimation may reach 80% (Tables 12 and 13). The differences are, in 

general, larger in the case of monolithic bridges and the transverse direction. Furthermore, it 



should be outlined that differentiation in limit state thresholds (mean value), compared to that 

of the representative bridge of the class, is lower when the geometric properties (pier height, 

bridge length, etc.) are similar. 

5.3.1. Comparison of bridge-specific and generic fragility curves  

Bridge-specific fragility curves for all bridges in class 232 (hollow rectangular piers 

connected through bearings to the prestressed concrete beam deck) and 221 (piers 

monolithically connected to the box-girder bridge deck) were derived and compared to the 

fragility curves of the generic bridge, representative of each class. The results are depicted in 

Figures 23 and 24, along with upper and lower threshold values (dashed lines - range of 

thresholds) for each limit state. 

 
 

Fig. 23 – Fragility of the generic bridge in class type 232 and range of damage thresholds 

 

  
Fig. 24 – Fragility of the generic bridge in class type 221 and range of damage thresholds 

 

As far as bridge class 232 is concerned, the variation of upper and lower level fragilities 

compared to that of the generic bridge is small, therefore fragility curves of the bridge selected 

as representative can be used for all bridges that fall within the same category for the 

longitudinal direction and LS1 to LS3.  The range of threshold values is fairly narrow in the 

longitudinal direction (25% variation from the generic bridge) for lower limit states, however 

it broadens for higher earthquake intensity and limit states and for the transverse direction, 

being dependent both on the component that is critical for each limit state and the direction. 

The variation of upper and lower level fragilities for bridge class type 221 is smaller for LS2 

to LS4 but larger for LS1. In general, the use of the fragility curves of the generic bridge for 



all those in the same category may underestimate or overestimate fragility by up to 35%, 

however in some cases (i.e. LS1 for bridge class 221 and LS4 for class 221) the underestimation 

is up to 50%. 

6 CONCLUSIONS  

The relevance of bridge-specific fragility analysis was assessed herein. First, the effect of 

varying component and system properties on both capacity and (seismic) demand was 

quantified. Then the effect of structural system and key geometric properties on bridge fragility 

was assessed. The foregoing allowed to subsequently check the limitations of the assumption 

that generic fragility curves can be used for bridges classified within the same category, 

referring to a realistic bridge stock. Both structural system (pier type, deck type and pier-to-

deck connection) and geometric properties were found to substantially affect bridge fragility. 

The use of generic fragility curves may become acceptable under certain circumstances, 

namely for bridges with the same pier type and pier-to-deck connection having a different deck 

type, and bridges with the same deck type and pier-to-deck connection when pier type is either 

wall-type or hollow rectangular (i.e. very stiff cross section). However, this is only true when 

bridge geometries, namely pier heights and bridge length, are similar, since the effect of 

geometric properties on bridge fragility was found to be significant (up to 60%). Moreover, the 

use of generic fragility curves for bridges belonging to the same class were found to 

overestimate (up to 35%) or underestimate (up to 50%) bridge fragility, depending on the limit 

state and critical direction considered. The use of generic fragility curves seems more 

consistent for simply-supported bridges and the limit states 2 and 3.  

Summarising, the most important findings are listed  below:   

 Limit state thresholds (bridge capacity) are highly affected by component properties and the 

demand parameter selected as a proxy for damage; hence, use of component-specific values 

is relevant and often necessary. 

 Uncertainty in seismic demand generally increases with earthquake intensity, being affected 

by the inelastic behaviour of the component studied, the record-to-record variability, and 

the criteria for earthquake motion selection; uncertainty level varies among critical 

components (piers-abutments-bearings) and bridge directions. 

 The total uncertainty of bridge system (βtot), calculated in bridge-specific fragility analysis, 

was found to vary from 0.72 to 0.82, which are higher than 0.6, the value commonly used 

in the literature; it should be noted that these values also include uncertainty due to record-

to-record variability. 

 Pier type has an important effect on system fragility for the case of bridges with box-girder 

decks and monolithic pier-to-deck connection, as piers are the most critical component for 

this bridge type. The effect of pier type on the fragility of simply-supported (through 

elastomeric bearings) bridges is lower, as the bearings are the most critical component for 

this bridge class for most limit states. 

 Bridges with single-column cylindrical piers monolithically connected to slab or box-girder 

decks are more vulnerable than similar bridges having multi-column cylindrical, wall-type, 

or hollow rectangular piers. Among bridges with monolithic pier-to-deck connection, those 



with hollow rectangular piers monolithically connected to box-girder deck are the less 

vulnerable class (transverse direction). 

 The effect of deck type on fragility of bridges having single-column cylindrical piers 

connected to the deck through elastomeric bearings is in general minor. 

 Regarding the effect of pier-to-deck connection, monolithic bridges are less vulnerable for 

all limit states and both bridge directions compared to simply-supported bridges; different 

components are critical in each case (piers and bearings, respectively). 

 The variation of limit state thresholds within a bridges class, due to different pier heights 

and total length, highlights the need for bridge-specific fragility curve development, as limit 

state thresholds for bridges with varying geometric properties (belonging to the same class) 

may vary by up to 60%. 

