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Abstract
Weighted automata over the tropical semiring Zmax = (Z∪{−∞},max,+) are closely related to
finitely generated semigroups of matrices over Zmax. In this paper, we use results in automata
theory to study two quantities associated with sets of matrices: the joint spectral radius and the
ultimate rank. We prove that these two quantities are not computable over the tropical semiring,
i.e. there is no algorithm that takes as input a finite set of matrices Γ and provides as output the
joint spectral radius (resp. the ultimate rank) of Γ. On the other hand, we prove that the joint
spectral radius is nevertheless approximable and we exhibit restricted cases in which the joint
spectral radius and the ultimate rank are computable. To reach this aim, we study the problem
of comparing functions computed by weighted automata over the tropical semiring. This problem
is known to be undecidable, and we prove that it remains undecidable in some specific subclasses
of automata.
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1 Introduction

Weighted automata were introduced by Schützenberger in [25] as a quantitative extension
of nondeterministic finite automata. They compute functions from the set of words over
a finite alphabet to the set of values of a semiring, allowing one to model quantities such
as costs, gains or probabilities. In this paper, we particularly focus on max-plus automata:
automata weighted within the tropical semiring Zmax = (Z ∪ {−∞},max,+). A max-plus
automaton is thus a nondeterministic finite automaton whose transitions are weighted by
integers. The value associated to a word w depends on the runs labelled by w: the weight of
a given run is the sum of the weights of the transitions in the run, and the weight of w is
the maximum of the weights of the accepting runs labelled by w. This kind of automata is
particularly suitable to model gain maximisation, to study worst-case complexity [8] and
to describe discrete event systems [12, 14]. The so-called linear presentation gives a matrix
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representation of such an automaton. More precisely, there is a canonical way to associate a
max-plus automaton with a finitely generated semigroup of matrices over Zmax. Usually, the
matrix representation is used to provide algebraic proofs of automata results. In this paper,
we use results in automata theory to study two quantities related to sets of matrices: the
joint spectral radius and the ultimate rank. The joint spectral radius generalises the notion
of spectral radius for sets of matrices. The ultimate rank unifies some usual other notions of
ranks. We link some comparison problems on max-plus automata with the computation of
these two quantities. This leads to (1) proving results about comparison problems in some
restricted classes of max-plus automata that we believe to be interesting for themselves and
(2) applying these results to the study of the computability of the joint spectral radius and
the ultimate rank.

Decidability questions about the description of functions computed by max-plus automata
have been intensively studied. In his celebrated paper [20], Krob proves the undecidability
of the equivalence problem for max-plus automata: there is no algorithm to decide if two
max-plus automata compute the same function. In fact, his proof gives a stronger result: it
is undecidable to determine whether a max-plus automaton computes a positive function.
More recent approaches are based on a reduction from the halting problem of two-counter
machines [1, 6]. By various reductions, this leads to the undecidability of several properties
of automata with weights in different versions of the tropical semiring: (N ∪ {−∞},max,+),
(N ∪ {+∞},min,+)... The reader is referred to [21] for a survey on these questions.

By encoding the alphabet, and splitting each transition into several transitions with
weight 1 and −1, it can be derived that the undecidability remains even if the automata are
restricted to have weights within {−1, 1} (Theorem 2). In [10], Gaubert and Katz notice
that the undecidability of the comparison also remains true even if the number of states of
the automata is bounded by a certain integer d. This extension is based on Krob’s original
proof and on the use of a universal diophantine equation. However, they ask for a more
direct proof that would allow one to control the bound d. As an attempt to answer this
question, we extend the proofs through two-counter machines. This allows a much sharper
bound on the number of states for which comparison is undecidable (Theorem 2) than the
one that would have followed from a universal diophantine equation.

The class of functions computed by max-plus automata that have all their states both
initial and final is strictly included in the class of functions computed by max-plus automata.
It is closely related to the study of finitely generated semigroup of tropical matrices. In this
paper, we prove that comparison remains undecidable in this restricted class (Theorem 4).
(In [1], it is proved that the undecidability remains for min-plus automata with all states
final; we can deduce the same result for max-plus automata.)

The tropical (sub-)joint spectral radius is a natural counterpart of the usual joint spectral
radius over the semiring (R,+,×). Although the latter is a well-studied notion when
considering the semiring (R,+,×) (see [18] and the references therein) only few results are
known when considering the tropical semiring. As far as we know, the best known result
concerning its computability is given in [4], where it is shown that the joint spectral radius is
NP-hard to compute and to approximate for tropical matrices. The tropical spectral radius
as we defined it latter in this paper can be used to approximate the usual one in the spirit
of [2] or [9], and from an applied point of view, for a max-plus linear system, it corresponds
to the cycle time for an optimal scheduling of tasks, already studied in [12, 11, 14].

