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A conceptual framework for studying collective reactions to events in 

location-based social media 

1 Introduction 

Events are one of the core concepts of spatial information proposed by Kuhn (2012), 

and their study, often in the form of social media has become increasingly popular in 

GIScience (e.g. Sui and Goodchild 2011). However, current work often ignores the 

distinction between an event, with a physical manifestation representing some form of 

change, and thus being bounded in time (and space), and reactions to such an event 

broadcast in location-based social media (LBSM). Crucially, while events and reactions 

share attributes, which is why any reaction on social media can also be treated as an 

event, specific characteristics only apply to reactions. We therefore set out to address 

this gap, by exploring the relationship between, and implications of explicitly 

modelling, reactions and events in LBSM. Our paper has the following aims: 

i) To develop a conceptual model of reactions to events in location based social 

media which reflects both interdependencies between reactions and events, and 

also differentiates between the properties of reactions and events. 

ii) To demonstrate, through an implementation, how the conceptual model can be 

applied in real analysis tasks of reactions to natural and social events 

In the following we first briefly review the literature exploring reactions to events in 

LBSM and ways of characterising context. Based on this review, we then introduce our 

conceptual model which aims to integrate reactions and events, starting from the 

standpoint of individual reactions, before introducing an Event-Reaction-Cube and 

describing its facets and their implications for data collection.  

Throughout the paper, we illustrate the use of the conceptual model with two case 
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studies which span the natural and social events proposed by Polous et al. (2012).  

 Brexit (an ongoing opinion formation process) 

 St. Jude storm (a natural event) 

In case of the Brexit, it is difficult to speak of a single event. Rather, ‘Brexit’ can be 

seen as an umbrella term for a complex and ongoing process of voter opinion formation, 

encompassing many individual events which will probably lead to the UK’s separation 

from the European Union. In this context, the referendum held on June 23, 2016 

represents a singular event of particular importance. The differences between event and 

reactions are more obvious for the St. Jude storm, a specific instance of a generic type 

of event, a storm, that caused major human, environmental and economic consequences 

while sweeping across the UK, mainland Europe and other countries on and after 

October 27, 2013 (Hickey 2014). These case studies portray a variety of event-reaction 

relationships and therefore serve as suitable candidates for demonstration of our 

conceptual model. 

1.1 Reactions to events in location-based social media 

The Oxford English Dictionary1 defines a reaction as “something done, felt, or thought 

in response to a situation or event”. This implies that reactions to events include not 

only direct actions, but also cognitive and perceptive elements. In the following, we 

focus on papers which have explored reactions to events as expressed in social media. A 

diversity of domains investigates this topic which implies that the purposes of analyses 

also vary widely. 

                                                 

1 https://en.oxforddictionaries.com/definition/reaction 
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In all of the studies we analysed, a message or post published on a social media 

platform related to a given event is considered as a reaction. The most commonly 

examined social media platform, due to ease of access through the widely used API, is 

the microblogging service Twitter, but Facebook and the Chinese microblogging service 

Sina Weibo are examples of other platforms studied. Reactions may also take the form 

of images, for example posted to Flickr or Instagram, and text related to these, or 

content posted to discussion forums.  

Typically, references to a given event are defined by keywords or hyperlinks contained 

in a message and by using a temporal window to limit data collection to the issue 

attention cycle around the event (Downs 1972), i.e. the period in which public attention 

to an event arises and drops off. 

Related work on reactions to events expressed in social media can be differentiated by 

the category of the event the reaction is related to and by the purpose of the study. Event 

categories include natural disasters (Hashimoto et al. 2013), speeches (Amanatullah et 

al. 2013), health-related events (Szomszor et al. 2011, Fung et al. 2015, Nikfarjam et al. 

2015, Meaney et al. 2016), advertising campaigns (Rodrigues 2016), criminal and 

terrorist events (Burnap et al. 2014, Kounadi et al. 2015; McEnery et al. 2015), protests 

or unrest (He et al. 2015), and entertainment-related events (Lipizzi et al. 2016). The 

purpose of such studies includes investigating the diffusion of reactions (Burnap et al. 

2014), analysing perception of events, i.e. the attitudes and concerns triggered by an 

event (Hashimoto et al. 2013, He et al. 2015, Kounadi et al. 2015, Meaney et al. 2016), 

identifying trusted or credible information sources (Szomszor et al. 2011), event 

detection from reactions including monitoring (Amanatullah et al. 2013, Nikfarjam et 

al. 2015), assessment of the effectiveness of advertising campaigns (Rodrigues 2016), 
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sales prediction (Lipizzi et al. 2016) or interrelationships with news media (Castillo et 

al. 2014, Tsytsarau et al. 2014, Fung et al. 2015, McEnery et al. 2015). Importantly, the 

last topic explicitly makes the link between another medium - the influence of the press 

on the reactions to an event, making clear that social media reactions cannot be 

considered as purely a function of a given event, but rather a discourse conducted 

through a multitude of media around an event. This in turn points to the more general 

importance of context when exploring reactions. In the studies described here only He 

et al. (2015) and Kounadi et al. (2015) explicitly consider space in analysing reactions 

to events in LBSM. 

1.2 Events 

In contrast to research on reactions, the importance of space (and time) with respect to 

events is clear. In general, consensus exists in the core notion of events as identifiers for 

change. In other words, events are considered a segment of time that is “carved out of 

processes” (Kuhn 2012) such that they can be distinguished, referenced and memorized. 

This is also in accordance with the common-sense notion of events, and it can be argued 

that humans perceive, structure and memorize time as a sequence of discrete events of 

varying importance (Zacks & Tversky 2001, p. 58). In this vein, many authors argue 

that events function as the temporal counterpart of objects in the spatial domain and, 

therefore, should be treated as of similar or equal rank (Zacks & Tversky 2001, Chen 

2003, Worboys 2005, Galton 2006).  

The current paradigm is that both events and objects are mutually interdependent but 

ontologically distinct (Worboys & Hornsby 2004, Liu et al. 2008, Galton & Mizoguchi 

2009). Unlike processes and objects, events do not ‘persist’ as a whole throughout their 

existence, they simply occur (Galton, 2006). Therefore, start and end are seen as core 
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components of events, often referred to as the boundary or frame (Zacks & Tversky 

2001, Zacks et al. 2007). Each part of an event may itself consist of processes and 

events, arranged in a particular sequence. These sub-structures can be broken down 

further, which forms a unique pattern and taxonomic hierarchy (Quine 1985, Beard et 

al. 2008). Beard et al. (2008) propose a two dimensional event categorization between 

primitive and composite and expected and unexpected events. The most primitive 

events consist of simple physical changes which are conceived almost instantaneously. 

This means that, in some cases, start and end may coincide (Zacks & Tversky 2001). At 

other times, composite events can become so complex that they can only retrospectively 

be perceived as events. Frequently, these composite events will have fuzzy temporal 

and spatial boundaries, making computational event detection challenging (Westermann 

& Jain 2007) but often presenting no challenge to human observers (Zacks et al. 2007). 

