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Abstract  

Purpose. Describing the psychometric characteristics and diagnostic accuracy of the 

Accelerator 4-Alternative Forced-Choice Flicker Test prototype (A4FTp) for detecting chronic 

open angle glaucoma (COAG)  

Methods. A4FTp measures temporally modulated flicker thresholds in regions of the visual 

field with high susceptibility to glaucomatous loss. We initially evaluated its psychometric 

properties on 20 normals (aged 33.8 ± 8.5 years) who were tested multiple times over a period 

of 3m. All subjects underwent 4 repetitions for shorter (T8) and longer (T12) staircase 

termination criteria, to determine the most suitable threshold criterion. Four randomly selected 

subjects underwent a total of 10 repetitions to study test-retest repeatability and learning 

effects. To determine its diagnostic accuracy, one eye of 40 participants with COAG and 38 

normal controls were tested with the A4FTp in comparison with the Frequency Doubling 

Technology (FDT) (C20-5 programme) and iVue Spectral Domain Optical Coherence 

Tomography (SD-OCT). Tests were conducted in a random order with results masked to the 

clinician conducting the reference ophthalmic examination. The accuracy of each test was 

determined by analysis of the area under the receiver operator characteristics curve (AROC).  

Results. A4FTp flicker thresholds were stable, with standard deviations of only 0.52 decilog 

(dL) for T8, increasing to 1.32 dL for T12, and no significant flicker sensitivity threshold 

improvement over the 10 repeat runs. T8 was superior to T12 on several other measures, so 

it was used for the remaining comparisons. In terms of diagnostic accuracy, the mean AUROC 

for the three tests were; A4FTp (T8 criterion) (0.82, 95% confidence interval (0.73-0.92)), SD-

OCT (any RNFL parameter p<1% level) (0.90 (0.83-0.97)) and FDT (one or more locations 

missed at p<5% level) (0.91 (0.82-0.96)). There was no statistical difference in AUROC 

between A4FTp and SD-OCT (p=0.18) or FDT (p=0.12). The A4FTp test duration averaged 

just over 2 minutes per eye, taking approximately one third of the time for completion of the 

HFA SITA 24-2 algorithm (conducted as part of the reference examination) and twice the time 

for the suprathreshold FDT.  

Conclusion. Test accuracy for the A4FTp was comparable to those of the FDT and SD-OCT 

for the detection of COAG. Time taken to complete the A4FTp was relatively short and initial 

results are promising. With further refinement, the A4FTp could have a future role in glaucoma 

detection. 
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Introduction 

Visual field testing remains one of the most important tools for identifying and monitoring vision 

loss in glaucoma.(1) Since the introduction of automated perimetry in the early 1970s, almost 

all developments in perimetry have focused on either improving the sensitivity of the tests to 

early visual field damage or increasing test efficiency and speed.(2, 3) However, the lack of 

portability of current perimeters means that the assessment of visual function remains difficult 

outside the normal clinical setting. The advent of touch screen and tablet-technology has 

created new opportunities for the development of a portable low cost glaucoma-screening test 

that could be used in a home setting or in remote underserved communities. An iPad-based 

threshold perimeter based on the Humphrey 24-2 test grid has recently been developed which 

shows good diagnostic performance for the detection of glaucoma.(4, 5) 

The aim of this proof of concept study was to develop a simple, affordable and rapid glaucoma-

screening test that could potentially be used to detect functional vision loss outside the normal 

clinical setting. We also compared the performance of the new test with commercially available 

glaucoma screening technologies that detect structural or functional glaucomatous damage. 

The new test incorporates a new psychophysical algorithm that measures flicker sensitivity 

thresholds in areas of the visual field that are susceptible to glaucomatous visual field loss. 

Temporal modulation flicker uses a stimulus that is matched in luminance to the background, 

the contrast of the stimulus is then modulated temporally at a fixed spatial frequency, and the 

amplitude of the flicker modulation needed to detect the stimulus is determined.(6) Sensitivity 

to temporal modulation flicker has been shown to be effective in separating normal subjects 

from glaucoma patients, suggesting that the stimulus is the method of choice for detecting 

glaucomatous damage using flicker perimetry.(7-10) The other advantage of flicker perimeter 

methods is that they are relatively unaffected by optical blur due to media opacification or 

uncorrected refractive error, which is particularly important for assessing visual function in the 

field.(11)  

Another feature of the current test design is the use of extended stimulation areas at a small 

number of test locations. Previous studies have shown that the large numbers of stimulus 

locations used in current threshold perimeters are not always necessary to achieve high levels 

of sensitivity; good diagnostic performance can be achieved using relatively few test locations, 

confined to areas that are particularly prone to glaucomatous damage.(12-14) Moreover, one of 

the most common indices of glaucomatous loss is the Mean Deviation of the Humphrey Field 

