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Subclasses of linear inequalities where each inequality has at most two variables are 
popular in abstract interpretation and model checking, because they strike a balance 
between what can be described and what can be efficiently computed. This paper 
focuses on the TVPI class of inequalities, for which each coefficient of each two variable 
inequality is unrestricted. An implied TVPI inequality can be generated from a pair of 
TVPI inequalities by eliminating a given common variable (echoing resolution on clauses). 
This operation, called result, can be applied to derive TVPI inequalities which are entailed 
(implied) by a given TVPI system. The key operation on TVPI is calculating closure: 
satisfiability can be observed from a closed system and a closed system also simplifies the 
calculation of other operations. A closed system can be derived by repeatedly applying the 
result operator. The process of adding a single TVPI inequality to an already closed input 
TVPI system and then finding the closure of this augmented system is called incremental 
closure. This too can be calculated by the repeated application of the result operator. 
This paper studies the calculus defined by result, the structure of result derivations, and 
how derivations can be combined and controlled. A series of lemmata on derivations 
are presented that, collectively, provide a pathway for synthesising an algorithm for 
incremental closure. The complexity of the incremental closure algorithm is analysed and 
found to be O ((n2 + m2) lg(m)), where n is the number of variables and m the number of 
inequalities of the input TVPI system.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The study of how to eliminate a variable from a system of linear inequalities dates back to at least Fourier’s 1824 work 
[15], that demonstrates that the satisfiability of a system of inequalities can be established by successively eliminating 
variables until exactly one remains. This satisfiability argument is also used by Nelson [34], who considers it in the special 
case that each inequality has at most two variables, a satisfiability problem further considered by [7,21]. Further restrictions 
to the class of linear inequalities have also been considered, with Harvey [19] considering the integer satisfiability of systems 
of inequalities with two variables per inequality where the coefficients are unit (that is, 0, 1 or −1).
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These unit two variables per inequality systems are also considered in the context of program analysis, where they form 
the underlying system of inequalities of the abstract domain of Octagons [33]. A number of classes of inequalities have 
been used as the foundation of numeric abstract domains, including the class of inequalities with at most two variables per 
inequality [40]. Note that Octagons are a strict subclass of these inequalities.

This paper is concerned with systems of inequalities with two variables per inequality (TVPI), and the addition of in-
equalities to the system. In particular adding inequalities incrementally, that is, one at a time. The work is focused on a 
normal form for systems of inequalities with two variables per inequality, and how the normal form can be reached using 
a calculus of operations which combines inequalities using a resolution-like operator, similar to the Fourier–Motzkin elimi-
nation step. Key results in this work will show that the calculus need only be applied in a restricted way in order to derive 
the inequalities required for the normal form.

A system (set) in this normal form is called closed. Given a set of two or fewer variables, the syntactic projection of 
a system onto these variables is the subsystem (subset of the given system) consisting solely of those inequalities whose 
variables are drawn entirely from the set. A system is closed when every inequality with two or fewer variables that 
is entailed (implied) by the system is also entailed by the syntactic projection of the system onto the variables of the 
inequality being considered. For example, consider the system {x − y ≤ 0, y − z ≤ 1}. This is not closed since the x − z ≤ 2
is entailed by the system, but not by the subsystem of inequalities that contain only the variables x, z (which is empty in 
this case). However, {x − y ≤ 0, y − z ≤ 1, x − z ≤ 1} is closed, because the syntactic projection onto x, z is the subsystem 
{x − z ≤ 1} which entails x − z ≤ 2.

To obtain a closed system, implied inequalities in each two variable projection need to be made explicit and inserted. To 
be closed, all the irredundant inequalities in each one or two variable projection must be enumerated. Implied inequalities 
can be found by eliminating a single common variable from a pair of inequalities drawn from the system, or calculating a 
resultant of the two inequalities, using the terminology of Nelson [34]. The resultant calculation is here formalised (see Sec-
tion 3) as the result operator. Control of the generation of these inequalities is not straightforward, as the following example 
illustrates. Consider the system of inequalities I0 = {x − y ≤ 0, 2x − z ≤ 0}, which is closed. Now consider augmenting the 
system with c0 = −x + z ≤ 0, and note that I ′0 = I0 ∪ {c0} is not closed, since z − y ≤ 0 is entailed by I ′0, but not included in 
it, nor entailed by the syntactic projection of I ′0 onto {z, y} (which is empty). Using the result operation, implied inequalities 
can be derived. For example, the result operation can be applied four times to give the following derivation (the notation 
will be formally introduced in Section 3):

c0

−x + z ≤ 0 x − y ≤ 0
x

z − y ≤ 0 2x − z ≤ 0
z

2x − y ≤ 0 −x + z ≤ 0
x

2z − y ≤ 0 2x − z ≤ 0
z

4x − y ≤ 0

The system is incrementally augmented with derived inequalities as follows.

I1 = I ′0 ∪ {z − y ≤ 0} I2 = I1 ∪ {2x − y ≤ 0}
I3 = I2 ∪ {2z − y ≤ 0} I4 = I3 ∪ {4x − y ≤ 0}

Observe that the syntactic projection of I ′0 onto {x, y} is x − y ≤ 0, which does not entail 2x − y ≤ 0. Thus I ′0 is not closed. 
To address this, the syntactic projection of I2 onto {x, y} is tightened. Again the syntactic projection of I2 onto {x, y} does 
not entail 4x − y ≤ 0, hence I2 is not closed. Therefore, again the syntactic projection of I4 onto {x, y} is tightened. In this 
way, the syntactic projection onto {x, y} can be tightened ad infinitum, hence a closed system is never achieved. However, 
observe that

2x − z ≤ 0 −x + z ≤ 0
z

x ≤ 0

If this were added to I ′0 then 2x − y ≤ 0 would be entailed by the syntactic projection onto {x, y}, {x − y ≤ 0, x ≤ 0}, and 
its addition would not tighten the system. In fact, the system I ′0 ∪ {z − y ≤ 0, x ≤ 0, z ≤ 0} is closed. Note that the addition 
of new inequalities might well make some inequalities within the system redundant.

This poses some questions as to how to derive a closed system. Which inequalities should be combined using the 
result operator, and in what order should this be done, so that a terminating procedure giving a closed system is realised? 
In addition, are all the new inequalities necessary for a closed system or its derivation? Can unnecessary inequalities be 
removed?

The work in this paper answers these questions by reasoning about the result calculus. The answers then inform the 
construction of a polynomial algorithm for incrementally closing a system of TVPI inequalities. This results in an algorithm 
whose construction is principled, and whose results are justified rather than merely aligning with a closed system for 
inexplicable reasons; the technical challenge is not formulating the algorithm, but understanding and demonstrating that it 
is correct.
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In studying this problem, this paper makes the following contributions:

• formalisation of the result calculus and notions including syntactic projection, closure, filtering (removal of extraneous 
inequalities) and completion (a combination of closure and filtering);

• the result calculus is treated as an object of study. A series of results are presented on the rewriting of derivations 
of inequalities into derivations where structural properties hold, demonstrating that only a certain class of derivations 
need to be considered; these results stem from the desire to make progress [41] on TVPI by advancing reasoning on 
TVPI systems;

• an algorithm is presented for inserting a new two (or fewer) variable inequality into a non-redundant planar system of 
inequalities, which results in an updated system with no redundancy. This is lifted to systems of TVPI inequalities and 
is used to define incremental completion;

• a complexity analysis of operations relating to incremental completion is given. Incremental closure realised as incre-
mental completion resides in O ((n2 + m2) lg(m)) time where n is the number of variables and m is the number of 
inequalities in the system being augmented;

• the restriction of these results to the Octagon and Logahedra subclasses of two variables per inequality systems is also 
considered. The complexity of operations (in particular closure) on Octagons over rationals of this specialisation matches 
that given in previous work [33] despite not relying on the encoded matrix representation given there. This suggests 
that alternative representations of Octagons, including compact representations, are conceivable;

• the algorithm is implemented and the growth of incrementally closed systems is evaluated.

The rest of the paper is structured as follows: Section 2 places this paper in the context of related work and Section 3
defines key concepts. Section 4 gives the proof of the correctness of incremental closure (using completion). This is followed 
by Section 5 that gives a discussion of the construction of the algorithm together with analysis of its complexity, and 
Section 6 that experimentally evaluates the algorithm. Section 7 concludes.

2. Context and background

This section positions the current work in the context of previous work on restricted classes of linear inequalities, how 
they arise and the problems addressed. This work is motivated by applications in abstract interpretation (Section 2.4) and 
model checking (Section 2.3).

2.1. Satisfiability

Given a system S of m TVPI inequalities over a set of n variables X , a chosen variable x ∈ X and an arbitrary constant 
c ∈ Q, it is possible to decide whether the augmented system S ∪ {x = c} is satisfiable over Q in O (mn) time [1]. Strongly 
polynomial decision procedures for feasibility have been proposed for TVPI systems [7], including one, founded on [1], 
which resides in O (mn2 lg(m)) [21]. The satisfiability problem for integer TVPI is NP-complete [26].

2.2. Linear programming

Linear programming over TVPI has attracted interest because the dual problem is a generalised minimum-cost flow 
problem (flow with losses and gains) [20]. A linear program over TVPI can be solved in O (m3n2 lg(m) lg(B)) time [44]
where B is an upper bound on the number of bits required to store the absolute value of the largest (rational) coefficient 
of the TVPI system. The B term implies the algorithm is not strongly polynomial. Integer TVPI linear programming is 
NP-complete since satisfiability for integer TVPI is NP-complete [26] (it also follows by encoding the vertex cover problem 
[17, Section 3.1.3]).

2.3. Model checking

Pratt [35] observed that solving systems of TVPI inequalities of the restricted form xi − x j ≤ c, where xi, x j ∈ X , can be 
solved in polynomial time. These inequalities, called difference constraints, have gained traction in model checking [11,28], 
where they are deployed to bound the time difference [31] between event i and event j. If X = {x0, . . . , xn−1} then an 
inequality xi − x j ≤ c can be represented by storing c at the i, j entry of an n × n matrix, called a Difference Bound Matrix 
(DBM). The absence of an upper bound on xi − x j is indicated by an entry of ∞. A DBM thus gives a natural representation 
for differences, and an all-pairs shortest path algorithm [14,43] can determine satisfiability in O (n3), whereas a single source 
shortest path algorithm [3] can determine satisfiability in O (nm) time.

2.4. Abstract interpretation

The class of TVPI inequalities where the coefficients are either −1, 0 or 1 is called Octagons [33]. DBMs can be adapted 
to represent Octagons [33] and an all-pairs shortest path algorithm used to determine satisfiability [33], including over 
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Fig. 1. Closure and least upper bound. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

integers [2], in O (n3) time (based on the Floyd–Warshall all pairs shortest path algorithm), or O (n2 lg n + mn) (based 
on Johnson’s algorithm [24], exploiting a sparse representation). A single source algorithm has also been applied to this 
satisfiability problem [27] yielding an O (nm) algorithm, work that has been extended to check satisfiability incrementally 
in O (n lg(n) + m) [38].

Two important operations in abstract interpretation are join (least upper bound) and projection (forget). These operators 
are deployed in concert in abstract interpretation [8] to compute invariants that hold on every path through a program, 
even when there are infinitely many. For Octagons, join computes the least Octagon which includes two given Octagons; it 
is used to summarise the properties that hold on different branches of a program. Projection eliminates a variable from an 
Octagon; it is used to discard information pertaining to a variable of a program which goes out of scope. Closed systems of 
inequalities provide a way to straightforwardly compute the join and projection operators. The join of two closed systems 
can be computed pairwise, by considering each two variable pair, and calculating the convex union of the two sets of 
inequalities found by projecting each of the two input systems onto this pair. Similarly, join and projection for closed TVPI
systems can be calculated pairwise for closed systems.

To illustrate, consider again I ′0 = {x − y ≤ 0, 2x − z ≤ 0, −x + z ≤ 0} (coloured red in the first row of Fig. 1) and recall 
that I ′′0 = I ′0 ∪ {z − y ≤ 0, x ≤ 0, z ≤ 0} is closed (coloured grey in the first row of Fig. 1). Now consider in addition, J ′

0 =
{x + y ≤ 0, 2x − y ≤ 0, z ≤ −1, y + z ≤ 0, z − y ≤ −1} (coloured red in the second row of Fig. 1) and observe that J ′′

0 =
J ′

0 ∪ {x ≤ 0} is closed (coloured grey in the second row of Fig. 1). Observe that the third row of Fig. 1 describes the TVPI
system that encloses those of I ′′0 and J ′′

0 . Moreover, this system can be derived pairwise by computing the planar join 
(convex union) of each two variable projection. That is, each projection on the final row of Fig. 1 is the convex union of the 
two projections on the preceeding rows. Notice that without computing closure the pairwise convex union calculations will 
not give the join of the two input systems; for example, without closure, the convex union of the two {y, z} spaces is the 
whole {y, z} space.

Invariants can be inferred using general polyhedra [9], but there is much interest in identifying subclasses of linear 
inequalities which balance the expressiveness of the invariants against computational tractability. As well as Octagons and 
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TVPI [40], other examples of these weakly relation domains include: differences (or zones) [32], pentagons [30], zonotopes 
[18], Logahedra [22], octahedra [6], subpolyhedra [29], and linear template constraints [37].

A frequently occurring use-case in abstract interpretation is adding a single constraint to system of constraints and then 
checking satisfiability, a problem which is addressed herein for TVPI. This use-case arises when a TVPI description for the 
program state at one line is adjusted to obtain a TVPI description for the next, possibly adding a series of TVPI inequalities 
to a given TVPI system [33]. Incremental closure also arises when modelling machine arithmetic with polyhedra [39] where 
integer wrapping is simulated by repeatedly partitioning a space into two (by adding a single unary inequality), closing and 
then performing translation. Integer wrapping is applied whenever a guard is encountered and since each encounter invokes 
incremental closure repeatedly, the faithful modelling of machine arithmetic is predicated on the existence of an efficient 
incremental closure algorithm.

2.5. Polyhedral compilation

Polyhedral compilation [36] offers a formal way to understand loop optimisation for bounded iteration, where array 
indices are restricted to affine functions on the loop variables (possibly augmented with symbolic constants). A dependency 
graph is created with statements for nodes and edges which indicate a dependence between one statement that writes to 
an array element and another that reads from an array. Each edge is decorated with a polyhedron, which indicates how 
the array indices differ or overlap when the read of one statement is reached after the write of another statement [12]. 
A transformation phase [10] then follows, for example to minimise the overall latency [13], which amounts to finding 
a partial order (a schedule) whose edges include those of the dependency graph, which can be realised with code that 
satisfies given architectural constraints. Although it appears intractable to compute a best schedule [25], good schedules can 
be derived efficiently by approximating the polyhedra with TVPI inequalities, so as to provide a way of scaling polyhedral 
compilation [42].

3. Preliminaries

The study commences with the class of two variables per inequality constraints [34,40] that is defined over a given set 
of variables X :

Definition 1. TVPIX = {ax + by ≤ e | x, y ∈ X ∧ a, b, e ∈Q}

Suppose X = {u, x, y, z}. Note that TVPIX includes unary constraints, such as 2x ≤ 3, by setting, say, b = 0. It also contains 
constant constraints such as 0 ≤ 0 and 0 ≤ −1 which abbreviate to true and false respectively. This class of inequalities 
possesses the property that TVPIX is closed under variable elimination. That is, eliminating variables from some S ⊆ TVPIX
results in a system of inequalities S ′ ⊆ TVPIX . For example, the variable y can be eliminated from the system S = {x −
2y ≤ 5, 3y + z ≤ 7, 5y − u ≤ 0} by combining pairs of inequality with opposing signs for y. This yields the projection 
S ′ = {3x + 2z ≤ 29, −2u + 5x ≤ 25}, which is indeed a system of TVPIX inequalities.

Observe that c ∈ TVPIX can be represented in several ways. For example the inequality 2x + 4y ≤ 2 might also be 
represented by x + 2y ≤ 1. This leads to the concept of semantic equivalence. Denote by c ≡ c′ that one inequality is merely 
a multiple of the other. This will be used when naming inequalities, for example, c ≡ x − 2y ≤ 3 or c1 ≡ a1x + b1 y ≤ e1. 
More generally, equivalence is formulated in terms of the entailment relation. Given two systems S, S ′ ⊆ TVPIX , S entails 
S ′ , denoted S |= S ′ , if any assignment that satisfies S also satisfies S ′ (where an assignment is assumed to be a mapping 
from X to Q). For instance, S |= S ′ where S = {x − 2y ≤ 7, y ≤ −2} and S ′ = {x ≤ 4} since every assignment to x and y that 
satisfies S also satisfies S ′ . The converse is not true since the assignment {x �→ 4, y �→ 3} satisfies S ′ but not S . Equivalence 
is defined as S ≡ S ′ iff S |= S ′ and S ′ |= S . The entailment of a single inequality c by system S will be denoted S |= c. For 
notational convenience this paper implicitly assumes that an inequality is a representative of an equivalence class and might 
be multiplied through by any positive constant.