This uncertainty is an important characteristic for the everyday-connotation of events, 

and is expressed in the second distinction from Beard et al. (2008), expected versus 

unexpected. Expecting an event or becoming aware of it while it is happening requires 

knowledge (Zacks & Tversky 2001). Sometimes, it is easy to spot events because their 

temporal sequence is very familiar to us. At other times, events are unexpected because 

we have not experienced them before (Bell 2012). In other words, some people may 

perceive an event while it passes unnoticed for others (Worboys 2005). This intangible 

nature of events poses difficulties for research dealing with reactions to events, because 

events require both a physical manifestation and an explicit ‘cognitive labelling’ 

(Claramunt & Jiang 2000). A further challenge is seen in the granularity of events. 

Zacks & Tversky (2001) argue that humans possess a pre-conditioned range of scales 

where they are particular sensitive to events. Finally, Polous et al. (2013) categorize 

events in three basic types, natural, social and artificial. Linking these concepts, events 
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can occupy a continuum of granularity scales and types from the micro-level (e.g. 

artificial events such as computer clicks) to human-scale events (e.g. the social/human-

centered view, e.g. someone’s vacation) to the macro-scale (e.g. astronomers consider a 

merger of two galaxies, spanning millions of years, as an event). 

1.3 Characterising events and reactions 

 

I keep six honest serving-men  

(They taught me all I knew);  

Their names are What and Where and When  

And How and Why and Who. 

Rudyard Kipling, Just So Stories, 1902  

 

Key to any framework seeking to analyse reactions to events is a definition of the 

dimensions through which both reactions and events can be described. As pointed out by 

Teitler et al. (2008), these dimensions form the core of a description of an event, and 

include not only ways of describing (What, Who, Where, When) but also explaining 

(How and Why). Answering these questions can be seen as a way of characterising the 

context of an event, and when we explore LBSM (or indeed news stories), the reaction to 

such an event. Thus, Robertson & Horrocks (2017) state that “context can be defined as 

any information that can be used to characterize or improve interpretation of an entity”. 

In practice, as is shown in Table 1, despite a plethora of definitions of context, these are 

often Kipling’s When, What, Where and Who. Interestingly, How and Why, which might 

be considered the goal of the analysis of reactions to an event are typically not considered, 

or subsumed into the thematic facet. 
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 Etzion & Niblett 

(2010) 

Shatford (1986) Zimmermann et al. 

(2007) 

Dustdar & 

Rosenberg (2007) 

Temporal 

Facet 

Temporal context When? Time Time 

Spatial 

Facet 

Spatial context Where? Situation Location 

Social 

Facet 

Segmentation- 

oriented context 

Who? Role Identity 

Thematic 

Facet 

State-oriented 

context 

What? Interest topic Activity/ Status 

Table 1: Different context definitions in literature assigned to the 4 facets of the 

conceptual model proposed herein. 

The closest analogy with regard to event-reaction-research comes from Etzion & Niblett 

(2010), who define context as factors that influence how an ‘event processing agent’ (p. 

148) might act under certain situations. The authors categorise these situational factors 

in four ‘context dimensions’. Etzion & Niblett (2010) state that “Context plays the same 

role in event processing that it plays in real life. A particular event can be processed 

differently depending on the context in which it occurs, and it may be ignored entirely 

in some contexts” (see the above, p. 144), but the authors also stress that “In the user 

domain consideration of what should trigger a reaction depends on the user’s 

perspective; this is rather different from the computer domain […]” (ibid, p. 297).  

 

2 Conceptual model 

2.1 Individual reactions, events, and their context 

We introduce a conceptual model which aims to incorporate key notions introduced in 

our literature review, in particular clearly separating reactions and events, and allowing 

a range of scales and granularities. The aim of our conceptual model is to provide a 

framework suitable for use in the analysis of reactions, and we discuss its practical 

implications in §3 before illustrating the use of the framework in analysis in §4 for one 

of our case study examples. 
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In LBSM individual reactions (e.g. a single tweet in response to some salient event) can 

potentially be shared (e.g. re-tweeted) among millions of users, and thus change the 

nature of the original event reported. It follows that, unlike top-down approaches 

conventionally applied when characterising events, investigation and characterization of 

collective reactions on LBSM requires a bottom-up approach, based on the aggregation 

of knowledge starting from such individual reactions (c.f. Brabham 2013). 

Consequently, individual reactions over time, in the form of the creation and sharing of 

content online, are base entities and their definition is the first element of our conceptual 

model. 

 

An individual reaction is a single reaction from one actor to one event that cannot be 

further differentiated in a meaningful way. We characterise an individual reaction as a 

tuple 𝑟 =  (𝑒, 𝑝𝑟 , 𝑡𝑟 , 𝑠𝑟 , 𝑎𝑟), consisting of identifier to a referent event and four facets 

describing the reaction: 

 𝑒 is the event that motivated the reaction; 

 𝑝𝑟 is the actor who reacted (the social facet); 

 𝑡𝑟  is the time of the reaction (the temporal facet); 

 𝑠𝑟 is the spatial location of the reaction (the spatial facet); 

 𝑎𝑟 is a combination of thematic attributes characterizing the reaction (the 

thematic facet; i.e. how specifically did the person react?) 

In our conceptual model, 𝑝𝑟 is an actor who perceives an event 𝑒 or information about it 

and reacts. Typically, this will be an individual person, however in LBSM it is often 

challenging to determine whether a social media profile represents fictitious or real 

persons, bots or even ‘cyborgs’ (You et al. 2012). Therefore, 𝑝𝑟 may also be considered 
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as an ‘avatar’ representing an organization or a group of individuals. 

We emphasise that (1) all LBSM posts are reactions, (2) all reactions have a referent 

event and (3) all facets are present in the characteristics of a reaction. However, all 

facets (4) need not to be regarded of equal relevance for a particular analysis just as they 

(5) need not to be available in all LBSM datasets. It follows that, in LBSM research 

exploring reactions, both reactions and events are core components in the analysis 

process. Importantly, while reactions are not independent of the referent event, an event 

itself can be considered independently. 

Therefore, we define an event as a tuple 𝑒 =  (𝑡𝑒 , 𝑠𝑒 , 𝑃𝑒 , 𝑎𝑒), where 

 𝑡𝑒  is the time when the event happened (an instance or interval in time); 

 𝑠𝑒 is the spatial location associated with the event. It may be modelled as a 

point, or a continuous area or path, or a set of disjoint points, areas or paths; 

 𝑃𝑒 is the set of people involved in the event, which may be empty; 

 𝑎𝑒 is a combination of thematic attributes characterizing the event. 