Analyzer, which focuses on the average loss across large areas of the retina.(15) The 

philosophy of the stimulus design in the current test is therefore to use large stimuli that 

integrate information across extended retinal regions, with the further advantage of a potential 

reduction in test times. 
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We therefore determined that an appropriate paradigm for this purpose would be a four-

alternative forced-choice temporal protocol (4AFTp), which is becoming increasingly popular 

in psychophysical investigations. It has two great advantages over 2AFC. One is that the false 

alarm rate is only 25%, giving greater discriminative power from each choice. The other is that 

all four selected locations are tested in the same state of the participant, so any practice or 

fatigue effects are equated across the four locations, giving a more accurate comparison of 

their relative sensitivities. 
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Materials and methods 

This study was approved by the School of Health Sciences Research Ethics Committee, City, 

University of London and conducted per the tenets of Declaration of Helsinki. Written informed 

consent was obtained from all participants.  

 

1. Development of the Accelerator 4-Alternative Forced-Choice Flicker Test prototype 

(A4FTp) 

 

Stimulus Design 

There is evidence to suggest that high sensitivity in glaucoma detection can be achieved with 

relatively few perimetric stimuli.(16-19) Whilst the informational value of stimulus locations in 

susceptible areas of the visual field may be high, the correlation between adjacent test 

locations limits the value of adding multiple stimuli in these areas The choice of stimulus 

location for this first iteration of the A4FTp was based on the study by Wang and Henson(14) 

who used optimised sub-sets of the standard 24-2 test pattern, based on the PPV of each test 

location that broadly corresponded to the typical patterns of glaucomatous visual field loss that 

reflect the course of retinal nerve fibers.(20, 21) Two large circular stimuli (11° diameter) were 

located in the temporal superior and inferior arcuate regions 9-21° from fixation, with the other 

two stimuli (11.7° diameter) spanning the horizontal meridian (14-26° from fixation) at the 

endpoints of the nasal arcuate sweep of the nerve fibre layer, the visual field location subject 

to the well-known ‘nasal step’ (Figure 1).  

Stimuli were displayed at a viewing distance of 33 cm on a high refresh rate screen (120 Hz) 

in a uniform red field (610 nm), designed to minimise transmission losses in the optic 

media.(22)The target stimulus in each of four test fields was a burst of 30 Hz effectively 

sinusoidal flicker § with the same mean luminance as the background (19 cd/m2), which was 

ramped on and off according to a 1 s raised cosine envelope in order to avoid onset and offset 

transients.  

 

 

§  Since the harmonics of the 120 Hz sampled waveform at 60 Hz and above would be close 

to or beyond human temporal resolution, the waveform can be considered effectively 

sinusoidal 
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Figure 1. Spatial location of the A4FTp flicker regions for the right eye compared to the HFA 

24-2 pattern. The black triangle corresponds to the location of the blind spot. The configuration 

was mirror-reversed for testing the left eye. 

 

Algorithm development 

The screening algorithm uses a rapid four-alternative forced-choice staircase paradigm, with 

the results plotted in decilog (dL) units (or 1/10th of log10 base intervals, following the 

simplifying convention relative to dB units adopted by one of the authors.(6) Each one-up/two-

down staircase in log modulation steps of 1 dL terminates when the standard deviation of the 

last n trials becomes less than 1 step (where n was either 8 steps (T8) or 12 steps (T12) in 

different conditions). Unlike conventional staircases, this straightforward algorithm ensures 

that the staircase has reached a stable asymptotic performance level of low variability.  

The algorithm was implemented and tested on a Dell computer with specifications Inter core 

2 Duo CPU E7500 @2.93 GHz and 4 GB RAM, displayed on a 144 Hz Asus VG248QE 24-

inch 3D LED monitor running at 120 Hz, and used an Accmat™ USB wired 19 key number 

numeric keypad as the test input device. The computer was running on a 64 - Bit Windows 7 

Enterprise, Service pack 1, Matlab R2014a and Psychtoolbox version 3.0.11. 

 

Selection of optimal threshold criteria  

An initial study was conducted to determine the optimal threshold criteria for the 4AFTp 

staircase. A randomly selected eye in a convenience sample of 20 healthy adults was tested 

with the flicker test four times on separate occasions during a period of two weeks for each 

criterion run length (T8 and T12). The starting level was set at 15 dL, which is half way between 
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the threshold of about 10 dL for healthy individuals and the maximum available modulation 

level of 20 dL. The overall mean modulation level for the 4 test locations was determined for 

each session and the time taken to perform the test was recorded. Inter-session differences 

were evaluated using Friedman’s test and test–retest coefficients of repeatability were 

calculated for the flicker modulation levels. 