The set of variables that occur in c is denoted vars(c) and is defined:

Definition 2.

vars(ax + by ≤ e) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∅ if x = y ∧ a = −b
∅ else if a = b = 0
{y} else if a = 0
{x} else if b = 0
{x, y} otherwise

The set vars(c) contains either 2, 1 or 0 variables defining whether c is binary, unary or constant. This is then lifted to sets 
of inequalities, so as vars(S ∪ {c}) = vars(S) ∪ vars(c). For example, in the example at the start of this section, vars(S) = X .

Other classes of inequalities with two variables per inequality can be defined and are of interest. In particular, Octagons 
[33] and their generalisation, Logahedra [22]. These classes of inequalities are given below. Octagons have variations where 
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the constant term is drawn from Z; in addition, bounded Logahedra are defined where the set of coefficients is generated 
with a maximum exponent (so that Octagons are 0-Logahedra).

Definition 3. OctX = {ax + by ≤ e | x, y ∈ X ∧ a, b ∈ {−1, 0, 1} ∧ e ∈Q}

Definition 4. LogX = {ax + by ≤ e | x, y ∈ X ∧ a, b ∈ {−2n, 0, 2n|n ∈ Z} ∧ e ∈Q}

Observe that OctX ⊆ LogX ⊆ TVPIX .
As noted above, when a variable is eliminated from a subset of TVPIX (or LogX or OctX ), the resulting inequalities are still 

a subset of TVPIX (or LogX or OctX ). In particular, the action of combining a pair of inequalities in TVPIX with a common 
variable to eliminate this variable results in an inequality that is again in TVPIX . The action of combining inequalities, or 
computing resultants to use the terminology of Nelson [34], is formalised below:

Definition 5. If c1 ≡ a1x + b1 y ≤ e1, c2 ≡ a2x + b2z ≤ e2 and a1a2 < 0 then

c = result(c1, c2, x) = |a2|b1 y + |a1|b2z ≤ |a2|e1 + |a1|e2

otherwise result(c1, c2, x) = ⊥. This resultant will also be denoted:

c1 c2 xc

The term in y is said to derive from c1 and that in z to derive from c2.

Note that a single pair of inequalities may possess two resultants, as is illustrated by the pair c1 ≡ x + y ≤ 1 and 
c2 ≡ −2x − 3y ≤ 1 for which result(c1, c2, x) = −y ≤ 3 and result(c1, c2, y) = x ≤ 4. Hence it is necessary to stipulate which 
variable is being eliminated. However, in contexts when the eliminated variable is not named result(c1, c2) will be used 
without explicit stipulation of the variable. Pairs of inequalities for which the given variable cannot be eliminated are 
indicated by ⊥, which can be ignored from that point on.

The result operation defines a resultant calculus, and it is derivations of inequalities in this calculus that are the object 
of study in much of this paper.

Definition 6. A series of applications of result form a derivation tree. If c is a leaf of the derivation tree (that is, not the result 
of an application of result) then size(c) = 0. If size(c1) = n1 and the size(c2) = n2, and c = result(c1, c2, x) then size(c) =
n1 + n2 + 1.

Note the slight abuse of notation. The size is a property of a derivation, not an inequality, hence size(c) will have differing 
values for different derivations of c.

Example 1. Let c0 ≡ x + y ≤ 1, c1 ≡ −2x + u ≤ 2, c2 ≡ −4y − x ≤ 1 and c3 ≡ −y + z ≤ 1. Consider the following derivation 
tree of c ≡ 2u + z ≤ 11:

c0

x + y ≤ 1
c1

−2x + u ≤ 2
x

2y + u ≤ 4
c2

−4y − x ≤ 1
y

2u − x ≤ 9

c0

x + y ≤ 1
c3

−y + z ≤ 1
y

x + z ≤ 2
x

2u + z ≤ 11

In this derivation size(c) = 4.

The resultant operator lifts to sets of inequalities by:

Definition 7. If C1, C2 ⊆ TVPIX then

result(C1, C2) = {c |c1 ∈ C1 ∧ c2 ∈ C2 ∧ x ∈ vars(c1) ∩ vars(c2) ∧ c = result(c1, c2, x) ∧ c �= ⊥}

The following abbreviations are used: result(c, C) = result({c}, C) and result(C, c) = result(C, {c}), where c ∈ TVPIX and 
C ⊆ TVPIX .

Another fundamental operator is syntactic projection, defined below.
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Fig. 2. π{x,y}(C ′), π{x,z}(C ′) and π{y,z}(C ′).

Definition 8. The syntactic projection, denoted πY for some Y ⊆ X , of system of inequalities S ⊆ TVPIX is defined as πY (S) =
{c ∈ S | vars(c) ⊆ Y }.

That is, the syntactic projection onto Y retains all inequalities whose variables are all in Y and discards all others. In a 
non-closed system syntactic projection will possibly lose information; syntactic projection is not semantic projection.

Consider the definition of a closed system:

Definition 9. A system C ⊆ TVPIX is closed if the following predicate holds:

closed(C) ⇐⇒ ∀c ∈ TVPIX . (C |= c ⇒ πvars(c)(C) |= c)

A closed system is defined so that syntactic and semantic projection coincide. No further implied inequalities can be 
added to the system that will tighten any two variable projection.

The following example illustrates closed systems.

Example 2. Suppose C = {x + y ≤ 0, −x + y ≤ 0, −y + z ≤ 0, 2y + x ≤ 2}. Put C ′ = C ∪ {x + z ≤ 0, −x + z ≤ 0, y ≤ 0, z ≤
0}. Then C ′ is closed. Note that y ≤ 0 is redundant in π{x,y}(C ′) = {x + y ≤ 0, −x + y ≤ 0, y ≤ 0} but is irredundant in 
π{y,z}(C ′) = {−y + z ≤ 0, y ≤ 0, z ≤ 0} as illustrated in Fig. 2. Further note that 2y + x ≤ 2 is redundant in each two variable 
projection; closed systems can contain truly redundant inequalities.

The second example illustrates closed systems, noting that unary inequalities need to be considered.

Example 3. Suppose C = {x + y ≤ 0, −x + y ≤ 0}. Then C is not closed since C |= y ≤ 0 but π{y}(C) = ∅ �|= y ≤ 0. However, 
C ∪ {y ≤ 0} is closed.

The third example illustrates that consistency of the system needs to be considered.

Example 4. Suppose C = {x ≤ −1, −x ≤ −1}. Then C is not closed because C |= false and π∅(C) = ∅ �|= false. Put C ′ =
C ∪ {false}. For any other constraint c ∈ TVPIX if C ′ |= c it follows that πvars(c)(C ′) |= c hence C ′ is closed. In particular 
C ′ |= true and π∅(C ′) = {false} |= true.

A system C can be augmented with inequalities to get C ′ so that closed(C ′), that is, the system can be closed in a process 
called closure.

If Y = {x, y} then the syntactic projection πY (S) yields a planar system. A planar system over Y can be filtered to remove 
any redundant inequalities. Similarly, the syntactic projection onto a single variable can be filtered (and this is trivial for 
projection onto no variables). These operators can be constructed for planar (and zero and one dimensional) polyhedra and 
lifted to systems of inequalities by taking the union of each filtered planar (and zero and one dimensional) projection. This 
is formalised in Definition 10. Therefore, only inequalities that are redundant in all one and two variable projections are 
removed.

The next definition considers how a two (or one or zero) dimensional projection can be filtered. This operation can then 
be lifted to systems of inequalities.

Definition 10. The mapping filter : ℘(TVPIX ) → ℘(TVPIX ) is defined:

filter(C) = ∪{filterY (πY (C))|Y ⊆ X ∧ |Y | ≤ 2}
where:

• filterY (C) ⊆ C
• filterY (C) ≡ πY (C)

• for every C ′ ⊂ filterY (C), C ′ �≡ C .
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That no information is lost by filtering is formalised in the following lemma.

Lemma 1. If X ′ ⊆ vars(C) and πX ′ (C) |= c then πX ′ (filter(C)) |= c.

Proof. Since πX ′ (C) = ∪{πY (C)|Y ⊆ X ′ ∧ |Y | ≤ 2} and πY (C) ≡ filterY (πY (C)) for each Y then πX ′ (C) ≡ ∪{filterY (πY (C))|Y ⊆
X ′ ∧ |Y | ≤ 2}. Hence πX ′ (filter(C)) |= c. �
Example 5. If S = {x + y ≤ 0, −x + y ≤ 0, y ≤ 0} then filter(S) = S .

Example 6. If S = {x ≤ −1, −x ≤ −1, false} then filter(S) = {false}.

The following lemma demonstrates that a closed system remains closed after filtering.

Lemma 2. If S ⊆ TVPIX and closed(S) then closed(filter(S)).

Proof. Let S ⊆ TVPIX and suppose closed(S) holds. Let c ∈ TVPIX such that S |= c. Then πvars(c)(S) |= c. Therefore by 
Lemma 1, πvars(c)(filter(S)) |= c. �
4. Completion

A closed system of inequalities I ⊆ TVPIX [40] can be found by augmenting I with inequalities result(I, I) until an I ′ is 
obtained such that no further (non-redundant) inequalities can be added to πY (I) for any |Y | ≤ 2. In this paper, the process 
of finding a closed system, including an interleaved filtering step to remove unnecessary inequalities, is called completion. 
Nelson [34] used closure as a way of deciding whether a given I ⊆ TVPIX is satisfiable over Q or R and this provides the 
starting point for this section.

4.1. Full completion

The following result is Lemma 1b from Nelson [34].

Lemma 3. Suppose C ⊆ TVPIX , c ∈ TVPIX and that C ∪ {¬c} is unsatisfiable, where C ′ ∪ {¬c} is satisfiable for all C ′ ⊂ C. Then, there 
exists X ′ ⊆ X such that |X ′| ≤ �|X |/2� + 1 and πX ′ (C ∪ result(C, C)) ∪ {¬c} is unsatisfiable.

Note that for c ∈ TVPI the constraint ¬c is a strict two variable inequality, hence ¬c /∈ TVPI, given the definition of TVPI
used in this paper. However, the results in [34] allow strict inequalities. Hence the following is a corollary of Lemma 3, 
expressing the result in terms of entailment.

Corollary 1. Suppose C ⊆ TVPIX , c ∈ TVPIX and that C |= c. Then, there exists X ′ ⊆ X such that |X ′| ≤ �|X |/2� + 1 and πX ′ (C ∪
result(C, C)) |= c.

The following defines the congruence relation ∼= for TVPI systems. Two systems are congruent when they agree when 
syntactically projected onto each projection of two or fewer variables.

Definition 11. I ∼= I ′ iff for all Y ⊆ X such that |Y | ≤ 2, πY (I) ≡ πY (I ′).

The following lemma states that repeatedly applying result and filter leads to stability.

Lemma 4. Let I ⊆ TVPIX . Put I0 = filter(I) and Ii+1 = filter(Ii ∪ result(Ii, Ii)). Then Ik
∼= Ik+1 where k = �lg2(|X |)�.

Proof. Note that I0 ≡ ... ≡ Ik ≡ Ik+1.

1. For Y ⊆ X , |Y | ≤ 2 consider c ∈ πY (Ik+1). Observe that I0 ≡ Ik+1, hence I0 |= c. Put X0 = X . By Corollary 1 it follows that 
there exists Xi+1 ⊆ Xi such that |Xi+1| ≤ �|Xi |/2� +1 and πXi+1 (Ii ∪result(Ii, Ii)) |= c, hence by Lemma 1 πXi+1 (Ii+1) |= c. 
In particular, πY (Ik) |= c, since vars(c) ⊆ Y .

2. For Y ⊆ X , |Y | ≤ 2 consider c ∈ πY (Ik). Since Ik+1 |= c it follows that πY (Ik+1) |= c

Thus πY (Ik) ≡ πY (Ik+1), hence Ik
∼= Ik+1. �
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The definition of closed allows systems to contain inequalities that are redundant in the sense that they can be removed 
from the system whilst every one or two variable syntactic projection will still define the same space. These are the in-
equalities that are removed by filter. Computationally these inequalities incur a performance hit for operations on TVPIX
systems. This motivates a variation on closed systems, here called complete. This is specified as a function on TVPIX systems 
below. A system where complete(I) = I will be referred to as complete, and the process of computing a complete system 
will be referred to as completion.

Definition 12. Let I ⊆ TVPIX . Put I0 = filter(I) and Ii+1 = filter(Ii ∪ result(Ii, Ii)). Then complete : ℘(TVPIX ) → ℘(TVPIX ) is 
defined

complete(I) = In where In+1 ∼= In and for every 0 ≤ m < n, Im+1 � Im.

The following lemma shows that the complete function calculates a stable fixed point.

Lemma 5. Let complete(I) = In, as in Definition 12. Then for all m ≥ n Im ∼= In.

Proof. Consider Im where m > n and Im ∼= Im−1. Then Im = filter(Im−1 ∪ result(Im−1, Im−1)). Suppose c ∈ result(Im−1, Im−1). 
Then, since Im−1 is complete, πvars(c)(Im−1) |= c. If c ∈ Im−1 then the result hold immediately. If c /∈ Im−1 then filter(Im−1 ∪
{c}) ∼= Im−1 and the result holds. �

The intention is that complete returns closed systems, and this is established by the following theorem.

Theorem 1. Let C ⊆ TVPIX . Then closed(complete(C)) holds.

Proof. Since complete(C) ≡ C it is enough to show that for every c ∈ TVPIX , if complete(C) |= c, then πvars(c)(complete(C)) |=
c. Following the proof of Lemma 4 πvars(c)(complete(C)) ≡ πvars(c)(Ik), where k = �lg2(|X |)�, hence if C |= c, then 
πvars(c)(complete(C)) |= c. �

The remainder of this paper is concerned with calculating completion, hence maintaining closed systems.

4.2. Incremental completion

This work is primarily concerned with incremental completion in two variables per inequality systems, that is, considering 
how to make a system complete after the addition of a single new inequality to a complete system. Formally, where 
I ⊆ TVPIX , complete(I) = I and c0 ∈ TVPIX , the incremental completion is complete(I ∪ {c0}), which is a closed system.

As demonstrated in the introduction, when a new inequality is added to a TVPI system the resultant calculus allows 
many new inequalities to be derived from arbitrarily complicated derivation trees. However, with the exception of false, 
only those derived from one or two result steps need to be considered. The approach taken here is to consider derivation 
trees as objects of study.

The following sections give a series of lemmata relating to derivations trees:

• a result on redundancy (Lemma 6), showing that redundant inequalities cannot be used in the derivation of non-
redundant inequalities;

• two results on compaction of derivations, showing that a derivation of a non-redundant inequality consisting of three 
successive applications of the result operation can be rewritten to a derivation of lower depth (one result for binary 
inequalities, Lemma 7, and one for unary inequalities, Lemma 9);

• a result on linearisation of derivations (Lemma 10), showing that the derivation of a non-redundant inequality can be 
rewritten so that one premiss of every result step is a leaf;

• two results showing that it is unnecessary to use the new inequality added to the complete system more than once, 
Lemmata 11 and 12.

The concluding Theorem 2 uses the lemmata to demonstrate that any element of the incremental completion can be 
generated using at most two result steps (with the exception of false indicating an inconsistent system, which can be 
detected within the closed system). The proofs of the lemmata and theorem are constructive, and contain rewriting rules 
for derivations in order to demonstrate their results.

Example 7. Returning to the derivation given in Example 1, first observe that {c1, c2, c3} is a complete, hence closed system 
of inequalities. Adding c0 to this system allows additional inequalities to be derived using the result calculus. Example 1
gives one such derivation, which involves more than two result steps. The concluding Theorem 2 says that c can either 
be derived using fewer result steps, or that c /∈ complete({c0, c1, c2, c3}). The proofs of the theorem and lemmata specify 
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reductions to demonstrate this. In this example, case (5) of the proof of Theorem 2 indicates that Lemma 10 (linearisation), 
following by Lemma 12 (multiple use, which in turn utilises the compaction Lemma 7) can be used to show that c /∈
complete({c0, c1, c2, c3}). The reasoning is illustrated in Example 13 and Example 11, and the redundancy indicated by the 
latter is described in Example 9. The complete and closed system generated by adding c0 to {c1, c2, c3} is considered in 
Example 15.

4.3. Inconsistency

As noted above, and demonstrated in this paper, any inequality in complete(I ∪ {c0}) can be found in at most two results 
steps. However, it should be noted that inconsistency of a system might not be detected in these two steps. This is illustrated 
in the following example.