Based on the notion of events introduced by Beard et al. (2008), we distinguish between 

simple events e and complex events E. Simple events are the smallest observed entities 

that people perceive and react to (e.g. a tweet that is observable, a single rumble of 

thunder etc.). We then consider complex events as collections of events arranged in a 

particular pattern. These complex events are the typical subjects of our analysis and the 

case studies in this paper. For example, the announcement of the results of the Brexit 

Referendum or damage to an individual house by St Jude’s Storm can be considered as 

simple events, while the build up to and aftermath of the referendum, or the passage of 

the storm across France would be treated as complex events. 
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2.2 Event-Reaction-Hypercube 

Based on the definitions introduced above, it becomes obvious that events and reactions 

are difficult to separate. Although it is possible to study the physical appearance of 

events entirely through objective measurements (e.g. measuring wind speeds in the case 

of St. Jude storm), an event’s overall meaning and importance cannot be understood if 

separated from individual interpretations and perceptions in the form of reactions. 

Conversely, without identifying the referent event(s) for reactions, underlying 

motivational factors that affect behaviour, including causalities in the formation of 

collective reactions, remain hidden. Therefore, we consider events and reactions as 

occurring in a single system, which we refer to in the following as the Event-Reaction-

Hypercube (or simply ER-Cube). The ER-Cube has two poles: the physical 

environment (as sensed) and the experiencing person (who perceives, attributes 

meaning, feels, remembers, judges etc.). These poles refer to the facet dimensions of 

events and reactions respectively. In literature, the people-pole is also sometimes 

referred to as the experiential aspect of events (Lyons 1977, Westermann & Jain 2007, 

Galton 2008), to emphasize the subjective experience of events and the personal 

meanings attached to them. 

By considering and distinguishing both poles, the ER-Cube helps an analyst distinguish 

between two perspectives. In the first, events are the core subject of analysis and 

reactions are only consulted for supplementing missing information. This is the case, for 

example, in event detection, such as shown by Andrienko (2015), where it is possible to 

infer the occurrence of events from user reactions. In the second, where the focus are 

reactions, the goal of analysis is to understand individual people’s behaviour and 

motivation, and events are either considered incidental or provide the general frame of 

analysis that is given from the outset. An aid to distinguish between these two sets of 
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information is provided in Table 2, where the facets of the Event-Reaction-Cube are 

identified and described with respect to individual reactions and referent events. 

 

 Individual Reaction  Referent Event (query space) 

Temporal 

Facet 

includes the history of the previous 

reactions of this individual and, more 

generally, the previous individual 

history consisting of all kinds of events 

this individual reacted to 

includes (1) characteristics of the time when 

the event happened; (2) history of 

happenings preceding the event; (3) 

expected events in the future. 

Characteristics of the time include event 

position with respect to temporal cycles 

(daily, weekly, seasonal), whether it is a 

holiday or school vacation period, etc. 

Spatial 

Facet 

includes characteristics of the location 

of the actor, i.e. the area or place of the 

reaction; and, more generally, the 

previous individual history consisting 

of all kinds of spatial reaction 

footprints this individual left behind 

includes (1) geographic characteristics of 

the territory where the event happened, such 

as land cover and land use; (2) socio-

demographic and economic characteristics 

of this territory; (3) various kinds of spatial 

objects located in the event neighbourhood 

Social 

Facet 

includes information on the identity of 

the actor such as demographic and 

cultural connections and the society 

the individual belongs to; this 

encompasses personal opinions, 

beliefs, attitudes, values, norms, and 

preferences etc. 

when an event involves or affects a group of 

people, social context includes the structure 

of the society this group belong to and 

relationships within the society 

Thematic 

Facet 

includes any additional attributes that 

characterize or accompany a reaction 

of an individual such as emotions, 

situational attention or thematic 

interest 

includes any additional descriptive elements 

of the event such as physical measurements 

(temperature, wind speed), or range and 

type of affected thematic topics 

Table 2: The 4 facets of reactions and events. All facets are present in a reaction, while 

only time is required to define a referent event (cells with grey background are optional 

facets). 

The initial consideration of the referent event within which reactions are analysed is 

defined as a query space, the maximum dimensional extent of facets considered relevant 

by an analyst. The resulting hypercube represents different idealized relationships 

between reactions and to a common referent event as expressed in similarity measures. 

Each facet may be represented in multiple dimensions, e.g. 
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 Temporal Facet: temporal offset to the referent event in terms of minutes, days 

or weeks etc. (e.g. see temporal ordering relations for intervals and moments, 

Allen & Hayes, 1989). 

 Spatial Facet: distance or topological relationship with the referent event (e.g. 

see topological spatial relations from Egenhofer & Franzosa, 1991) 

 Social Facet: cultural similarity measure in the form of demographic make-up of 

the individuals reacting (e.g. age, gender, social group etc.) 

 Thematic Facet: similarity measure for thematic interest or sentiments in regard 

to the referent event (e.g. mood, stance, focus or attention of the actor as 

accompanying the reaction)  

These measures of similarity link individual reactions and relate directly to agency, a 

concept that denotes people’s involvement in an event. For example, for some natural 

events, such as St. Jude storm, people may be active observers experiencing the storm 

or passive observers viewing media reporting on the storm, but the passage of the storm 

itself is not influenced by these individuals. The Brexit referendum, on the other hand, 

is a purely social process. A specific group of people, UK citizens, directly participated 

in this event, and had at least some agency in the referendum’s outcome. Another group, 

the population of the European Union, had limited to no agency in the referendum, but 

is, to some degree, affected by its outcome. Other groups outside Europe were neither 

involved nor perhaps directly affected by the referendum and its consequences. This 

means that the degree of agency is a continuum, representing nuances of people’s 

(perceived) ability to change or react to an event (c.f. Davidson 1980). Therefore, 

depending on the respective circumstances coinciding with a specific situation, such as 

a person’s spatial location at a specific time, the social groups this person feels affiliated 

with (social facet), or the current mood (thematic facet), there exist varied degrees of 
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agency with respect to reactions in response to events. Consequently, individual 

reactions can be grouped and aggregated into different sets of collective reactions based 

on similarity measures across facets. This enables analysts to understand and study 

typical and recurring patterns of behaviour, and start to explore the how and why of 

reactions. 

 

Similar to the ‘context partitioning’ proposed by Etzion & Niblett (2010) for artificial 

event processing agents, we refer to the process of grouping individual reactions into 

sets of collective reactions (§2.3), based on similarity measures, as facet partitioning. 

This process depends on two separate steps: 

 the definition of the referent event for selecting the initial set of reactions to be 

considered (§2.3.1) and 

 partitioning of individual reactions into groups based on similarity measures 

(§2.3.2 to 2.3.5). 