To assess the inherent variability of the test for a typical participant, the inter-participant 

variability was isolated from the intra-participant variability by calculating the mean modulation 

level across participants for each test location and each threshold criterion and then 

normalizing the individual values to this group mean to determine the within-participant 

variability. 

 

Assessment of individual reliability and learning effects 

To assess learning effects over repeats, we evaluated the change in performance of the flicker 

algorithm for 4 volunteers who undertook the test 10 times over a period of 3 months. Learning 

effects were assessed by comparing the test duration and modulation levels of the first session 

with those of the other four sessions.  
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2. Diagnostic performance of the A4FTp flicker test in the detection of glaucoma 

The diagnostic accuracy of the A4FTp flicker test was determined using a case-control design 

in which test results in series of patients with an established diagnosis of COAG were 

compared with those of a control group. Test performance was also compared with two 

commonly used tests for glaucoma case finding: The Frequency Doubling Technology 

Perimeter (FDT); and the iVue Spectral Domain Optical Coherence Tomography (SD-OCT). 

User acceptability of all screening tests was also determined. The study was designed and 

findings reported in accordance with the Standards for Reporting of Diagnostic Accuracy 

criteria.(23) 

 

Study Participants 

Participants eligible for inclusion were consecutive adults (≥40 years) with a clinical diagnosis 

of COAG and were recruited either from the university eye clinic or via a request for volunteers 

in the ‘International Glaucoma Association’ newsletter. The control participants were 

consecutive non-glaucomatous adults (≥40 years), who were recruited from the university eye 

clinic and local optometry practices.  

 

Inclusion and Exclusion Criteria 

There is no universally accepted reference standard for the diagnosis of glaucoma; however, 

optic disc and visual field damage are used to diagnose the presence of glaucoma.(24) The 

diagnosis of COAG was based on a reference standard ophthalmic examination and meeting 

the following diagnostic criteria: open anterior chamber angles; presence of glaucomatous 

optic neuropathy (indexed by localized absence of neuroretinal rim, cup-to-disc ratio 0.7, or 

interocular asymmetry in vertical cup-to-disc ratio 0.2 in similar sized discs and the presence 

of a concordant glaucomatous field defect using the 24-2 Swedish Interactive Thresholding 

Algorithm (SITA) on the Humphrey Visual Field Analyzer (HFA), based on criteria amended 

from Anderson.(25) 

We excluded any participant who had a history of angle closure, significant ocular co-morbidity 

e.g. diabetic retinopathy, retinal vascular occlusions, peripheral retinal abnormalities, optic 

atrophy, visually significant cataract (indexed by the Lens Opacity Classification System III(26) 

(LOCIII) (N≥4.0, C≥2.0, P≥2.0) or a neurological field defect. 

The inclusion criteria for the control participants included: freedom from ocular disease with 

normal appearance of the optic disc, normal fundus, intraocular pressure ≤21 mm Hg and full 

visual fields on the reference examination.   
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Test procedures for each index test 

Figure 2 shows the flow of patients through the study. All participants underwent testing on 

both eyes with all three ‘index tests’, A4FTp flicker test, FDT and iVue OCT, performed in a 

random order by an experienced optometrist who was unaware of the participants’ ocular 

status. This sequence was then followed by a reference standard ophthalmic examination by 

a clinician masked to the index test results. Participants were included in the analysis if they 

had interpretable results in both reference and index tests; those with uninterpretable results 

were excluded. Thresholds of abnormality for the index tests were based on cut-offs commonly 

reported in the literature and were pre-defined before data analysis.  

 

Figure 2. Study flow diagram 

 

 

FDT 

The first generation FDT (Carl Zeiss Meditec Inc,, software version 4.00.0,  

www.zeiss.com/meditec/int/products/ophthalmology-optometry.html) was used in the C20-5 

supra-threshold mode. Contrast thresholds were determined at 17 locations within the central 

20˚ of the visual field. Classification of an abnormal result was based on the following criteria: 

any location missed at the p<5% or any location missed at the p<1% significance level from 

http://www.zeiss.com/meditec/int/products/ophthalmology-optometry.html
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the manufacturers’ normative database. If any of the indices were unreliable, which included 

false positives, false negative or fixation losses ≥33% or any point missed, the test was 

repeated.  

 

IVue SD-OCT 

IVue SD-OCT (Optovue Inc., software version 3.2.0.42, www.optovue.com/) was used to scan 

the posterior segment of the eye, capturing data from the optic nerve head retinal nerve fibre 

layer (RNFL) and total retinal thickness. Scans were taken through un-dilated pupils under 

dark room conditions. Cut-offs for abnormality were for any RNFL parameter p<1% or p<5% 

from the manufacturers’ normative database.  