We drastically improve the NP-hardness result, by proving that the joint spectral radius
is not computable in the tropical semiring, i.e. there is no algorithm that takes as input a
finite set Γ of matrices and provides as output the joint spectral radius of Γ (Theorem 8).
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As a corollary of this result, we also get the uncomputability of the ultimate rank, a notion
introduced – and a question raised – in [15] (Theorem 9).

On the other hand, we also give positive results. By making a link with a result in
[7] about approximate comparison of max-plus automata, we prove that the joint spectral
radius is approximable in EXPSPACE (Theorem 10). We also show that, when restricted to
matrices with only finite rational entries, computing the joint spectral radius or the ultimate
rank is PSPACE-complete (Theorem 12).

2 Definitions and first properties

We introduce definitions and notation of tropical matrices and max-plus automata.

2.1 Tropical matrices
A semigroup (S, ·) is a set S equipped with an associative binary operation ‘·’. If, furthermore,
the product has a neutral element 1, (S, ·, 1) is called a monoid. The monoid is said to be
commutative if · is commutative. A semiring (S,⊕,⊗, 0S , 1S) is a set S equipped with two
binary operations ⊕ and ⊗ such that (S,⊕, 0S) is a commutative monoid, (S − {0S},⊗, 1S)
is a monoid, 0S is absorbing for ⊗, and ⊗ distributes over ⊕. We shall use the tropical
semiring:

Zmax = (Z ∪ {−∞},max,+,−∞, 0)

Note that 0Zmax = −∞ and 1Zmax = 0. We may also use the restriction of Zmax to the
nonnegative integers, (N ∪ {−∞},max,+,−∞, 0) denoted by Nmax.

Semigroups of matrices. Let S be a semiring. The set of matrices with d rows and d′

columns over S is denotedMd×d′(S), or simplyMd(S) if d = d′. The set of all matrices
over S isM(S). As usual, the product AB for two matrices A,B (provided that the width
of A and the height of B, denoted d, coincide) is defined as:

(AB)i,j =
⊕

16k6d

(Ai,k ⊗Bk,j)
(

= max
16k6d

(Ai,k +Bk,j) for S = Zmax

)

The diagonal matrix with 1S (i.e. 0 for Zmax) on the diagonal, and 0S (i.e. −∞ for Zmax)
elsewhere is denoted Id. It is a standard result that (Md(S), ·, Id) is a monoid.

For a positive integer k, we denote by Mk the product of M by itself k times. Moreover,
‖M‖∞ denotes the maximal entry of a matrix M (it is not a norm). For k ∈ Zmax and
A ∈ M(Zmax), k � A is defined by (k � A)ij = k + Aij . For a set of matrices Γ, this
notation is extended by k � Γ = {k �A|A ∈ Γ}. Finally, if Γ ⊂Md(S), we denote by 〈Γ〉
the submonoid generated by Γ.

Graph of a matrix. Any square matrix A ∈ Md(Zmax), for a positive integer d, can be
represented by a graph G(A): the vertices are the indices 1, . . . , d, and there is an edge from
i to j, labelled Ai,j , if and only if the latter is finite. The spectral radius ρ(A) of a square
matrix A ∈Md(Zmax), for some positive integer d, known to be the limit limn→+∞

1
n ‖A

n‖∞,
can be seen as the maximal average weight of the cycles in G(A):

ρ(A) = sup
`∈N\{0}

16i1,...,i`6d

(
1
`

(
Ai1,i2 +Ai2,i3 + . . .+Ai`−1,i`

+Ai`,i1

))

MFCS 2017
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The critical graph Gc(A) is the union of cycles (i1, . . . , i`) that achieve this maximum. Its
strongly connected components are the maximal subgraphs C ⊆ Gc(A) such that for any
vertices i, j of C there is a path from i to j in Gc(A). The cyclicity of a strongly connected
component is the greatest common divisor of the length of its cycles. The cyclicity of Gc(A)
is the least common multiple of the cyclicities of its strongly connected components. The
reader is referred to [3, 16, 5] for more detailed explanations.

2.2 Max-plus automata
We give the definition of max-plus automata that can be viewed as graphs or as sets of
matrices. A max-plus automaton A over the alphabet Σ with d states is a map µ from
Σ to Md(Zmax) together with an initial vector I ∈ M1×d({0,−∞}) and a final vector
F ∈ Md×1({0,−∞})1. The map µ is uniquely extended into a morphism, also denoted µ,
from the semigroup Σ+ of nonempty finite words over alphabet Σ into Md(Zmax). The
function computed by the automaton, JAK, maps each word w ∈ Σ+ to Iµ(w)F ∈ Zmax.
Sometimes, 0 will denote the function constantly equal to 0, and > the induced partial order
over functions Σ+ → Zmax (so that we can write things like JAK > 0).