2.3 Collective reactions 

A collective reaction is a set of individual reactions to the same referent event, i.e., a set 

of tuples 𝑅(𝐸)  =  {𝑟𝑖  =  (𝐸, 𝑝𝑟𝑖 , 𝑡𝑟𝑖 , 𝑠𝑟𝑖 , 𝑎𝑟𝑖) | 1 ≤  𝑖 ≤  𝑁} with a common 𝐸. For a 

given collective reaction 𝑅(𝐸) let 𝑃(𝑅(𝐸))  =  {𝑝𝑟𝑖  | 1 ≤  𝑖 ≤  𝑁}, 𝑇(𝑅(𝐸))  =

 {𝑡𝑟𝑖  | 1 ≤  𝑖 ≤  𝑁}, 𝑆(𝑅(𝐸))  =  {𝑠𝑟𝑖  | 1 ≤  𝑖 ≤  𝑁}, and 𝐴(𝑅(𝐸))  =  {𝑎𝑟𝑖  | 1 ≤

 𝑖 ≤  𝑁}. Here, 𝑃(𝑅(𝐸)) is the set of people who reacted to the event 𝐸,  𝑇(𝑅(𝐸)) is 

the set of time moments when the reactions happened, 𝑆(𝑅(𝐸)) is the set of spatial 

locations where the reactions occurred, and 𝐴(𝑅(𝐸)) is the set of ways of reacting, i.e., 

all combinations of values of the thematic attributes that occurred in 𝑅(𝐸).  



14 

 

2.3.1 Referent event 

A referent event, typically defined by an analyst, forms the basis for selecting the initial 

set of reactions to be considered in analysis. Events may cover a range of granularities 

crossing different hierarchical levels. For instance, in the case of St. Jude Storm, the 

subject of analysis can be seen as both a unique event, as an instance of a more general, 

universal class, such as “cyclones”, “UK storms”, or “extreme weather events” etc., or a 

collection of sub-events. From the outset, all storm events are characterized by a base of 

common attributes, allowing them to be collectively referenced and recognised as such. 

The global class of events can be grouped in many different sub-classes and sub-events. 

Attributes may vary across different storms (e.g. blizzards, cyclones and hurricanes) or 

across sub-events of the same storm (e.g. wind damage to trees), or a particular instance 

or token (Galton 2015) such as a single fallen tree that caused specific consequences. In 

all of these cases, a referent event could be characterized by different attributes. This 

means that an analyst studying collective reactions may, depending on the question 

being investigated, treat similar, recurring events as a single subject for analysis (e.g. a 

set of events 𝐸), or divide events into many sub-classes (𝐸1, 𝐸2, 𝐸3 etc.) (c.f. Allen et al. 

1995). 

Associating reactions to a chosen referent event is a key aspect in LBSN 

analysis and can be regarded a sub-problem of causality modelling (Tsytsarau et al. 

2014). Depending on the definition of the referent event, the association process may be 

straightforward. For example, in case of the Brexit, a single term emerged from the 

discourse which consequently helps researchers to associate collective reactions. In 

most contexts, however, such direct identifiers may not exist and association may 

introduce uncertainty. In these cases, verifying associations between reactions and 

referent event is a non-deterministic process. How much effort, discretion, and scrutiny 
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an analyst is willing to invest largely depends on data availability, analysed context and 

desired accuracy of results. An example approach to association and validation is given 

in §4 for reactions to St Jude storm, which illustrates how analysts can use a wider set 

of search terms and multiple facets to select and verify reactions.  

2.3.2 Spatial and temporal facet: where and when? 

In the context of reactions and events time and space are intertwined, and thus they are 

discussed together here. An important characteristic is that at a particular place and 

time, only one observer can be physically present. Therefore, two reactions, even from 

the same person, are considered distinct. Similarity may refer to the temporal and spatial 

proximity of reactions to a common referent event. In other words, two reactions from 

nearby places and times might be expected to have a higher degree of similarity with 

regard to a particular event. Reaction-event relationships can be grouped spatially by 

notionally meaningful regions (e.g. the same country, region, city or neighbourhood, 

and at the same temporal offset in minutes, hours, days or weeks, respectively). At the 

same time, a wide range of spatial and temporal clustering methods allow aggregations 

based on the nature of reactions themselves and their spatio-temporal properties (e.g. 

Beard et al. 2008, Andrienko et al. 2015). The following illustrate some potential ways 

of grouping reactions in typical space-time relations using our model: 

 Contain, equal and unequal (Egenhofer & Franzosa, 1991): 

o in the case of St. Jude storm, 𝑠𝑟𝑖 ∈  𝑠𝑒 may refer to reactions from 

persons who were directly affected by the storm or at least were direct 

observers, whereas 𝑠𝑟𝑖 ∉  𝑠𝑒 may include reactions as expressions of 

sympathy or surprise.  
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o reactions with a spatial location outside that of the storm’s impact area 

𝑠𝑒 or outside its impact timespan 𝑡𝑒 may also come from people directly 

affected. For instance, this would be the case if someone was a direct 

witness on their vacation, but only after returning home (e.g. to some not 

affected region) decided to report on the incident on social media.  

 Before, after (Allen & Hayes, 1989): 

o a reaction preceding its referent event (𝑡𝑟𝑖 < 𝑡𝑒) means that an event is 

expected or anticipated, e.g. someone might post after booking a flight 

(the reaction) to escape a forecasted path and peak of a storm (the 

referent event) 

o reactions subsequent to a referent event (𝑡𝑟𝑖 > 𝑡𝑒) always come in 

response, and may include an actor’s personal evaluation of the event as 

it happened if this person was a direct witness or observer, e.g. someone 

sharing a picture of an accident as a consequence of St. Jude storm 

Implications for data collection, representation, and analysis 

Because different sets of spatial and temporal information may be available, the analyst 

must take care in choosing and selecting the right kind of data for representing 

relationships. Firstly, as Nov et al. (2009) point out, reactions on LBSM consist of at 

least two steps, content-creation (1) and content-contribution (2). Not all creation of 

content is instantly followed by the contribution process (e.g. taking of a picture 

followed by uploading to a social media platform). Secondly, the availability of spatial 

and temporal information varies rather widely across current LBSM. For instance, while 

Flickr offers both the putative time of content-creation step (i.e. the photograph’s 

timestamp) and the time of content-contribution (i.e. the upload time), only the nominal 
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location of content-creation is available from geotagged photographs. By contrast, 

Instagram only offers the location of the content-sharing step of the reaction (Chen et al. 

2017). Conversely, on Twitter only the location of content-contribution is available, and 

only if the user opted-in to this feature. Notwithstanding these options, a researcher may 

still infer the spatial or temporal relationship of reactions to a referent event based on 

other available information such as textual references (Hahmann et al. 2014) or a user’s 

‘home location’ (Hecht et al. 2011). Therefore, which data is finally used to represent 

the spatial and temporal relationship of reactions to referent events depends on both, 

suitability and availability of data. 

2.3.3 Social facet: who? 

The social facet describes an actor’s identity, encompassing their wider affiliation with 

social groups or cultures. The underlying assumption is that referent events involve or 

affect different groups of people differently. In other words, whether someone feels 

affected or unaffected by an event, is considered a participant, observer or witness or 

takes a positive or negative stance towards an event depends, to some degree, on the 

social background of this individual. This may encompass complex aspects including 

political orientation, beliefs, values, norms and preferences, which express a continuum 

of people’s relationships towards an event that (often unconsciously) affect reactions. 

