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Abstract 
The reported discrepancy between theory and experiment for external combustion Stirling en-
gines is explained by the addition of thermal resistance of the combustion gasses to the standard 
Carnot model. In these cases, the Stirling engine ideal efficiency is not as is normally reported 
equal to the Carnot cycle efficiency but is significantly lower. A new equation for ideal Stirling en-
gine efficiency when the heat is obtained through external combustion without pre-heating the air, 
is presented and results for various fuels tabulated. The results show that petrol and diesel, in-
ternal combustion engines (Otto cycle) have a higher ideal efficiency than the Stirling engine. 
When comparing thermoacoustic engines heated by wood, efficiency should not be quoted as a 
percentage of the Carnot efficiency, but against a figure 48% lower than Carnot. The effect is not 
seen with electrically heated rigs, solar or nuclear fission heated engines. 
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1. Introduction 
The maximum theoretical efficiency of the Stirling cycle is often quoted as the same as the Carnot efficiency 
[1]: 

1 .c

h

T
T

η
 

= − 
 

                                        (1) 

The rationale behind writing this paper is to provide a new upper limit to the efficiency of external combus-
tion Stirling engines and hence an explanation for the often reported low measured efficiency of Stirling engines 
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in real-world external-combustion situations, compared with theoretical or rig results. Hopefully researchers and 
lecturers will include this paper’s finding in their teaching of Stirling engines.  

There are many references to a discrepancy between theoretical and experimental efficiency with the Stirling 
Cycle. Thermoacoustic rig test results using electrical heating on the hot heat exchanger have shown impressive 
thermal efficiencies of over 18% [2] that are not reproduced using external combustion processes. This is be-
cause (1) is only true where the heat is supplied at a fixed temperature, such as in solar, through electrical heat-
ing, or a fission source. In such applications, the correlation of theory with experiments is within the expected 
experimental error. For example, use of plutonium as a heat source in a thermoacoustic engine [3] has an agree- 
ment of 15% between simulation and experiment with a stated thermodynamic efficiency of 18%. In thermoa- 
coustic tests with electrical heaters agreement between DeltaEC [4] simulation and experiment varies between 
about 40% [5] and 15% [6]. 

However, work on a swash plate V4X2 Stirling engine for automotive use [7] noted “... a power drop pheno-
menon [that] was [not] fully understood. The design manager had been misguided by too optimistic calculations 
by the Heat Transfer group: The cause was insufficient heat transfer capacity on the outside of the heater…” 

Other automotive applications such as the Philips engine [8] have also shown an unexplained loss of effi-
ciency. 

More recently, modelling of an alpha Stirling engine for automotive [9] use implies that an external combus-
tion Stirling engine is more efficient than a Diesel engine and that the only issue is the time for the engine to 
heat up and hence power available. However, the same report discusses a “50% unknown efficiency degrada-
tion”. 

The apparent discrepancy between theory and experiment has also been attributed to pressure gradients in the 
thermoacoustic regenerator, and much work undertaken to mathematically model regenerator performance [10]. 
Lower than expected efficiencies have been reported in other works [11]-[16]. 

By modelling the entire system, including combustion, this paper presents a more accurate upper bound for 
external combustion Stirling engine cycle efficiency and better explains the discrepancies. When heating of the 
hot heat exchanger is by external combustion, efficiency is much less than the Carnot efficiency even in the 
idealised case.  

2. Methodology 
In this paper, we have augmented the maximum theoretical Carnot efficiency for specific fuel types using the 
model in Figure 1. 
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Figure 1. Model for fuel heated Stirling engines. 
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In the ideal case, with perfect heat exchangers: 

0, and hence and .h c aa e hT T TR TRθ θ = == =                           (2) 

It should be noted that Rθc is a function of the combustion gas itself and is independent of the heat transfer 
mechanism, i.e. it applies equally to radiation, conduction or convection mechanisms and where: 

1 .c
pc c

R
C m

θ =


                                         (3) 

The flame at a temperature Tf passes heat through the thermal resistances to the surrounding temperature Ta. 
So that heat available from combustion is 