Example 8. Let I = {c1, c2}, where c1 ≡ −x −u ≤ 0, c2 ≡ −3x −u ≤ −3, hence closed(I) and complete(I) = I . Consider adding 
c0 ≡ 2x + u ≤ 1 to I . Observe that the system is then inconsistent:

c0 c1 u
x ≤ 1

c0 c2 u−x ≤ −2
x

0 ≤ −1

where 0 ≤ −1 ≡ false. Observe that there is no selection of ci, c j ∈ I so that result(result(c0, ci), c j) = false.

At the heart of this paper is the result that when incrementally adding a new inequality to a closed system of inequalities, 
any inequality that can strengthen a two dimensional projection can be generated in at most two result steps. In the case 
above, the two dimensional projection is already inconsistent, so generating false does not tighten the projection, hence it 
is similar to a redundant inequality, hence is not generated. However, false is needed for closure. This does, however, mean 
that this inconsistency of the projection (hence system) needs to be explicitly noted.

4.4. Redundancy

Redundancy is important in two senses. The first is that using the result calculus, inequalities redundant with respect to 
the entire system are added in order to make them explicit. In a second sense, within a two variable projection inequalities 
that are redundant within this projection are not part of the completion (and are unnecessary for a closed system) and can 
be removed. That is, these inequalities are redundant with respect to a complete system. Redundancy is primarily used in 
this second sense through much of the rest of this paper, and is defined below.

Definition 13. Inequality c ∈ TVPIX is said to be redundant with respect to I ⊆ TVPIX iff I |= c and c /∈ complete(I).

In any two variable projection, a redundant inequality can be obtained as the positive linear combination of one or 
two other inequalities. This is represented with the following notation describing the entailment of the inequality in the 
conclusion by the two in the premisses:

a1x + b1 y ≤ e1 a2x + b2 y ≤ e2 +(λ1,λ2,δ)
(λ1a1 + λ2a2)x + (λ1b1 + λ2b2)y ≤ λ1e1 + λ2e2 + δ

This says that multiplying the first premiss by λ1 ≥ 0 and the second premiss by λ2 ≥ 0, summing the results and adding 
δ ≥ 0 to the constant term gives the conclusion.

The following lemma shows that for system of inequalities I , if inequality c is redundant with respect to complete(I)
then the resultant of c with any inequality c0 is redundant with respect to the completion of I ∪ {c0} (hence also redundant 
with respect to I ∪ {c0}).

This is a powerful result, redundancy really means just that: a redundant inequality is useless for forming non-redundant 
inequalities, any resultant formed is guaranteed to be redundant. This will be useful in later results, where derivations of 
inequalities are rewritten and after rewriting it might be that some intermediates are redundant.

Lemma 6 (Redundancy). Let I ⊆ TVPIX and let c, c0 ∈ TVPIX where x ∈ vars(c), x ∈ vars(c0). Suppose c /∈ complete(I) and I |= c. 
Then complete(I ∪ {c0}) |= result(c0, c, x) and result(c0, c, x) /∈ complete(I ∪ {c0}).

Proof. Without loss of generality there are two cases to consider:

i) Where |vars(c)| = 1.
ii) Where |vars(c)| = 2.
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i) By the definition of closed there exists c1 ∈ complete(I), c1 �≡ c such that {c1} |= c. Suppose c ≡ ax ≤ e and c0 ≡ a0x +
b0 y ≤ e0 (where it might be that b0 = 0). Hence result(c0, c, x) = |a|b0 y ≤ |a|e0 + |a0|e. Then put c1 ≡ ax ≤ e − δ, δ > 0
and consider c′

1 = result(c0, c1, x) = |a|b0 y ≤ |a|e0 + |a0|e − |a0|δ. Observe that c′
1 |= result(c0, c, x) and the result holds.

ii) Suppose vars(c) = {x, z} and vars(c0) ⊆ {x, y}. Consider c ≡ ax +bz ≤ e, where I |= c, c0 ≡ a0x +b0 y ≤ e0 (where it might 
be that b0 = 0) and c′ ≡ result(c0, c, x). Then (since I |= c and noting Theorem 1) one of the two cases holds:
(a) There exists c1 ∈ complete(I) such that c1 ≡ ax + bz ≤ e − δ, for some δ > 0 (that is, {c1} |= c)
(b) There exists c1, c2 ∈ complete(I), vars({c1, c2}) = vars(c) such that:

c1 c2
c

+(λ1,λ2,δ)

In each case, considering the resultant of c0 with c1 and/or c2 will lead to a demonstration of the redundancy of c′ .
(a) c′ = result(c0, c, x) is derived as follows:

a0x + b0 y ≤ e0 ax + bz ≤ e

|a|b0 y + |a0|bz ≤ |a|e0 + |a0|e x

Since {c1} |= c observe that c′
1 = result(c0, c1, x) is derived:

a0x + b0 y ≤ e0 ax + bz ≤ e − δ

|a|b0 y + |a0|bz ≤ |a|e0 + |a0|(e − δ)
x

Hence {c′
1} |= c′ , that is complete(I ∪ {c0}) |= c′ .

(b) c′ = result(c0, c, x) is derived as follows:

c0

c1 c2
c

+(λ1,λ2,δ)

c′ x

There are four cases to considered, depending on the values of a1, a2. Consider the case where a1 > 0 and a2 < 0
and observe that

c0 c1

c′
1

x c1 c2
c12

x

c′
+

(λ1−λ2
|a2 |
|a1 | ,λ2

|a0 |
|a1 | ,|a0|δ)

The other cases are similar (see proof appendix), demonstrating the result. �
Note that the conclusion of Lemma 6, that complete(I ∪ {c0}) |= result(c0, c, x) might also be written as, let c′ =

result(c0, c, x), then πvars(c′)(complete(I ∪ {c0}) |= c′ .
Consider the following example illustrating Lemma 6.

Example 9. Consider again the inequalities from Example 1. Observe that

c0

x + y ≤ 1

c1

−2x + u ≤ 2

c0

x + y ≤ 1
c2

−4y − x ≤ 1
y

3x ≤ 5 +2,1,0−x + 2u ≤ 9
x

y + 2u ≤ 10

and that this derivation demonstrates that −x + 2u ≤ 9 is redundant, therefore according to Lemma 6 y + 2u ≤ 10 should 
also be redundant. The following rewriting, following the proof of the lemma shows this:

c0

x + y ≤ 1
c1

−2x + u ≤ 2
x

2y + u ≤ 4

c1

−2x + u ≤ 2

c0

x + y ≤ 1
c2

−4y − x ≤ 1
y

3x ≤ 5
x

3u ≤ 16 +( 1
2 , 1

2 ,0)
y + 2u ≤ 10

Hence y + 2u ≤ 10 /∈ complete({c0, c1, c2, c3}).
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(1)

{x, y} {x, u}
{y, u} x {u, v}

{y, v} u {v, z}
{y, z} v

(2)

{x, y} {x, u}
{y, u} x {u, v}

{y, v} u {y, z}
{v, z} y

(3)

{x, y} {x, u}
{y, u} x {y, v}

{u, v} y {u, z}
{v, z} u

(4)

{x, y} {x, u}
{y, u} x {y, v}

{u, v} y {v, z}
{u, z} v

Fig. 3. Possible resultant combinations for generating a binary inequality.

4.5. Compaction of a chain

The results in this section and the next concern chains of resultant calculations, explaining that combining a new in-
equality c0 with three inequalities drawn from a complete system is unnecessary. That is, if inequality c is derived in three 
resultant steps, it can be shown either to be redundant in a two variable projection or to be derivable from fewer resultant 
steps. Lemma 7 demonstrates this in the case that the derived inequality c contains exactly two variables. Lemma 9 then 
demonstrates this in the case that the derived inequality c contains only a single variable (and will ensure that the strongest 
unary inequality is included, even if this is redundant, as in the definition of closed).

Each proof will present its case analysis as a skeleton, that is, showing the variables involved in the chain of resultant 
steps, abstracting away from numerical details of coefficients and constants.

Lemma 7 (Compaction). Let c0 ∈ TVPIX , c1, c2 ∈ I ⊆ TVPIX , c3 ∈ I ∪ {c0} and x0, x1, x2 ∈ X, where complete(I) = I . If c ∈
complete(I ∪ {c0}) and

c = result(result(result(c0, c1, x0), c2, x1), c3, x2)

and |vars(c)| = 2 then there exists d0, d1 ∈ I and y0, y1 ∈ X such that

c = result(result(c0,d0, y0),d1, y1)

Proof. The structure of the series of resultants being considered is:

c0 c1

c′
1

x0
c2

c′
2

x1
c3

c x2

The proof proceeds by giving a series of reductions demonstrating that by reordering the application of the result op-
eration either the conclusion of the lemma holds, or c /∈ complete(I ∪ {c0}), that is the premiss of the lemma does not 
hold.

There are four possible configurations that lead to different combinations of the variables being eliminated in the se-
quence of resultant steps. The skeletons of these four cases are given in Fig. 3. Only case four is considered in detail.

Where c0 ≡ a0x + b0 y ≤ e0, c1 ≡ a1x + b1u ≤ e1, c2 ≡ a2 y + b2 v ≤ e2 and c3 ≡ a3 v + b3z ≤ e3, with x0 = x, x1 = y, x2 = v . 
In this case

c0 c1

c′
1

x
c2

c′
2

y
c3

c v

reduces to
c0 c1

c′
1

x c2 c3
c23

v

c
y

Put d0 = c1, d1 = result(c2, c3, v), y0 = x and y1 = y. Since I is complete, either d1 ∈ I and the result holds, or d1 /∈ I , 
therefore πvars(d1)(I) |= d1, hence by Lemma 6 c /∈ complete(I ∪ {c0}).

However, in the case that the variables v and x are the same an alternative analysis is needed. Here the initial derivation 
can be reduced to
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c0 c1

c′
1

x c2 c3
c23

v

c
+(|a2||a3|,|a1||b0|,0)

If c23 ∈ complete(I) then c is redundant because it is a linear combination of c′
1 and c23. If c23 /∈ complete(I), but c′

1 ∈
complete(I ∪ {c0}) then by Lemma 6 it also follows that c is redundant. Likewise if c′

1 /∈ complete(I ∪ {c0}). In all cases, the 
pre-condition of the lemma that c ∈ complete(I ∪ {c0}) is contradicted. Other variable identities lead to variations on these 
two cases (see proof appendix). �
Example 10. To illustrate case 4 of the proof, as detailed above, suppose c0 ≡ x + y ≤ 1 and c1, c2, c3 ∈ I ⊆ TVPIX where 
complete(I) = I and

c1 ≡ −x − 2u ≤ 1 c2 ≡ −y − 5v ≤ 1 c3 ≡ v − 2z ≤ 0

Then c in the proof is derived:

c0

x + y ≤ 1
c1

−x − 2u ≤ 1
x−2u + y ≤ 2

c2

−y − 5v ≤ 1
y−2u − 5v ≤ 3

c3

v − 2z ≤ 0
v−2u − 10z ≤ 3

This can be reduced to the following derivation of c:

c0

x + y ≤ 1
c1

−x − 2u ≤ 1
x−2u + y ≤ 2

c2

−y − 5v ≤ 1

c3

−3y − 2z ≤ 0
v−y − 10z ≤ 1

y−2u − 10v ≤ 3

that is, where d0 = c1, d1 = result(c2, c3, v), y0 = x, and y1 = y. Notice that either d0 ∈ I , or Lemma 6 says that 
c /∈ complete(I ∪ {c0}).

Example 11. Returning to the set of inequalities from Example 1, consider the following where x and v coincide, leading to 
the redundancy of c in complete(I ∪ {c0}), again as given in the proof above:

c0

x + y ≤ 1
c1

−2x + u ≤ 2
x

2y + u ≤ 4
c2

−4y − x ≤ 1
y

2u − x ≤ 9
c0

x + y ≤ 1
x

2u + y ≤ 10

From this, the following can be observed:

c0

x + y ≤ 1
c1

−2x + u ≤ 2
x

2y + u ≤ 4

c2

−4y − x ≤ 1
c0

x + y ≤ 1
x−3y ≤ 2 +(4,2,0)

4u + 2y ≤ 20

demonstrating that 2u + y ≤ 10 /∈ complete(I ∪ {co}).

4.6. Unary inequalities

Unary inequalities are of particular importance in domains with two variables per inequality since a single unary in-
equality might be included in many two variable projections. The definition of closure used in this paper makes this explicit 
by stating that a closed system must include all unary inequalities (see Example 3). The example in the introduction shows 
why this is. Some of these unary inequalities might well be redundant in the sense that they are redundant in each two 
variable projection in which they occur. The example in the introduction can be viewed as demonstrating either that unary 
inequalities need to be generated whether redundant or not, or that all projections onto two or fewer variables need to be 
considered – then the unary inequalities are not redundant in unary projections.
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Lemma 9 augments Lemma 7 by showing that when adding a single new inequality to a complete system all unary 
inequalities required to ensure that the new system is also complete – including redundant unary inequalities – can be 
derived in at most two resultant steps.

Before the main result, Lemma 9, a preliminary lemma on the entailment of unary inequalities is given. This is used in 
the proof of Lemma 9. Lemma 8 says that if two consistent unary inequalities entail a third, then that third unary inequality 
must be entailed by one of the other two.

Lemma 8. Suppose vars(c) = {x}, vars(c1), vars(c2) ⊆ {x} and that {c1, c2} |= c. Then either c1 |= c or c2 |= c.

Lemma 9 (Unary inequalities). Suppose that I ⊆ TVPIX and complete(I) = I . Suppose c0 ∈ TVPIX and that c ∈ complete(I ∪ {c0})
where

c = result(result(result(c0, c1), c2), c3)

and |vars(c)| = 1, c1, c2 ∈ I and c3 ∈ I ∪ {c0}. Then there exists d0, d1 ∈ I such that one of the following holds:

1. c = result(result(c0, d0), d1)

2. c = result(c0, d0)

Proof. Fig. 4 gives the structure of three resultant steps, and skeletons (the variables occurring in each inequality) for each of 
the fifteen possible configurations where three resultant steps end in a unary inequality. Analysis of each case demonstrates 
the result (often by showing that c /∈ complete(I ∪ {c0}). Only cases 2 and 3 are detailed here (see proof appendix for the 
remaining cases).

2. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1 y + b1u ≤ e1, c2 ≡ a2x + b2z ≤ e2 and c3 ≡ a3 y ≤ e3. Consider:

c0

c1 c3
c13

y

c′
13

u
c2

c z

c13 = result(c1, c3, y) is a unary inequality, hence either c13 ∈ I and case 1 holds or c13 /∈ I and by Lemma 6 c /∈
complete(I ∪ {c0}). Note that the result still holds if u = x.

3. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1 y + b1u ≤ e1, c2 ≡ a2z ≤ e2 and c3 ≡ a3x + b3 y ≤ e3. The original derivation is:

a0z + b0u ≤ e0 a1 y + b1u ≤ e1

|b1|a0z + |b0|a1 y ≤ |b1|e0 + |b0|e1
u

a2z ≤ e2

|a2||b0|a1 y ≤ |a2||b1|e0 + |a2||b0|e1 + |a0||b1|e2
z

a3x + b3 y ≤ e3

|a1||a2||b0|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3
y

Hence the same inequality might be derived

a0z + b0u ≤ e0 a2z ≤ e2

|a2|b0u ≤ |a2|e0 + |a0|e2
z

a1 y + b1u ≤ e1 a3x + b3 y ≤ e3

|a1|a3x + |b3|b1u ≤ |b3|e1 + |a1|e3
y

|a1||a2||b0|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3
u

If c13 = result(c1, c3, y) ∈ I then case 1 holds. If c13 /∈ I then by Lemma 6 c /∈ complete(I ∪ {c0}). Note that the result still 
holds if z = x.
If in the derivation immediately above u = x, then c′

2 and c13 are given by:

a0z + b0x ≤ e0 a2z ≤ e2

|a2|b0x ≤ |a2|e0 + |a0|e2
z

and

a1 y + b1x ≤ e1 a3x + b3 y ≤ e3

(|a1|a3 + |b3|b1)x ≤ |b3|e1 + |a1|e3
y

Hence (scaling with λ1 = |b1||b3| and λ2 = |a2||b0| respectively)

|a2||b0|(|a1|a3 + |b3|b1)x + |a2||b1||b3|b0x ≤ |a2||b0|(|b3|e1 + |a1|e3) + |b1||b3|(|a2|e0 + |a0|e2)

Noting that b0b1 < 0 this gives
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c0 c1

c′
1 c2

c′
2 c3

c (1)

{x, u} {z, u}
{x, z} u {z, y}

{x, y} z {y}
{x} y

(2)

{z, u} {y, u}
{z, y} u {x, z}

{x, y} z {y}
{x} y

(3)

{z, u} {y, u}
{z, y} u {z}

{y} z {x, y}
{x} y

(4)

{z, u} {y, u}
{z, y} u {z, y}

{y} z {x, y}
{x} y

(5)

{z, u} {u}
{z} u {z, y}

{y} z {x, y}
{x} y

(6)

{z, u} {z, u}
{z} u {z, y}

{y} z {x, y}
{x} y

(7)

{x, u} {z, u}
{x, z} u {z, y}

{x, y} z {x, y}
{x} y

(8)

{z, u} {y, u}
{z, y} u {x, z}

{x, y} z {x, y}
{x} y

(9)

{y, u} {z, u}
{y, z} u {z, y}

{y} z {x, y}
{x} y

(10)

{z, u} {x, u}
{x, z} u {z, y}

{x, y} z {y}
{x} y

(11)

{y, u} {z, u}
{z, y} u {x, z}

{x, y} z {y}
{x} y

(12)

{z, u} {x, u}
{x, z} u {z, y}

{x, y} z {x, y}
{x} y

(13)

{y, u} {z, u}
{z, y} u {x, z}

{x, y} z {x, y}
{x} y

(14)

{u} {u, z}
{z} u {z, y}

{y} z {x, y}
{x} y

(15)

{y, u} {z, u}
{z, y} u {z}

{y} z {x, y}
{x} y

Fig. 4. Possible derivations for generating a unary inequality from c0, c1, c2, c3.

|a1||a2||b0|a3x ≤ |b1||b3||a2|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3

Hence by Lemma 8 c′
2 |= c or c13 |= c. In the former case then either case 2 has been demonstrated or c /∈ complete(I ∪

{c0}). In the latter case, either c ∈ I or c /∈ complete(I ∪ {c0}). In all cases the result holds. �
Example 12. Suppose that complete(I) = I . Further suppose that c0 ≡ z + u ≤ 1, c1 ≡ y − u ≤ 2, c2 ≡ −2z ≤ −1, c3 ≡ x − y ≤
−1, where c1, c2, c3 ∈ I , then c = result(result(result(c0, c1, u), c2, z), c3, y) = 2x ≤ 3. As in case 2 of the lemma, c can be 
derived as

c0

z + u ≤ 1
c1

y − u ≤ 2
u

z + y ≤ 3
c2

−2z ≤ −1
z

2y ≤ 5
c3

x − y ≤ −1
y

2x ≤ 3

With d0 = c2 and d1 ≡ x − u ≤ 1 = result(c1, c3, y), if d1 ∈ I then the result is demonstrated by the following rewriting:

c0

z + u ≤ 1
c2

−2z ≤ −1
z

2u ≤ 1

c1

y − u ≤ 2
c3

x − y ≤ −1
y

x − u ≤ 1
u

2x ≤ 3
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However, if the variables x and u coincide, then observe that from

c0

z + x ≤ 1
c1

y − x ≤ 2
x

z + y ≤ 3
c2

−2z ≤ −1
z

2y ≤ 5
c3

x − y ≤ −1
y

2x ≤ 3

it can be observed that

c0

z + x ≤ 1
c2

−2z ≤ −1
z

2x ≤ 1

c1

y − x ≤ 2
c3

x − y ≤ −1
y

0 ≤ 1

and that {2x ≤ 1, 0 ≤ 1} |= 2x ≤ 3, hence by Lemma 8 either 2x ≤ 1 |= 2x ≤ 3 or 0 ≤ 1 |= 2x ≤ 3, and it is easy to see that it 
is the former in this case.

4.7. Linearisation of a tree

The next step in demonstrating the correctness of the incremental completion algorithm is to demonstrate that any 
derivation tree of inequality c can be replaced by a linear derivation of c (see the following definition).

Definition 14. A derivation is said to be linear if each result step in the derivation has at most one premiss with size greater 
than 0. By convention the right premiss will have size 0.

Lemma 10 shows that a derivation whose final resultant calculation has linear premisses can be replaced by a linear 
derivation. Any inequality can either be derived linearly, or is redundant, or is false (see the example in section 4.3).

Lemma 10 (Linearisation). Let I ⊆ TVPIX . Suppose that c0, c1, . . . , c j ∈ I and d0, d1, . . . , dk ∈ I where j, k ∈ N. Where c′
0 = c0

and d′
0 = d0 , define c′

i+1 = result(c′
i, ci+1, xi), where xi ∈ X and also define d′

i+1 = result(d′
i, di+1, yi), where yi ∈ X. Consider c =

result(c′
j, d

′
k, z), where z ∈ X. At least one of the following holds:

1. There exists f0, f1, . . . , f� ∈ I , where f0 = f ′
0 = c0 , f ′

i+1 = result( f ′
i , f i+1, wi), wi ∈ X, and c ≡ f ′

�

2. c is redundant with respect to complete(I), that is, complete(I) |= c and c /∈ complete(I)
3. c ≡ false

Proof. If c = result(c′
j, d0, z), then case 1 is immediate. If c = result(c0, d′

k, z), note the symmetry of the premisses (so that 
c = result(c′

j, d
′
k, z) = result(d′

k, c
′
j, z)), hence case 1 is again immediate.

In other cases, the derivation can be written, and it is argued that repeated rewritings will establish the result. The core 
case and one restricted case are detailed here.

Where j, k ≥ 0 consider c = result(c′
j+1, d

′
k+1, z). That is, where result is applied to two inequalities that are not leaves of 

the derivation tree. With x, y, z, w distinct variables and all coefficients are non-zero, then

a1x + b1z ≤ e1

a2z + b2 w ≤ e2 a3 w + b3 y ≤ e3

|a3|a2z + |b2|b3 y ≤ |a3|e2 + |b2|e3
w

|a2||a3|a1x + |b1||b2|b3 y ≤ |a2||a3|e1 + |a3||b1|e2 + |b1||b2|e3
z

can be rewritten to:

a1x + b1z ≤ e1 a2z + b2 w ≤ e2

|a2|a1x + |b1|b2 w ≤ |a2|e1 + |b1|e2
z

a3 w + b3 y ≤ e3

|a2||a3|a1x + |b1||b2|b3 y ≤ |a2||a3|e1 + |a3||b1|e2 + |b1||b2|e3
w

That is, c = result(c′
j+1, result(d′

k, dk, w), z) = result(result(c′
j+1, d

′
k, z), dk, w). There is a symmetric case when z derives from 

the second premiss of d′
k+1.

The four variables may coincide. The only case detailed here is when y and z coincide (see proof appendix for the full 
case analysis), then result(c′ , d′ , z) can be rewritten to result(d′ , c′ , z).
j+1 k+1 k+1 j+1
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Original derivation:

c0

x + y ≤ 1
c1

−2x + u ≤ 2
x

2y + u ≤ 4
c2

−4y − x ≤ 1
y

2u − x ≤ 9

d0 = c0

x + y ≤ 1
d1 = c3

−y + z ≤ 1
y

x + z ≤ 2
x

2u + z ≤ 11

Linearisation of the original derivation:

c0

x + y ≤ 1
c1

−2x + u ≤ 2
x

2y + u ≤ 4
c2

−4y − x ≤ 1
y

2u − x ≤ 9
d0 = c0

x + y ≤ 1
x

2u + y ≤ 10
d1 = c3

−y + z ≤ 1
y

2u + z ≤ 11

Fig. 5. Linearisation of a tree composed of two chains into a single chain.

Associate a weight to the derivation of inequality c, c = result(c1, c2, v). This weight is an ordered triple (n, |vars(c1)|,
size(c2)), where n is the number of inequalities above c in the derivation with a right premiss with size greater than 0. In 
the original derivation of c, observe that at most one result operation has size(c2) > 0 (that is, n ≤ 1). Each rewriting step 
results in at most one result step with the size of the second argument greater than zero (again n ≤ 1). Hence the weights 
are totally ordered. The rewriting process has terminated if there are no result steps with right premiss with size greater 
than 0 (i.e. when n = 0, or when it is observed that the concluding inequality is redundant). Now observe that for each 
rewriting step either c is found to be redundant or the weight of the derivation of c is strictly less than previously. Hence 
by induction the result holds. �
Example 13. Consider again the derivation from Example 1. Fig. 5 gives this derivation, indicating which inequalities are 
taking the role of d0 and d1 in Lemma 10, and illustrates its linearisation.

The weight of the first derivation of 2u + z ≤ 11 is (1, 2, 1). Here, the rewrite rule applies: the variable eliminated in the 
result is x deriving from the first premiss, d0 = c0. After rewriting, the weight of the derivation of 2u + z ≤ 11 is (0, 2, 0), 
strictly less than before, and the resulting derivation is linear.

4.8. Multiple use

This section analyses what happens when a derivation uses the new inequality more than once.
The following shows that from the perspective of completing a system when a new constraint c0 is added, it is fruitless 

to recombine c0 with any inequality that results from a derivation that emanates from c0. It is sufficient to consider chains 
that start at c0 with at most two intermediate inequalities; as will be seen in the concluding theorem, chains with more 
intermediates can be collapsed down using the preceding lemmata.

Lemma 11 (Multiple use: part 1). Let c0, c1 ∈ TVPIX , where vars(c0) = {x, y}. If c = result(result(c0, c1, x), c0, y) then there exists 
c′ = result(c0, c1, y) such that c ≡ c′ .

Proof. Where c0 ≡ a0x + b0 y ≤ e0, c1 ≡ a1x + b1 y ≤ e1, suppose that c′
1 ≡ result(c0, c1, x) and c ≡ result(c′

1, c0, y), that is:

a0x + b0 y ≤ e0 a1x + b1 y ≤ e1

(|a1|b0 + |a0|b1)y ≤ |a1|e0 + |a0|e1
x

a0x + b0 y ≤ e0

|(|a1|b0 + |a0|b1)|a0x ≤ |a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0
y

Notice that:

1. this is the only possible configuration. If b0 = 0 then the second resultant step is not possible, and if vars(c1) �= {x, y}
one of the two resultant steps is not possible.

2. a0a1 < 0
3. (|a1|b0 + |a0|b1)b0 < 0, hence b0b1 < 0
4. Hence |a0b1| > |a1b0|
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c0 c1

c′
1 c2

c′
2 c0

c (∗)

{y} {x, y}
{x} y {x, y}

{y} x {y}
� or ⊥ y

(1)

{x, y} {y, z}
{x, z} y {x, y}

{y, z} x {x, y}
{x, z} y

(2)

{x, y} {x, y}
{x} y {x, y}

{y} x {x, y}
{x} y

(∗)

{x, y} {y, z}
{x, z} y {u, z}

{u, x} z {x, y}
{u, y} x

(3)

{x, y} {y, z}
{x, z} y {x, z}

{x} z {x, y}
{y} x

(4)

{x, y} {y, z}
{x, z} y {y, z}

{x, y} z {x, y}
{x} y

(∗)

{x, y} {y, z}
{x, z} y {y, z}

{x, y} z {x, y}
{y} x

Fig. 6. Resultant combination sequences involving c0, c1, c2.

Since b0b1 < 0 c′ = result(c0, c1, y) can be obtained as follows:

a0x + b0 y ≤ e0 a1x + b1 y ≤ e1

(|b1|a0 + |b0|a1)x ≤ |b1|e0 + |b0|e1
y

It can be demonstrated (see proof appendix) that c = |a0|c′ (i.e. c ≡ c′), establishing the result. �
The final lemma considers the inequality derived by using the new inequality twice, together with two other inequalities.

Lemma 12 (Multiple use: part 2). Suppose that I ⊆ TVPIX , complete(I) = I and that c1, c2 ∈ I . If c ∈ complete(I ∪ {c0}), where 
c = result(result(result(c0, c1), c2), c0), with |vars(c)| ≥ 1, then there is d0 ∈ I such that c ≡ result(c0, d0).

Proof. The potential combinations of variables occurring (and being eliminated) in c0, c1 and c2 are given in Fig. 6. The 
three (∗) cases are not possible. Each of the four potential cases has already been considered in Lemma 7 (compaction) and 
Lemma 9 (unary) and the results follows. �

The following example illustrates the lemma. In addition, Example 11 earlier in the paper follows one case of the proof.

Example 14. Consider:

c0 ≡ x − y ≤ 1 c1 ≡ y + z ≤ 1 c2 ≡ −2x − z ≤ 2

Then

c0

x − y ≤ 1
c1

y + z ≤ 1
y

x + z ≤ 2
c2

−2x − z ≤ 2
z−x ≤ 4

c0

x − y ≤ 1
x−y ≤ 5

and also

c0

x − y ≤ 1

c1

y + z ≤ 1
c2

−2x − z ≤ 2
z

y − 2x ≤ 3
x−y ≤ 5

That is, c = result(c0, result(c1, c2)) as prescribed by the lemma.
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4.9. The Incremental Completion Theorem

The findings can now be summarised in a single statement. The result follows by using the lemmata above to show 
that the result of any derivation tree for c ∈ complete(I ∪ {c0}), where the leaf inequalities are drawn from I ∪ {c0}, can be 
collapsed into a chain that coincides with one of the three cases. The strength of the result is that only these simple chains 
need be considered when computing incremental closure.

Theorem 2. Consider adding c0 ∈ TVPIX to I ⊆ TVPIX where complete(I) = I . If c ∈ complete(I ∪{c0}) and c �= false, then one of the 
following holds:

1. c ∈ I ∪ {c0}
2. c = result(c0, c1) where c1 ∈ I
3. c = result(result(c0, c1), c2) where c1, c2 ∈ I

Proof. Suppose that c = result(c1, c2, x) and that c ∈ complete(I ∪ {c0}) (as assumed in the lemmata above). Since 
size(c1), size(c2) < size(c) assume inductively that c1, c2 are obtained as in the theorem. Then, using Lemmata 6–12, it 
can be shown that the result holds for c.

The premisses of the resultant can be derived in one of three ways (as in the theorem). Noting the symmetry between 
the two premisses, this leaves six cases to be examined.

1. c1 ∈ I ∪ {c0} and c2 ∈ I ∪ {c0}. Since c1 and c2 cannot both be c0 assume that c1 = c0, then c = result(c0, c2, x) and the 
result holds immediately. Alternatively, c1 ∈ I and c2 ∈ I and again the result is immediate.

2. c1 = result(c0, c3, x) and c2 ∈ I ∪ {c0}. That is,

c0 c3
c2 c0

c

Hence using Lemma 11 (multiple use, part 1) c ≡ result(c0, c3) and the result holds. Otherwise, if c2 ∈ I then the result 
holds immediately.

3. c1 = result(result(c0, c3), c4) and c2 ∈ I ∪ {c0}. That is (noting the symmetry of the premisses), one of two cases holds 
(the second case being where c2 ∈ I):

c0 c3

c′
3 c4

c1 c0
c

c0 c3

c′
3 c4

c1 c2
c

The first case follows immediately from Lemma 12 (multiple use, part 2).
The second case follows immediately using Lemma 7 (compaction) or Lemma 9 (unary inequalities).

4. c1 = result(c0, c3) and c2 = result(c0, c4). That is:

c0 c3
c1

c0 c4
c2

c

Applying Lemma 10 (linearisation), and since c ∈ complete(I ∪ {c0}), results in either:

c0 c3
c1 c0

c′
1 c4

c

c0 c3
c1 c4

c14 c0
c

In the first of these cases Lemma 11 (multiple use) on the derivation of c′
1 leads to:

c0 c3

c′
1 c4

c

and the result holds. The second case is an instance of case 3 of this proof.
5. c1 = result(result(c0, c4), c5) and c2 = result(c0, c3). That is (noting the symmetry of the premisses):

c0 c4

c′
4 c5

c1

c0 c3
c2

c
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Applying Lemma 10 (linearisation) for the derivation of c leads to one of the following:

c0 c4

c′
4 c5

c1 c0

c′
1 c3

c

c0 c4

c′
4 c5

c1 c3

c′
1 c0

c

In the first case consider the derivation of c′
1, this is an instance of case 3. Then taking this together with the final 

resultant step gives the result using Lemma 7 (compaction) or Lemma 9 (unary inequalities).
In the second case noting that c ∈ complete(I ∪ {c0}) and applying Lemma 7 (compaction) or Lemma 9 (unary inequali-
ties) to the derivation of c′

1 leads to:

c0 c6

c′
6 c7

c′
1 c0

c

where c6, c7 ∈ I . This is then an instance of case 3.
6. c1 = result(result(c0, c3), c4) and c2 = result(result(c0, c5), c6). That is:

c0 c3

c′
3 c4

c1

c0 c5

c′
5 c6

c2
c

Applying Lemma 10 (linearisation) to this gives:

c0 c3

c′
3 c4

c1 c7

c′
7 c8

c′
8 c9

c

where c0 ∈ {c7, c8, c9} and {c7, c8, c9} − {c0} = {c5, c6}. Consider each of the three possibilities for the occurrence of c0.
If c0 = c7. Consider the derivation of c′

7. This can be treated as in case 3. Following this with one (or two) application(s) 
of Lemma 7 (compaction) or Lemma 9 (unary inequalities) gives the result.
If c0 = c8. An application of Lemma 7 (compaction) or Lemma 9 (unary inequalities) to the derivation of c′

7, then using 
case 3, and a second application of Lemma 7 (compaction) or Lemma 9 (unary inequalities) gives the result.
If c0 = c9. Two applications of Lemma 7 (compaction) or Lemma 9 (unary inequalities) to the derivation of c′

8, followed 
by an argument as in case 3 gives the result.