 

Reference test 

All participants underwent a reference standard ophthalmic examination on the same day as 

the index tests by an experienced glaucoma-specialist optometrist (with training and 

accreditation within glaucoma clinics in the UK Hospital Eye Service), masked to the index 

tests results. The ocular examination comprised: Log MAR best correct visual acuity; 

refraction; intraocular pressure measurement (IOP) with a Goldmann Applanation Tonometer; 

slit-lamp biomicroscopy including grading of the crystalline lens with the LOCS III and van 

Herick assessment of limbal anterior chamber depth(27) (with potentially occludable angles 

examined using gonioscopy); dilated fundus examination and detailed disc assessment using 

indirect ophthalmoscopy. Visual fields were measured with the Humphrey Field Analyzer 

(HFA) (Carl Zeiss Meditec Inc., www.zeiss.com/meditec/int/products/ophthalmology-

optometry.html) using the Swedish Interactive Thresholding Algorithm 24-2 standard pattern 

(model 720i software version 5.1.2). HFA field-testing was repeated for false positives >15%, 

false negatives or fixation losses >33%. Glaucomatous visual field loss was classified using 

Hodapp Parrish-Anderson criteria.(15)  

 

Evaluation of user acceptability 

Subjects were also asked to complete a questionnaire regarding the acceptability of the 3 

index tests compared to the HFA at the end of reference examination. The questionnaire 

evaluated ease of use, test duration and test comfort using a 7-point Likert scale. 

 

  

http://www.optovue.com/
http://www.zeiss.com/meditec/int/products/ophthalmology-optometry.html
http://www.zeiss.com/meditec/int/products/ophthalmology-optometry.html
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Sample Size Calculation 

Sample size was calculated based on the precision around an anticipated sensitivity of 0.85 

with a minimum acceptable precision of ±0.20 with 0.95 probability. This level required a 

sample of 33 participants with glaucoma.(28) 

 

Statistical Analysis for Diagnostic Accuracy Study 

All tests were performed on both eyes for comparison with the clinical assessment of individual 

eyes and the data from one eye was used in the analysis. In the case of participants with 

glaucoma, this was the eye with the greater visual field loss and the right eye for the controls; 

if the right eye in the control group was not eligible, the left eye was selected provided it met 

the inclusion criteria.  

Receiver operator characteristics (ROC) curves were plotted for the ability of the index tests 

to discriminate glaucomatous from non-glaucomatous eyes. Differences in the area under the 

ROC curve (AUROC) for each test parameter at the 95% confidence interval (CI) was 

compared statistically using the DeLong method,(29) a p-value of 0.05 was considered as the 

threshold for significance. Sensitivity, specificity, positive and negative likelihood ratios were 

also calculated. Statistical analysis was performed using SPSS 23.0 software 

(www.ibm.com/SPSS_statistics) and MedCalc 17.4 (www.medcalc.org). 

 

Results 

Development of the Accelerator 4AFC flicker test 

Determination of optimal threshold criteria 

Twenty normal participants (14 males and 6 females) were included in the study, with mean 

age 33.8 years (SD± 8.5) and mean spherical refractive error -0.50 D ±2.41 (2). The analysis 

was based on 10 right eyes and 10 left eyes. Table 1 shows the mean inter-session modulation 

levels for all 4 locations and run durations for each threshold criterion (T8 vs T12). The 

intersession differences in modulation levels were not statistically significant for either the T8 

or the T12 termination criterion. In terms of run duration, inter-session differences for the 

shorter T8 termination criterion were similar; however, there was a significant decrease in test 

duration for T12. Overall, the mean durations were nearly twice as long for the T12 than the 

T8 criterion.  

 

  

http://www.ibm.com/SPSS_statistics
http://www.medcalc.org/
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Table 1: Inter-session modulation levels and test durations (means and 95% CI per eye) 

 Session 1 Session 2 Session 3 Session 4 p-value 

% modulation (T8)  9.22 ± 0.17 9.57 ± 0.27 9.17 ± 0.15 9.07 ± 0.18 0.11 

% modulation (T12)  8.61 ± 0.43 8.69 ± 0.41 8.76 ± 0.40 8.90 ± 0.37 0.11 

Duration (T8) (s)  81 ± 22 71 ± 9 76 ± 15 73 ±13 0.36 

Duration (T12) (s)  166 ± 49 148 ± 40 148 ± 40 126 ± 31 < 0.001 

 

The total number of responses in the T8 condition averaged 42, implying that the stable 

threshold values were obtained in just over 10 responses per visual field location. The 

corresponding number for the T12 condition averaged 76, or 19 responses per visual field 

location.  