Another way to represent a max-plus automaton is in terms of graphs. Given a map µ
from Σ+ toMd(Zmax), the corresponding automaton has d states q1, . . . qd, that correspond
to the lines, or to the columns of the matrices. There is a transition from qi to qj labelled by
a letter a ∈ Σ, with weight µ(a)i,j , if and only if the latter is finite. The initial (resp. final)
states are the states qi such that Ii = 0 (resp. Fi = 0). A run over the word w is a path
(a sequence of compatible transitions) in the graph, labelled by w. Its weight is the sum of
the weights of the transitions. The weight of a given word w is the maximum of the weights
of the accepting runs (runs going from an initial state to a final state) labelled by w. The
weight of w, given by the graph representation, is exactly the value Iµ(w)F , given by the
matrix presentation.

Given a positive integer d and a max-plus automaton A defined by some map µ : Σ→
Md(Zmax), we denote ΓA = {µ(a)| a ∈ Σ}. Then the set of weights on the transitions of A
corresponds to the finite entries appearing in matrices of ΓA.

I Example 1. Figure 1 gives the matrix and graph presentations of a max-plus automaton
with 2 states, both initial (ingoing arrow) and final (outgoing arrow), over the alphabet
{a, b}. The function that it computes associates a word w to the value max(|w|a, |w|b) where
|w|x denotes the number of occurrences of the letter x ∈ {a, b} in w.

q1 q2

a : 1

b : 0

a : 0

b : 1

µ(a) =
(

1 −∞
−∞ 0

)
µ(b) =

(
0 −∞
−∞ 1

)

I =
(
0 0

)
F =

(
0
0

)
Figure 1 Graph and matrix representations of a max-plus automaton.

This work aims to link results in automata theory with the study of semigroups of
matrices. Concepts defined over semigroups of matrices correspond to concepts over the

1 Note that, unlike variants in the literature, our weighted automata have no input or output weight (that
is, I and F have entries in {0,−∞}), but this does not restrict the set of computed functions.
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subclass of automata in which all states are both initial and final, because if M ∈Md(Zmax),
and I and F have only 0 entries, then IMF = ‖M‖∞, so that for this class of automata,
JAK (w) = ‖µ(w)‖∞ for every word w.

3 Undecidability of the comparison of max-plus automata

We are interested in the comparison problem, i.e. deciding, given two max-plus automata
A and B, whether JAK 6 JBK. There exist (at least) two different approaches to prove the
undecidability of this problem. The original one by Krob [20] is a reduction from the tenth
problem of Hilbert about diophantine equations. The proof is nicely written in [21], where it
encodes a homogoneous polynomial P of degree 4 on n variables with integer coefficients into
a max-plus automaton A computing a function with values in N, such that P − 1 has a root
in Nn if and only if there is a word w such that JAK (w) = 0, i.e. if JAK ≥ 1. A more recent
approach [1, 6], consists of a reduction from the halting problem of a two-counter machine.
This computational model was introduced by Minsky [23, 24], and is as powerful as a Turing
machine. It can be viewed as a finite-state machine with two counters. The equality of the
counters with 0 can be tested and the counters can be incremented and decremented if not 0.
The idea of the proof is to embed it into a max-plus automaton.

3.1 Restriction on the parameters
Different parameters can be taken into account when dealing with the size of a max-plus
automaton: we will focus on the number of states, the maximal and minimal weights
appearing on the transitions and the size of the alphabet. When considering the matrix
representation of an automaton A, these parameters correspond respectively to the dimension,
the maximal and minimal finite entries and the number of matrices in ΓA.

Regarding the size of the alphabet, by a classical encoding from an arbitrary alphabet to
a two-letter alphabet, one can see that the comparison problem remains undecidable when
restricting to the class of automata on the binary alphabet.

Regarding the two other parameters, if they are both bounded, the problem becomes
decidable since we are now only considering a finite number of max-plus automata. What is
more interesting to study is when one of the parameter is bounded and not the other. We
will see that this problem remains undecidable in these cases, and our purpose is to give
bounds on these parameters that allow to keep the undecidability.

On the one hand, Gaubert and Katz notice in [10] that the original proof of Krob, applied
to some specific diophantine equations gives that the problem remains undecidable when
bounding the number of states. They also raised the question of finding an alternative proof
that could allow to control this number of states. We roughly counted how many states we
would obtain by using a so-called universal diophantine equation given in [17], of degree 4
with 58 unknowns. At the very least, we would be able to bound the number of states by
8700 on a 6-letter alphabet. On the other hand, the proof via two-counter machines allows
to drastically improve this number, as we are going to see.

Define Posk(S) (resp. Posk
d(S)) as the following problem: Given a max-plus automaton

A on a k-letter alphabet, with weights in S ⊆ Zmax (resp. and d states), determine whether
JAK > 0.

I Theorem 2. Problems Pos2({−1, 1}) and Pos6
553(Zmax) are undecidable.