Because of the complexity involved, these social relationships between reactions and 

events are not typically directly found in LBSM data, but can be explored based on 

partitioning including: 

 an actor’s origin (e.g. USA, Canada or Australia),  

 language,  

 gender, 
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 age, 

 occupation or 

 differentiation between local population and visitors/tourists (in respect to the 

event footprint). 

Implications for data collection, representation, and analysis 

The social facet is perhaps most difficult to infer from available data on current LBSM, 

and at the same time, portrays the most sensitive set of privacy-relevant information 

because it can be misused for disputed practices of ‘social profiling’ (Mitrou et al. 

2014). This is also because, depending on the energy an analyst is willing to invest, 

most data attributes in LBSM contain information on user identity. This ranges from 

directly available information (that the user explicitly chooses to share), such as ‘home 

location’, as an indicator for origin or ethnicity, or the current language setting, to more 

detailed information that becomes available when taking into account a wider set of 

information and methods of pattern detection. For instance, Saito et al. (2015) classified 

users into different groups, such as ‘Businesspeople’, ‘Frequent Bloggers’, ‘IT People’, 

or ‘English Speaking’, based on their long-term posting behaviour.  

2.3.4 Thematic facet: what? 

The difference between the thematic and social facet is in the relation to the actor. 

Thematic attributes include immediate situational aspects that affect reactions from an 

actor in a particular situation (e.g. sentiments, feelings, emotions, but also co-occurring 

aspects in the surrounding of an actor or any other attributes of the reaction 

environment). Therefore, unlike social attributes, thematic attributes change frequently 

from one reaction to another. Possible partitions include but are not limited to emotional 

states of the actor (e.g. positive, neutral, negative), as inferred from emoticons or based 
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on sentiment analysis (Hauthal 2013), or the stance of different actors to events as 

inferred from semantics such as titles, comments or descriptions etc. (Zeng et al. 2016).  

Keywords such as hashtags, for example, may indicate what aspects of an event were 

perceived as being of particular importance (Towne et al. 2016), or refer to individual 

event consequences or actions people have undertaken or plan to undertake (Gao et al. 

2014). 

Implications for data collection, representation, and analysis 

Specific attributes that are attached to LBSM reactions by actors, such as tags (Flickr) 

or hashtags (Instagram, Twitter) can be used for partitioning based on the selection of 

one specific term or the co-occurrence of multiple terms. In this regard, an analyst will 

frequently need to compromise between increasing thematic accuracy, based on filtering 

techniques, and a reduced significance and validity of data due to sampling effects 

(Choudhury et al. 2010). Furthermore, language is not static and new terms can emerge 

at any time from the public discourse to portray specific meaning of reactions to events. 

For example, for some ‘Brexit’ supporters, the referendum outcome meant a complete 

reverse of sentiment, which was later coined the 'Bregret' movement (Dearden 2016), a 

portmanteau of "Brexit" and "regret". In the context of user attitudes towards such 

controversial topics, for instance, Gao et al. (2014) inferred user opinions and attitudes 

based on retweeting distribution. 
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2.3.5 Information spread 

 

Figure 1: Illustration of a referent event 𝐸 and all collective reactions 𝑅(𝐸) with two 

example partitions 𝑅2 and 𝑅3. During the information spread that occurs in response to 

𝐸, a new referent event 𝐸2 is formed by partition 𝑅3. 

A specific situation arises when reactions become the referent event for other reactions, 

an important characteristic of the information spread that occurs in LBSM (Fig. 1). For 

purposes of formalization, let 𝑙(𝑟𝑖, 𝑟𝑘) represent a directed link between individual 

reactions 𝑟𝑖 and 𝑟𝑘 such that 𝑟𝑖 appeared in response to 𝑟𝑘. A case when 𝑟𝑖 appeared in 

response to multiple reactions {𝑟𝑘, 𝑟𝑚, … } can be represented by a set of binary links 

{𝑙(𝑟𝑖, 𝑟𝑘), 𝑙(𝑟𝑖, 𝑟𝑚), … }. We use the notation 𝐿(𝑅(𝐸)) to denote the set of all known links 

between individual reactions within 𝑅(𝐸). The event information spread in response to 

a common E forms a unique structure and hierarchy, which can be conceived as an 

additional facet of 𝑅(𝐸). In the context of information spread, similarity refers to the 

position of the reaction in the hierarchy (e.g. 1st, 2nd or 3rd –‘generation viewers’, c.f. 

Crane & Sornette 2008). In Figure 1, three possible partitions of collective reactions are 

illustrated,  

(1) 𝑅(𝐸) representing the sum of all reactions to 𝐸,  

(2) 𝑅2(𝐸) as a specific subset of individual reactions that are grouped based on a 

common composition of facets (following §3.3.1 to 3.3.4), and 
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(3) 𝑅3(𝐸) representing a partition of collective reactions that is formed based on 

similar position in the information spread hierarchy. 

Implications for data collection, representation, and analysis 

Direct links between reactions are available from some LBSM in the form of unique 

identifiers (e.g. linking a comment to the referent photo on Flickr, or a retweet to the 

referent tweet.). However, various other approaches exist to partitioning collective 

reactions based on the spread of information. For example, Tsytsarau et al. (2014) 

model user behaviour in response to events as a convolution between an event’s 

importance and a ‘media response function’ and, based on this, categorize four types of 

event-reaction relationships, expected impacting, expected non-impacting, unexpected 

impacting, and unexpected non-impacting (or transient). By contrast, Crane & Sornette 

(2008) classify collective reactions into four characteristic classes of collective human 

dynamics (‘endogenous-subcritical’, ‘endogenous-critical’, ‘exogenous-subcritical’ and 

‘exogenous-critical’), based on the spread of information. An important distinction must 

be made between reactions that directly relate to the referent event (e.g. from 

participants, witnesses or direct observers, as is illustrated with the first row in Fig. 1) 

and other reactions which are influenced or triggered at later times (𝑟 =  𝑒). This is 

particularly important when studying LBSM since first-hand accounts are often stripped 

of relevant information, or supplemented based on personal motives and goals (He et al. 

