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Abstract Distance automata are automata weighted over the semiring (N U
{oo}, min, +) (the tropical semiring). Such automata compute functions from
words to NU{oo}. It is known from Krob that the problems of deciding ‘f < ¢’
or ‘f = ¢’ for f and g computed by distance automata is an undecidable
problem. The main contribution of this paper is to show that an approximation
of this problem is decidable.

We present an algorithm which, given ¢ > 0 and two functions f, g com-
puted by distance automata, answers “yes” if f < (1 —e)g, “no” if f £ g, and
may answer “yes” or “no” in all other cases.

The core argument behind this quasi-decision procedure is an algorithm
which is able to provide an approximated finite presentation of the closure
under products of sets of matrices over the tropical semiring.

Lastly, our theorem of affine domination gives better bounds on the pre-
cision of known decision procedures for cost automata, when restricted to
distance automata.
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1 Introduction

One way to see language theory, and in particular the theory of regular
languages, is as a toolbox of constructions and decision procedures allowing
high level handling of languages. These high level operations can then be used
as black-boxes in various decision procedures, such as in verification.

Since the early times of automata theory, the need for the effective handling
of functions rather than sets (as languages) was already apparent. Schiitzen-
berger proposed already in the sixties models of finite state machines used
for computing functions. These are now known as weighted automata [9] and
are the subject of much attention from the research community. In general,
weighted automata are non-deterministic automata, with transitions carrying
weights over some semiring (S, ®, ®). The value computed by such an automa-
ton over a given word is then the sum (under @) over every run over this word
of the product (under ®) of the weights of the transitions along the run.

Several instances of this model are very relevant for modelling the be-
haviour of systems, and henceforth attract much attention. This is in par-
ticular the case of probabilistic automata (over the semiring (R, +, x) with
some additional stochastic assumption enforcing weights to remain in [0, 1]),
and distance automata which are automata weighted over the semiring (N U
{00}, min, +). In such an automaton, each transition is labelled with a non-
negative integer (usually 0 or 1), and the weight of a word is the minimum
over all possible paths going from an initial state to a final state, of the sum
of the weights over the transitions. The value is infinite if there is no accept-
ing run. These automata naturally capture some optimisation problems since
computing the value of an input word amounts to find a path of minimal
weight.

The subject of this paper is to develop algorithmic tools for distance au-
tomata, and more precisely for comparing distance automata. We know from
the beginning that exact comparison is beyond reach.

Theorem 1 (Krob [6]) The problem of determining, given two functions f, g
computed by distance automata, whether f = g is undecidable. The problem
f < g is also undecidable, even if g is deterministic.

Moreover, the problem of determining, given two functions f, g computed
by distance automata, whether there exists a € N such that f < ag+a is also
undecidable.

Despite this, some positive results exist but for a comparison relation less
precise than inequality, namely domination. Given two functions f,g : A* —
N U {0}, we say that f is dominated by g (and we note f < g) if there is a
function o : N — N, extended with a(co) = oo, such that

f<aocyg.

Moreover, if « is a polynomial, we say that f is polynomially dominated by g.
The following theorem shows some good properties of the domination relation.
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Theorem 2 (J2] extending results and techniques from [4},8],11,5,1])
The domination of functions computed by distance automata is decidable. Fur-
thermore, for such functions, domination is equivalent to polynomial domina-
tion [

The motivation of this work is to improve Theorem [2| and to answer the
following question:

Are there some “approximations” of the comparison of functions com-
puted by distance automata that are finer than domination but still
decidable?

We answer positively this question in two ways. Firstly, we show:

Theorem 3 (affine domination) Given two functions f and g computed by
distance automata, if f is dominated by g then f is affinely dominated by g,
i.e., f <aog for some polynomial o of degree 1.

A consequence of this theorem is that the decision procedure provided by
Theorem [2| in fact decides affine domination, which is finer than polynomial
domination]

Our second, and main contribution is an even more accurate decision-like
procedure. We say that an algorithm, given two functions f and g and some
real € > 0, e-approximates inequality if:

— if f < (1 —¢€)g, the output is “yes”,
— if f £ g, the output is “no”,
— otherwise the output can be either “yes” or “no”.

Hence, if such an algorithm answers “yes”, one has a guaranty that f < g.
Conversely if f is e-inferior to ¢ (meaning f < (1 — ¢)g), one is sure that the
algorithm answers “yes”. Our second and main result reads as follows:

Theorem 4 (approximate comparison) There is an algorithm which e-
approzimates the inequality of functions computed by distance automata.

This result is a consequence of the core theorem (Theorem @ stating that
it is possible, given a set of matrices X in the tropical semiring, to approximate
(in a suitable way) the set

k

where ® denotes the product of matrices. More precisely, the core theorem
states that it is possible to approximate the upper envelope of the set of pairs

{(M;®--® My, k) : My,...,M € X}

1
{(M1®®Mk) : Ml,...,MkEX}

for a suitable notion of approximation. This core theorem, Theorem [}, requires
several definitions to be introduced beforehand.

I Technically, polynomial domination is not stated in [2], but can be derived directly from
the proofs which explicitly compute the function « using operations preserving polynomials.

2 Theorem [2| holds for more general classes of automata, cost automata, for which affine
domination does not hold. Affine domination is specific to distance automata.
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Organization of the paper.

In Section 2] we present some classical definitions and we introduce dis-
tance automata. We also prove theorem of affine domination (Theorem . In
Section |3} we formally state our core theorem (Theorem @, and we apply it for
answering our original motivation, and show the decidability of the approxi-
mate comparison between distance automata. Finally, Section []is devoted to
the proof of the core theorem and Section [5] concludes the paper.

2 Comparing distance automata

In this section, we consider the problem of comparing the functions com-
puted by distance automata. In particular, we establish Theorem [3] and we
reduce Theorem [4] to our core theorem, Theorem [6]

We start by introducing the basic definitions and describing distance au-
tomata, and their relationship with matrices over the tropical semiring.

2.1 Standard definitions

A semigroup (S,-) is a set S equipped with an associative, binary product
operation “-”. If the product has furthermore a neutral element, it is called a
monoid. The monoid is called commutative when - is commutative. An idem-
potent in a monoid is an element e such that e - e = e. Given a subset A
of a semigroup, (A) denotes the closure of A under product, i.e., the least
sub-semigroup that contains A. Given two subsets X, Y of a semigroup, X - Y
denotes the set {a-b : a € X, beY}.

A semiring is a set S equipped with two binary operations @ and ® such
that (S, ®) is a commutative monoid with neutral element 0, (S, ®) is a monoid
of neutral element 1, 0 is absorbing for ® (ie., z®0 = 0 ® x = 0) and
® distributes over &. We will consider three semirings: (R* U {oo}, min, +),
denoted RT, its restriction to N U {oc}, denoted N, and its restriction to
{0,000} denoted B. The semiring B is called the Boolean semiring, since if we
identify 0 with “true” and oo with “false”; then @ is the disjunction and ® the
conjunction. Remark that in the three cases, the “0” is 0o, and the “1” is 0.

Let S be one of the above semirings. The set of matrices with m rows and n
columns over S is denoted M, ,,(5). For M € M,, ,(S), we denote by ¢(M)
the matrix over B in which all entries of M different from oo are replaced by 0.
We define the multiplication A® B of two matrices A, B (provided the number
n of columns of A equals the number of rows of B) as usual by:

(A®B)ij = P (Aix®Bry) = omin (Aik + By j) -

0<k<n

For a positive integer k, we also use the notation M* = M ® --- ® M.
—_————

k times
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For A € S, we denote by AA the matrix such that (AA); ; = AA; ; for all
1,7, with the convention that Aoo = oo (the standard product is used here,
not the one of the semiring). Note in particular that ¢(M) = 0M. We also
denote by B + A the matrix such that (B+ \); ; = B; ; + A for all 4, j. Finally,
we write A < B if A; ; < B;; for all ¢,j where the ordering is the natural
ordering on numbers.

We cite here basic facts used in the proofs.

Lemma 1 Let k,¢{,m € NU{oo}, a € N and M,N,M',N" € M, ,(N).

If k<l and M < N then kM < {N.

—IfM <N and M' < N then M@ M' < N® N'.

— IM®IN =¢M®N)

If the greatest finite entry of M is a then (k+ ()M < kM + La.
— (LM +k)® (mN +k)=({M@mN) + 2k

2.2 Distance automata

An alphabet is a finite set. The set of words over an alphabet A is denoted
A*. A distance automaton is a tuple (A,Q, I, F,T), where Q is a finite set
of states (that we can assume to be {1,...,n}) where I (resp. T) is a row-
vector (resp. column-vector) indexed by @, and F' is a morphism from words

to My, »(N). The function f computed by a distance automaton (A, Q, I, F,T')
over an input word w is:

f:A* >N
u— IQF(u)eT .