 The use of generic bridge fragility curves for all bridges in a typological class may 

underestimate or overestimate fragility, typically by up to 35%; however in some cases the 

underestimation may reach 50% (or even more), which is clearly an issue of concern and a 

good reason for using bridge-specific curves.  

 For simply-supported bridges (prestressed concrete beam deck, bearing-supported to the 

piers), the range of LS threshold values is generally fairly narrow for the longitudinal 

direction and the lower limit states (LS2 & LS3), but it increases for higher earthquake 

intensity and higher limit states (heavy damage, failure). For the transverse direction, the 

variation is higher for the lower limit states as well. 

 For the studied case of monolithic bridges (hollow rectangular piers monolithically 

connected to the box-girder of the deck), the range of limit state thresholds is broader, mainly 

for the lower limit states and the transverse direction, as the seismic performance of 

monolithic bridges is highly dependent on varying properties and boundary conditions of 

the piers, which strongly affect the dynamic characteristics of the bridge. However, the range 

is narrower for higher limit states (LS3 & LS4), compared to simply-supported bridges. 

Based on the above, the need for bridge-specific fragility analysis emerges since, the use of 

generic fragility curves can, in several cases, significantly affect the reliability of a road 

network assessment. Therefore, the concept of bridge-specific fragility analysis, recently 

proposed in literature, seems to be a step in the right direction. 
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ANNEX A – β values for all pier types (global demand parameter, see table 4) 

 

Hollow Cylindrical Piers  

 
0

  
1

  2
  3

  
4

  5
  R2 

1
H  -5.996 -0.445 -0.007 -0.198 -0.470 -0.117 0.74 

2
H  -5.285 -0.385 +0.224 -0.352 +0.106 -0.0013 0.82 

3
H  -3.867 -0.287 -0.084 -0.486 -0.433 +0.375 0.82 

4
H  -5.863 -0.308 -0.119 -0.885 -0.219 +0.031 0.80 

Rectangular Piers (Strong direction h)  

 
0

  
1

  2
  3

  
4

  5
  R2 

1
H  -5.695 -0.595 +0.014 -0.076 -0.549 +0.080 0.61 



2
H  -5.520 -0.736 +1.315 -0.200 -0.120 +0.018 0.85 

3
H  -0.643 -0.673 +1.165 -0.210 -0.262 +0.975 0.62 

4
H  -2.861 -0.611 +0.426 -0.146 -0.114 +0.249 0.79 

Rectangular Piers (Weak direction b) R2 

 
0

  
1

  2
  3

  
4

  5
   

1
H  -5.290 -0.386 +1.350 -0.106 -0.526 +0.101 0.74 

2
H  -5.350 -0.718 +1.073 -0.085 -0.089 +0.021 0.75 

3
H  -1.531 -0.639 +0.867 -0.284 -0.109 +0.772 0.67 

4
H  -2.518 -0.630 +0.845 -0.252 -0.106 +0.386 0.60 

Hollow Rectangular Piers (Strong direction h) R2 

 
0

  
1

  2
  3

  
4

  5
   

1
H  -7.606 +0.912 +0.957 -0.175 -0.203 -0.502 0.63 

2
H  -5.952 +0.809 +0.857 -0.076 -0.020 -0.133 0.60 

3
H  -4.483 +0.774 +0.459 +0.313 -0.094 -0.028 0.66 

4
H  -4.415 +0.796 +0.264 -0.091 -0.004 -0.083 0.68 

Hollow Rectangular Piers (Weak direction b) R2 

 
0

  
1

  2
  3

  
4

  5
   

1
H  -5.715 +0.714 -0.629 -0.104 -0.181 -0.359 0.87 

2
H  -5.422 +0.751 -0.364 -0.020 -0.075 -0.008 0.90 

3
H  -3.401 +0.728 -0.648 -0.156 -0.314 +0.071 0.97 

4
H  -1.732 +0.721 -0.285 -0.573 -0.413 -0.250 0.87 

 

Wall Piers (Strong direction h) R2 

 
0

  
1

  2
  3

  
4

  5
   

1
H  -6.650 -0.447 -0.230 -0.142 -0.423 +0.067 0.86 

2
H  -4.021 -0.804 -0.645 +0.390 -0.102 -0.018 0.94 

3
H  +2.580 -0.793 -1.003 +0.482 -0.306 +1.096 0.64 

4
H  -3.450 -0.842 -0.054 +0.190 +0.069 +0.082 0.70 

Wall Piers (Weak direction b) R2 

 
0

  
1

  2
  3

  
4

  5
   

1
H  -5.957 -0.861 +0.707 -0.096 -0.690 +0.115 0.67 

2
H  -5.681 -0.871 +0.164 -0.062 -0.266 +0.044 0.88 

3
H  0.096 -0.810 -0.057 -0.086 -0.339 +1.075 0.70 

4
H  -3.91 -0.864 +0.085 +0.036 -0.079 +0.009 0.85 

 