2015). These effects may provoke reactions that are not directly related to the original 

referent event. Any collective reaction may therefore be classified as a new referent 

event (see example in Fig. 1, 𝑅2  =  𝐸2). This means that relatedness can be seen as a 

continuum of event-reaction ties ranging from strong through weak to non-existent. 
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3 Analysis tasks and workflow 

Having set out a conceptual model explicitly linking reactions and events, an important 

question how can we use this model in analysis? In non-trivial analysis, the analyst 

strives to understand the characteristics of the studied phenomenon in relation to the 

context. Here, there are two high-level subtasks: (1) characterize the phenomenon and 

(2) relate the characteristics to the context. In our case, the phenomenon is a collective 

reaction. Its characteristics need to be derived from the characteristics of the individual 

reactions. These refer to the facets of the collective reaction and can include, for 

example, similarity measures of distribution, variance or dynamics in meaning and 

selective attention. After these overall (collective) characteristics are derived from 

elementary data, the analyst studies their relationships to the respective components of 

the context. Recall that the context for reactions includes the characteristics of the 

referent events (§2.1). While the general order of workflow is not fixed, the following 

key steps can be summarized: 

 Define the referent event or set of events that is of interest 

 Define analysis tasks 

○ Define task-relevant facets and relationships 

 Select relevant reactions 

○ Choose suitable data source(s) 

○ Identify reactions to the chosen referent events among all reactions 

○ Enrich, i.e., generate task-relevant attributes (e.g. topics, sentiments) 

 Choose visualization and analysis methods depending on tasks and task-relevant 

facets and relationships. e.g.,  

○ Spatial facet, spatial relationships: maps, spatial 

 aggregation, spatial clustering, spatial analysis methods;  
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○ Temporal facet: temporal aggregation, time graph, time series analysis; 

space and time: spatio-temporal clustering, space-time cube  

○ Thematic and social facet: tag clouds, tag maps, graphs, networks. 

 Validate and interpret results by taking into account additional information from 

outside LBSM (normalization, validation, impact): 

○ Not all reactions are available from LBSM (sampling bias) 

○ Some reactions may be more prominently represented in LBSM data 

(representativeness) 

○ Interfaces influence user reactions and may therefore distort results 

(suitability) 

The types of analysis tasks for studying collective reactions are summarized in Table 3. 

The rows and columns correspond to the information facets. The cells along the 

diagonal include the tasks focusing on a single facet. The remaining cells include the 

tasks on studying pairwise relationships between the facets, i.e., how elements of one 

facet are distributed or vary with respect to the other facet. The latter can be 

metaphorically seen as a “base” and the former as an “overlay” spread over this base. 

The relationships between two facets can be viewed from two perspectives depending 

on which of the facets is chosen as the base for the other. In Table 3, the columns 

correspond to the facets treated as the bases and the rows correspond to the facets whose 

distribution or variation with respect to the base facet is studied. 
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 Spatial 

(A) 

Temporal 

(B) 

Social 

(C) 

Thematic 

(D) 

Information 

spread (E) 

Spatial (1) 

Properties of 

spatial distribution 
of reactions, e.g., 

scattered, 

concentrated, 

clustered, ... 

 

Evolution of the 

spatial distribution 

properties over 

time. 

Differences 

between spatial 

distribution 

properties of 

reactions from 

different 

population groups. 

Differences 

between spatial 

distribution 

properties of 

different kinds of 

reactions. 

Dependence of the 

spatial distribution 

on the information 

spread 

characteristics. 

Relationships to 

spatial context. 

Relationships of 

the changes to the 

temporal context. 

Relationships of 

the differences to 

the social context. 

Relationships of 

the differences to 

the thematic 

context.  

Temporal 

(2) 

Variation of the 

reaction 

development 

characteristics 

across space. 

Reaction 

development over 

time: emergence, 

increase, peak(s), 

decline, … 

Variation of the 

reaction 

development 

across reacting 

population groups. 

Differences 

between 

development 

properties of 

different kinds of 

reactions. 

Dependence of the 

temporal 

development on 

the information 

spread 

characteristics. 

Relationships of 

the differences to 

the spatial context. 

Relationships to 

temporal context. 

Relationships of 

the differences to 

the social context. 

Relationships of 

the differences to 

the thematic 

context. 

 

Social (3) 

Variation of the 

social 

characteristics of 

reacting population 

groups across 

space. 

Variation of the 

social 

characteristics of 

reacting population 

groups over time. 

Socio-demographic 

characteristics of 

reacting 

population groups. 

Socio-demographic 

differences 

between population 

groups reacting in 

different ways. 

Dependence of the 

reacting population 

groups on the 

information spread 

characteristics. 

Relationships of 

the differences to 

the spatial context. 

Relationships of 

the changes to the 

temporal context. 

Relationships to 

the social context. 

Relationships of 

the differences to 

the thematic 

context. 

 

Thematic 

(4) 

Variation of the 

reaction 

characteristics 

across space. 

Evolution of the 

reaction 

characteristics over 

time. 

Variation of the 

reaction 

characteristics over 

population groups. 

Reaction 

characteristics: 

attitudes, emotions, 

… 

Dependence of the 

reaction 

characteristics on 

the information 

spread. 

Relationships of 

the differences to 

the spatial context. 

Relationships of 

the changes to the 

temporal context. 

Relationships of 

the differences to 

the social context. 

Relationships to 

the thematic 

context. 
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Informatio

n spread 

(5) 

Information spread 

over space. 

Information spread 

over time. 

Information spread 

over social groups. 

Differences 

between spreading 

of different kinds 

of reactions. 

Information 

spread 

characteristics 

Relationships to 

the spatial context. 

Relationships to 

the temporal 

context. 

Relationships to 

the social context. 

Relationships of 

the differences to 

the thematic 

context. 

Relationships to 

information 

context 

 

Table 3: Task matrix for studying collective reactions based on the proposed 

framework. 

 

4 Using the conceptual model to explore reactions to St Jude’s Storm 

In the following we set out to briefly illustrate the use of the proposed conceptual model 

through applying it to one of our case studies. Our aim here is not, per se, to analyse the 

reactions to this event in detail, but rather to illustrate how the conceptual model 

developed (§2), in conjunction with the resulting analysis workflow (§3) can improve 

our ability to understand collective reactions in LBSM. 

We analysed the St. Jude storm, and chose to do so using user contributed photo data 

from Flickr. As set out above, the analysis process is characterized by two distinct steps, 

(1) identification of relevant reactions and (2) characterization of reactions to 

understand user behaviour. The initial selection of contemporaneous reactions (1) poses 

difficulties because the storm was given many names, and these references were only 

used after the event. Furthermore, many reactions may have been indirectly motivated 

by effects of the storm with people not being consciously aware of it while reacting 

(taking and tagging photographs). A possible approach is to define a relatively wide 

initial query space for each facet. For querying the thematic facet, for example, it is 

possible to use a set of search terms that indirectly relate to the general class of storm 

events (including translated terms in Dutch, German and French). 
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The original general structure of LBSM posts (before extraction of task-relevant 

thematic attributes) can be represented as a tuple 𝑚𝑖 = (𝑊𝑖, 𝑠𝑖, 𝑡𝑖), where 𝑊𝑖 is a text 

(e.g., a message or a title of a photo, possibly, joined with tags when available) 

consisting of words, 𝑠𝑖 is the spatial location, and 𝑡𝑖 is the time of the i-th post in a set of 

social media posts 𝑀 = {𝑚𝑖| 1 ≤ 𝑖 ≤ 𝑁𝑀}. Note that the text 𝑊𝑖 belongs to the 

thematic facet of a reaction, i.e., it is one of the attributes 𝑎𝑖 appearing in the definition 

of a reaction. 𝑊𝑖 is a primary attribute existing in the original LBSM data; further 

thematic attributes can be derived from it during the process of data analysis.  