.f a
c

c

T T
Q

Rθ
−

=                                          (4) 

And heat supplied to the Stirling Engine (SE) is: 

.f h
SE

c

T T
Q

Rθ
−

=                                         (5) 

The difference between cQ  and seQ  being the heat lost in the exhaust gas. 
Inspecting Equations (5) and (1) show that when h fT T→  heat available to the SE approaches zero and 

when h cT T→  the Stirling efficiency drops. In both cases the overall engine efficiency 0SEη → . 
For the general case where the fuel may contain water (for example wood), mass flow of the combustion 

products is the sum of its constituents: 

c f a wm m m m= + +                                         (6) 

and letting 
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                                   (7) 

The specific heat of the combustion products is a function of fuel, air and fuel moisture content given by: 

.pc pf pa a f pw wC C C X A C R= + +                                 (8) 

The heat available from combustion is reduced due to the evaporation of water content in the fuel, so: 

.c f vf w hQ m C m L= −                                      (9) 

Assuming no dissociation of component gasses, the idealised flame temperature is: 

.f vf w h
f c

pc c
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                                  (10) 

Making substitutions from (6) and dividing by fuel mass flow rate gives: 

.vf w h
f c

pf s f pa w pw

C R L
T T

C X A C R C
−
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+ +

                             (11) 

Maximum work output from the Stirling engine is: 
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Defining overall efficiency as 

.SE
SE
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And substituting from Equations (4), (5) with  

pf s f pa w pw

vf w h

C X A C R C
K

C R L
+ +

= −
−

                                (14) 

gives: 
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                                 (15) 

Differentiating and setting: 

0.SE

hT
η∂

=
∂

                                        (16) 

Gives the maximum efficiency condition when: 

.h f cT T T=                                        (17) 

3. Results and Discussion 
The results for different fuels, using Equations (11), (15) and (17) are shown on Table 1. The Carnot efficiency 
is defined as [1]: 

carnot 1 .a

f

T
T

η
 

= −  
 

                                    (18) 

The column ηSE, shows the idealised efficiency of an external combustion Stirling engine assuming perfect 
heat exchangers for the hot and ambient side. 
ηSE is the maximum theoretical efficiency of the fuels shown and can be seen that it varies between 39.3% for 

wood to 53.3% for hydrogen, which represents a reduction from the normally quoted maximum (Carnot) SE ef-
ficiency (shown as “Ratio” on the table) of 48.2% and 58.8% respectively. 

All the conditions are for use with air as the oxidising agent at standard pressure and without any pre-heating. 
Wood combustion particularly when using cut branches is highly variable and heat produced depends on how 

dry the wood is and how well the fire is made. The values of 50% excess air (Xs = 1.5) and 15% moisture con-
tent are considered the best achievable conditions. 

The Diesel figures show a 50% excess air value to compare with the Otto cycle discussed in the next section. 
Without the excess air, results are very similar to the Petrol figures. 
 
Table 1. Comparison of engine efficiency for different fuels. 

Fuel 
Efficiency result 

ηSE Carnot Ratio Xs Af Cvf Cpf Rw 

Wood 39.3% 81.5% 48.2% 1.5 6 15,000 1.8 15.0% 

Petrol 51.7% 89.8% 57.6% 1 14.7 45,000 2.22 0.0% 

Diesel 46.2% 86.5% 53.4% 1.5 14.5 46,000 2.22 0.0% 

Methane 52.9% 90.5% 58.5% 1 17.19 55,500 2.22 0.0% 

Propane 53.1% 90.6% 58.6% 1 15.67 50,300 1.67 0.0% 

Methanol 52.2% 90.1% 57.9% 1 6.47 23,000 1.93 0.0% 

Ethanol 52.3% 90.2% 58.0% 1 9 30,000 1.88 0.0% 

Hydrogen 53.3% 90.7% 58.8 1 34 141,790 14.3 0.0% 
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Table 2. Comparison of external combustion Stirling with internal combustion engine. 