In all cases the result has been shown to hold. �
Since closed(complete(I ∪ {c0})) by Theorem 1 it has been established that incremental closure can be found using these 

newly generated inequalities.

Example 15. Consider again the inequalities from Example 1. Where c1 ≡ −2x + u ≤ 2, c2 ≡ −4y − x ≤ 1, c3 ≡ −y + z ≤ 1
and I = {c1, c2, c3}, note that complete(I) = I . Where c0 ≡ x + y ≤ 1, consider complete(I ∪ {c0}). As stated in the theorem, 
new inequalities can be derived from one or two applications of result. This gives the nine new inequalities as below, the 
first seven of which are contained in the completion, and the last two are redundant:

c0

x + y ≤ 1
c1

−2x + u ≤ 2
x

2y + u ≤ 4

c0

x + y ≤ 1
c2

−4y − x ≤ 1
x−3y ≤ 2
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c0

x + y ≤ 1
c2

−4y − x ≤ 1
y

3x ≤ 5

c0

x + y ≤ 1
c3

−y + z ≤ 1
y

x + z ≤ 2

c0

x + y ≤ 1
c2

−4y − x ≤ 1
y

3x ≤ 5
c1

−2x + u ≤ 2
x

3u ≤ 16

c0

x + y ≤ 1
c3

−y + z ≤ 1
y

x + z ≤ 2
c1

−2x + u ≤ 2
x

2z + u ≤ 6

c0

x + y ≤ 1
c3

−y + z ≤ 1
y

x + z ≤ 2
c2

−4y − x ≤ 1
x

z − 4y ≤ 3

c0

x + y ≤ 1
c1

−2x + u ≤ 2
x

2y + u ≤ 4
c2

−4y − x ≤ 1
y

2u − x ≤ 9

c0

x + y ≤ 1
c1

−2x + u ≤ 2
x

2y + u ≤ 4
c3

−y + z ≤ 1
y

u + 2z ≤ 6

Observe that I ∪ {c0} augmented with these nine inequalities is closed (and that I ∪ {c0} augmented with the first seven is 
complete). It is interesting to note that the unary inequalities in x and y are redundant in the {x, y} projection, yet are not 
redundant in the closed system.

5. Algorithm for incremental closure

The previous section shows that when a new inequality is added to a complete (hence closed) system of TVPI inequali-
ties, every new inequality in the completion of the augmented system can be generated using at most two instances of the 
result operation (except for false). The augmented system of inequalities might well contain redundancy, or be inconsistent. 
To maintain a complete representation inconsistency needs to be detected, and redundancies removed. This section gives an 
algorithm that shows how the system of inequalities might be maintained so that inconsistency is detected and redundancy 
removed, hence the resulting incrementally augmented system is complete and closed. It further gives the complexity of 
incremental completion, and relates the result presented to other weakly relational domains.

The outline of the algorithm is as follows. A complete (hence closed) system is a set of collections of ordered inequalities, 
one for each two variable projection. When a new inequality is added to the system, a set of new inequalities is generated 
as in Theorem 2. Each of these new inequalities is then added to the previously closed system. This involves finding the 
projection or projections to which it must be added, inserting it so that updated inequalities are correctly ordered and 
removing any inequalities that are now redundant. The three components of the algorithm are presented in Figs. 7 and 8
and are discussed from the inside out, starting with the update of a two variable projection with insert, then how this is 
used to filter the augmented system with filter, and finishing with incremental completion, inc_complete, as given in Fig. 7.

The input complete system consists of a pair of mappings, one from X × X → TVPIX and another from X → TVPIX , 
where the first maps a pair of variables to a two variable projection, and the second maps a variable to its bounds. It should 
also be noted that the arithmetic for the indices of the elements of I is modulo �, i.e. c� is c0 and c−1 is c�−1. When 
performing the complexity analysis of the algorithms in Figs. 7 and 8 it is assumed that Ic (in insert) is represented as an 
AVL-tree, hence insertion, deletion, next, previous, split and join are all O (lg(|Ic |)) [4].
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function inc_complete(I ⊆ TVPIX where complete(I) = I , I = I ′ ∪ B , c0 ∈ TVPIX )

(1) A := {c0}
(2) for each c1 ∈ I
(3) C ′

0 := result({c0}, {c1})
(4) A := A ∪ C ′

0
(5) for each c2 ∈ I
(6) C ′′

0 := result(C ′
0, {c2})

(7) A := A ∪ C ′′
0

(8) return filter(A, I ′, B)

Fig. 7. Incremental completion.

function filter(A ⊆ TVPIX , I ⊆ TVPIX , B ⊆ TVPIX )
(1) for each c ∈ reduce(A)

(2) P ′ = find_projections(vars(c), I)
(3) for each P ∈ P ′
(4) I ′ = insert(c, P )

(5) if I ′ = false
(6) return false
(7) else
(8) B ′ = extract_bounds(I ′)
(9) B = update_bounds(B ,B ′)
(10) I = (I \ P ) ∪ I ′
(11) end if
(12) return (I, B)

function insert(c ∈ TVPIX , Ic ⊆ TVPIX )
Let Ic = 〈c0, ..., c�−1〉
(1) if Ic = 〈〉
(2) return {c}
(3) else
(4) i = find_position(c, Ic)

(5) if {ci−1, ci} |= c
(6) return Ic

(7) else if Ic = 〈c0〉
(8) if c |= c0
(9) D = {c0}
(10) else if {c0, c} ≡ false
(11) return false
(12) else
(13) D = ∅
(14) end if
(15) else
(16) m = min{� > k ≥ 1 | {ci−k−1, c} �|= ci−k}
(17) n = min{� ≥ k ≥ 0 | {c, ci+k+1} �|= ci+k}
(18) if {ci−m, c, ci+n} ≡ false
(19) return false
(20) end if
(21) D = {ci+k | 1 − m ≤ k ≤ n − 1}
(22) end if
(23) return (Ic \ D) ∪ {c}
(24) end if

Fig. 8. Filtering.

5.1. Insertion

The function insert in Fig. 8 inserts a new inequality into a non-redundant two variable projection. If that two variable 
projection is unconstrained, then the set containing the new inequality is returned on line (2). The inequalities of the pro-
jection are ordered by angle (the actual 0 angle is irrelevant) and line (4) finds the least i such that if c were inserted into 
Ic it would become ci shuffling c j one position along to c j+1 for each i ≤ j ≤ � − 1. Line (5) tests whether the new inequal-
ity is redundant and if so it is discarded. Suppose that c j is redundant and c j lies between c j−1 and c (symmetrically, c j
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Fig. 9. Insertion and filtering.

Fig. 10. Insertion and filtering for an unbounded two variable projection.

lies between c and c j+1), then observe that {c j−1, c} |= c j (and symmetrically {c, c j+1} |= c j). By convexity the redundant 
inequalities must be contiguous. In the case that c is non-redundant, a set of redundant inequalities D ⊆ Ic is constructed. 
Lines (16) and (17) define offsets m and n so that set of inequalities D = {ci−m+1, ..., ci+n−1} defined on line (21) is redun-
dant with the addition of the new inequality. Note that m and n are well-defined because Ic has two or more inequalities 
(on lines (16), (17)), hence at least one of these must satisfy the disentailment condition. Having found the position that c
should be inserted into the ordered Ic , line (18) considers c together with its neighbours (the two neighbours could coin-
cide); if this system is inconsistent, then Ic ∪ {c} is also inconsistent and false is returned. Lines (8)–(14) address the case 
where Ic consists solely of a single inequality, c0. If c |= c0 then line (9) sets D = {c0}, else if c0, c are unsatisfiable together 
then false is return on line (11), otherwise, no inequality should be deleted from Ic . Line (23) constructs and returns the 
irredundant set of inequalities that results.

Example 16. Consider the two variable projection defined by 〈c0, c1, c2, c3, c4〉 in case a) of Fig. 9. Suppose that inequality 
c is added to this, as in case b). On line (4) of insert, find_ position will set i = 2. On lines (16) and (17) of insert, indices 
m = 2 and n = 1 are set. In the first case {c2−2−1, c} �|= c2−2 (that is, where k = 2) and also {c0, c} |= c1. In the second 
case {c, c2+1+1} �|= c2+1 and also {c3, c} |= c2. This describes the situation where c1, c2 are redundant as on line (21), so the 
updated system is 〈c0, c, c3, c4〉, described by the shaded red area in case b) of Fig. 9.

Now consider the unbounded two variable projection defined by 〈c0, c1, c2, c3, c4〉 in case a) of Fig. 10. Suppose that 
inequality c is added to this, as in case b). On line (4) of insert, find_ position will set i = 0 (hence i − 1 = 4). On lines (16) 
and (17) of insert, indices m = 5 and n = 0 are set. In the first case {c0−5−1, c} �|= c0−5 (that is, where k = 5) and also 
{c0, c} |= c1. In the second case {c, c0+0+1} �|= c0+0, that is when k = 0, its minimum possible value. This describes the 
situation where c4, c3, c2, c1 are redundant as on line (21), so the updated system is 〈c0, c〉, described by the shaded red 
area in case b) of Fig. 10.

Consider the complexity of a call to insert. Where A is the set of newly generated inequalities, and I the input system 
of inequalities (minus unary bounds that do not further constrain the system), note that |Ic| ≤ |A| + |I|. The function 
find_position has cost O (lg(|Ic|)). The lookup for ci, ci+1 costs O (lg(|Ic|)), and the entailment checks are constant time. The 
cases for |Ic| = 1 are all constant time operations. In the definition of m, n on lines (16) and (17), each entailment check 
requires a single lookup with cost O (lg(|Ic|)). Hence the overall cost of defining m, n is O (d lg(|Ic|)), where d = |D|, is the 
number of inequalities to be deleted. The construction of the updated and returned Ic on lines (21) and (23) requires two 
split operations and a join operation, which is again O (lg(|Ic|)). Hence a single call to insert has cost O (d lg(|Ic|) + lg(|Ic|)). 
That is, O (d lg(|Ic |)).
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5.2. Filtering

The function filter in Fig. 8 controls the addition of a newly generated set of two variable inequalities to a complete 
system represented as a pair of systems, where I represents the two variable projections and B represents the one variable 
projections. On line (1), reduce ensures that the set of new inequalities considered does not contain any pair of unary 
inequalities where one entails the other. Each new inequality is considered one at a time.

On line (2), find_projections gives the two variable projections on which the new inequality might impact. The set of 
projections found is a singleton if |vars(c)| = 2, and a set of size |X | − 1 if |vars(c)| = 1. Hence, the number of calls to insert
on line (4) of filter is bounded by |A| + |X |2 (where A is the set of newly generated inequalities). After the call to insert, if 
the resulting system is inconsistent false is returned, otherwise the TVPI system is updated. First on line (8), extract_ bounds
finds all bounds implied by the updated projection I ′ and on line (9) the one variable projections are tightened accordingly. 
Second on line (10), the two variable projection considered is updated to the new space described by I ′ . After considering 
each new inequality the updated complete system is returned on line (12).

Now consider the complexity of the operations involved in filter. The cost of find_projections is O (|X | lg(|X |)), that of
extract_bounds O (|I| + |A|), that of update_bounds O (|X |) and of updating I O (lg(|X |)), hence the dominating cost comes 
from insert. Notice that within a two variable projection each inequality occurrence can only be deleted once. Note |P | is 
bounded by |A| + |I| + 4. Hence summing the cost of each insertion gives an overall of cost of

(|X |−1)2∑
i=1

|d| lg(|A| + |I| + 4) = lg(|A| + |I| + 4)

n2∑
i=1

|d|

= lg(|A| + |I| + 4)(|A| + 4(|X | − 1)2)

Hence complexity is O ((|A| + |I| + |X |2) lg(|A| + |I|).

5.3. Incremental completion

In Fig. 7 the function inc_complete controls the process. It is invoked with the first argument I being a consistent set of 
inequalities, the union of binary inequalities I ′ and unary inequalities B . The set A of new inequalities is initialised with the 
incrementally added inequality c0 on line (1). Lines (2)–(7) describe the generation of new inequalities using one or two 
applications of the result operation (as in Theorem 2), before passing these to filter on line (8). This operation has complexity 
O (|I|2), where |A| ≤ |I|2. The number of inequalities in A is quadratic in the number of inequalities in I and it is expected 
that |A| is the dominating term and the complexity may be described as O (|A| lg(|A|)). The incremental completion oper-
ation requires a quadratic number of applications of result, which when TVPI inequalities are represented using integers is 
a strongly polynomial operation. Hence a single application of incremental completion is strongly polynomial. As noted in 
Section 6, the number of successive applications of incremental completion is typically small.

5.4. Restrictions to Octagons and Logahedra

The work is this paper is aimed at the TVPI class of linear inequalities. As discussed earlier, Octagons and Logahedra 
are subclasses of TVPI. Working with Octagons as the representation, each Ic has at most 8 inequalities. Therefore the cost 
of each of the AVL operations insertion, deletion, next, previous, split and join is constant time. Redoing the complexity 
analysis above leads to the conclusion that the complexity of incremental completion for Octagons is O (|A|). Again since 
each projection has at most 8 inequalities |A| ≤ 4|X |(|X | − 1), that is, the complexity is O (|X |2). This is the same as the 
complexity of incremental completion given by [33]. Similarly, any bounded Logahedral representation ensures that Ic has 
at most a fixed number of inequalities, hence as for Octagons, incremental completion has complexity O (|X |2).

The representation of systems of inequalities in this paper is compact, in the sense that the only inequalities represented 
are those needed to support a closed system; redundant inequalities are not stored. This is interesting, since it says that 
Octagons and Logahedra can be implemented using a compact representation, rather than using matrices (where entries 
in the matrix may represent a redundant inequality), without a penalty in terms of complexity. It has been noted [2] that 
Johnson’s all pairs shortest path algorithm [24] can be used to calculate closure when Octagons are represented as a graph. 
However, observe that the output corresponds to the entire matrix representation (which is not compact in the terminology 
used in this paper), even though the input was a graph.

6. Experimental results

The performance of TVPI is predicated on how TVPI systems grow with incremental completion. To assess this growth, 
incremental completion has been implemented, and experiments performed to investigate the size of the resulting closed 
systems after a number of inequalities have been incrementally added. Calling incremental completion repeatedly is the 
worst-case for TVPI since the system can grow on each invocation, and the size of representation impacts on both the 
memory footprint and the running time. Recall that, as discussed in Section 2.4, in the context of abstract interpretation, 
other operations (join and projection) for TVPI systems rest on closure.
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6.1. Implementation

Incremental completion has been implemented1 in Java 8 making use the BigInteger class for arbitrary precision integer 
arithmetic. Recalling that a linear inequality over the rationals is a representative of an equivalence class of inequalities, the 
implementation works with a representation where all coefficients are integral – inequalities with rational coefficients and 
constants can be rewritten, using a suitable integer multiplier, hence integer arithmetic is sufficient.

Although the insert algorithm is neutral regarding the particular angular ordering, the implementation assigns an angle 
to an inequality ax + by ≤ c, where a �= 0 or b �= 0, which is the angle through which the inequality x ≤ 0 has to be rotated 
anti-clockwise so its half-space coincides with that of ax + by ≤ 0. Following this convention, the relative order of two 
inequalities a1x + b1 y ≤ e1 and a2x + b2 y ≤ e2 can then be calculated without recourse to trigonometric operations as 
follows:

compare(a1x + b1 y ≤ e1,a2x + b2 y ≤ e2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if class(a1,b1) < class(a2,b2)

1 else if class(a1,b1) > class(a2,b2)

−1 else if a2b1 < a1b2
1 else if a2b1 > a1b2
0 otherwise

where

class(a,b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a > 0 ∧ b = 0
1 else if a > 0 ∧ b > 0
2 else if a = 0 ∧ b > 0
3 else if a < 0 ∧ b > 0
4 else if a < 0 ∧ b = 0
5 else if a < 0 ∧ b < 0
6 else if a = 0 ∧ b < 0
7 otherwise

6.2. Experimental setup

To exercise incremental completion, TVPI systems of fixed dimension d were randomly generated where the coefficients 
and constants of each inequality were integers randomly drawn from the ranges [−16, 15] and [0, 31] respectively (enlarging 
these ranges makes little difference to the results), and pairs of variables were randomly selected from {x0, . . . , xd−1}. Non-
negative constants ensured that each inequality was satisfied by the origin, hence each randomly generated TVPI system 
was satisfiable as a whole, so as to avoid the system collapsing to false (which can be represented in constant space). The 
Apron [23] implementation of Octagons applies symbolic reasoning to reduce an arbitrary constraint into a system of sim-
pler linear inequalities which are then added to an octagon one-by-one by applying incremental closure [33]. Experiments 
with the abstract interpretation plugin for Frama-C, EVA [5], instantiated with Apron, suggest that incremental closure is 
rarely called more than 8 times back-to-back. Therefore, for a given fixed dimension, either 2, 4, 8 or 16, TVPI systems with 
8 inequalities were randomly generated. Incremental completion was then applied 7 times to add each inequality, in turn, 
so as to derive a closed system. The size of resulting output (closed) system was then recorded for 4096 randomly generated 
(input) systems of 8 inequalities. The same experiment was repeated for input systems of 12, 16, . . . , 32 random inequali-
ties. Fig. 11 records how the size of the closed system depends on the dimension and the number of input inequalities. The 
pair of graphs in the first row of Fig. 11 corresponds to dimension 2, the second row to dimension 4, etc. The left hand 
graphs record how often the output systems are of a given number of inequalities (size). The right hand graphs present a 
different perspective on this frequency information, recording the proportion of the 4096 input systems whose output does 
not exceed a given size. Fig. 12 repeats the frequency experiments for Logahedra and Octagons where the coefficients are 
randomly drawn from {−2, −1, 0, 1, 2} and {−1, 0, 1} respectively and the constants are integers again drawn from [0, 31].