Let 𝑊𝑠𝑡𝑜𝑟𝑚 be a set of storm-related terms, or keywords: 

𝑊𝑠𝑡𝑜𝑟𝑚 =  {𝑠𝑡𝑜𝑟𝑚, 𝑐𝑦𝑐𝑙𝑜𝑛𝑒, 𝑔𝑎𝑙𝑒, 𝑔𝑢𝑠𝑡, ℎ𝑢𝑟𝑟𝑖𝑐𝑎𝑛𝑒, 𝑏𝑙𝑜𝑤, 𝑤𝑖𝑛𝑑, 𝑤𝑖𝑛𝑑𝑦} 

A query using these keywords can extract a subset of posts supposedly referring to 

storms: 

𝑀𝑠𝑡𝑜𝑟𝑚 = {𝑚𝑘 ∈ 𝑀| 𝑊𝑘  ∩ 𝑊𝑠𝑡𝑜𝑟𝑚 ≠ ∅} 

 However, not all posts in 𝑀𝑠𝑡𝑜𝑟𝑚 may be related to the St Jude storm. To approximate 

𝑅(𝐸), where E = St Jude storm, more closely, the query needs to be refined by taking 

into account the temporal and spatial references of the posts. Based on the known 

information about the event we define a time window 𝑇(𝑅(𝐸))  = [𝑡0, 𝑡1] with 𝑡0 =

 26/10/2013 and 𝑡1 =  29/10/2013 . This time interval includes the time when the 

storm was happening but is wider than that, to be able to include reactions that 

anticipated the storm based on weather forecasts as well as reactions posted after the 

storm. It is also reasonable to limit the spatial extent of analysis to 𝑆(𝑅(𝐸)) =

 {𝑠𝑖| 𝑠𝑖  ⊆ 𝑠𝐸}, where 

𝑠𝐸 = {𝐼𝑟𝑒𝑙𝑎𝑛𝑑, 𝑈𝐾, 𝐹𝑟𝑎𝑛𝑐𝑒, 𝐵𝑒𝑙𝑔𝑖𝑢𝑚, 𝑁𝑒𝑡ℎ𝑒𝑟𝑙𝑎𝑛𝑑𝑠, 𝐷𝑒𝑛𝑚𝑎𝑟𝑘, 𝑆𝑤𝑒𝑑𝑒𝑛, 𝐺𝑒𝑟𝑚𝑎𝑛𝑦}, 
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based on the known impact footprint of St Jude storm. Hence, the complete query for 

extracting the LBSM data subset 𝑀𝐸  that approximates 𝑅(𝐸) can be represented as 

follows: 

𝑀𝐸 = {𝑚𝑘 ∈ 𝑀| 𝑊𝑘  ∩ 𝑊𝑠𝑡𝑜𝑟𝑚 ≠ ∅ ∧  𝑡𝑘 ∈  𝑇(𝑅(𝐸)) ∧  𝑠𝑘 ∈  𝑆(𝑅(𝐸))} 

With the use of these query constraints, Flickr returns a total number of 2100 potentially 

relevant reactions from 645 users. However, this set of reactions 𝑀𝐸  may still include 

false positives (𝑚𝑗 ∈  𝑀𝐸 ∧  𝑚𝑗 ∉ 𝑅(𝐸)), i.e., reactions that do not refer to the St Jude 

storm, whereas some reactions that do refer to it may be missed (𝑚𝑗 ∈  𝑀 ∧ 𝑚𝑗 ∈

𝑅(𝐸) ∧ 𝑚𝑗 ∉  𝑀𝐸), e.g., due to use of different terms, or misspelling of a term, or being 

posted beyond the specified time window. In other words, it is not clear whether the 

chosen thematic query is suitable to associate reactions with St Jude Storm (see §2.3.1). 

Validity in this context refers to the appropriateness of the selected set of terms, which 

can be verified by comparing expected to observed behaviour across other facets. The 

hypothesis (i.e. the expected behaviour) is that storm-related reactions on Flickr should 

increase only during storm events and in areas close to storms. This task is described by 

D1 and D2 in the matrix (Tab. 3, §3). 
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Figure 2: Percentage of active Flickr users who took storm-related photos (𝑀𝑠𝑡𝑜𝑟𝑚) for 

different partitions in space and time. 

In Figure 2, additional data is taken into account to validate 𝑀𝑠𝑡𝑜𝑟𝑚. Relative reaction 

amplitude (i.e. observed behaviour) is compared for five equal periods in 2011 to 2015 

(task D2) and, for the year 2013, across four areas Europe, France, UK and the 10 

kilometre coastal zone of UK (task D1). Within the three day period of St Jude’s main 

impact in 2013 a total number of 137,500 photos was taken and uploaded to Flickr for 

Europe, with a peak of more than 4% of all Flickr users taking storm-related pictures on 

October 28. Only one other peak, with a significantly lower amplitude of contribution, 

is visible for the time from October 20 to 22 in 2014, when Hurricane Gonzalo hit Oban 

in western Scotland. No other storm during the same period in 2011 to 2015 provoked a 

similar reactions amplitude on Flickr, which can be seen as both a corroboration of 

suitability of chosen query space (𝑀𝐸) and an indicator of the severity of St Jude’s 

impact. The largest percentage of Flickr users reacted in coastal areas of southern 

England and along sections of the mainland coasts near the English Channel and Strait 

of Dover (10 to 25% of all Flickr users contributed storm-related pictures in 2013 from 

these areas). These observations further corroborate what could be expected based on 

the time and recorded path of the storm, and therefore represent a possible validation of 

our initial selection of relevant reactions.  

 

For our study case, we now confirmed a reasonable suitability of our selection criteria, 

but know little about the actual characteristics of these 2100 selected reactions. Since 

we are interested in how groups of users reacted to the storm, we focused on the 

thematic facet using user tags as a starting point. Our aim was to reduce the 

dimensionality based on the thematic facet such that we could identify different 
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collective reactions 𝑅1…𝑛(𝐸) to the St. Jude storm, and relate these back to space (and 

potentially time) for interpretation. Our basic workflow was as follows2: 

1. We group tags according to users to create individual documents, filtering terms 

used by less than four users – this results in a total of 545 documents associated 

with 435 unique terms. Grouping tags according to potential users may allow us 

to better understand reactions in terms of demographics, since we use 

individuals for grouping (Task D3). 

2. To further reduce dimensionality we clustered documents using Latent Dirichlet 

Allocation (Towne et al. 2016) outputting 10 topics. By doing so we aim to 

create an interpretable number of collective reactions (Task D4) (Figure 3). 

3. We used the tool LDAvis (Sievert & Shirley 2014) to allow us to interactively 

explore the terms associated with collective reactions and to visualise topic 

similarity (Task D4) (Figure 4). 

4. We interpret the resulting collective reactions and associated terms and project 

these back into space (Task D1) (Figure 5). 