The first statement is easily derived from the general undecidability: given a max-plus
automaton A, one can first decompose all the transitions from A into a sequence of transitions

MFCS 2017



19:6 Max-plus automata and joint spectral radius

with weights 1 or −1 and 0 thanks to a suitable encoding of the alphabet, such that A
computes a non negative function if and only if the newly created automaton computes a
non negative function. Using then a usual encoding of any alphabet in a two-letter alphabet,
we can obtain an automaton over two letters and with weights still in {−1, 0, 1}. Then, we
transform again the automaton by multiplying all the weights by 2, so that a transition
weighted by 1 (resp. −1) is now weighted by 2 (resp. −2). Finally, we decompose a transition
labelled by a letter a with weight 2 (resp. −2) into two transitions each labelled by a with
weight 1 (resp. −1), and a transition labelled by a with weight 0 into two transitions each
labelled by a, one with weight 1 and the other with weight −1. For example, the word ab2a
is now encoded by a2b4a2. All the words that are not composed with square of the letters
(which form a rational language) are given weight > 0 (by using only weights in {1,−1}). It
is easy to see that the obtained automaton computes a nonnegative function if and only if
JAK > 0. Moreover the obtained automaton is on a two letter alphabet with weights within
{−1, 1}.

The undecidability of Pos6
553(Zmax) is a contribution of the present paper. The halting

problem is undecidable for a universal two-counter machine on any input (the initial value of
the first counter). We construct a max-plus automaton simulating the runs of a two-counter
machine where the input n ∈ N is now encoded by an additional widget involving two edges
with weights n and −n. Thus we construct a max-plus automaton with a fixed number of
states (depending only on the number of states of the universal two-counter machine) but
arbitrary weights (induced by the value of the input of the universal two-counter machine).

3.2 Restriction on initial and final states

It is easy to see that max-plus automata having all their states initial and final compute
only subadditive functions, that is to say functions f such that for any two words u and
v, f(uv) 6 f(u) + f(v). In particular, the support of such a function is closed by taking
factors (if uvw is in the support then v is also in the support). Thus, as for unweighted
automata [19], this subclass of automata defines a strict subclass of functions of the functions
computed by max-plus automata. However, the following lemma shows that the comparison
problem remains undecidable within this subclass.

I Lemma 3. Let Σ be a finite alphabet and ? /∈ Σ be a special symbol. Given a max-plus
automaton A on Σ, with d states and weights within a set S, one can build a max-plus
automaton A′ on Σ′ = Σ ∪ {?}, with d + 1 states, all of which are initial and final, and
weights within S ∪ {0}, such that:

min( inf
u∈Σ+

JAK (u)
|u|

, 0) ≤ inf
w∈Σ′+

JA′K (w)
|w|

and inf
u∈Σ′+

JA′K (u)
|u|

≤ inf
w∈Σ+

JAK (w)
|w|+ 1

In particular, JAK > 0 if and only if JA′K > 0.

Proof. Consider a max-plus automaton A defined by a map µ : Σ→Md(Zmax), an initial
vector I and a final vector F , and a new symbol ?. Let Σ′ = Σ∪{?}. The idea is to construct
a new automaton A′ by adding a new state q and transitions from every final state of A to
every initial state of A as well as transitions from every final state of A to q, loops around q
and transitions from q to every initial state of A, all labelled by ? with weight 0. All the
states of the new automaton A′ are initial and final. Let us note µ′, I ′ and F ′ defining this
new automaton.
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Any word w ∈ Σ′+\{?}∗ can be written: w = ?n0w1 ?
n1 w2 ?

n2 . . . wk?
nk where for all

1 6 i 6 k, wi ∈ Σ+ and for all 0 < i < k, ni > 0, n0 > 0 and nk > 0. We get:

JA′K (w) = ‖µ′(w)‖∞ ≥
k∑

i=1
Iµ(wi)F

since the weight of ? is 0. This is at least
∑k

i=1 |wi| infu
JAK(u)
|u| . If JAK ≥ 0, then we

get JA′K (w) ≥ 0. Otherwise, infu
JAK(u)
|u| < 0, and since

∑
i |wi| ≤ |w|, we get JA′K(w)

|w| ≥
infu

JAK(u)
|u| . Moreover, since the weights of the words in {?}∗ is 0 in A′, then the first

inequality holds.
The other inequality is obtained by observing how arcs labelled ? are positioned in A′.

Indeed, if a transition labelled by ? is taken, then it has to start from a final state or q, and
has to end in an initial state or q. Moreover, no other letter labels a transition starting or
ending in q. So, when reading a word w ∈ Σ+ between two ?, this word is read on a run
that was already an existing accepting run in A.

Thus, we see that for all words w ∈ Σ+ and all k ∈ N: JA′K ((?w)k?) = k JAK (w), so
that:

inf
u∈Σ′+

JA′K (u)
|u|

≤ inf
w∈Σ+

k∈N

JA′K ((?w)k?)
k(|w|+ 1) + 1 ≤ inf

w∈Σ+

k∈N

JAK (w)
|w|+ 1 + 1/k .