6.3. Results

The first row of Fig. 11 suggests that for the planar case the number of inequalities in the output is typically around 6, 
irrespective of the size of the input. For 4 dimensional systems, there is a divergence in output size with input size, but the 
output size has a stable profile for 16 or more input inequalities. A similar phenomenon occurs for dimension 8 at 24 or 
more input inequalities. The cumulative distribution graphs of Fig. 11 are annotated with the 95th percentile line, showing 
that 95% of the time the output was no more than 3, 4 and 12 times the size of the input for the dimensions 4, 8 and 16 
respectively. Thus growth is dependent on dimension.

1 The code is available at https://www.cs .kent .ac .uk /people /staff /amk /tvpi .zip and includes a program VisualiseInsert which graphically illustrates 
the irredundant inequalities found by the insert (filtering) algorithm.

https://www.cs.kent.ac.uk/people/staff/amk/tvpi.zip
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Fig. 11. Frequency and cumulative distributions for 2-, 4-, 8- and 16-dimensional completion.



J.M. Howe et al. / Theoretical Computer Science 768 (2019) 1–42 27
Fig. 12. Frequency distributions for Logahedra (left) and Octagons (right).
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The incremental completion algorithm is applicable to both Logahedra, where the coefficients are powers, and Octagons, 
since these are instances of TVPI systems. To aid growth comparisons, the ranges of Fig. 12, which gives the size frequency 
distributions for Logahedra and Octagons, coincide with those of Fig. 11. Compared to general TVPI, the frequency distribu-
tions for Logahedra are shifted to the left, and spike higher, a pattern which is accentuated further for Octagons. The output 
is thus smaller, which can be explained because of the likelihood of one two variable inequality being entailed by another. 
On the other hand, the growth rate for TVPI is no worse than 2 or 3 fold that of Octagons.

7. Conclusion

This paper has shown how a key operation for manipulating the TVPI class of inequalities — incremental closure — can 
be derived by a systematic examination of the structure of derivation trees that arise when a new inequality is added to a 
closed system. By studying derivation trees an algorithm for incremental closure is synthesised which sits on a firm theo-
retical foundation. An experimental evaluation studies the growth of systems of inequalities built by successive applications 
of incremental completion.

The algorithm manipulates systems of inequalities which are compact, that is, the only inequalities represented are those 
needed to support a closed system. This chimes with the desire to derive memory efficient decision procedures [16].

The presented algorithm is incremental. Although motivated by the design of abstract domains, incrementality is a key 
attribute for any theory deployed in an SMT solver. For the target application in abstract interpretation, it is sufficient to 
work with non-strict inequalities only. The extension of the results in this work to additionally allow strict inequalities is 
straightforward. Hence the techniques in this paper are suitable for incorporating with the theory component of an SMT 
solver. The extension of the algorithms presented to maintain a certificate which tracks how inequalities are derived, and in 
particular when inconsistency is detected, is also easy to achieve.

As well as providing a systematic construction of the incremental closure algorithm, the analysis of the derivations in the 
calculus defined by the result operation provides a scaffold on which to build other algorithms, such as those maintaining 
certificates, for linear inequalities.
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Appendix A. Proof Appendix

This section contains the full detailed proofs of results with outline proofs in the main body of the paper.

Lemma 6 (Redundancy). Let I ⊆ TVPIX and let c, c0 ∈ TVPIX where x ∈ vars(c), x ∈ vars(c0). Suppose c /∈ complete(I) and I |= c. 
Then complete(I ∪ {c0}) |= result(c0, c, x) and result(c0, c, x) /∈ complete(I ∪ {c0}).

Proof of Lemma 6. Without loss of generality there are two cases to consider:

i) Where |vars(c)| = 1.
ii) Where |vars(c)| = 2.

i) By the definition of closed there exists c1 ∈ complete(I), c1 �≡ c such that {c1} |= c. Suppose c ≡ ax ≤ e and c0 ≡ a0x +
b0 y ≤ e0 (where it might be that b0 = 0). Hence result(c0, c, x) = |a|b0 y ≤ |a|e0 + |a0|e. Then put c1 ≡ ax ≤ e − δ, δ > 0
and consider c′

1 = result(c0, c1, x) = |a|b0 y ≤ |a|e0 + |a0|e − |a0|δ. Observe that c′
1 |= result(c0, c, x) and the result holds.

ii) Suppose vars(c) = {x, z} and vars(c0) ⊆ {x, y}. Consider c ≡ ax +bz ≤ e, where I |= c, c0 ≡ a0x +b0 y ≤ e0 (where it might 
be that b0 = 0) and c′ ≡ result(c0, c, x). Then (since I |= c and noting Theorem 1) one of the two cases holds:
(a) There exists c1 ∈ complete(I) such that c1 ≡ ax + bz ≤ e − δ, for some δ > 0 (that is, {c1} |= c)
(b) There exists c1, c2 ∈ complete(I), vars({c1, c2}) = vars(c) such that:

c1 c2
c

+(λ1,λ2,δ)

In each case, considering the resultant of c0 with c1 and/or c2 will lead to a demonstration of the redundancy of c′ .
(a) c′ = result(c0, c, x) is derived as follows:

a0x + b0 y ≤ e0 ax + bz ≤ e

|a|b0 y + |a0|bz ≤ |a|e0 + |a0|e x

Since {c1} |= c observe that c′ = result(c0, c1, x) is derived:
1
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a0x + b0 y ≤ e0 ax + bz ≤ e − δ

|a|b0 y + |a0|bz ≤ |a|e0 + |a0|(e − δ)
x

Hence {c′
1} |= c′ , that is complete(I ∪ {c0}) |= c′ .

(b) c′ = result(c0, c, x) is derived as follows, where c is given by:

a1x + b1z ≤ e1 a2x + b2z ≤ e2

(λ1a1 + λ2a2)x + (λ1b1 + λ2b2)z ≤ λ1e1 + λ2e2 + δ
+(λ1,λ2,δ)

and

a0x + b0 y ≤ e0 c

c′ x

with

c′ = |λ1a1 + λ2a2|b0 y + |a0|(λ1b1 + λ2b2)z ≤ |λ1a1 + λ2a2|e0 + |a0|(λ1e1 + λ2e2) + |a0|δ
Note that a = λ1a1 + λ2a2, b = λ1b1 + λ2b2, e = λ1e1 + λ2e2 + δ. Observe from the resultant step that a0(λ1a1 +
λ2a2) < 0. There are two cases to consider:
i. a1 > 0, a2 ≥ 0 (symmetrically, a1 < 0, a2 ≤ 0)

ii. a1 > 0, a2 < 0 (symmetrically, a1 < 0, a2 > 0)
To demonstrate that in each case c′ is redundant:
i. Consider c′

1 = result(c0, c1, x) and c′
2 = result(c0, c2, x):

a0x + b0 y ≤ e0 a1x + b1z ≤ e1

|a1|b0 y + |a0|b1z ≤ |a1|e0 + |a0|e1
x

and

a0x + b0 y ≤ e0 a2x + b2z ≤ e2

|a2|b0 y + |a0|b2z ≤ |a2|e0 + |a0|e2
x

It will be demonstrated that:

c′
1 c′

2

c′ +(λ1,λ2,|a0|δ)

Observe that, scaling the coefficients of c′
1 by λ1 ≥ 0 and of c′

2 by λ2 ≥ 0:

λ1|a1|b0 + λ2|a2|b0 = |λ1a1 + λ2a2|b0

λ1|a0|b1 + λ2|a0|b2 = |a0|(λ1b1 + λ2b2)

and also that:

λ1|a1|e0 + λ1|a0|e1 + λ2|a2|e0 + λ2|a0|e2 + δ|a0|
= (λ1|a1| + λ2|a2|)e0 + λ1|a0|e1 + λ2|a0|e2 + δ|a0|
= |λ1a1 + λ2a2|e0 + |a0|(λ1e1 + λ2e2) + |a0|δ,

hence {c′
1, c

′
2} |= c′ and the result holds, except where a2 = 0. Here, put c′

2 = |a0|c2 and the result goes through 
as above.

ii. It will be demonstrated that (when a2 < 0):

c0 c1

c′
1

x c1 c2
c12

x

c′ +(λ0,λ3,|a0|δ)

First consider c′
1 = result(c0, c1, x) (without loss of generality, the conditions imply that λ1|a1| > λ2|a2|)

a0x + b0 y ≤ e0 a1x + b1z ≤ e1

|a1|b0 y + |a0|b1z ≤ |a1|e0 + |a0|e1
x

Also note that if a1a2 < 0 then the resolvent of c1 and c2, c12 = result(c1, c2, x), is as follows:

a1x + b1z ≤ e1 a2x + b2z ≤ e2

|a2|b1z + |a1|b2z ≤ |a2|e1 + |a1|e2
x
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Now appropriate values (λ0, λ3, δ′) can be found that will show that c′ is redundant. First, putting

λ0 = |a|
|a1| = |λ1a1 + λ2a2|

|a1| = |λ1a1| − |λ2a2|
|a1| = λ1 − λ2

|a2|
|a1|

means that λ0c′
1 has the same y coefficient as c′ .

Second, putting

λ3 = λ2
|a0|
|a1|

observe that

λ0|a0|b1 + λ3|a2|b1 + λ3|a1|b2 = λ1|a0|b1 + λ2|a0|b2 − λ2
|a0||a2|b1

|a1| + λ2
|a0||a2|b1

|a1|
= |a0|(λ1b1 + λ2b2)

= |a0|b
Now consider the constant term.

λ0(|a1|e0 + |a0|e1) + λ3(|a2|e1 + |a1|e2)

= (λ1 − λ2
|a2|
|a1| )(|a1|e0 + |a0|e1) + λ2

|a0|
|a1| (|a2|e1 + |a1|e2)

= λ1|a1|e0 + λ1|a0|e1 − λ2
|a2|
|a1| |a1|e0 − λ2

|a2|
|a1| |a0|e1 + λ2

|a0|
|a1| |a2|e1 + λ2

|a0|
|a1| |a1|e2

= λ1|a1|e0 + λ1|a0|e1 − λ2|a2|e0 + λ2|a0|e2

= |λ1a1 + λ2a2|e0 + |a0|(λ1e1 + λ2e2)

with last step following since a2 < 0. This shows that δ′ = |a0|δ.
Hence, {c′

1, c12} |= c′ and the result follows.

In all cases c′ has been shown to be redundant. �
Lemma 7 (Compaction). Let c0 ∈ TVPIX , c1, c2 ∈ I ⊆ TVPIX , c3 ∈ I ∪ {c0} and x0, x1, x2 ∈ X, where complete(I) = I . If c ∈
complete(I ∪ {c0}) and

c = result(result(result(c0, c1, x0), c2, x1), c3, x2)

and |vars(c)| = 2 then there exists d0, d1 ∈ I and y0, y1 ∈ X such that

c = result(result(c0,d0, y0),d1, y1)

Proof of Lemma 7. The structure of the series of resultants being considered is:

c0 c1

c′
1

x0
c2

c′
2

x1
c3

c x2

The proof proceeds by giving a series of reductions demonstrating that by reordering the application of the result oper-
ation one of the conclusions of the lemma holds. A reduction will be given for every possible configuration of the initial 
series of resultants.

There are four possible configurations that lead to different combinations of the variables being eliminated in the se-
quence of resultant steps. The skeletons of these four cases are given in Fig. 3. These are treated with the greatest generality 
possible. If some of the variables occurring in the sequence of resultant steps are identical these four possible configurations 
gives rise to a number of subcases that need to be considered.

First, the cases where all variables occurrences are distinct are considered.

1. Where c0 ≡ a0x + b0 y ≤ e0, c1 ≡ a1x + b1u ≤ e1 c2 ≡ a2u + b2 v ≤ e2 and c3 ≡ a3 v + b3z ≤ e3, with x0 = x, x1 = u, x2 = v
(and the variables x, y, u, v, z are distinct), the derivation gives:

c = |a1||a2||a3|b0 y + |a0||b1||b2|b3z ≤ |a1||a2||a3|e0 + |a0||a2||a3|e1 + |a0||a3||b1|e2 + |a0||b1||b2|e3
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where a0a1 < 0, b1a2 < 0 and b2a3 < 0. The reduction here is to the following:

c0

c1 c2
c12

u

c′
12

x
c3

c v

that is c = result(result(c0, result(c1, c2, u), x), c3, v). Put d0 = result(c1, c2, u), d1 = c3, y0 = x and y1 = v . Since I is 
complete, either d0 ∈ I and the result holds or d0 /∈ I therefore I |= d0, hence by Lemma 6 result(c0, result(c1, c2, u), x) /∈
complete(I ∪ {c0}) thence again by Lemma 6 c /∈ complete(I ∪ {c0}).
An alternative reduction, that c = result(result(result(c0, c1, x), c2, u), c3, v) reduces to c = result(result(c0, c1, x),
result(c2, c3, v), u), is also available:

c0 c1

c′
1

x c2 c3
c23

v

c u

Put d0 = c1 ∈ I , d1 = result(c2, c3, v), y0 = x and y1 = u. Since I is complete, either d1 ∈ I and the result holds or d1 /∈ I
and therefore I |= d1, hence by Lemma 6 c /∈ complete(I ∪ {c0}).

2. Consider the case where c0, c1, c2 are as above and c3 ≡ a3 y + b3z ≤ e3 and x0 = x, x1 = u, x2 = y. In this case c =
result(result(result(c0, c1, x), c2, u), c3, y) reduces to c = result(result(c0, result(c1, c2, u), x), c3, y). The argument that the 
result holds is the same as for case 1.

3. Consider the case where c0, c1 are as above and c2 ≡ a2 y + b2 v ≤ e2, c3 ≡ a3u + b3z ≤ e3 and x0 = x, x1 = y, x2 = u. In 
this case

c = result(result(result(c0, c1, x), c2, y), c3, u)

reduces to

c = result(result(c0, result(c1, c3, u), x), c2, y)

Again, the argument that the result holds is as for case 1. As in case 1, an alternative is possible, where the reduction 
is to

c = result(result(c0, c2, y), result(c1, c3, u))

4. Consider the case where c0, c1 are as above and c2 ≡ a2 y + b2 v ≤ e2, c3 ≡ a3 v + b3z ≤ e3 and x0 = x, x1 = y, x2 = v . In 
this case

c = result(result(result(c0, c1, x), c2, y), c3, v)

reduces to

c = result(result(c0, c1, x), result(c2, c3, v), y)

Here, the argument that the result holds is similar to that for the alternative reduction in case 1.

In each of the above four reductions the variables are assumed to be distinct. When this restriction is lifted there arise a 
number of subcases to be considered. Note that |vars(c)| = 2, hence any identities which give |vars(c)| �= 2 are not possible.

1. When the eliminated variables are x, u, v it is possible that z = x or z = u or v = x. In the first two cases the reductions 
go through unchanged. In the third case it should be noted that only the second of the two reductions given goes 
through. It is also possible that both v = x and z = u, and again, the second of the two reductions goes through.