The differences in % modulation among the four chosen field locations with either the T8 or 

T12 criterion were not statistically significant (Figure 3). The average within-participant 

standard deviation (SD) across the four locations was 0.52 dL and 1.32 dL for T8 and T12 

respectively. The corresponding values for the Coefficient of Repeatability are 1.44 dL and 

3.65 dL.  

 

 

Figure 3. Decilog modulation levels over the four visual field locations, normalized to the group 

mean, for each threshold criterion. These error bars thus represent the average individual 
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variability at the four visual field locations. (UN – Upper Nasal, LN – Lower Nasal, UT- Upper 

Temporal and LT – Lower Temporal) 

  

Assessment of threshold stability and learning effects 

To study threshold stability, we evaluated the test-retest repeatability of the flicker algorithm 

by repeating the test 10 times over a 4-month period in four control observers to determine 

stability of the estimates. The average threshold values for the T8 and T12 are plotted in Figure 

4A and B. For the T8 condition, all four slopes are less than 0.5 dL over the 10 runs, with small 

differences in the average sensitivity across observers and an average  standard deviation 

(SD) of 1.66 dL. For the T12 condition, the data are generally more variable, with an average 

SD of 1.75 dL and somewhat lower threshold values, but there are again no significant trends 

for either improvement with practice.   
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Figure 4.  Trend analysis over 10 runs of the thresholds for each field location averaged for 

four control observers. A:  Data for the criterion run length of 8 (T8 condition). B: Data for the 

criterion run length of 12 (T12 condition). None of the slopes differed significantly from zero 

(p<0.05). 

 

Diagnostic performance of the A4FTp flicker test in the detection of glaucoma 

Participant characteristics  

Eighty-one participants were assessed for initial eligibility and invited to participate. Three 

participants were excluded from the analysis: 2 control participants (one had uninterpretable 

test results on all visual function tests and another had suspected glaucoma) and 1 glaucoma 

participant (who had a bilateral neurological visual field defect). In total, 38 controls and 40 

participants diagnosed with glaucoma were included in the final analysis. The glaucoma group 

contained more pseudophakic test eyes (n=22, 55%) compared to the controls (n=2, 5.3%). 

There was no statistically significant difference between the two groups in visual acuity, 

refractive error or gender. Most participants were of Caucasian origin and the average ages 

for the control and glaucoma groups were 61.6 years (95% CI 58.1-65.0) and 71.9 years (68.8-

74.9) respectively.  

Glaucoma cases were further categorised according to glaucoma severity using the criteria 

from Hodapp et al(15) as: early (n=13, 32.5%), moderate (n=14, 35%) and advanced glaucoma 
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(n=13, 32.5%). A summary of the demographic and clinical data for the controls and glaucoma 

participants is provided in Table 2; t-tests were used to compare the differences between the 

two groups, apart from gender, where a chi-squared test was used.  

 

Table 2. Demographical and summary clinical data for all participants and each group.  

 Overall Control Glaucoma P 

No. Participants 78 38 40  

Age Years (Mean ± SD) (years) 66.8±11.2 61.6±10.6 71.9±9.4 <0.001 

Female No. (%) 46 (59%) 22 (57.9%) 24 (60%) 0.85 

Ethnicity 
Caucasian No. (%) 

65 (83.3%) 28 (73.7%) 37 (92.5%) 

 Asian Indian No. (%) 12 (15.4%) 10 (26.3%) 2 (5%) 

African Origin No. (%) 1 (1.3%) 0 (0%) 1 (2.5%) 

Visual Acuity (Log) (Mean ± SD) 0.07±0.15 0.04±0.17 0.09±0.12 0.092 

IOP (mm Hg) (Mean ±SD) 16.4±4.42 17.5±2.5 15.3±5.5 0.024 

Refractive Error (DS) (Mean ± SD) -0.50±3.20 -0.26±3.59 -0.72±2.81 0.53 

Refractive Error (DC) (Mean ± SD) -0.87±0.84 -0.72±0.71 -1.01±0.93 0.13 

Humphrey SAP SITA 24-2 
Threshold MD (Mean ± SD) (dB) 

-5.75±7.41 
 

-0.71±1.55 
 

-10.53±7.61 
 

<0.001 

DS: Dioptric Sphere; DC: Dioptric Cylinder; MD: Mean Deviation; PSD: Pattern Standard Deviation; 

SAP; Standard automated perimetry. 