As a corollary of this lemma and of the previous results on the undecidability of comparison,
we get the following theorem.

I Theorem 4. The restrictions of Problems Pos3({−1, 0, 1}) and Pos7
554(Zmax) to automata

whose states are all initial and final are still undecidable.

Simultaneously to the latter construction, one can also encode the alphabet into the
binary alphabet in a smart way, yielding to the following result:

I Theorem 5. The restrictions of Problems Pos2({−1, 0, 1}) and Pos2
3319(Zmax) to automata

whose states are all initial and final are still undecidable.

4 Joint spectral radius and ultimate rank of tropical matrices

4.1 Joint spectral radius
The definition of spectral radius extends to the joint spectral radius of a set Γ ⊆Md(Zmax)
of matrices, as follows:

ρ(Γ) = inf
`>0

{
1
`
‖M1 · · ·M`‖∞

∣∣∣∣M1, . . . ,M` ∈ Γ
}

The following lemma, which gives other equivalent definitions2, is a known application of
Fekete’s subadditive lemma (see for example [11, Theorem 3.4]).

2 Note that here we use the inf definition for the joint spectral radius instead of the sup definition used
in the literature (see [18] and references therein). The latter is easy to compute in Zmax since it is the
spectral radius of the generators’ tropical sum, unlike the notion considered here (sometimes called
lower spectral radius or joint spectral subradius).

MFCS 2017



19:8 Max-plus automata and joint spectral radius

I Lemma 6. For any set Γ of matrices inMd(Zmax), we have:

ρ(Γ) = lim
`→∞

min
{

1
`
‖M1 · · ·M`‖∞

∣∣∣∣M1, . . . ,M` ∈ Γ
}

(1)

= inf
`>0

{
1
`
ρ(M1 · · ·M`)

∣∣∣∣M1, . . . ,M` ∈ Γ
}

(2)

Proof. Let u` = inf {‖M1 · · ·M`‖∞ |M1, . . . ,M` ∈ Γ}. The sequence (u`)` is subadditive
i.e. for all `, `′, u`+`′ 6 u` + u`′ . Indeed for all M1, . . . ,M`+`′ ∈ Γ, ‖M1 · · ·M`+`′‖∞ 6
‖M1 · · ·M`‖∞+ ‖M`+1 · · ·M`+`′‖∞. Thus by Fekete’s lemma, lim`→∞

u`

` is well defined and
inf`>0

u`

` = lim`→∞
u`

` , which implies (1).
For the second equality, let us set: ρ′(Γ) = inf`>0

{ 1
`ρ(M1 · · ·M`)

∣∣M1, . . . ,M` ∈ Γ
}
.

Since for all matrices M , ρ(M) 6 ‖M‖∞, we have ρ′(Γ) 6 ρ(Γ). Let us show the reverse
inequality. For all ε > 0, there is ` > 0 and M1, . . . ,M` ∈ Γ such that 1

`ρ(M1 · · ·M`) 6
ρ′(Γ) + ε. By definition, it means that 1

` limn
1
n ‖(M1 · · ·M`)n‖∞ 6 ρ′(Γ) + ε, or equivalently,

limn
1

n` ‖(M1 · · ·M`)n‖∞ 6 ρ′(Γ) + ε. By definition, ρ(Γ) 6 limn
1

n` ‖(M1 · · ·M`)n‖∞, thus,
for all ε > 0, ρ(Γ) 6 ρ′(Γ) + ε, that concludes the proof. J

It can be easily seen that ρ(k � Γ) = ρ(Γ) + k.

4.2 Ultimate rank
In the classical setting of a field, the notion of rank enjoys many equivalent definitions.
These notions do not coincide in the case of Zmax. However, it was noticed in [15] that
they coincide on the limit points of the powers of the matrix, when properly normalized
(or considered projectively). This is formalized in [15, Theorem 5.2], and equivalent to the
following definition: the ultimate rank urk(M) of a matrix M ∈Md(Zmax) is the sum of the
cyclicities of the strongly connected components of its critical graph. Clearly, urk(M) = 0 (M
has empty critical graph) if and only if ρ(M) = −∞, and this corresponds to the nilpotency
of M . As for the joint spectral radius, this notion can be generalized to sets of matrices. The
ultimate rank of a set Γ ⊆Md(Zmax) of matrices is: urk(Γ) = min {urk(M)|M ∈ 〈Γ〉}.

Clearly, urk(Γ) = 0 if and only if ρ(Γ) = −∞, and this corresponds to the mortality
of the semigroup generated by Γ. It can be seen (or read in [15, Theorem 5.2]) that the
ultimate rank is a projective notion: urk(k � Γ) = urk(Γ) for any k ∈ Z.