We assume from now on that the initial and final vectors I,T of distance
automata only range over {0, co}. The theorems are equally true without this
assumption, but this simplifies slightly the proof. In practice the theorems
without this restriction can be obtained by simple reductions to this case.

We have defined so far distance automata in terms of matrices. One can
see this object in a more “automaton” form as follows. There is a transition
labelled a : x from state p to state ¢ if + < co and z = F(a),q. A state p is
initial if I , = 0. It is final if T; ; = 0. An example of distance automaton is
as follows:

a,b:O a:l a,b:O
& b:0 /Q b:0 &_}
—( P \%/ r

One can redefine the function computed by a distance automaton as fol-
lows. A run of an automaton over a word a; ...ay is a sequence po, . .., px of
states. The weight of a run is the sum of the weights of its transitions, i.e.,
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F(a1)pg,p T -+ F(ak)p,_,.p.- Remark that if there is some non-existing tran-
sition in this sequence, say from p;_1 to p;, this means that F(a;)p, , p; = 00,
and as a consequence the run has an infinite weight. A run is accepting if pg
is initial and py is final. One defines the function accepted by the automaton
as:

f:A* =N
u +— inf{weight(p) : p accepting run over u} .

This definition is equivalent to the matrix version presented above.
For instance, the function computed by the above distance automaton as-
sociates to each word u = a™ba™ ...ba™* the value min(ng,...,ng).

2.3 Superior limits

In this section, we present Theorem [5| This result is a refinement of known
proofs concerning distance automata and will prove useful for further reduc-
tions.

In order to define the superior limit of a set of matrices, a topology is re-
quired. We consider the topology of one point compactification of the naturals,
where the basic open sets are the singletons {n} and the intervals [n, co) for
n € N.

Given X C M,, ,(N), a matrix N belongs to the superior limit of X if:

— N is the limit of some sequence of matrices from X,
— there exists no M € X such that M > N.

Let us call lim sup(X) the set of matrices in the superior limit of S. Following
from Higman’s theorem, we can observe that lim sup(X) is finite.

Theorem 5 (consequence of [4,8]) There is a PSPACE algorithm which,
given a monoid morphism F from A* to M, ,,(N) and a regular language
L C A*, enumerates limsup(F(L)).

This is an adaptation of Leung’s proof of decidability of limitedness for
distance automata [§] (it subsumes this result). We are not aware of any similar
statement in the literature, though it can be deduced from previous works.

2.4 A first reduction: the theorem of affine domination

Our goal in this section is to establish the theorem of affine domination
(Theorem . Notations introduced here will be reused in Section

Let us fix two distance automata over the same alphabet A. The first
one, Ay = (A, Qy, F,Is,Tf) calculates a function f. The second one, A, =
(A, Qq,G, 1,,Ty) calculates a function g.

Define Ry, 94, C A* to be the set of words over which there is a run of A,
of weight 0 from state p to state ¢. Let ¢ be a non-null weight occurring in
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some transition of A,, and p, ¢ be states in Q4. Define R, ; , C A* to contain
the words over which there is a run of A, from state p to state ¢ which uses
one transition of weight ¢, and otherwise only transitions of weight 0.

Proof (Proof of theorem @ Define K to be the largest number that occurs
in at least one of the matrices of the union, over states p,q and weights of
transitions ¢, of the sets limsup(F (R, ¢,4)) (such a number exists since by
Theorem [5|it is the maximum of finitely many numbers). Given a matrix M,
call an m-expansion of M a matrix M’ > M such that for all 4,5, M; ; > K
implies Ml’j > m. We first show a claim concerning expansions.

Claim. For all M € F(R, ) and all m there exists an m-expansion M’ €
F(Rp7g7q) of M.
Indeed, by definition of the superior limit, there is some L € limsup(F(Rp¢,q))
such that L > M. Furthermore, by choice of K, whenever M; ; > K, L; ; = co.
Finally, again by definition of the superior limit, L is the limit of a sequence
of matrices in F(R,¢4). Hence, for all m, there exists a matrix M’ in this
sequence which is sufficiently close to L that it is an m-expansion of M. This
proves the claim.

Let us turn now to the core of the proof. Our goal is to prove that if f is
dominated by g, (i.e., there exists @ : N — N extended with a(co) = co such
that f < aog), then f < K(1+ g). The proof is by contraposition. Thus,
assume f £ K(1+ g). This means f(u) > Kg(u) + K for some word u. We
will prove that f is not dominated by g.

The first case is g(u) = 0. This means that u € R, , with p initial and
q final. Using the above claim, one can chose for all m a word v(™ € R,
such that F(v(™) is an m-expansion of F(u). Since f(u) > K then that for
every initial state ~ and final state s of A¢, F(u),s > K. This means that
for all such r, s, F(v(m))ns > m. Tt follows that f(v(™)) > m. Hence, over
the sequence (v("),,, ¢ is bounded and f tends to infinity. This forbids the
existence of a function « such that f < aog so f is not dominated by g.

Assuming g(u) # 0, the argument is similar. Remark first that g(u) is finite
since f(u) > Kg(u) + K. This means one can find p, ..., pr with po initial,
pi final, and such that:

U=uy...ug, U1 E Rpyoyprs--sUk € Rp y twpr s

where ¢1,..., ¢ are all non-null and of sum g(u). By the above claim, for all
i=1...k, and all m, one can select v\™ in R,, | 4, such that F(v{™) is

an m-expansion of F(u;). Consider now the word v(™ = v{™ . v{™_ Clearly
g(v(™) = g(u). For the sake of contradiction, assume now that f(v("™) < m
for some m. This means that there exists qg,...,qr such that go is initial,
gy, is final, and F(vgm))qi%,qi <mforall i =1...k. Since F(vl(m)) is an m -
expansion of F'(u;), this implies F(u;)q, ¢ < K. It follows that f(u) < Kk <
Kg(u). A contradiction. Hence f(v("™) > m. Thus, g is bounded by (v(™),,
while f is not. As a consequence, f is not dominated by g.
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3 Description of the core theorem

In this section, we define sufficient material for stating our core theorem
(Theorem |§[) Then we apply it to the comparison of distance automata. Its
proof is the subject of Section [4]

3.1 Weighted matrices, approximation, finitely presented sets, and the core
theorem

In this section we state our core approximation result, Theorem [6] This
theorem states that given a set of weighted matrices, it is possible to compute
a finite presentation of its closure under product up to some approximation.
Hence we have to introduce weighted matrices, the approximation, and what
are finite presentations before disclosing the statement. This requires some spe-
cific definitions that we now present. Fix a positive integer n, and all matrices
implicitly belong to M., ,,(R¥).

A weighted matriz is an ordered pair (M, /) where M € M, ,(R¥) and
¢ € N is non-null. The positive integer ¢ is called the weight of the weighted
matrix. The set of weighted matrices is denoted by W,, ,,. Weighted matrices
have a semigroup structure (W,, »,, ®), where (M, £)® (M’, ¢') stands for (M ®
M’ £+ {). Given subsets X,Y of W, ,, one denotes by X ® Y the set {M @
N : M e X, N €Y}, and by (X) the closure under @ of X. With this
terminology, our goal is, to approximate (X) for a given finite set of matrices
X.

We describe now the notion of approximation that we use. Given some
e > 0 and two weighted matrices (M, ¢) and (M’,¢'), we write

(M, 0) < (M',0)) if 030, ¢(M)=¢(M')and M < M +<l .

Remark 1 Note that (M, ¢) <. (M’,¢') implies 1M < £ M’+e¢, and this is the
intention behind this definition, i.e., being able to consider weighted matrices
up to a multiplicative error of e. In fact (M, £) <. (M’,¢') is a more restrictive
definition than simply %M < e—l,M "+ e. This is necessary since we want this
notion to be robust with respect to the operations used later on in the proof.
This robustness is made explicit in Lemma [2] below.

This definition extends to sets of weighted matrices as follows. Given two sets
X, X' of weighted matrices, we write X <. X' if for every (M,¢) € X, there
exists (M',¢') € X' such that (M,0) <. (M',¢'). We also define X ~. X’ to
hold if both X <. X’ and X’ <. X (and we say that X is e-equivalent to X').

The following lemma establishes some simple, yet essential, properties of
the <. relations (as a consequence, the same properties hold for ~.).

Lemma 2 Given X, X'\ Y)Y Z CW, , and ,n > 0,

1if X< Y andY =, Z then X <cyy Z,
20 XK. X andY 2. Y then XY . X' @Y,
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3. if X e X/ then (X) <. (X').

Proof 1. If (M, 0) < (M’ 0') < (M",0"), then one gets £ > ¢/ > ", p(M) =
O(M")y=p(M")and M < M'+el < M"+nl' + e < M" + (e +n)L. This
easily extends to sets of weighted matrices.