2. Next, consider the case where the eliminated variables are x, u, y.
(a) Suppose that x and z are the same variable. Then the reduction still holds.
(b) Suppose that z and u are the same variable. Then the reduction still holds.
(c) Suppose that x and v are the same variable. Then c0 ≡ a0x + b0 y ≤ e0, c1 ≡ a1x + b1u ≤ e1, c2 ≡ a2u + b2x ≤ e2 and 

c3 ≡ a3 y + b3z ≤ e3. This means that

c = |a0||a3||b1|b2x + |a1||a2||b0|b3z ≤ |a1||a2||a3|e0 + |a0||a2||a3|e1 + |a0||a3||b1|e2 + |a1||a2||b0|e3

Now consider the following two eliminations, defining c′
3 and c12:

a0x + b0 y ≤ e0 a3 y + b3z ≤ e3

|a3|a0x + |b0|b3z ≤ |a3|e0 + |b0|e3
y



32 J.M. Howe et al. / Theoretical Computer Science 768 (2019) 1–42
and

a1x + b1u ≤ e1 a2u + b2x ≤ e2

|a2|a1x + |b1|b2x ≤ |a2|e1 + |b1|e2
u

Since a0a1 < 0

c′
3 c12

c
+(|a1||a2|,|a0||a3|,0)

If c12 ∈ complete(I) then c is redundant because it is a linear combination of c′
3 and c12. If c12 /∈ complete(I) but 

c′
3 ∈ complete(I ∪ {c0}) then by Lemma 6 it also follows that c is redundant. Likewise if c′

3 /∈ complete(I ∪ {c0}). In all 
cases, the pre-condition of the lemma that c ∈ complete(I ∪ {c0}) is contradicted. This case also goes through when 
both x = v and z = u.

3. Now consider the case where the eliminated variables are x, y, u.
(a) Suppose that x and z are the same variables, then c0 ≡ a0x + b0 y ≤ e0, c1 ≡ a1x + b1u ≤ e1, c2 ≡ a2 y + b2 v ≤ e2 and 

c3 ≡ a3u + b3x ≤ e3. This means that

c = |a1||a3||b0|b2 v + |a0||a2||b1|b3x ≤ |a1||a2||a3|e0 + |a0||a2||a3|e1 + |a1||a3||b0|e2 + |a0||a2||b1|e3

Now consider the following two eliminations, defining c′
2 and c13:

a0x + b0 y ≤ e0 a2 y + b2 v ≤ e2

|a2|a0x + |b0|b2 v ≤ |a2|e0 + |b0|e2
y

and

a1x + b1u ≤ e1 a3u + b3x ≤ e3

|a3|a1x + |b1|b3x ≤ |a3|e1 + |b1|e3
u

then

c′
2 c13

c
+(|a1||a3|,|a0||a2|,0)

Hence, c is redundant, contradicting the pre-condition of the lemma that c ∈ complete(I ∪ {c0}).
(b) Suppose that y and z are the same variable. Then note that only the second of the two reductions given holds.
(c) Suppose that v and x are the same variable, then the reduction still holds.
(d) Suppose that x and v , and y and z, are the same variable. Then c0 ≡ a0x + b0 y ≤ e0, c1 ≡ a1x + b1u ≤ e1, c2 ≡

a2 y + b2x ≤ e2 and c3 ≡ a3u + b3 y ≤ e3. This means that

c = |a1||a3||b0|b2x + |a0||a2||b1|b3 y ≤ |a1||a2||a3|e0 + |a0||a2||a3|e1 + |a1||a3||b0|e2 + |a0||a2||b1|e3

Now consider the following two eliminations, defining c′
2 and c13:

a0x + b0 y ≤ e0 a2 y + b2x ≤ e2

|a2|a0x + |b0|b2x ≤ |a2|e0 + |b0|e2
y

and

a1x + b1u ≤ e1 a3u + b3 y ≤ e3

|a3|a1x + |b1|b3 y ≤ |a3|e1 + |b1|e3
u

then

c′
2 c13

c
+(|a1||a3|,|a0||a2|,0)

Hence, c is redundant, contradicting the pre-condition of the lemma that c ∈ complete(I ∪ {c0}).
4. Now consider the case where the eliminated variables are x, y, v .

(a) Suppose that y and z are the same variable. Then: c0 ≡ a0x + b0 y ≤ e0, c1 ≡ a1x + b1u ≤ e1, c2 ≡ a2 y + b2 v ≤ e2

and c3 ≡ a3 v + b3 y ≤ e3. This means that

c = |a0||a2||a3|b1u + |a1||b0||b2|b3 y ≤ |a1||a2||a3|e0 + |a0||a2||a3|e1 + |a1||a3||b0|e2 + |a1||b0||b2|e3

Now consider the following two eliminations, defining c′ and c23:
1
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a0x + b0 y ≤ e0 a1x + b1u ≤ e1

|a1|b0 y + |a0|b1u ≤ |a1|e0 + |a0|e1
x

and

a2 y + b2 v ≤ e2 a3 v + b3 y ≤ e3

|a3|a2 y + |b2|b3 y ≤ |a3|e2 + |b2|e3
v

then

c′
1 c23

c
+(|a2||a3|,|a1||b0|,0)

Hence, c is redundant, contradicting the pre-condition of the lemma that c ∈ complete(I ∪ {c0}).
(b) Suppose that x and z are the same variable, then the reduction still holds.
(c) Suppose that x and v are the same variable, then the reduction still holds. �

Lemma 8. Suppose vars(c) = {x}, vars(c1), vars(c2) ⊆ {x} and that {c1, c2} |= c. Then either c1 |= c or c2 |= c.

Proof of Lemma 8. If |vars(ci)| = 0 for i = 1 or i = 2 then the result follows immediately.
Suppose that c1, c2 and c are:

c1 ≡ a1x ≤ e1 c2 ≡ a2x ≤ e2 c ≡ (a1 + a2)x ≤ e1 + e2 + δ ≡ ax ≤ e

Then for a1, a2 �= 0, it is supposed that any multipliers λi have been absorbed into coefficients a1, a2 and that δ ≥ 0):
First suppose that sign(a1) = sign(a2), hence sign(a1 + a2) = sign(a) and it can further be assumed that |a1| = |a2| = 1. 

Without loss of generality e1|a1| ≤ e2|a2| (hence c1 |= c2). Then:

2x ≤ 2
e1

|a1| ≤ e1

|a1| + e2

|a2| ≤ e1 + e2 + δ

and c1 |= c.
Next suppose that sign(a1) �= sign(a2). Consistency implies that:

0 ≤ e1 + e2|a1|
|a2|

Without loss of generality assume that sign(a1) = sign(a1 + a2), hence |a1| ≥ |a2| and |a1 + a2| = |a1| − |a2|.
Observe that:

0 ≤ e1 + e2|a1|
|a2|

e1|a1|
|a2| ≤ e1 + e2|a1|

|a2| + e1|a1|
|a2|

e1|a1| − e1|a2| ≤ e1|a1| + e2|a1|
e1(|a1| − |a2|) ≤ (e1 + e2)|a1|

Hence

e1

|a1| ≤ e1 + e2

|a1 − a2| = e1 + e2

|a1| + |a2|
and the result holds. �
Lemma 9 (Unary inequalities). Suppose that I ⊆ TVPIX and complete(I) = I . Suppose c0 ∈ TVPIX and that c ∈ complete(I ∪ {c0})
where

c = result(result(result(c0, c1), c2), c3)

and |vars(c)| = 1, c1, c2 ∈ I and c3 ∈ I ∪ {c0}. Then there exists d0, d1 ∈ I such that one of the following holds:

1. c = result(result(c0, d0), d1)

2. c = result(c0, d0)
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Proof of Lemma 9. Fig. 4 gives the structure of three resultant steps, and skeletons (the variables occurring in each in-
equality) for each of the fifteen possible configurations where three resultant steps end in a unary inequality. Each case 
will be analysed in turn (many of these can be treated similarly). The algebraic detail is shown in cases where detailed 
manipulation is required.

1. Where c0 ≡ a0x + b0u ≤ e0, c1 ≡ a1z + b1u ≤ e1, c2 ≡ a2z + b2 y ≤ e2 and c3 ≡ a3 y ≤ e3. Consider:

c0 c1

c′
1

u c2 c3
c23

y

c z

c23 = result(c2, c3, y) is a unary inequality, hence either c23 ∈ I and case 1 holds or c23 /∈ I and by Lemma 6 c /∈
complete(I ∪ {c0}). Note that the result still holds if u = y.

2. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1 y + b1u ≤ e1, c2 ≡ a2x + b2z ≤ e2 and c3 ≡ a3 y ≤ e3. Consider:

c0

c1 c3
c13

y

c′
13

u
c2

c z

c13 = result(c1, c3, y) is a unary inequality, hence either c13 ∈ I and case 1 holds or c13 /∈ I and by Lemma 6 c /∈
complete(I ∪ {c0}). Note that the result still holds if u = x.

3. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1 y + b1u ≤ e1, c2 ≡ a2z ≤ e2 and c3 ≡ a3x + b3 y ≤ e3. The original derivation is:

a0z + b0u ≤ e0 a1 y + b1u ≤ e1

|b1|a0z + |b0|a1 y ≤ |b1|e0 + |b0|e1
u

a2z ≤ e2

|a2||b0|a1 y ≤ |a2||b1|e0 + |a2||b0|e1 + |a0||b1|e2
z

a3x + b3 y ≤ e3

|a1||a2||b0|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3
y

Hence the same inequality might be derived

a0z + b0u ≤ e0 a2z ≤ e2

|a2|b0u ≤ |a2|e0 + |a0|e2
z

a1 y + b1u ≤ e1 a3x + b3 y ≤ e3

|a1|a3x + |b3|b1u ≤ |b3|e1 + |a1|e3
y

|a1||a2||b0|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3
u

If c13 = result(c1, c3, y) ∈ I then case 1 holds. If c13 /∈ I then by Lemma 6 c /∈ complete(I ∪ {c0}). Note that the result still 
holds if z = x.
If in the derivation immediately above u = x, then c′

2 and c13 are given by:

a0z + b0x ≤ e0 a2z ≤ e2

|a2|b0x ≤ |a2|e0 + |a0|e2
z

and

a1 y + b1x ≤ e1 a3x + b3 y ≤ e3

(|a1|a3 + |b3|b1)x ≤ |b3|e1 + |a1|e3
y

Hence (scaling with λ1 = |b1||b3| and λ2 = |a2||b0| respectively)

|a2||b0|(|a1|a3 + |b3|b1)x + |a2||b1||b3|b0x ≤ |a2||b0|(|b3|e1 + |a1|e3) + |b1||b3|(|a2|e0 + |a0|e2)

Noting that b0b1 < 0 this gives

|a1||a2||b0|a3x ≤ |b1||b3||a2|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |a1||a2||b0|e3

Hence by Lemma 8 c′
2 |= c or c13 |= c. In the former case then either case 2 has been demonstrated or c /∈ complete(I ∪

{c0}). In the latter case, either c ∈ I or c /∈ complete(I ∪ {c0}). In all cases the result holds.
4. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1 y + b1u ≤ e1, c2 ≡ a2z + b2 y ≤ e2 and c3 ≡ a3x + b3 y ≤ e3. The original derivation 

gives:

c = |(|a2||b0|a1 + |a0||b1|b2)|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |(|a2||b0|a1 + |a0||b1|b2)|e3

There are three subcases to consider:
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(a) where a1b3 < 0, but b2b3 ≥ 0
(b) where a1b3 ≥ 0, but b2b3 < 0
(c) where a1b3 < 0 and b2b3 < 0
Consider each of these in turn:
(a) Here

c0

c1 c2
c12

y

c′
12

z c1 c3
c13

y

c′ u

where c′ is:

|(|a1||a2|b0 + |a0||b2|b1)||a1|a3x ≤
|(|a1||a2|b0 + |a0||b2|b1)|(|b3|e1 + |a1|e3) + |b1||b3|(|a1||a2|e0 + |a0||b2|e1 + |a0||a1|e2)

Note that b0b1 < 0, a1b2 < 0 and |a1||a2||b0| > |a0||b2||b1|. Dividing through by |a1| shows that c′ ≡ c and case 1 of 
the result holds, except in the case where one or both of result(c1, c2, y) and result(c1, c3, y) are redundant. In these 
cases Lemma 6 shows that c′ ≡ c /∈ complete(I ∪ {c0}). Note that the result still holds if z = x.
However, if u = x, instead consider derivations of c13 and c′

21

a1 y + b1x ≤ e1 a3x + b3 y ≤ e3

(|b3|b1 + |a1|a3)x ≤ |b3|e1 + |a1|e3
y

and

a0z + b0x ≤ e0 a2z + b2 y ≤ e2

|a2|b0x + |a0|b2 y ≤ |a2|e0 + |a0|e2
z

a1 y + b1x ≤ e1

(|a1||a2|b0 + |a0||b2|b1)x ≤ |a1||a2|e0 + |a0||a1|e2 + |a0||b2|e1
y

Combining with λ1 = |(|a2||b0|a1 + |a0||b1|b2)| and λ2 = |b1||b3|
(|(|a2||b0|a1 + |a0||b1|b2)||b3|b1 + |(|a2||b0|a1 + |a0||b1|b2)||a1|a3|a1||a2||b1||b3|b0 + |a0||b1||b2||b3|b1)x

≤ (||a2||b0|a1 + |a0||b1|b2|)(|b3|e1 + |a1|e3) + |b1||b3|(|a1||a2|e0 + |a0||a1|e2 + |a0||b2|e1)

Which, noting that (|a2||b0|b1 + |a0||b1|b2)b3 < 0 and that b0b1 < 0 simplifies to (after dividing through by |a1|):
|(|a2||b0|a1 + |a0||b1|b2)|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + |(|a2||b0|a1 + |a0||b1|b2)|e3

By Lemma 8 this demonstrates that either c13 |= c or c′
21 |= c. In the first case either c ∈ I or c /∈ complete(I ∪ {c0}). 

In the second case either case 1 of the lemma holds or c /∈ complete(I ∪ {c0}).
(b) This is symmetric to the previous case.
(c) Here, the following:

c0

c1 c3
c13

y

c′
13

u c2 c3
c23

y

c′ z

where c′ is

(|a1||a2||b0||b3|a3 + |b1||b3||a0||b2|a3)x ≤
|b1||a2||b3||b3|e0 + |b0||a2||b3||b3|e1 + |a1||b0||a2||b3|e3 + |a0||b1||b3||b3|e2 + |a0||a2||b1||b3|e3

Note that sign(a1) = sign(b2), hence |a1||a2||b0|a3 +|b1||a0||b2|a3 = |(|a2||b0|a1 +|b1||a0|b2)|a3 after dividing through 
by |b3|. This demonstrates that c′ ≡ c and that case 1 of the lemma holds unless one or both of result(c1, c3, y) and 
result(c2, c3, y) are redundant, in which case by Lemma 6 c /∈ complete(I ∪ {c0}).
If u = x, then consider the derivations of c′

23 and c13

a0z + b0x ≤ e0 a2z + b2 y ≤ e2

|a2|b0x + |a0|b2 y ≤ |a2|e0 + |a0|e2
z

a3x + b3 y ≤ e3

(|a2||b3|b0 + |a0||b2|a3)x ≤ |a2||b3|e0 + |a0||b3|e2 + |a0||b2|e3
y

and

a1 y + b1x ≤ e1 a3x + b3 y ≤ e3

(|b3|b1 + |a1|a3)x ≤ |b3|e1 + |a1|e3
y
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With λ1 = |b1| and λ2 = |a2||b0| and noting that b0b1 < 0, this gives

(|a1||a2||b0| + |a0||b1||b2|)a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a2||b1||b3|e2 + (|a0||b1||b2| + |a1||a2||b0|)e3

and since sign(a1) = sign(b2)

|(|a2||b0|a1 + |a0||b1|b2)|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a2||b1||b3|e2 + (|a2||b0|a1 + |a0||b1|b2)e3

Which by Lemma 8 demonstrates that either c′
23 |= c or c13 |= c. In the first case either case 1 of the lemma 

holds or c′ ≡ c /∈ complete(I ∪ {c0}), in which case the lemma does not apply to c. In the second case c′ ≡ c ∈ I or 
c′ ≡ c /∈ complete(I ∪ {c0}). This gives the result.
If z = x, then consider derivations of c′

13 and c23

a0x + b0u ≤ e0 a1 y + b1u ≤ e1

|b1|a0x + |b0|a1 y ≤ |b1|e0 + |b0|e1
u

a3x + b3 y ≤ e3

(|b1||b3|a0 + |a1||b0|a3)x ≤ |b1||b3|e0 + |b0||b3|e1 + |b0||a1|e3
y

and

a2x + b2 y ≤ e2 a3x + b3 y ≤ e3

(|b3|a2 + |b2|a3)x ≤ |b3|e2 + |b2|e3
y

With λ1 = |a2| and λ2 = |a0||b1| and noting that a0a2 < 0 this gives

(|a1||a2||b0| + |a0||b1||b2|)a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + (|a2||b0||a1| + |a0||b1||b2|)e3

and since sign(a1) = sign(a2)

|(|a1||b0|a2 + |a0||b1|b2)|a3x ≤ |a2||b1||b3|e0 + |a2||b0||b3|e1 + |a0||b1||b3|e2 + (|a2||b0||a1| + |a0||b1||b2|)e3

and by Lemma 8 this demonstrates that either c′
13 |= c or c23 |= c. In the first case either case 1 of the lemma holds 

or c /∈ complete(I ∪ {c0}). In the second case c ∈ I or c /∈ complete(I ∪ {c0}). This gives the result.
5. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1u ≤ e1, c2 ≡ a2z + b2 y ≤ e2, c3 ≡ a3x + b3 y ≤ e3, the initial derivation is:

c0 c1

c′
1

u
c2

c′
2

z
c3

c
y

This can be rewritten to:

c0 c1

c′
1

u c2 c3
c23

y

c z

If c23 ∈ I this demonstrates case 1 of the result, or else c23 is redundant and by Lemma 6 c /∈ complete(I ∪ {c0}). Note 
that the result still holds if u = y or if u = x.
If z = x consider c′

1 and c23

c0 c1

c′
1

u c2 c3
c23

y

then {c′
1, c23} |= c and again by Lemma 8 either c′

1 |= c or c23 |= c. If the former then either case 2 of the result holds 
or c /∈ complete(I ∪ {c0}). In the latter then either c ∈ I or c /∈ complete(I ∪ {c0}).