Fuel type 
Efficiency for given compression ratio 

ηSE Otto cycle r 

Petrol 51.7% 60.2% 10 

Diesel 46.2% 69.8% 20 

4. Comparison with Other Cycles 
4.1. Otto Cycle 
The maximum efficiency of an ideal Otto cycle engine, is given by [1]: 

ideal 1

11 .
rγ

η −

 = − 
 

                                    (19) 

From Table 2 and using representative compression ratios of 10:1 for petrol and 20:1 for compression igni-
tion (Diesel) engines, it can be seen that the ideal internal combustion engine efficiency is significantly higher 
than external combustion, thus exposing the Stirling engine myth. 

4.2. Rig Testing 
The results in the previous section go some way to explaining the discrepancy between the observed theoretical 
and experimental results for external combustion. However, there are cases where Equation (1) does hold. Many 
Stirling or thermoacoustic engine experiments use electrical heating to simulate the external combustion process. 
In such cases heat transfer from the electrical heater to the HHX is by a combination of radiation, convection 
and conduction, with the proportion of each depending on relative temperatures. The temperature of the heating 
coil will be higher than Te so as to transfer the heat. However, this temperature should not be confused with Tf, 
which is a fuel flame temperature or Rθc which is thermal resistance based on combustion products. The differ-
ence in perspective arises from heat losses. With electrical heating, coil temperature increases do not increase 
losses, as the heat input is dependent on the product of coil voltage and current. There is still an Rθ value but 
this is a method of determining coil temperature rise and does not directly affect losses. There may be other 
secondary and parasitic losses due to ineffective insulation, where increased coil temperature increases heat to 
the environment that bypasses the engine, but in the ideal case these losses are zero. 

4.3. Solar and Nuclear Power 
Equation (1) is still valid for any heat source that retains its temperature when the SE absorbs heat. One typical 
example is solar radiation, where the temperature of the sun’s surface does not change no matter how much 
power earth-based Stirling engines absorb. Another is in heating with nuclear fission, where the concept of Tf is 
not valid. 

5. Conclusions 
The ideal Stirling cycle for external combustion engines that use non-pre-heated air as the oxidiser is always 
significantly lower than the equivalent Carnot cycle engine and for commonly used fuels is lower than the ideal 
Otto cycle efficiency. 

The ηSE measure gives a more accurate representation of the idealised efficiency of the external combustion 
Stirling engine cycle. 

When modelling the efficiency of external combustion Stirling cycles, the effective thermal resistance of the 
combustion products should be included in the calculation. 

The ideal Stirling engine gives lower efficiency for automotive applications than conventional Otto cycle en-
gines. 
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Nomenclature 
Af Mass air to fuel ratio Rw Moisture content of fuel: mass water/mass fuel 

Cpa Specific heat air = 1.01, kJ/K (at constant pressure) Rθa 
Total thermal resistance of AHX from working gas to  
ambient, K/W 

Cpc Specific heat combustion gasses. (at constant pressure) Rθc Effective thermal resistance of the combustion process 

Cpf Specific heat of fuel, kJ/K (at constant pressure) Rθh 
Total thermal resistance of HHX from combustion gas to 
Stirling working gas, K/watt 

Cpw Specific heat steam = 1.93, kJ/K Ta Ambient temperature, Kelvin 

vfC  Higher calorific value of fuel, kJ/kg Tc Temperature of the cold heat exchanger (AHX), Kelvin 

Lh Latent heat of evaporation of water = 2264 kJ/kg Te Entry temperature to the heat engine, Kelvin 

am  Mass flow rate of air, kg/s Tf 
Ideal flame temperature, assuming no dissociation of  
component gasses 

fm  Mass flow rate of fuel, kg/s Th Temperature of the hot heat exchanger (HHX) in Kelvin 

cm  Mass flow rate of combustion gasses, kg/s WSE Work output from the engine, W 

wm  Mass flow rate of water, kg/s Xs Mass ratio of air to stoichiometric air flow 

cQ  Heat available from combustion, watts η Efficiency: work out/heat in 

QSE Amount of heat supplied to the Stirling engine, W ηSE The new efficiency of the Stirling engine: work out/heat from 
combustion 

r Otto cycle compression ratio γ Ratio of specific heats at constant volume to constant  
pressure 
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