2. Assume that both (M, ¢) <. (M’,¢') and (N,t) <. (N',t'). Then, £+t >
U+t d(MRN)=¢(M @ N')and M@ N < (M' +¢ef) @ (N’ +et) <
M’ @ N’ + e(£ +t). This naturally extends to sets of weighted matrices.

3. By induction, applying the second item.

O

The last ingredient required is to describe how to represent (infinite) sets of
weighted matrices. Call a set of weighted matrices W C W, ,, finitely presented
if it is a finite union of singleton sets, and of sets of the form {(kM,k): k >
(,k € N} where M € M,, ,(RT) and ¢ is a positive integer. Our algorithm
manipulates finitely presented sets of weighted matrices. For a € N, let us
note Wy, € W, », the set of weighted matrices (M, ¢) such that every finite
coefficient of M is smaller than af. Note that for each finitely presented set P,
there is an a € N such that P C Wp .

The core technical contribution of this paper can now be stated, as follows.

Theorem 6 (core theorem) Given a finitely presented set X C W, ,, and a
reale > 0, there exists effectively a finitely presented set closure(e, X) C W, ,
such that:

closure(e, X) =~ (X) .

The proof of this result will be the subject of Section ] The application
of this theorem to the comparison of distance automata is presented in Sec-
tion [3:2] The two sections are independent.

3.2 The reduction construction

The goal of this section is to prove the approximate comparison theorem
(Theorem [4).

We reuse definitions and notations of automata Ay and A, given in the
Section @ In particular, we use the sets R, ¢, again.

Our goal is to construct a finite set of weighted matrices X that captures
the relationship between f and g. The key ideas behind this reduction are the
following. Each matrix (M, ¢) in X corresponds to a set of runs of g, that start
in a given state p and end in a given state ¢, and use exactly one transition of
non-null weight ¢. The corresponding matrix M is in charge of (a) simulating
the behaviour of F' over some word corresponding to such a run (there may be
infinitely many such runs, but only the finitely many matrices of the superior
limit need to be considered), and (b) keeping information concerning the first
and last state of the run of A, for being able to check that pieces of the run
of A, are correctly concatenated.
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One also needs to define the part of the matrix in charge of controlling
the validity of the run of A,. The construction behind Lemma [3] below is the
one of a deterministic automaton, that reads words over the alphabet Qf], and
accepts a word (p1,q1) ... (pk, qr) if, either p; is not initial, or g is not final,
or if ¢;_1 # p; for some i. One can verify that this language is accepted by
a deterministic and complete automaton with states @, & {7, L}. The unique
initial state is ¢, and, when reading the word (p1,q1) - .. (pk, gx ), the automaton
reaches state | if p; is not initial or ¢;_; # p; for some i, otherwise it reaches
state gi. The final states are the one not in Ty plus L plus possibly i if there
are no states that are both initial and final in g. Translated in matrix form,
this yields Lemma [3]

Lemma 3 There are (|Qq| + 2,|Qq4| + 2)-matrices (CP?), cq, over B and
vectors Ic and Tc such that for all pr,q1,...,pk, qx € Qq,

IC ® Oplg(Il R ® C’Pk#}k ® TC

_ oo ifplGIg:‘h:p%-ank—l:Pk anquETga
0 otherwise.

Proof This is implemented in matrix form as follows. For each p,q where
P.q € Qg, set the matrix CP? that has indices in Q4 U {i, L}, to be such
that:

0 ifp =i pel;andq =g,

0 ifp=ipglyandqg =1,
(CP") =140 ifp'=pandq =g,

0

ifp’#2iand p’ #pand ¢ = L,
oo otherwise.

Define furthermore I be the vector with all entries oo but ¢ which is 0, and
let T be the vector with all entries equal to 0 except Ty, and 7 if there is a
state both initial and final in A,.

We can now construct the set X as follows:

X = {((g Cozqu) ,z) L Me limsup(F(Rp,e,q))}

and the vectors
T
I=(I;Ig) and T= <T£) .

The following lemma shows the validity of the construction, and more
particularly how it relates the comparison of distance automata to the com-
putation of the closure of a set of weighted matrices.

Lemma 4 For all 8 >0, f < Bg if and only if for all W,0) € (X), I@W ®
T < Bt
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Proof Assume first f £ Bg, which means f(u) > Sg(u) for some u. Then
clearly, g(u) is finite and hence, there is an accepting run p of g over u. This
means that one can find py, ..., pr with po initial, p, final, such that:

u € Rpo,flxlepl,fz,Pz s Rpk—l,fk,pk ’

where /1, ..., ¢} are all non-null and of sum ¢ = g(u). Foralli =1...k, set M;
to be some matrix in limsup(F(Rp, , ¢ .p;)) such that F'(u;) < M;. Let also
C; be CPi-1:Pi_ Clearly, the weighted matrix

. Mi (0]

belongs to X. Hence (W, ¢) belongs to (X), where W = W1 @ --- @ Wy,. We
then have I ® W @ T' = min(zy, x¢) with

.’L‘f:If®M1®---®Mk®Tf and r2o=Ic@C1® --C,Tc .

By choice of the M;’s, x5 > Iy ® F(u)®Ty = f(u). Furthermore, by Lemma (3}
xc = oo. It follows that IQ@ W T > f(u) > Bg(u) = SL.

Assume now that f < S8g. Consider some (W, ¢) € (X), it is obtained as
(W) = (Wi, l1) @ -+ @ (W, £) with (W;,¢;) € X for all i. By definition of
X, each of the W;’s can be written, for some p;,q; € Qg, as

Mi o0 . .
W; = ( ~ Cpi’qi) with M, € limsup F(Rp, ¢;.q;)-

Once more, one has I @ W ® T = min(zs, z¢) with
xf:If®M1®---®Mk®Tf and 2o=Ic@C1® --C,Tc .

Remark first that if zc = 0, clearly, I @ W ® T' = 0 < S¢. Hence, let us
assume that ¢ = co. This means by Lemma [3] that p; is initial, g is final,
and p; = ¢;—1 for all i = 2...k. One needs to prove x5 < 8.

Assume for the sake of contradiction that xy > (¢. By continuity of
the product, and using the definition of the superior limit, there exist words
u1,...,u, such that for all i = 1...k, u; € Rp, 4,.:, and I ® Fu1) ® --- ®
F(ur) @ Ty > B¢. Furthermore, by definition of the sets Ry, ¢, 4., the fact that
p1 is initial, that g is final, and that ;1 = p; for all i = 2. ..k, it follows that
g(uy ... ug) = €. It follows that f(uy...ug) > Bg(ui...ug). A contradiction.

We are now ready to establish the main theorem of the paper, that we
recall first.

Theorem 4 (approximate comparison) There is an algorithm which e-
approximates the inequality of functions computed by distance automata.
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Proof (Proof of Theorem Let us consider two functions f and g computed
by distance automata and some £ > 0. The algorithm works as follows. It
computes the set X of weighted matrices as defined earlier in Section [3.2] as
well as the corresponding vectors I, T. Using Theorem [6] it computes a finitely
presented set Y of weighted matrices such that ¥ ~< (X). Then it tests the
existence in Y of a weighted matrix (M, ¢) such that /@ tM ®T > 1— £. This
is easy to do for finitely presented sets. If such a weighted matrix exists, the
algorithm answers “no”. It answers “yes” otherwise. Let us show the correctness
of this approach.

— Assume f < (1—¢)g, and that, for the sake of contradiction, the algorithm
answers “no”. This means that I ®%M ®T > 1— £ for some weighted matrix
(M, ) € Y. Furthermore, there exists (M',¢') € (X) such that (M, /) <<
(M’,¢'). This implies $ M < M’ +%. It follows that @ M'@T > (1—¢)l'.
This contradicts Lemma [

— Assume f £ g, then by Lemmald] there exists a matrix M € (X) such that
I®$M @ T > 1. Furthermore, there exists M’ € Y such that (M, ¢) <s
(M’,¢'). This implies §M < M’ + 5, and hence I @ M’ @ T > 1 — §.
The algorithm answers “no”.

4 Proof of the core theorem

In this section we prove our core theorem, Theorem[6] It is the combination
of several arguments. The first one is the use of the factorisation forest theorem
of Simon, and is the subject of Section

4.1 The main induction: the factorisation forest theorem of Simon

The factorisation forest theorem of Simon [10] is a powerful combinatorial
tool for understanding the structure of semigroups. We will not describe the
original statement of this theorem, in terms of trees of factorisations, but
rather a direct consequence of it which is central in our proof.

Theorem 7 (equivalent to the factorisation forest theorem [IOEI) Given
a semigroup morphism ¢ from a semigroup (S, ®) (possibly infinite) to a finite
semigroup (T,-), and a set X C S, let Xo = X and for all k > 0 define

Xiyr1 = Xp UXp ® X U U <Xkﬂ¢71(6)>.
e-e=ecT

Then Xn = (X) for N =3|T| — 1.