In some interesting cases, urk(Γ) is indeed the reached minimum of the ranks in the
semigroup, so that it is the dimension of the limit set of the action of Γ on Rd. Those cases
include sets with irreducible fixed structure (all matrices have the same infinite entries), and
sets of matrices with no line of −∞ that contain one matrix with only finite entries. This
is implicitely used in [22] and allows to extend some nice properties of products of random
matrices from matrices with the so-called memory-loss property (case urk(Γ) = 1) to more
general ones (see [22, Corollary 1.2]).

4.3 Uncomputability and link with automata
Finitely generated semigroups of matrices exactly correspond to max-plus automata that
have all their states initial and final. In particular, the following lemma links the computation
of the joint spectral radius of the former to the comparison of the latter.

I Lemma 7. Let A be a max-plus automaton over an alphabet Σ whose all states are both
initial and final. The following statements are equivalent.
1. JAK > 0.
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2. For all matrices M in 〈ΓA〉, ‖M‖∞ > 0.
3. For all matrices M in 〈ΓA〉, ρ(M) > 0.
4. ρ(ΓA) > 0.
According to the terminology in [1], this also corresponds to the case when A is called
universal with threshold 0.

Proof. Items 1. and 2. are equivalent since all the states of A are both initial and final. Thus,
for all words w, JAK (w) = ‖µ(w)‖∞. Moreover, 〈ΓA〉 is exactly the set {µ(w)|w ∈ Σ+}.
Items 2. and 3. are equivalent by definition of the joint spectral radius. Finally, Items 3.
and 4. are equivalent by Lemma 6. J

The uncomputability of the joint spectral radius is deduced from the equivalence in
Lemma 7 and from Theorem 4 and 5. More precisely, define JSRk(S) (resp. JSRk

d(S)) as the
following problem: Given a finite set of k matrices with coefficients in S ⊆ Zmax (resp. and
dimension d), determine whether their joint spectral radius is greater than or equal to 0.

I Theorem 8. Problems JSR2({−∞,−1, 0, 1}) and JSR7
554(Zmax) are undecidable.

Proof. The undecidability comes from a reduction from the problem stated in Theorem 4
and 5. Consider a max-plus automaton A whose states are all initial and final. By Lemma 7,
JAK > 0 if and only if ρ(ΓA) > 0. Thus JSR2({−∞,−1, 0, 1}) and JSR7

554(Zmax) are
undecidable. J

By reduction from Theorem 8, we prove that the ultimate rank is also uncomputable.
Define URk(S) (resp. URk

d(S)) as the following problem: Given a finite set of k matrices
with coefficients in S (resp. and dimension d), determine whether the ultimate rank of the
semigroup that they generate is equal to 1.

I Theorem 9. Problems UR2({−∞,−1, 0, 1}) and UR7
1109(Zmax) are undecidable.

Proof. From any matrix M , one can build: M̂ =

 M −∞ −∞
−∞ M −∞
−∞ −∞ 0

 . It is then clear

that, for any finite family of matrices Γ, the semigroup generated by Γ̂ =
{
M̂
∣∣∣M ∈ Γ

}
is〈

Γ̂
〉

=
{
M̂
∣∣∣M ∈ 〈Γ〉}.

If M has size d and entries in S, then M̂ has size 2d + 1 and entries in S ∪ {−∞, 0}.
Moreover, if ρ(M) < 0, then the critical graph of M̂ is simply the loop over the last vertex
(last line of the matrix M̂), so that urk(M̂) = 1. Otherwise, the critical graph of M̂ contains
at least two copies of that of M (which is nonempty), so that urk(M̂) ≥ 2. Thus, ρ(M) > 0
if and only if urk(M̂) ≥ 2. By reduction from the undecidable problems of Theorem 8, we
can deduce that UR2({−∞,−1, 0, 1}) and UR7

1109(Zmax) are undecidable. J

I Remark. As noted above, the joint spectral radius and ultimate rank are not altered
through translation by a constant; thus uncomputability is preserved with other restrictions
over the entries. Regarding the joint spectral radius, the comparison to 0 may no longer
be undecidable, but the comparison to some other constants will be. For instance, if
Γ ⊂M(Nmax), positivity is always true, but the question whether ρ(Γ) > 1 is undecidable.
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4.4 Approximation of the joint spectral radius
Still by using results in automata theory, we prove that even though the joint spectral radius
is not computable in general, it is approximable and computable in restricted cases in the
following sense.

I Theorem 10. There is an algorithm that, given a finite set Γ of matrices and n ∈ N \ {0},
computes a value α ∈ Q ∪ {−∞} such that α− 1

n 6 ρ(Γ) 6 α+ 1
n .