 

Diagnostic performance of the A4FTp 

The best performing parameter for the A4FTp (as determined by the greatest AUROC) was 

the mean threshold from all four tested locations. The A4FTp achieved a sensitivity and 

specificity of 83% and 74% respectively, with an AUROC of 0.82 (95% CI 0.73-0.92). Figure 

5 shows a histogram of the mean log flicker thresholds for the control and glaucoma 

subgroups with their 95% confidence intervals. Mean log threshold increased with increasing 

disease severity, although there was overlap in the distribution for control participants and 

those with early glaucoma. Consequently, whilst the A4FTp test identified 93% and 100% of 

moderate and severe glaucoma respectively, it identified half of those diagnosed with early 

glaucoma. Although the sensitivity of the test could potentially be increased by lowering the 

log threshold, this would lead to an unacceptable reduction in specificity (see Figure 6, which 

shows a sensitivity/specificity plot for different thresholds for the A4FTp).  
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Figure 5. Histogram of the mean log thresholds of control and glaucoma subgroups.  
. 

Figure 6. Sensitivity and specificity plot for A4FTp 
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Comparison of the A4FTp with other index tests 

Table 3 displays the diagnostic performance of all the index tests, the optimal threshold for 

the FDT was: any location missed at p<5% level, and for the SD-OCT: any quadrant at the 

p<1% level in the RNFL. The AUROC for the FDT and SD-OCT, respectively were 0.91 (0.82-

0.96) and 0.90 (0.83-0.967); sensitivities and specificities were (90%, 92%) and (88%, 84%), 

respectively.  
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Table 3. Diagnostic performance of the index tests. 

 Index Test 
Parameter 

Best 
Cut-
off 

Value 
(dL) 

Sensitivity 
(%) 

Specificity 
(%) 

PLR NLR AUC at 95% 
Confidence Interval 

A4FTp 

Mean of 4 
Locations 

>12.3 82.5 73.7 3.1 0.2 0.82 (0.73-0.92) 

Superior 
hemifield 

>10.8 95.0 55.3 2.1 0.1 0.79 (0.69-0.88) 

Inferior 
hemifield 

>13.1 75.0 73.7 2.9 0.3 0.78 (0.67-0.87) 

Nasal 
hemifield 

>13.3 82.5 73.7 3.1 0.2 0.80 (0.70-0.88) 

Temporal 
hemifield 

>10.5 95.0 57.9 2.3 0.1 0.79 (0.68-0.87) 

Superior 
nasal 
quadrant 

>10.4 92.5 50.0 1.9 0.2 0.77 (0.66-0.86) 

Superior 
temporal 
quadrant 

>10.9 77.5 68.4 2.5 0.3 0.76 (0.65-0.85) 

Inferior 
nasal 
quadrant 

>14.1 67.5 73.7 2.6 0.4 0.74 (0.63-0.84) 

Inferior 
temporal 
quadrant 

>10.3 97.5 47.4 1.9 0.1 0.75 (0.64-0.84) 

FDT   

Any point 
missed at 
p<5% level 

>0 90.0 92.1 11.4 0.1 

 

0.91 (0.82- 0.96) 

 

Any point 
missed at 
p<1% level 

>0 82.5 97.4 31.7 0.2 0.90 (0.81-0.96) 

iVue 
SD-
OCT 
RNFL 

Any 
quadrant at 
p<1% 

- 87.5 84.2 5.5 0.1 0.90 (0.83-0.97) 

Any 
quadrant at 
p<5% 

- 95 68.4 3.0 0.1 0.82 (0.74-0.90) 

 

PLR: Positive Likelihood ratio; NLR: Negative Likelihood Ratio. 

 

Table 4 shows pairwise comparisons of the AUROC curves between the index tests. There 

was no statistical significances between the A4FTp and FDT p<1% level (p=0.15) or FDT 

p<5% level (p=0.12). Comparison with respect to the A4FTp and the SD-OCT parameters; 

SD-OCT RNFL any quadrant at the p<1% level (p=0.18) and p<5% level (p=0.91) also showed 

no statistically significant differences.   
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Table 4. Pairwise comparison of ROC curves of the index tests.  

Test comparisons 
Difference 

between the 
areas 

95% 
Confidence 

Interval 
P 

A4FTp vs FDT p<1% any 
point missed 

0.08 -0.03-0.18 0.15 

A4FTp vs FDT p<5% any 
point missed 

0.09 -0.02-0.02 0.12 

A4FTp vs SD-OCT p<1% 0.07 -0.04-0.18 0.18 

A4FTp vs SD-OCT p<5% 0.01 -0.11-0.12 0.91 

 

Figure 7 shows a Venn diagram for the best performing criteria of each index test in identifying 

the glaucoma participants. The A4FTp detected slightly fewer glaucoma cases (n=33, 83%) 

than the FDT (n=36, 90%) or SD-OCT (n=35, 88%). Two cases (5%) were missed by all three 

index tests. The diagram shows that a screening strategy that combines a structural test (SD-

OCT) with a functional test (FDT or A4FTp) increases the likelihood of detecting the disease.  