3 Modern proofs of this theorem can be found in [7}f3], in particular with the exact bound
of N =3|T| — 1 (Simon’s original proof only provides N = 9|T).
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This theorem teaches us that to compute the closure under product in the
semigroup S, it is sufficient to know how to compute (a) the union of sets,
(b) the product of sets, (c) the intersection of a set with the inverse image of
an idempotent under ¢, and (d) the closure under product of sets of elements
that all have the same idempotent image under ¢. Of course, this theorem is
interesting when the semigroup 7" and the mapping ¢ are cleverly chosen.

In our case, we are going to use the above proposition with (S, ®) =
Win,®), (T,+) = (Mpn(B),®), and ¢ the morphism which maps (M, ¢) to
@(M). Our algorithm will compute, given a finitely presented set of weighted
matrices X, an approximation of (X) following the same inductive construc-
tion as in the factorisation forest theorem. This is justified by the two following
lemmas, that are proved in Sections [£.2] and respectively

Lemma 5 For all ¢ > 0 and all finitely presented sets X,Y C W, ,, there
exists effectively a finitely presented set product(e, X,Y) C W, ,, such that

product(e, X,Y) =~ X QY .
Let X be a set of weighted matrices. We set

(X)) ={o(M) | (M, ) € X} .

Lemma 6 For all € > 0 and for every finitely presented sets X C W, ,, such
that ¢(X) = {E} for some idempotent E, there exists effectively a finitely
presented set idempotent(e, X) C W, ,, such that

idempotent(e, X) =~ (X) .

Assuming that Lemmas [5] and [6] hold, it is easy to provide an algorithm
for Theorem [6] i.e., an algorithm which, given a finitely presented set X C
W,,., computes a finitely presented set closure(e,X) C W, , such that
closure(X) ~. (X). This algorithm mimics the induction involved in the
statement of the factorisation forest theorem, Theorem [7}

Consider S =W, », T = M,, ,(B) and the morphism ¢. Let X be a finitely
presented set, and let Xg, X1, ... be defined as in Theorem

Lemma 7 Let ¢ > 0. For k > 0 one can compute a finitely presented set Yy,
such that Yy ~. X}.

Proof By induction on k, using Lemmas [5] and [6]

For k = 0, it follows from the definitions that Xy = X = Yj.

Let k£ > 0, by the induction hypothesis one can compute a finitely presented
set Yy such that Vi ~= Xj. Set:

Yit1 =Y U product(%, Yi, Vi) U U idempotent(%, YN o t(e))

eRe=e

eeMn,n (B)
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First, Yj41 is a presented set by definition and by Lemma [5|and Lemma [6] By
Lemma Bl and Lemma [2]

g
product(i,Yk,Yk) Re Y., ® Y R X @ X -

Finally, by Lemma product(§, Yz, Vi) ~. Xi ® Xj. Similarly, by Lemma
for all idempotent e, idempotent(5,Yy N ¢~ '(e)) ~. (Xx N ¢~ '(e)). Thus
Y1 e Xgqa-

Finally, it is sufficient to apply Lemma [7|to k¥ = N = 3|T| — 1. By Theo-
rem [7} we obtain a presented set Yy satisfying Yy ~.< X >.
Hence, what remains to be done is to establish Lemmas [ and [6]

4.2 Approximate products of finitely presented sets

In this part, we give a proof of Lemma [5| which describes how to approx-
imate the products of two finitely presented sets of weighted matrices. We

also provide an extension of it to products of any bounded length, namely
Lemma [0l

We first establish Lemma [§| which states that it is possible to control the
effect of slight changes of length in the choices of weighted matrices in finitely
presented sets.

Lemma 8 For alle > 0, all reals a = 0 and all positive integers p, there exists
n > 0 such that for all positive integers ly, Lz, ... Ly, U1, 05, ..., 0, L with

0 < O+l foralli=1...p,
and all matrices My, Ms, ..., M, € Mnn(Rj) with entries no greater than a,
(L My @ Lo My @ - @ LMy, €) S (G My @ LoMa @ -+ @ £, M, () .

Proof Set n = ]%. We have:

M ® - @M, < (L +nOM ® - @ (% +nl) M,
< (O My +anl) ® -+ - @ (€, M, + anl)
<OM @ - @ 6,M, + (pan)l
SOM @ @L,M, +el .
Moreover, the Boolean projections of the both hand-sides of the comparison are
the same. Hence (¢1 M@l Ma®- - - @€, M), ) <o (M1 @0,Mo®- - @4, M, £) .
O

Remark that in the above statement, n depends on p. This means that the
result is only useful for products of a bounded number of matrices.
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Lemma 9 For all positive integers x,p and all reals n > 0, there is a positive
integer k such that, for all reals A1,..., Ay € [0,1] satisfying

p
> =1,
i=1

and all £ > K, there are integers y1,...,y, = x such that
P

Zyl- ={ and |y, — AL <nl.
i=1

Proof Let us fix k to be any positive integer such that
nk > px and k=plp+1)z.

Let now ¢ > k and Ay, Ag, ..., Ap € [0,1] such that >F | A; = 1.
Before constructing the y;’s, let us define the z;’s as follows:

z; = max([\;/{], x) foralli=1,...,p.

Note first that in all cases z; > \;¢. Furthermore, z; < A/ + x and since
x < %k < nk < nl, we obtain |z; — ;4| < npfforalli=1,...,p. Note also that

P P
L= /\ifézzig
1 i=1

1=

(Nl + ) =0+ px . (1)

p
=1

(2

Hence, the z;’s would be a perfect choice for the y;’s, but for the fact that
their sum may be a bit larger than ¢, at most by pxr. We will correct this by
modifying the largest of the z;’s.

Let m be the index maximizing \,,. Let y; = z; for all i # m, and y,, =
Z—Z#m z;. By definition Zi:l...p z; = L. According to , Ym € [2m—DpT, 2m]-
Let us prove that the conclusion of the lemme holds.

Since A, > % then z, = Al = Ak > % > (p+1)x, hence y,, = 2y —px >
x. Furthermore, since A\l —nl < 2 — px < Y, we have |y, — Al <nl. O

We can now complete the proof of Lemma [5]

Lemma 5 For all ¢ > 0 and all finitely presented sets X,Y C W, , there
exists effectively a finitely presented set product(e, X,Y) C W, ,, such that

product(e, X, V) ~. X ®Y .

Proof Let X,Y be finitely presented sets of weighted matrices, and € > 0. Since
finitely presented sets of weighted matrices are closed under union and thanks
to distributivity of union over ®, it is sufficient to establish the result for the
atomic blocks of the finite presentation. Namely, it is sufficient to consider the
case X = {(M,0)} or X = {(«M,z) | x > ¢} together with Y = {(N,k)} or
Y = {(yN,y) | y > k}. This results in four possibilities, among which only
three remain up to symmetry: (a) X = {(M,¢)} and Y = {(NV,k)}, (b) X =
{(M,€)} and Y = {(yN,y) | y > k}, and finally (¢c) X = {(zM,x) | z > ¢}
and Y = {(yN,y) |y > k}.
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— Case X = {(M,0)} and Y = {(IV, k)}, then we can set
product(e, X,Y) = {(M @ N,{+ k)} (=XQY).

— Case X = {(M,0)} and Y = {(yN,y) | y > k}, then we set a to be
the greatest coefficient of %M and N. Let us apply now Lemma |8 with
parameters €, a and p = 2, and obtain some 7 > 0. Set z to be an integer
such that nz > ¢. Then set Z = Z; U Z5 where

Ziv=|J {(MeyN,t+y)}

kLy<z

and  Zy = {(y(¢(M) @ N),y) [y = £+ 2} .

Note that this set Z is finitely presented (in particular because Z; is finite).
We now prove that X ® Y =, Z. The idea is that Z; captures exactly the
products of matrices in X and Y of length smaller than z + ¢ while Zy
gives an approximation of longer products.

First direction: X ® Y <. Z. Consider a weighted matrix in X ® Y.
It is of the form (M,¢) ® (yN,y) for some y > k. If £ < y < z, then
(A4}€)@)Qﬂv7y)€ Z

Otherwise ny > nz > ¢ > 1. We obtain:

(M, 0)® (yN,y) = AM @ yN, L +y)
<e (OM @ (£ +y)N, L+ y)
(by Lemma |8 with 1 < n(£ + y))
= ((t+y)(@(M)®N), L+y)
€ 7.

Overall X ® Y <. Z.