 

                                                 

2 A Juypter notebook showing the complete process is available in the supplementary materials 

for this article 
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Figure 3: Ten topics produced by LDA and corresponding ten most probable terms, 

denoting different sets of collective reactions 𝑅1…10(𝐸). Bold topics are projected back 

to space in Figure 5. In parentheses: Number of Photos / Number of Users / Percentage 

of Photos taken Local to User Home Country 

 

Figure 3 combines several key pieces of information. Firstly, the terms which contribute 

most to document membership are illustrated. A number of initial interpretations can be 

made. The appearance of the seed terms used in extracting storm related data (e.g. 

storm, sturm, tempête) demonstrates that these terms are not used equally by all users, 

and thus can still contribute to the allocation of a user to a particular cluster. Secondly, 

the contribution of language to generating clusters (e.g. 𝑅1(𝐸), 𝑅4(𝐸), 𝑅8(𝐸)) and the 

related use of associated toponyms demonstrates a broad link back to space. Thirdly, 

and in terms of thematic reactions most interestingly, we observe some distinct classes 

of reactions. For example, reactions in 𝑅7(𝐸) seem to correlate to coastal locations, 

𝑅8(𝐸) to weather related terms in Germany and 𝑅9(𝐸) to storm damage. By exploring 

the semantic similarities between collective reactions (Figure 4) we note that the 

damage topic partition appears to have many similarities with partition 𝑅10(𝐸), whose 

most prominent terms are toponyms and other proper nouns referring to the UK and the 

storm.  

Topic 1: storm wind nederland netherlands beach stormy holland weer paris amsterdam (279/87/98%) 
Topic 2: beautiful autumn nature outdoors love day weather skyautumn happy cool (21/14/75%) 
Topic 3: clouds storm sky rain weather water night river city dark (143/71/47%) 
Topic 4: france white tempête black windy lake mer ciel automne monochrome (81/33/100%) 
Topic 5: clouds weather sun sky cloud cloudy sunset green rainbow rain (112/53/84%) 
Topic 6: autumn autumnstorm october weather fall nature leaves tree skyautumn storm (142/53/97%) 
Topic 7: sea storm waves beach coast wind stormy wave water weather (463/118/95%) 
Topic 8: clouds sunset germany wolken sturm herbst storm sky deutschland wetter (174/40/100%) 
Topic 9: storm tree trees damage road street wind path nature old (411/40/99%) 
Topic 10: england storm uk london october stjude unitedkingdom jude west ukstorm (99/36/100%) 



31 

 

 

Figure 4: Interactive topic model visualization (pyLDAvis) with collective reaction 

𝑅9(𝐸) selected (damage-related topics). 

 

In Figure 5 we project the locations of individual photographs and their topic 

membership back into space for selected topics. A few characteristics immediately 

become obvious. Firstly, the coastal topic partition 𝑅7(𝐸) is primarily found in coastal 

locations. Secondly, the damage topic partition 𝑅9(𝐸) is found along the storm’s track 

in southern England, while topic partitions 𝑅1(𝐸) and 𝑅8(𝐸) are indeed associated with 

locations captured by toponyms in their top 10 terms respectively. 
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Figure 5: Percentage of total Flickr users who took storm-related imagery from October 

26 to 29 (2013) per NUTS-1 area and 10 km coastal zone, and photo locations for 

selected Topic Clusters (LDA). 

 

In exploring reactions, a last key question to be discussed here concerns the origin of 

those reacting to an event and the form of these reactions. This aspect of the Social 

Facet (C3) can be explored by taking into account the origin of users, which is publicly 

made available on Flickr profiles by 356 of the 645 users (55%). According to the 

location of contributed images and user home locations (country), we distinguish 

between reactions from two groups, locals 𝑃𝑙(𝑅(𝐸)) =  {𝑝𝑖| 𝑝𝑖. ℎ𝑜𝑚𝑒 ∈ 𝑠𝐸} and 

tourists 𝑃𝑡(𝑅(𝐸)) =  {𝑝𝑖| 𝑝𝑖. ℎ𝑜𝑚𝑒 ∉ 𝑠𝐸}, where 𝑝𝑖. ℎ𝑜𝑚𝑒 denotes the home place of 

the user 𝑝𝑖. According to Hecht & Gergle (2010), “50 percent of Flickr users contribute 

local information on average, and over 45 percent of Flickr photos are local to the 

photographer” (p.229). For our collective reactions, we observe that 7 out of 10 clusters 

show ratios with more that 90% of photos taken by local population (see Fig. 3). Only 

𝑅3(𝐸) reflects a ratio that corresponds to the overall Flickr pattern, with 47% of 

reactions relating to local population. One possible conclusion might be that images 

contributed by tourists are more likely to relate to a general set of weather related 
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characteristics and aesthetics (e.g. collective reactions 𝑅2(𝐸) and 𝑅3(𝐸)), which 

perhaps reflects an underlying behaviour pattern that is present in most reactions on 

Flickr. Reactions of locals, in contrast, are more likely to document unique sub-events 

of the storm (e.g. damage) because this group is perhaps most affected by long-term 

consequences (e.g. personal or economic loss). It is important to note that the increased 

filtering impairs our ability to accurately interpret these patterns. A thorough analysis 

would therefore have to take additional data into account to corroborate assumptions 

and continue exploration. This could include, for example, additional information from 

different LBSM or further background knowledge on particular sub-events of St Jude 

storm. 

5 Conclusions 

LBSM research is becoming increasingly complex with a growing number of 

disciplines and interests involved. We have set out a framework with regard to event-

reaction-research and laid out the foundations for structured analysis of collective 

reactions to events. Abstracting event-reaction-relations in the basic facets of the ER-

Cube forms a basis by which reactions can be characterized and aggregated. In our 

conceptual model, an explicit distinction is made between the definition of the referent 

event by the analyst (the top-down component) and the aggregation of individual 

reactions based on similarity measures (the bottom-up component). The two-part 

process ensures we can differentiate between external input (the query space) and 

observed data patterns (the characteristics of reactions). The proposed workflow and 

task matrix based on the conceptual framework aims to support a variety of perspectives 

and can be used to design and build applications that specifically focus on the dynamics 

of collective human reactions. We illustrate the use of the model and workflow using a 

specific example, the St Jude’s storm, where the reactions take the form of tagged 
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georeferenced images taken by individual Flick users. Our focus is not on analysing the 

storm itself, but illustrating how the concept model and workflow can be applied to real 

data.  

A primary challenge that became apparent is the uncertainty that accompanies 

association of reactions to a chosen referent event.  While we have demonstrated one 

way to verify suitability, future work should focus on systematically evaluating validity, 

accuracy and reliability of queries. In future work we also plan to explore not only the 

spread of reactions using our model in more detail, but also the ways in which 

uncertainty in time and position related to reactions influence perception of events. For 

example, social media may be directly associated with coordinates, but facet dimensions 

also represent perspectives held by people. These perspectives influence the collective 

view of a particular event, and require further engaging with and making sense of what 

people actually mean. 
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