Proof. The proof uses the main result of [7]. This result is originally stated for min-
plus automata using only positive weights. These automata are defined over the min-plus
semiring (Z ∪ {+∞},min,+,+∞, 0). By using the morphism from the min-plus to the
max-plus semiring that associates k to −k, we can state the result of [7] in the max-plus
case: there is an algorithm A that, given a max-plus automaton A over an alphabet Σ using
only nonpositive weights and n ∈ N \ {0}, computes a value α ∈ Q ∪ {+∞} such that:
α− 1

n 6 infw∈Σ+
JAK(w)
|w| 6 α+ 1

n .
Now, let us exhibit an algorithm that gives an approximation of the joint spectral radius

of any finite set of matrices with only nonpositive entries. Consider a finite set of matrices Γ
with only nonpositive entries, and a max-plus automaton A such that Γ = ΓA. From [7], A
also gives an approximation of the joint spectral radius of Γ, since we have:

ρ(Γ) = inf
`>0

{
1
`
‖M1 · · ·M`‖∞

∣∣∣∣M1, . . . ,M` ∈ Γ
}

= inf
`>0

{
1
`

JAK (w)
∣∣∣∣w ∈ Σ`

}
= inf

w∈Σ+

JAK (w)
|w|

.

Consider now a finite set of matrices Γ with arbitrary entries. Let k denote the greatest
entry that appears in at least one of the matrices of Γ. Construct the set Γ′ = −k � Γ. The
set Γ′ is then a finite set of matrices with only nonpositive entries, on which we can apply
A. We then get an approximation of the joint spectral radius of Γ by adding k to the value
given by the algorithm. J

This implies, in particular, that the joint spectral radius of every finite set of matrices is a
computable real number.

Remarks about the complexity. The algorithm of [7] is EXPSPACE in the size of the auto-
maton and in n. Moreover the problem is PSPACE-hard by reduction from the universality
problem of a nondeterministic automaton: Given a nondeterministic finite automaton A over
a 2-letter alphabet Σ, the problem to determine whether the language accepted by A is Σ+ is
PSPACE-complete. A precise statement of the reduction is given in the following lemma.

I Lemma 11. Given a nondeterministic finite automaton A over a 2-letter alphabet Σ, one
can construct in polynomial time a set of 3 matrices Γ with entries in {−∞, 0} such that
A accepts Σ+ if and only if the joint spectral radius of Γ is equal to 0. Otherwise, the joint
spectral radius of Γ is equal to −∞.

Proof. Consider a nondeterministic finite automaton A over a 2-letter alphabet Σ. We
construct a max-plus automaton A′ from A by weighting the transitions by 0. Then, A
accepts Σ+ if and only if JA′K = 0 (otherwise there is a word w such that JA′K (w) = −∞).
By Lemma 3, one can construct a max-plus automaton B over a 3-letter alphabet such that
every state of B is both initial and final, B has only weight 0 on its transitions, and JA′K > 0
if and only if JBK > 0. Hence, JA′K = 0 if and only if JBK = 0. By Lemma 7, JBK > 0 if and
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only if the joint spectral radius of ΓB is nonnegative. Since, ΓB contains only matrices with
entries in {0,−∞}, it implies that JBK = 0 if and only if the joint spectral radius of ΓB is
equal to 0. All the constructions are polynomial. J

Notice that Lemma 11 also proves that JSR3({0,−∞}) is PSPACE-hard. A result in [1]
implies that JSRk(Z− ∪ {−∞}) is also PSPACE, where Z− denotes the set of nonpositive
integers. Hence, Problem JSR3({0,−∞}) is also PSPACE-complete.

4.5 Restriction to finite entries
Let us consider the restriction to matrices with only finite entries. In terms of automata, it
means that for all letters a, there is a transition labelled by a between any pair of states. In
this case, the joint spectral radius and ultimate rank are computable.

I Theorem 12. There are PSPACE algorithms to compute the joint spectral radius and the
ultimate rank of any finite set of matrices with finite entries. In particular, in this case, the
joint spectral radius is a rational number. Moreover, JSR3({0,−1}) and UR3({0,−1}) are
PSPACE-complete.

PSPACE algorithm. To prove that the problems are PSPACE, the key point is the
following lemma:

I Lemma 13 ([13]). Let Γ ⊂Md({−b, . . . , b}) for some nonnegative integers b and d. Then
for all matricesM ∈ 〈Γ〉 and all indices i, j, the quantityMi,j−M1,1 belongs to {−2b, . . . , 2b}.

Let Γ be a finite set of matrices with entries in {−b, . . . , b}. By Lemma 13, the set
Λ = {−M1,1 �M |M ∈ 〈Γ〉} contains at most (4b+ 1)d2−1 matrices.

Moreover, since the operation of adding the same constant to all the entries of a matrix
commutes with the product of matrices, Λ is the set of matrices −M1,1 �M such that M
is a product of at most (4b + 1)d2−1 matrices of Γ. Finally, the ultimate rank of Γ is the
minimum of the ultimate rank of the matrices in Λ, which can be computed by the following
algorithm in NPSPACE. Start with a matrix M = M1 ∈ Γ and a counter ` with value 1.
At each (nondeterministic) step, either compute urk(M) and stop, or increase ` by one and
multiply M by some matrix M` ∈ Γ. If ` = (4b+ 1)d2−1, then compute urk(M) and stop.