Opposite direction: Z <. X ® Y. We prove that Z <. X ® Y. Since
77 € X®Y it is sufficient to prove Zs <. X®Y . Let us consider a weighted
matrix in Zs, it is of the form (¢(M) @ yN,y) for some y > £+ z. We have
ny = nz > ¢ and by Lemma 8]

(¢(M) @yN,y) = (0M) @ yN,y)

< (IM ® (y — O)N,y) (by Lemma [8)
= (M, )@ ((y — O)N,y)
EX®Y.

Overall Z <. X @Y.

— Case X = {(zM,z) |z > £} and Y = {(yN,y) | y > k}. Let a be the
greatest coefficient of M and N. Let us apply Lemma [§] with parameters
e, a, and p = 2, and obtain a corresponding 7. We now use Lemma [9] with
parameter = max(k, ), p = 2 and 7, and obtain an integer z as a result.
Define now Z = Zy U Zs where,

Zy={(azM@yN,z+y) | {<z<z k<y<z}
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and

Zy= |J {COM@1-MNN)t)|t>z2}.
A€ ([0,1]NnN)

The set Z; is finite, and merely lists all weighted matrices of weight less
than z in X ® Y. The set Z; takes barycenters of M and N, and produces
corresponding weighted matrices for all possible weights greater or equal
to z. To make Zs finitely presented, instead of taking all barycentres AM ®
(I =A)N) for X € [0, 1], we discretize A by having it ranging in [0, 1] N nN.
We note first that such a set Z is finitely presented. Let us prove now that
X ®Y =, Z. There are two directions.

First direction: X®Y <. Z. Let us consider a weighted matrix in X ®Y".
Tt is of the form (xM,x) ® (yN,y) for some x > £ and some y > k. If x < 2
and y < z, then (zM,z) ® (yN,y) € Z; by definition.

Otherwise, x > z or y > z. The weighted matrix can then be rewritten as

r+y r+vy

(xM,x)®(yN,y)=<(x+y)< L Mo N),:c+y>.

Futhermore, z + y > 2. Let us now choose A € ([0,1] N 7N) such that

#y — Al < 7. We also immediately have ‘% -(1- )\)‘ < 7. Hence by

+y
Lemma (8]

(zM,z) @ (yN,y) <c (z+y)(AM @ (1 = A\)N),z +y)
€ Zsy .

Overall X Y <. Z.

Second direction: Z <. X ® Y. Conversely, let us first note that Z; C
X ®Y. Hence, what remains to be proved is Z5 <. X ® Y. Let us consider
a weighted matrix in Z,. It is of the form ({(AM ® (1—A)N),t) with ¢ > z
and A € [0,1]. By Lemma [9] there are z > max(k,¢) and y > max(k, ()
such that z +y =t, |z — At| < nt and |y — (1 — A\)t| < nt. By Lemmal8] we
get:

(00 (1= 000 < (4 (Mo LN oty

eEX®Y.

Overall Z <. X ®Y.
O

We have just proved Lemma [5] that gives an approximation of the product

of two finitely presented sets of weighted matrices. This lemma will be used
also in the proof of the more difficult Lemma [l We will in fact use a slight
generalisation of the result to a product of a bounded number of weighted
matrices.
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Lemma 10 (generalisation of Lemma E[) For all € > 0, and all finitely
presented sets X1, ..., X, C Wy, there is a computable and finitely presented
set Z such that:

Ime X1® - 0X,.

Proof This is true for p = 2 (Lemma . Suppose this is true for an integer
p=>2,then X1®- - ®Xp41 ~¢ product(§, X1, Xo)®---® Xpi1 by Lemma
and Lemmal5] Then by induction hypothesis, there is a computable and finitely
presented set Z such that product(5, X1, X2) ® -+ ® X411 ~¢ Z. Finally by
Lemma [2} we obtain X; @ -+ @ X1 ~c Z. O

4.3 Approximate closure under products of finitely presented sets having the
same idempotent projection

We shall now prove Lemma [f] which is the most difficult part in the
proof of the core theorem. Let us fix an idempotent E € M,, ,,(B) and some
finitely presented set of weighted matrices X C ¢~ !(E). Our goal is to con-
struct, given some ¢ > 0 a finitely presented set idempotent(e, X) such that
idempotent(g, X) ~. (X). In the rest of this section, all weighted matrices
belong to ¢~ (E).

The proof is divided in four parts. We first describe the general structure of
the proof in Section[4-3.1] stating the key intermediate lemmas, and using them
for establishing Lemma [6] The subsequent sections, namely Sections
[4:32] and [4:3.4] are then devoted to the proofs of these intermediate lemmas.

4.3.1 Description of the key intermediate lemmas, and the proof of Lemma [f]

Our goal is to approximate (X) for X C ¢~ !(E). The fact that all matrices
are sent to the same idempotent is a big help in the sense that the structure of
matrices is now fixed. Nevertheless, in a product the coefficients of the entries
of the matrices may vary a lot. To overcome this problem, we introduce the
central notion of uniform (weighted) matrices.

A matrix M such that ¢(M) = E is uniform if

E@M@E =M.

A weighted matrix is uniform if its matrix part is uniform. Note that for all
M such that (M) = FE, E® M ® E is a uniform matrix.

We will see below several properties of uniform matrices. What is inter-
esting for us is that (a) the closure of a presentable set of uniform weighted
matrices is approximable (Lemmabelow). Another important point is that
(b) we are able to define a notion of ‘small product’, and that it is possible to
approximate the set of small uniform products of weighted matrices from X.
Finally, an extraction argument (c) states that in any sufficiently long product
it is possible to extract products of uniform small products. The combination
of these three points yields the proof of Lemma [6]
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In this section describing the general structure of the proof we make all
the points (a), (b) and (c) precise, and then conclude the proof of Lemma [6]
We postpone to the following subsection the precise proofs involved in points
(a), (b) and (c), that happen to use fairly distinct arguments.

The point (a) above is the easiest to state.

Lemma 11 For all € > 0 and all finitely presented sets of uniform matrices
X C ¢~ Y(E), there exists effectively a finitely presented set Z such that

7~ (X) .

The proof of this statement is the subject of Section

For describing point (b) we provide the notion of a ‘small product’. The
results concerning small products are developed in Section[d.3.2] Such products
are parameterized by some n > 0 and some integer p. Essentially, a small
product is a product in which in the total weight ¢, a weight at least equal to
(1 —n)¢ has been contributed by a small number of weighted matrices, namely
at most p of them.

Definition 1 Let p be some positive integer and 1 > 0. Define (X), , to be
the set of weighted matrices

(M, l) = (My,6,) ® - @ (My, £y)

where each (M;,¢;) belongs to X, and there exists 1 < i1 < -+ < iy < k with
s < p such that

Z&'j 2 (1 —n)f .
j=1

The idea behind (X),, is that it is an under-approximation of (X), that it
contains all products of weighted matrices from X up to length p, and that
even better, it is robust under the insertion of (possibly many) matrices of
small weights everywhere. The following lemma states that small products
can be effectively approximated (note the precise alternation of quantifiers,
that is necessary for the rest of the proof to go through).

Lemma 12 For all ¢ > 0 and all a > 0, there exists effectively n > 0 such
that for all finitely presented X C Wy, ,, N ¢~ Y(E) and all p > 1, there exists a
finitely presented set Y such that

(Xpnm S ¥ <6 (X))

The proof of Lemma [T2]is developed in Section [£.3.2]

We now combine the notion of small products with uniformity. For this,
we define (X) , exactly as (X),,, except that i; cannot be 1 and i cannot
be k, which means that the first and last matrices of the product have to have
a small weight.
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Definition 2 Let p be some positive integer and 1 > 0. Define (X)} , to be
the set of weighted matrices

(M,ﬂ) = (thl) ®- - (Mk,fk)

where each (M;,¢;) belongs to X, and there exists 1 < i; < -+ < iy < k with
s < p such that

It so happens that matrices in <X>Z7,7 are almost uniform in the sense that they
are e-close to a uniform matrix since they are products (of weighted matrices
sent to the same idempotent) such that the first and last term account for a
sufficiently small percentage of the weight. The way we use this remark is by

adapting Lemma

Lemma 13 For all ¢ > 0 and all a > 0, there exists effectively n > 0 such
that for all finitely presented X C Wy, ,, N ¢~ 1(E) and all p > 1, there exists a
finitely presented set Y such that

(X)pn <Y < (X) .

u
P
Furthermore, Y only contains uniform weighted matrices.

At this point in the proof, we know how to approximate small products,
their uniform variants, and we know how to approximate the closure of pre-
sentable sets of uniform weighted matrices. The key missing ingredient is to
prove that, by combining these results together, we capture all possible prod-
ucts constructed upon some set of matrices (included in ¢~1(E)). This is the
subject of the following extraction lemma.

Lemma 14 For all X C ¢~ Y(E) and all n > 0 there is an integer p such that:
(X) = (X)pn U (X)pn ® (X)) @ (X)py -

The proof of this result is the subject of Section 4.3.4
The combination of the above lemmas yields a direct proof of Lemma [6]
that we recall now.