6. As case 5.
7. As case 5.
8. Where c0 ≡ a0z + b0u ≤ e0, c1 ≡ a1 y + b1u ≤ e1, c2 ≡ a2x + b2z ≤ e2, c3 ≡ a3x + b3 y ≤ e3, the initial derivation is:

c0 c1

c′
1

u
c2

c′
2

z
c3

c
y

This can be rewritten to:
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c0 c2

c′
2

z c1 c3
c13

y

c u

If c13 ∈ I this demonstrates case 1 of the result. If c13 /∈ I by Lemma 6 c /∈ complete(I ∪ {c0}). Note that if u = x then 
{c′

2, c13} |= c and again by Lemma 8 either c′
2 |= c or c13 |= c. If the former then either case 2 of the lemma holds or 

c /∈ complete(I ∪ {c0}). If the latter then either c ∈ I or c /∈ complete(I ∪ {c0}).
9. Where c0 ≡ a0 y + b0u ≤ e0, c1 ≡ a1z + b1u ≤ e1, c2 ≡ a2z + b2 y ≤ e2, c3 ≡ a3x + b3 y ≤ e3, the initial derivation is:

c0 c1

c′
1

z
c2

c′
2

u
c3

c
y

This can be rewritten to:

c0

c1 c2
c12

z

c′
12

u
c3

c
y

If c12 ∈ I this demonstrates case 1 of the result. Else c12 /∈ I and by Lemma 6 c /∈ complete(I ∪ {c0}). Note that the result 
still holds if u = x or if z = x.

10. As case 1.
11. Where c0 ≡ a0 y + b0u ≤ e0, c1 ≡ a1z + b1u ≤ e1, c2 ≡ a2x + b2z ≤ e2, c3 ≡ a3 y ≤ e3, the initial derivation is:

c0 c1

c′
1

u
c2

c′
2

z
c3

c
y

This can be rewritten to:

c0 c3

c′
3

y c1 c2
c12

z

c u

Either c12 ∈ I and this demonstrates case 1 of the result, or c12 /∈ I and by Lemma 6 c /∈ complete(I ∪ {c0}). Note that 
if u = x then {c′

3, c12} |= c and again by Lemma 8 either c′
3 |= c or c12 |= c. For the former, either case 2 of the lemma 

holds or c /∈ complete(I ∪ {c0}). For the latter, either c ∈ I or c /∈ complete(I ∪ {c0}).
12. As case 5.
13. As case 11.
14. As case 9.
15. As case 9. �
Lemma 10 (Linearisation). Let I ⊆ TVPIX . Further, suppose that c0, c1, . . . , c j ∈ I and d0, d1, . . . , dk ∈ I where j, k ∈ N. Where c′

0 =
c0 and d′

0 = d0 , define c′
i+1 = result(c′

i, ci+1, xi), where xi ∈ X and also define d′
i+1 = result(d′

i, di+1, yi), where yi ∈ X. Consider 
c = result(c′

j, d
′
k, z), where z ∈ X. Then there exists f0, f1, . . . , f� ∈ I , where f0 = f ′

0 = c0 , f ′
i+1 = result( f ′

i , f i+1, wi), wi ∈ X, and 
at least one of the following holds:

1. c ≡ f ′
�

2. c is redundant with respect to complete(I), that is, complete(I) |= c and c /∈ complete(I)
3. c ≡ false

Proof of Lemma 10. If c = result(c′
j, d0, z), then case 1 is immediate. If c = result(c0, d′

k, z), note the symmetry of the pre-
misses (so that c = result(c′

j, d
′
k, z) = result(d′

k, c
′
j, z)), hence case 1 is again immediate.

The remainder of the result is presented as a series of rewriting rules for derivations for which it will be argued that 
repeated application will establish the result. The basic case is that when all variables are distinct; this is followed by cases 
where these variables may coincide with each other.

Where j, k ≥ 0 consider c = result(c′
j+1, d

′
k+1, z).

• Suppose x, y, z, w are distinct variables. Then (where all coefficients are non-zero) there are two possibilities, corre-
sponding to the premiss of d′ that z derives from:
k+1
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1.

a1x + b1z ≤ e1

a2z + b2 w ≤ e2 a3 w + b3 y ≤ e3

|a3|a2z + |b2|b3 y ≤ |a3|e2 + |b2|e3
w

|a2||a3|a1x + |b1||b2|b3 y ≤ |a2||a3|e1 + |a3||b1|e2 + |b1||b2|e3
z

which can be rewritten to:

a1x + b1z ≤ e1 a2z + b2 w ≤ e2

|a2|a1x + |b1|b2 w ≤ |a2|e1 + |b1|e2
z

a3 w + b3 y ≤ e3

|a2||a3|a1x + |b1||b2|b3 y ≤ |a2||a3|e1 + |a3||b1|e2 + |b1||b2|e3
w

That is,

c = result(c′
j+1, result(d′

k,dk, w), z) = result(result(c′
j+1,d′

k, z),dk, w)

2. Symmetrically

a1x + b1z ≤ e1

a2 y + b2 w ≤ e2 a3 w + b3z ≤ e3

|a3|a2 y + |b2|b3z ≤ |a3|e2 + |b2|e3
w

|b2||b3|a1x + |a3||b1|a2 y ≤ |b2||b3|e1 + |b1||a3|e2 + |b1||b2|e3
z

which can be rewritten to:

a1x + b1z ≤ e1 a3 w + b3z ≤ e3

|b3|a1x + |b1|a3 w ≤ |b3|e1 + |b1|e3
z

a2 y + b2 w ≤ e2

|b2||b3|a1x + |a3||b1|a2 y ≤ |b2||b3|e1 + |a3||b1|e2 + |b1||b2|e3
w

That is,

c = result(c′
j+1, result(d′

k,dk, w), z) = result(result(c′
j+1,dk, z),d′

k, w)

• Now suppose that in the above x = y and the other variables are still distinct. Observe that the two rewritings are still 
valid (since x and y are not eliminated).

• Next suppose that in the above x = z and that the other variables are still distinct. Observe that the initial derivations 
can describe this situation by putting a1 = 0 and that the two rewritings are still valid.

• Next suppose that in the above y = w and that the other variables are still distinct. Observe that the initial derivations 
can describe this situation by putting b3 = 0 in the first case and a2 = 0 in second, and that the two rewritings are still 
valid.

• Notice that if in the above z = w and the other variables are still distinct, then the final resultant eliminating z is not 
possible.

• If y = z and the remaining variables are still distinct, then result(c′
j+1, d

′
k+1, z) can be rewritten to result(d′

k+1, c
′
j+1, z).

• Suppose that x = w and x, y, z are distinct

a1x + b1z ≤ e1

a2z + b2x ≤ e2 a3x + b3 y ≤ e3

|a3|a2z + |b2|b3 y ≤ |a3|e2 + |b2|e3
x

|a2||a3|a1x + |b1||b2|b3 y ≤ |a2||a3|e1 + |a3||b1|e2 + |b1||b2|e3
z

allows c12 and c3:

a1x + b1z ≤ e1 a2z + b2x ≤ e2

(|a2|a1 + |b1|b2)x ≤ |a2|e1 + |b1|e2
z

and a3x + b3 y ≤ e3

Similarly,

a1x + b1z ≤ e1

a2 y + b2x ≤ e2 a3x + b3z ≤ e3

|a3|a2 y + |b2|b3z ≤ |a3|e2 + |b2|e3
x

|b2||b3|a1x + |a3||b1|a2 y ≤ |b2||b3|e1 + |a3||b1|e2 + |b1||b2|e3
z

allows c13 and c2:

a1x + b1z ≤ e1 a3x + b3z ≤ e3

(|b3|a1 + |b1|a3)x ≤ |b3|e1 + |b1|e3
z

and a2 y + b2x ≤ e2

In the first case, since b2a3 < 0, |a3||b1|b2x + |b1||b2|a3x = 0. Observe that |a3|(|a2|a1 + |b1|b2)x + |b1||b2|(a3x + b3 y) =
|a2||a3|a1x + |a3||b1|b2x + |b1||b2|a3x + |b1||b2|b3 y = |a2||a3|a1x + |b1||b2|b3 y. Hence {c12, c3} |= c that is, case 2 holds.
Note that this holds whether or not |a2|a1 + |b1|b2 = 0. If the equality holds then c12 is either true or false.
For the second rewriting, case 2 holds by an analogous argument.
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• Suppose that x = w and y = z, then result(c′
j+1, d

′
k+1, z) can be rewritten to result(d′

k+1, c
′
j+1, z).

• Suppose that x = y and z = w . This is not possible.
• Suppose that x = z and y = w . Then observe that the two rewritings are still valid.
• Suppose that x = y = w . Then result(c′

j+1, d
′
k+1, z) can be rewritten to result(d′

k+1, c
′
j+1, z).

• Suppose that x = y = z, with w distinct. That is, c ≡ true or c ≡ false. Then case 2 and case 3 apply respectively.
• Suppose that x = z = w , with y distinct. This is not possible.
• Suppose that y = z = w , with x distinct. This is not possible.
• Suppose that x = y = z = w . This is not possible.

Associate a weight to the derivation of inequality c, c = result(c1, c2, v). This weight is an ordered triple (n, |vars(c1)|,
size(c2)), where n is the number of inequalities above c in the derivation with a right premiss with size greater than 0. In 
the original derivation of c, observe that at most one result operation has size(c2) > 0 (that is, n ≤ 1). Now observe that each 
rewriting step results in at most one result step with the size of the second argument greater than zero (again n ≤ 1). Hence 
the weights are totally ordered. The rewriting process has terminated if there are no result steps with right premiss with 
size greater than 0 (i.e. when n = 0), or when it is observed that the concluding inequality is redundant. Now observe that 
for each rewriting step either c is found to be redundant or the weight of the derivation of c is strictly less than previously. 
Hence by induction the result holds. �
Lemma 11 (Multiple use: part 1). Let c0, c1 ∈ TVPIX , where vars(c0) = {x, y}. If c = result(result(c0, c1, x), c0, y) then there exists 
c′ = result(c0, c1, y) such that c ≡ c′ .

Proof of Lemma 11. Where c0 ≡ a0x + b0 y ≤ e0, c1 ≡ a1x + b1 y ≤ e1, suppose that c′
1 ≡ result(c0, c1, x) and c ≡

result(c′
1, c0, y), that is:

a0x + b0 y ≤ e0 a1x + b1 y ≤ e1

(|a1|b0 + |a0|b1)y ≤ |a1|e0 + |a0|e1
x

a0x + b0 y ≤ e0

|(|a1|b0 + |a0|b1)|a0x ≤ |a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0
y

Notice that:

1. this is the only possible configuration. If b0 = 0 then the second resultant step is not possible, and if vars(c1) �= {x, y}
one of the two resultant steps is not possible.

2. a0a1 < 0
3. (|a1|b0 + |a0|b1)b0 < 0, hence b0b1 < 0
4. Hence |a0b1| > |a1b0|

Since b0b1 < 0 c′ = result(c0, c1, y) can be obtained as follows:

a0x + b0 y ≤ e0 a1x + b1 y ≤ e1

(|b1|a0 + |b0|a1)x ≤ |b1|e0 + |b0|e1
y

It will be demonstrated below that c = |a0|c′ (i.e. c ≡ c′). There are four cases to consider, depending on the signs of 
a0, b0, a1, b1.

1. b0 > 0, b1 < 0, a0 > 0, a1 < 0. First consider the coefficient:

|(|a1|b0 + |a0|b1)|a0 = a0(−|a1|b0 − |a0|b1)

= a0(|b0|a1 + |b1|a0)

= |a0|(|b0|a1 + |b1|a0)

Second consider the constant:

|a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0 = |a1||b0|e0 + |a0||b0|e1 − |a1|b0e0 − |a0|b1e0

= |a0|(|b0|e1 + |b1|e0)

2. b0 > 0, b1 < 0, a0 < 0, a1 > 0. First consider the coefficient:

|(|a1|b0 + |a0|b1)|a0 = a0(−|a1|b0 − |a0|b1)

= a0(−|b0|a1 − |b1|a0)

= |a0|(|b0|a1 + |b1|a0)
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Second consider the constant:

|a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0 = |a1||b0|e0 + |a0||b0|e1 − |a1|b0e0 − |a0|b1e0

= |a0|(|b0|e1 + |b1|e0)

3. b0 < 0, b1 > 0, a0 > 0, a1 < 0. First consider the coefficient:

|(|a1|b0 + |a0|b1)|a0 = a0(|a1|b0 + |a0|b1)

= a0(|b0|a1 + |b1|a0)

= |a0|(|b0|a1 + |b1|a0)

Second consider the constant:

|a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0 = |a1||b0|e0 + |a0||b0|e1 + |a1|b0e0 + |a0|b1e0

= |a0|(|b0|e1 + |b1|e0)

4. b0 < 0, b1 > 0, a0 < 0, a1 > 0. First consider the coefficient:

|(|a1|b0 + |a0|b1)|a0 = a0(|a1|b0 + |a0|b1)

= a0(−|b0|a1 − |b1|a0)

= |a0|(|b0|a1 + |b1|a0)

Second consider the constant:

|a1||b0|e0 + |a0||b0|e1 + |(|a1|b0 + |a0|b1)|e0 = |a1||b0|e0 + |a0||b0|e1 + |a1|b0e0 + |a0|b1e0

= |a0|(|b0|e1 + |b1|e0)

In each case the result holds. �
Lemma 12 (Multiple use: part 2). Suppose that I ⊆ TVPIX , complete(I) = I and c1, c2 ∈ I . If c ∈ complete(I ∪ {c0}), where c =
result(result(result(c0, c1), c2), c0), with |vars(c)| ≥ 1, then there is d0 ∈ I such that c ≡ result(c0, d0).

Proof of Lemma 12. The potential combinations of variables occurring (and being eliminated) in c0, c1 and c2 are given in 
Fig. 6. The four numbered derivation skeletons correspond to the cases of the proof, the three (∗) cases are not possible.

Each of the four potential cases has already been considered in an earlier lemma.

1. This case is covered by Lemma 7 (compaction), case 4(a). This showed that:

c0 c1

c′
1

c2 c0
c20

c +

hence c /∈ complete(I ∪ {c0}) and the lemma does not apply. Note that c′
1 and c20 are both formed as in the lemma.

2. This case is covered by Lemma 9 (unary inequalities), case 6. This again showed that:

c0 c1

c′
1

c2 c0
c20

c +

hence c /∈ complete(I ∪ {c0}) and the lemma does not apply. Again, c′
1 and c20 are both formed as in the lemma.

3. This case is covered by Lemma 9 (unary inequalities), case 9. This showed that:

c0

c1 c2
c12

c′
12 c0

c

Since c ∈ complete(I ∪ {c0}), c12 is not redundant and this is now an instance of Lemma 11.
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4. This case matches Lemma 9 (unary inequalities), case 12. However, a different analysis is needed. Where c0 ≡ a0x +
b0 y ≤ e0, c1 ≡ a1 y + b1z ≤ e1 and c2 ≡ a2 y + b2z ≤ e2, c = result(result(result(c0, c1, y), c2, z), c0, y) is given by

(|a1||b0||b2| + |a2||b0||b1|)a0x ≤ (|a1||b0||b2| + |a2||b0||b1|)e0 + |b0||b0||b2|e1 + |b0||b0||b1|e2

Now observe that result(c0, result(c1, c2, z), y) is given by

|(|b2|a1 + |b1|a2)|a0x ≤ |(|b2|a1 + |b1|a2)|e0 + |b0||b2|e1 + |b0||b1|e2

and since a1a2 > 0

(|a1||b2| + |a2||b1|)a0x ≤ (|a1||b2| + |a2||b1|)e0 + |b0||b2|e1 + |b0||b1|e2

and multiplying through by |b0| gives the result. �
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