 

 

Figure 7. Venn diagram of best performing parameter from the index tests in identifying the 

glaucoma cases alone or combined with the other tests. The numbers within the circles 

represent the number of participants identified by each test. In two participants all tests were 

normal.  
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Test duration 

Table 5 and Figure 8 depicts shows the time taken to perform the functional tests (including 

the HFA 24-2, which was undertaken as part of the reference examination). The mean time 

taken for all participants in the tests were FDT C20-5 (61.6±34.8 seconds), A4FTp (141.8±85.6 

seconds) and HFA (364.0±79.3 seconds), which were significantly different between all three 

tests (p<0.001). There were also statistically significant differences between the control and 

glaucoma groups for the HFA (p<0.001), FDT C20-5 (p<0.001) and A4FTp (p<0.008). 

 

Table 5. Time taken to perform each functional test. 

 Total Control Glaucoma P 

HFVA SITA 24-2 
Threshold time 
taken (sec) Mean 
± SD) 

364.0±79.3 
 

306.5±29.4 
 
 

418.6±73.0 
 
 

<0.001 

FDT time (Supra-
threshold C20-5) 
time taken (sec) 
Mean ± SD 

61.6±34.8 
 

36.5±8.9 
 
 

85.5±33.4 
 

<0.001 

A4Tp Threshold 
time taken (sec) 
Mean ± SD) 

141.8±85.6 
 

115.7±44.5 
 
 

166.5±106.3 
 

0.008 

 

 

Figure 8. Box and Whiskers plot of time taken to perform each functional test. 

  



21 

 

User acceptability 

Figure 9 shows the Likert scores responses from the tests from an acceptability survey; there 

was a higher proportion of participants who found the HFA uncomfortable, too long and difficult 

to perform, compared to the other index tests. The A4FTp, FDT and SD-OCT had a similar 

proportion of participants (>90%) rating the tests as not uncomfortable or not too long. 

However, more participants found the A4FTp difficult to perform in its current configuration. 

There were no adverse events occurring when performing any of the index tests.  

 

Figure 9. Likert responses from user acceptability survey from all participants. 
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Discussion 

Glaucoma is the leading cause of irreversible blindness worldwide. A recent systematic review 

estimated that glaucoma was responsible for 6.6% of total global blindness and 2.2% of all 

moderate and severe visual impairment.(30) The lack of symptoms in its early stages, coupled 

with inequitable access to healthcare in many countries, contributes to high rates of 

undiagnosed glaucoma and late clinical presentation. The main aim of the study was therefore 

to evaluate the diagnostic performance of a simple screening test that could be potentially 

used in conjunction with other clinical tests to detect glaucoma in a home setting or in 

underserved populations.  

 

The A4FTp measures flicker thresholds at four fixed locations strategically placed to detect 

the arcuate or nasal step defects that are commonly seen in glaucoma. The flicker rate was 

set at 30Hz, the value found to be diagnostic of glaucoma in previous studies.(7, 31) Flicker 

sensitivity has been shown to be resilient to optical blur(11) and the large stimulus size 

minimised the impact of fixation losses. Furthermore, presenting the stimuli in a red field 

reduces optical scatter due to opacities in the ocular media, including cataract.  

 

Psychophysical tests that are used for clinical purposes should have a minimum set of 

psychophysical attributes before they can be introduced for clinical testing, including an 

acceptable within and between test variation. Within-test variability is caused by several 

aspects: neural noise, decision criteria, and thresholding strategy.(32, 33) Between-test variability 

has been attributed to ocular and neural sensitivity fluctuations.(34) The variability that occurs 

during test and retest is quantified by the degree of scatter between measurements taken at 

different test sessions.(34-36) Considering first the stability over time, we found that there was 

no significant drift in the estimated values for either threshold criterion (T8 or T12) in normals 

for either the short- or long-term test series (although the duration for T12 did significantly 

decrease over time). Thus, the A4FTp staircase was equally stable under all test conditions. 