Lemma 6 For all ¢ > 0 and for every finitely presented sets X C W, ,, such

that ¢(X) = {E} for some idempotent E, there exists effectively a finitely
presented set idempotent(e, X) C W,, ,, such that

idempotent (e, X) ~. (X) .
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Proof Let ¢ > 0. By Lemmas [12] and [13] we obtain some n > 0 (we take
the minimum of the values of 7 produced by these two lemmas). Then, using
Lemma [14] (with this value of 7)), we obtain an integer p such that

<X> = <X>p,77 U <X>p,n ® <<X>Z,n> ® <X>p,n :

Relying then on Lemmas [12|and [13] (with this value of p), there are effectively
finitely presented sets T" and V' (V consisting of uniform matrices) such that

(Xpm < T 5= (X) and (X)pm <2 V e (X) .

p,n N1

Then, using Lemma [2, we obtain

(X): TUT@ (V)T x5 (X) U (X) @ (X)) ®(X) =(X),

4
and hence (X) ~: TUT @ (V)& T.

Moreover, since all the weighted matrices in V' are uniform, by Lemma
there is effectively a finitely presented set Y, such that (V) ~= Y. Now, using
Lemma [2| we get

(X)m: TUT®Y @T .

Finally, using Lemma[I0]and the closure of finitely presented sets under union,
there exists effectively a finitely presented set Z such that TUT'®Y QT ~: Z.
We conclude using once more Lemma [2] that (X) ~. Z. O

4.3.2 Approzimating small products: proofs of Lemmas[12 and[13

Let us recall Lemma [I2] then prove it.

Lemma 12 For all ¢ > 0 and all a > 0, there exists effectively n > 0 such
that for all finitely presented X C Wy ,, N ¢~ Y(E) and all p > 1, there exists a
finitely presented set Y such that

(Xpn S ¥ < (X))

Proof Given € >0 and a > 0, let n = 5.
Now, given a finitely presented set X and an integer p, define Z to be the
results of products of at least one, and at most 2p + 1 weighted matrices from

X, ie.,
T times

———
Z = U X" (where X" denotes X @ --- @ X)

1<r<2p+1

Two things are immediately clear from this definition. The first one is that
Z C (X). The second is that, according to Lemma there exists effectively
a finitely presented set ¥ such that Y ~< Z. We prove below that this ¥ fulfills
the conclusion of the lemma. For this it is sufficient to prove that (X),, <z Z.
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Indeed, then we would have (X), ¢ Z Z C (X), which by
Lemma [2| implies the expected (X),, < ¥ <. (X).

Hence, let us prove now that (X),, <¢ Z. Let us consider a matrix (M, )
from (X), . Our goal is to turn it into a ‘resemblant’ matrix from Z. Let us

consider the product that has produced the matrix
(M’Z) = (Mlvgl) Q@ (Mkaék) s

where (M, £41),..., (M, ) belong to X, and there are 1 < i1 < -+ <iz, < k
with 1 < s < p such that ¢;, +---+¥¢;, > (1 — n)f. For convenience, let us
define ig = 0 and i541 = k+ 1. The idea is to factorize this product as follows:

(M, £) = (No,no) ® (M;,, £s,) ® (N1,n1) @ -+ @ (M;,, £;,) @ (N, ns)
where for all j =0...s,
(Nj,ng) = (Mi; 41, bi; 1) @ @ (M1, 4i;-1)

Note that the definition of (IV;, n;) may involve an empty product. In this case,
set (N,n;) = 1 where 1 is a neutral element added to weighted matriceﬂ Let
us define now (Nj,n}) to be 1if (Nj,n;) = 1, and to be (S,m) otherwise,
where (S, m) is a matrix of minimal weight in X. Clearly now the matrix

(M',0") = (Ng,ng) @ (M, , £;,) @ (Nj,n}) @ -+ @ (M, £;,) @ (N§, ny)

belongs to Z. Let us show that (M, ¢) <= (M', ).

For this, let us note that for all j = 0...s such that N; # 1, all the
finite coefficients of N; are at most equal to an; (they can’t be oo because N;
and N} are both sent by ¢ to E). Hence N; < Nj + an;. Since furthermore
ijl n; < nt, it follows that M < M’ +anl = M’ + é On the weight side,
since for all j = 0...s, n} < ny, we clearly have £/ < {. Overall, (X),, <z Z
as announced. O

NG

The following lemma shows that there is a finite number of maximal uni-
form matrices smaller than a given matrix. We use it for proving Corollary

Lemma 15 Given a matriz M, there exist a finite set of matrices U such that

— all matrices in U are uniform,
— N M forall N €U,
— for all uniform matrices K < M, there exists N € U such that K < N.

Proof Let M be a matrix, and S be the set of values in its entries. Construct
now the set of matrices

U={N|¢(N)=E, E@N®E = N,
N < M, all entries in N belong to S U {oco}} .

4 Tt corresponds formally to the virtual weighted matrix (I,,,0) (virtual since weight 0 is
not allowed).
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Of course, since all the entries of the matrices have to belong to the finite set
S, U is finite. It is also easily effectively computable. The fact that all matrices
N in U are uniform and that N < M is from the definition. What remains to
be proved is the last point.

Thus, consider a uniform matrix K such that K < M. We have to turn it
into a matrix N that uses only entries from S. For this, we consider the map

f:RT = SuU{cc}
r—inf{yeS|y>a}.

Let N be f(K) (f is applied component-wise to all the entries of the matrix).
It is clear that all the entries of N belong to S U {co} by construction (a).
Since f preserves the order, we have N = f(K) < f(M) = M (b). Since f
preserves the order, and multiplication with E only involves the computation
of minima (that are preserved under f),

EQNQE=E®f(K)®E=f(EQK®E)=f(K)=N. (¢

Finally, since K < N < M, E = ¢(K) < ¢(N) < ¢(M) = E. Hence ¢(N) =
(d). Overall, by (a+b+c+d), N € U. Finally, by definition of f, K < f(K)
N.

ol =

If we apply Lemma[I5]to all the matrices involved in the definition of a finitely
presented set, we immediately get the following corollary.

Corollary 1 Given a finitely presented set Y, there exists effectively a finitely
presented set Z such that

— all weighted matrices in Z are uniform,

— for all weighted matrices (K,{) € Z, there exists (M,0) € Y with K < M,

— for all uniform weighted matrices (K,¢) such that (M,{) € Y for some
K < M, there exists (N,{) € Z such that K < N.

We are now ready to prove Lemma [I3] which we restate for the sake of
completeness.

Lemma 13 For all € > 0 and all a > 0, there exists effectively n > 0 such
that for all finitely presented X C Wy, ,, N ¢~ Y(E) and all p > 1, there exists a
finitely presented set Y such that

(X0 <0 Y <2 (X) .

u
P
Furthermore, Y only contains uniform weighted matrices.

Proof The idea is to use Lemma [12] for obtaining a Y that is a solution. We
then use Corollary [1] in order to transform it into a finitely presented set of
uniform matrices.

We first claim (x) that for 1 such that an < 5, all p and all weighted

matrices (M, () € (X); ,, then (M, f) <¢ (E® M ® E, () (in fact ~¢ holds,
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but we do not need the other direction). Indeed, the weighted matrix (M, ¥)
can be decomposed as

(M, £) = (My, £1) @ (Ma, €2) © (M3, L)
where (M, 41), (M3, 0l3) € X, (Ma,43) € (X),, and €1 + {3 < nl. We have

M= M; ® My ® M3 < (E® M) ® My ® (M3 ® E) + a(ly + £3)
<E®M®E+ane<E®M®E+§£.

Claim (x) is established.

Let us prove now the lemma itself. Let ¢ > 0 and a > 0 be fixed. Using
Lemmawith parameter § and the same a, we obtain some 1 > 0. Now given
a finitely presentable set X, we know that there exists a finitely presented set
Y such that (X),, <5 YV <5 (X).

Let us now apply Corollary [1] to Y, and obtain a set Z. Let us show it
fulfil the conclusions of the lemma. For this, consider some (K, k) € (X)
let us show that (K, k) <. Z. According to Claim (x), (K, k) =
K’ = E® K ® E is uniform. By construction of Y, (K’ k) <

(M,£) € Y. This means that’]

P
< (K' k) where
(M, ¢) for some

£
2

£

K —-k<M.
2
Hence, according to Corollary |1} there exists some (N,¢) € Z with K’ — 5k <
N. Hence (K, k) <z (K' k) <z (N,f) € Z. Overall, we have
<X>Z717 <e Z <o Y <e <X> )
where the < comes from Corollary [f} O

4.8.83 The closure of finitely presented sets of uniform matrices: proof of
Lemma [L1]

The goal of this section is to prove that the closure under product of a
finitely presented set of uniform matrices is effectively approximable. The key
in this proof is to understand the structure of uniform matrices. In fact, we
will even disclose a stronger notion than uniformity: normalized idempotency.
This section starts by describing, analysing and giving results concerning these
important notions, and end with the proof of Lemma [TT]itself. In this section,
all matrices are supposed to be sent by ¢ to the same idempotent matrix F.