Since the maximum value of ` is simply exponential in the size |Γ|d2 log(b) of the input,
both ` and the size of the entries of M = M1 · · ·M` are simply exponential and thus can be
stored in polynomial space. Since the product of matrices and ultimate rank of one matrix
can be computed in P the algorithm is in NPSPACE=PSPACE.

For the joint spectral radius, let us prove that

ρ(Γ) = min
`6(4b+1)d

M1,...,M`∈Γ

{
1
`
ρ(M1 · · ·M`)

}
(3)

and conclude in the same way. Let us consider a product M1 · · ·M` of matrices in Γ and the
orbit of the vector with all entries equal to 0 under the action of M1,M2, . . . ,M`,M1,M2, . . ..
By Lemma 13, this orbit projectively has size at most (4b + 1)d. Hence, it cycles after t
steps for some t 6 (4b+ 1)d and has a period p 6 (4b+ 1)d. Each time the orbit goes back
to the same vector projectively, all coordinates have increased by some value, which is the
spectral radius of M(t+1) mod `M(t+2) mod ` · · ·M(t+p) mod `. Indeed, for matrices with only
finite entries, the spectral radius is the only eigenvalue. Finally, we get 1

`ρ(M1 · · ·M`) =
1
pρ(M(t+1) mod `M(t+2) mod ` · · ·M(t+p) mod `), which proves (3).

MFCS 2017



19:12 Max-plus automata and joint spectral radius

PSPACE-hardness. Let Γ be a finite set of matrices with entries in {0,−∞}. Let Γ′ be
the set Γ where every entry with value −∞ has been replaced by −1. The joint spectral
radius of Γ is equal to 0 if and only if the joint spectral radius of Γ′ is equal to 0. Otherwise,
ρ(Γ) = −∞ and ρ(Γ′) is strictly negative. By Lemma 11, JSR3({0,−∞}) is PSPACE-hard,
and thus JSR3({0,−1}) is PSPACE-hard.

Now, let us reduce JSR3([{0,−1}) to UR3({0,−1}). From any matrix M ∈Md({0,−1}),

with d ∈ N\{0}, one can build the matrix: M̃ =
[

M (−1)
(−1) 0

]
∈ Md+1({0,−1}) , where

(−1) is the vector with appropriate size whose entries are all −1.
It is then clear that, for any finite family of matrices Γ, the semigroup generated by

Γ̃ =
{
M̃
∣∣∣M ∈ Γ

}
is
〈

Γ̃
〉

=
{
M̃
∣∣∣M ∈ 〈Γ〉}.

Moreover, note that if ρ(M) < 0, then the critical graph of M̃ is the loop over the last
vertex, so that urk(M̃) = 1. Otherwise, ρ(M) = 0, and the critical graph is the union of
this loop and the critical graph of M , so that urk(M̃) = 1 + urk(M). We deduce that the
ultimate rank of Γ̃ is greater than or equal to 2 if and only if ρ(Γ) > 0.

I Remark. Lemma 13 is implicitely used in [12, Corollary 2] to prove that the functions
computed by max-plus automata with rational entries whose linear representation generates
a so-called primitive semigroup (which includes matrices with finite entries) can be computed
by a deterministic automaton.

It is also shown (as Corollary 4) that the minimal growth rate of a deterministic automaton,
i.e. the joint spectral radius of its linear representation, can be computed as the spectral
radius of one matrix whose indices are the states of the automaton.

This gives another algorithm to compute the joint spectral radius of a finite set of matrices
with finite integers, but not a PSPACE one, since the size of the deterministic automaton is
only bounded by (4b+ 1)d2 , while Equation (3) allows to compute only matrices of size d
without storing them.

5 Conclusion and open questions

In this paper, we have proved that the joint spectral radius and the ultimate rank of a finite
set of matrices over the tropical semiring are not computable (from the proof it can be seen
that they are actually computably-enumerable-complete). To this end, we have proved the
undecidability of the comparison of max-plus automata in restricted cases: when all the
states are both initial and final and when the number of states is bounded.

As for the restriction on the number of states, we proved that comparison is undecidable
when restricted to 553 states. Now, the question is to understand what happens between 2
and 552 states. Even when restricted to 2 states, it seems quite a difficult question to answer.
Moreover, the various proofs highlight a link between several universal models: diophantine
equations and two-counter machines. Having better size bounds on these models would
give a better bound for our undecidable problem, but conversely, getting the decidability of
comparison for max-plus automata with at most a certain number of states could lead to
improve the known lower bounds on the size of these universal objects.

As for the joint spectral radius, one could ask if it is always rational or if, on the opposite,
the set of joint spectral radii of finite families of matrices admits some computability-theoretic
characterization. With respect to complexity, the main open question is whether it is PSPACE
to approximate the joint spectral radius.
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