However, there was a notable difference between the criteria in the variation across 

individuals, which had the remarkably low standard deviation of 0.52 dL for T8 compared with 

1.32 dL for T12. These values may be compared with the standard deviation values of 

approximately 1.7 dL reported for the population variation of 2AFC flicker threshold estimates 

in a previous study.(37) Thus, while the standard deviation for the 12-point staircase criterion is 

close to the previously reported range, the 8-point criterion markedly reduces the standard 

deviation to about one third of this level, implying that the physiological strain of the longer 

runs overcame the statistical advantage of the increased number of samples. Since variance 

is defined as the square of the standard deviation, this result further implies that about 90% of 
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the variance in the previous methods, and in the 12-point criterion staircase, was due to 

methodological variations, with no more than 10% of the variance attributable to inherent 

population variability. Moreover, there is no significant gain in reliability for the extra time spent 

to reach the 12-point criterion, and, though slightly lower on average, the threshold values 

themselves are not significantly different from those for the 8-point criterion.  Thus, we have 

to conclude from the 20-normal participant results that, of the two approaches evaluated, the 

8-point criterion staircase is a strikingly effective approach to flicker threshold measurement, 

with no evident disadvantages and a clear time advantage over the 12-point criterion staircase. 

 

The most important characteristic of a screening test is its ability to differentiate between 

normal and diseased individuals. To assess the diagnostic accuracy of the A4FTp, we 

measured flicker thresholds in 40 subjects with COAG and 38 normal controls. Based on a 

comparison of areas under the ROC curve, the overall performance of the A4FTp was similar 

to the FDT (C20-5 algorithm) and the SD-OCT (RNFL thickness outside normal limits). The 

best performing criterion for the A4FTp was the mean threshold of all 4 stimulus locations. 

Using this criterion, the test identified 33 out of the 40 glaucoma cases in our sample (83%). 

All cases of advanced glaucoma were detected, all but one of the moderate glaucoma’s and  

half of the early glaucoma’s. The mean time taken for all participants to perform the A4FTp 

was within the clinically recognised ‘3-minute period of vigilance’; this is advantageous in terms 

of response variability, as beyond this time it has been noted that the response variability 

increases.(38) User acceptability of the A4FTp was positive, with similar acceptability 

questionnaire scores to the FDT and SD-OCT, in terms of comfort and participant’s opinion 

on the duration of the test.  

 

The ‘optimal’ threshold criterion for the A4FTp was based on an equal weighting for sensitivity 

and specificity. Sensitivity and specificity are inversely proportional and therefore lowering the 

threshold to maximise sensitivity leads to a corresponding reduction in specificity. A further 

issue with population screening for glaucoma is the relatively low prevalence of the disease. 

Based on a glaucoma prevalence of 5% in high-risk populations(30) and a test with 90% 

sensitivity and 90% specificity, only one in three persons screening positive will have the 

disease. Currently, no single test for glaucoma has been shown to have a sufficiently high 

sensitivity and specificity for the detection of glaucoma in the general population.(39) It is 

therefore likely that future screening strategies for glaucoma will employ combinations of tests 

and will target those most likely to be affected by vision loss in their lifetime,(40) putting a 

premium on the rapidity of the tests selected for inclusion. Combining structural and functional 

testing can be used to improve the sensitivity or specificity for glaucoma detection, depending 

on whether the priority is to maximise true positives or minimise false positives.(41) For 
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example, if structural and functional screening tests are used and disease positives are 

defined as those who test positive by either test, there will be a net increase in sensitivity; 

conversely, a strategy where disease negatives are defined as those who test negative on 

both tests will maximise specificity.  

 

This study has a number of strengths: the design, analysis and reporting of the diagnostic 

accuracy study complied with the principles of the Standards for Reporting of Diagnostic 

Accuracy (STARD). The performance of the index tests was compared in a representative 

sample of participants with the target condition, with a range of disease severities. The 

reference standard and index tests were conducted on the same day as the index tests by an 

experienced clinician masked to the index test results. The reference standard for COAG was 

based on a comprehensive ophthalmic examination typical of that conducted in a hospital 

glaucoma unit. However, since both structural and functional tests were evaluated for the case 

definition, this required both established visual field loss and glaucomatous disc damage to 

be present.  Although the use of a case-control design may have artificially overestimated the 

performance of the A4FTp, given the comparative nature of the study, the same degree of 

bias would apply to all tests. Similarly, although the age of the control and glaucoma groups 

differed by approximately a decade, the relative effect of an age-related loss of flicker 

sensitivity would have applied equally to the performance of the FDT. 

 

Whilst the relative performance of the three index tests was similar based on AUROC analysis, 

the specificity for the A4FTp was the lowest of all three tests. Three participants in the control 

group had log threshold values for the A4FTp well outside the 95% confidence interval. If these 

‘outliers’ were removed from the A4FTp, the overall specificity would increase from 74% to 

80%. With further refinement and optimisation, the data suggest that the A4FTp could have a 

role in combination with other tests for glaucoma screening. The test has a number of 

advantages including: its easy administration, ready interpretation, relatively short testing time 

and robustness to the effects of media opacity or refractive error. Following the success of this 

proof of concept study, we are currently in the process of optimising the A4Ftp for a touch 

screen tablet display to increase its portability.  
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