Lemma 16 Uniform matrices are closed under product.

5 Technically, here, some entries of the matrices may become negative. Since the arguments
in Corollarymonly involve the order, this does not make any difference.
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Proof Let M and M’ be uniform matrices of idempotent projection E, then:

EQMaaM RE=FE®(EQME)@(E®@M ®E)®E (uniformity)
=(FOQM®E)® (FE® M ®F) (idempotency of F)
=MeM.

O

Given a uniform matrix M of idempotent projection E, let i and j be two
indices. Let us define the relation — between indices by i — j if E; ; = 0. The
relation ¢ +» j holds if both ¢ — j and j — 4, or if ¢ = j. Pairs (7, j) such that
i — j but i A j are called transient. These definitions depend upon F, but
since the idempotent F is fixed in this section, no confusion should arise and
it will be omitted.

Lemma 17 The relation — is a pre-order and < an equivalence relation.

Proof Assume i — j and j — k, i.e., E; ; =0and E;; =0. Since E = FE® E,
we have E; j, = ming(E; ¢+ E;) = 0 (choosing ¢ = j). This means that i — k.
Thus — is transitive. Reflexivity is obvious from the definition. Hence — is a
pre-order and <> an equivalence relation. a

When i < j then i and j play exactly the same role anywhere in any
product of uniform matrices. This is formalized by the following lemma and
its corollary.

Lemma 18 Given a uniform matriz M, and indices i — i’ and j' — j,
M;; < My .

Proof We claim first that M, ; < M, .. Indeed, either j = j’ and the claim
obviously holds, or Ej/ ; = 0. Using the definition of a uniform matrix, we
have M = M X FE. This means in particular that Mi,j < Mi,j’ + Ej’,j = Mz,]

Symmetrically, Mi,j’ g Mi’,j'a and hence Mi,j < Mi,j’ < Mi/JI. O

Corollary 2 Whenever i <+ 1’ and j <> j', then M, ; = M, j.

Our next lemma teaches us that for coefficients on the diagonal, the prod-
ucts of uniform matrices are very easy to understand.

Lemma 19 Given My, ..., M,, uniform matrices,

(Ml ®...Q Mm)i,i = Z(Mk)m‘ .
k=1

Proof The first inequality, (M1 ® ... ® M) < ZZL:l(Mk)M holds for any
matrices, and simply comes from the fact that the term Y ;" (My);; appears
in the minimum defining (M7 ® ... ® My, )i

Conversely, (M1 ® ... ® M,,);; is defined as a finite minimum which is
reached, say by the term v = >°" (My);, i, for some sequence of indices
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T = 40,81, ,%m—1,%m = @ belonging to 1...n. If v = oo, then obviously
S (My);; < v. Otherwise, this means that (Mj);, ., < oo for all k =
1...m, which means i;_1 — . Since furthermore i = ig <> iy, = i, using the
transitivity of —, all the indices ig,...,i; are <>-equivalent to ¢. Thus by
COI‘OH&I‘y we have v = ZZL::[(Mk)ik—l,ik = Zz’;l(Mk)i,i- (]

Let us recall that our goal is to compute the closure under product of a set
of uniform matrices. Among uniform matrices, some will play a particularly
important roles: the matrices for which the iteration is straightforward to
compute. A uniform matrix M is called normalized idempotent if

MM =2M .

These matrices are not strictly speaking idempotents, but they are if one
accepts a renormalizing multiplying coefficient. The following lemma presents
the key properties of normalized idempotent matrices.

Lemma 20 For a uniform matriz, the following statements are equivalent:

1. M is normalized idempotent,

2. for all indices g, h such that g — h, there exists i such that g — i, 1 — h
and Mg,h = Miﬂ',

3. (aM) ® (bM) = (a + b)M for all non-negative reals a,b, and

4. M" =rM for all positive integers r.

Proof From 1 to 2. Assume that M is a normalized idempotent matrix. Let
g, h be such that g — h.

We claim first that for & a power of 2, M* = kM. Indeed, this is true for
k = 1, and by induction, for all k power of 2, M?** = M* @ M* = (kM) ®
(kM) = k(M ® M) = k(2M) = (2k)M. The claim is established.

Let us consider now k some power of 2 larger than n. We have (M), , =
kM, j, by the above claim. Since (Mk)g,h is computed as a minimum, there ex-
ists a witness sequence g = i, %1, ..., % = hsuch that M, ;, +---+M;, ;. =
kMg p. According to Lemma MzJ ni; S Mgy for all j = 1...k As-
sume that MlJ ni; < Mgy for some j among 1...k, then we would have
Mg iy + - + M, 4, < kEMgn, a contradlctlon Hence M;,; = -+ =
M;, 4, = Mg . Applying now the pigeonhole principle and the fact that
— is transitive, we have ¢;_; <> ¢; for some 4. The index ; is then a witness
of the second item as we have g — ij, i; — h and M;, ;; = M;,_, ;. = My
(using Corollary [2).

From 2 to 3. Let g, h be indices such that g — h. We have M ) = M;; for
some i such that g — i, i — h and Mgy, = M;;. Note that by Lemma [T8]
Mg < My < M,;;, and thus My, = M,;, and similarly My, = M; .
We can now compute (a + b)My, = aMyp + bMg = aMy, + 0M; ), >
((aM) ® (bM))g,n (using the definition of ®). Conversely, by definition of ®,
there exists some ¢ such that ((aM)® (bM))g.n = (aM)gi (bM); 5. We have
((aM) ® (bM))q n=aMy;+bM;, > aMyy +bMy, = (a+ b)M, ), (using

again Lemma
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From 3 to 4. Let us assume item 3. The proof is by induction on r. For r = 1,
we indeed have M" = rM. Now, M™™' = M" @ M = (rM)®@ M = (r + 1)M
(using the induction hypothesis and item 3).

From 4 to 1. It is sufficient to take r = 2. O

Now that we understand the structure of normalized idempotent matrices,
we shall see that given a uniform matrix M, the series %M " converges to some
normalized idempotent matrix, denoted M.

Lemma 21 Given a uniform matriz M, there exists effectively a unique nor-
malized idempotent matriz that coincides with M over its diagonal. It is de-
noted M. It furthermore satisfies:

1. for all uniform matrices M, M < M,

2. for all uniform matrices M, N with M; ; < N;; fori=1...m, M <N,

3. for all € > 0, and all a > 0, there exists an integer r such that for all
uniform matrices M of finite entries not exceeding a, rM < M" + er.

Proof Let us define M for all indices g, h by
My =min{M,;,; | g—i, i —h} .
Let us show that M is uniform. For this, let us compute (E®@ M ® E), 5

(E®@M®E)yp=inf{My | g—g, h" —h} (definitions of ® and —

)
=inf{M;; |g—9¢ —i—h —h} (definition of M)
=inf{M,;; | g—i— h} (since g — ¢’ and h' — h)
= Mgy - (definition of M)

Let us show that M and M coincide over the diagonal. Let j be an index,
we have M; ; = inf{M;; | i <> j} = M, ; (using Corollary .

Let us show now that M is a normalized idempotent matrix. We use the
second characterization of Lemma Let g, h be such that g — h. By defini-
tion of M, there is some i such that g — i — h and M, = M, ;, and this is
equal to M; ; by the fact that M and M coincide over the diagonal. Hence M
is a normalized idempotent matrix.

Let us show now M < M. This simply comes from the fact that for g — h
there is i such that ¢ — i — h and M, j, = M, ;. Since furthermore M, ;, < M; ;
by Lemma Hence M < M.

Let us finally establish uniqueness. For this, we show that whenever two
normalized idempotent matrices M, N coincide over the diagonal, then these
are equal. Indeed, given g,h such that ¢ — h, there is some 7 such that
g — i — h and Mg,h = Mi,i- Thus Mg,h = Mi,i = N’i,i = Ng,h (using the fact
that M and N coincide over the diagonal and Lemma . Since M and N
play a symmetric role, we finally get M = N.

The second statement of the lemma, stating monotonicity with respect to
the diagonal, is immediate from the definition of M.
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Let us establish now the third statement of the lemma. Given ¢ > 0 and
a > 0, we fix some r such that

TE = Nna . (2)

Let now M be some uniform matrix with finite entries not exceeding a. Let
g, h be such that g — h. By definition of the product, there exists a sequence
g = ig,%1,- .., = h such that (Mr)g7h = M, +---+ M; ;.. Note first
that since g — h, (M")g 5 < co. Hence M;, ,;; <ooforall j=1...r ie,
ij—1 — 1;. Let us now consider the indices j in 1...r. For each of them, two

cases may occur:

— 1j_1 ¢+ %;. In this case, we have ¢ — i; — h and M;;,_,q; = Mijﬂi by
Lemma This means that M;, ;. appears in the infimum defining M, 5.
Hence M;,_, 4 = Mg .

— or (ij,,1;) is transient, i.e., i;_1 — i; but i; 4 i;_1. By transitivity of
—, there are at most n such indices. For each of these indices, we use the
inequality M;, > 0.

,hij
Combining these inequalities, we get

(M")gn+1e = Mg, + -+ Mi,_, 4,
> (r—mn)M,;; +na (above remarks and inequality )

+re (by choice of ig,...,i,)

> 1My (since a > M; ; and by Lemma [18)
Thus, we have the expected M < M” + re. O

We are now ready to establish the key result of this section, that we restate
for the sake of completeness.

Lemma 11 For all € > 0 and all finitely presented sets of uniform matrices
X C ¢ Y(E), there exists effectively a finitely presented set Z such that

7 =~ (X) .

Proof Let € > 0 and X be a finitely presented set that can be written

X= |JA{@M,z)}u | {@M,z)|z>2}.

1<isp pH1ism

As before, we will approximate the set (X) by the union of two sets: the set
of exact products up to some length, and the set of asymptotic matrices that
will be the products of ‘barycenters’ of matrices in X. Our finitely presented
set is the set Z defined in equation below. Some parameters have to be
introduced beforehand.

Construction of the finitely presented set Z. Let a be the largest finite
coefficient in the matrices M;. From Lemma applied with parameters £ for
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the precision and a, we obtain an integer r. We choose now some integer z
sufficiently large for having

EZ

rT; <

, 3
2am (3)
and also some ~ > 0, inverse of an integer, such that

may < € . (4)

We are now ready to define our finitely presented set Z as follows:

Z=2,UZ ()
where Z; ={(M,0) e (X) | { < z} (6)
and 7y = U {(EXNM @ @AMy, 0) [ L2 2} . (7)
ALy Am €[0,1]NyN
ALt Am =1

The first thing to note is that the set Z is effectively finitely presented. We
prove below that Z =, (X). We study successively the two directions of this
equivalence.

First direction: Z <. (X). Note to begin that since Z; C (X), we have
71 <e (X). Hence, we just have to establish Z5 <. (X). Consider a matrix
(M, £) € Z,. By definition of Zy, M is of the form:

M:£>\1M1®"'®/\mMma

for some integer ¢ > z and non-negative coefficients Aq,..., A\, of unit sum
(the fact that these are multiples of  is not used in this direction of the
proof). Our goal is to construct a weighted matrix (N,¢) € (X) such that
(M,?) <. (N,¢). For this, we construct a matrix in (X) that is close to
f(/\lMl ® -+ ® AmM,y,) on its diagonal. Then, we iterate it r times using
Lemma in order to make it similar to I\ M ® - -+ @ Ay My, i.e., M. Let
us implement these ideas.

Since ¢ > z and by , we have rz; < 2% < Efn. Hence there exist

2am Y 2a
non-negative integers vy, ..., Yy, such that ry;z; € [)\Z-E — %, )\Zﬂ for all i =
1...m. These integers have the properties that:

14
rYx; o TYmTm < and N < ryx + —28 foralli=1...m. (8)
am

Let us consider now the weighted matrix
(K, k) = ($1M17.’L‘1)y1 K- (Qmem733m)ym .

Clearly, (K, k) € (X) since (x1 My, 21), ..., (TmMpm, ) belong to X. Another
consequence is that (K, k) is a uniform matrix.

Let us show that (M,¢) <. (K,k)". As far as the weight is concerned,
this is straightwforward since rk < ¢ from . What remains to be shown is
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M < K" 4 ef. We prove it first for the diagonal coefficients, and for increased

precision 5. For all ¢ = 1...m we have

M= M0 M)ii+ -+ Anl( M) (by Lemma [19)
el el
X (Txlyl + 2am> (Ml)z,z + + (rxmym + 2am> (Mm)z,z (by )
el
<r(zyr(Ma)ii + - 4 T Ym (Min)ii)) + 5
y4
<rKi+ % . (by Lemma [19)

We shall now use this in combination with Lemma [2I] and get that

M:MngJrE;g(KUrg;)JrE;:K”rse.

To conclude, we have proved (M, ¢) <. (K, k)" € (X). Hence Z <. (X).

Second direction: (X) <. Z. This part of the proof deals with the uniform
structure of matrices. Let us consider a matrix (M, ¢) in (X):

(M) g) = (ElMilvél) ® e ® (ekMik,ék;) .

By definition of Z, if £ < z then (M, {) € Z;. Let us concentrate our attention
to the case ¢ > z, and show that (M, ¥) <. (P,¢) for some (P,{) € Zs.

Each matrix M; for ¢ = 1...m may appear or not, once ore more, in the
product defining (M, ¢). For each ¢ = 1...m, we define §; to be the ratio of
the weight corresponding to the weighted matrices in which M; is involved,
with respect to the total weight. This is formalized as follows:

Note that the sum of all the §;’s is naturally 1. Our goal is to construct a
matrix (P, {) from Z5 such that (M,¢) <. (P,¢). Two independent arguments
are involved in this proof: 1) show that the above product can be turned into
a more regular one (i.e., a repetition of always the same pattern), and 2) show
that the B;’s can be approximated by multiples of ~, yielding the A; parameters
in the definition of Z5. The proof now proceeds in two steps that correspond
respectively to the two above points.
Our first step is to note that

M<651M1®"'®ﬂmMm-

This directly comes from Lemma since M = M and (51 M1 ® - @ By, My)
coincide over the diagonal by Lemmal[T9] This presentation is already very close
to the definition of Z5. The only detail is that the coefficients 3; need not be
multiples of ~. For correcting this, we choose for all i = 1...m some \;’s,
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multiple of v, of unit sum, such that 8; < A; +~ for all ¢ = 1...m. (This is
possible simply by choosing A\; = {%J yfori=1...m—1, and A\, such that
A1+ -+ Ay = 1.) We now have

LiM1 @ Q@ ByMpm < (M +7)M1® - ® (A +7v) My, (choice of \'s)

< (MM @+ @ Ay My,) + may

SMM @ @M\ Mpy,) + ¢ . (by (@)
Hence M < 14 BlMl ®- & BmMm < 14 A1]\41 Q- & /\mMm + el (using
Lemma . Overall we have (M, /) <. Z2, and hence (X) <. Z O

4.3.4 Finding uniform matrices in a long product: proof of Lemma[T]]

We shall now establish Lemma[T4] which states that any product of weighted
matrices in X can be decomposed according to a simple pattern. It states for-
mally that given 7, we can find p such that

<X> = <X>pﬂ7 U <X>pn7 & <<X>Z,n> ® <X>pn7 .

Technically, this result should be understood as a decomposition lemma (to
some extent a Ramsey-like statement). It expresses that given a product of
weighted matrices from X, either it belongs to (X)p,, or it can be factor-
ized as (N1,n1) ® - -+ ® (Np, 1) such that (Ni,n1), (N, nm) € (X),, and
(N2,m2), .-y (Nim—1,Mm—1) € (X), . We can dive even further into this state-
ment, and note that the property for a product of weighted matrices to belong
to (X)pn or (X), . is a property that does only involve the weight of the
weighted matrices, and not at all the content of the matrices themselves. This
means that the problem can be restated simply as a simplified one that in-
volve only a sequence of positive integers. For this, let us redefine the notions
of smallness to our case: a sequence of numbers ¢4, ..., ¢ of sum ¢ is p, n-small
if there are 1 <1y < --- < i, < k with r < p such that Z;Zl Ui, = (1—n). It
is uniform p,n-small if 1 < i; < --- < i, < k in the above definition.

We can now restate our problem as follows: for all n > 0 we have to find
an integer p such that given a sequence of positive integers,

C=10y,... 0,
71 —
either it is p, p-small, or it can be be factorized into subsequences as ¢ . .. ,ém
21— —2 —m—1 .
such that ¢ ,7"" are p,n-small, and /¢ ..., 0" are uniform p, n-small.

Our first result in this direction is a criterion for proving that a product is
p, n-small.

Lemma 22 Let n > 0, there exists p such that for all sequences of positive
integers £ = {1, ..., 0, such that for alli=1...k,
4

m---wl)
O+ 14

Zn, (or equivalently £; > :
-n

then € is p,n-small.
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Proof Given n, let us fix some p > +. Consider now a sequence of positive

1
i n
integers £ = {1,...,{x. Note first that if k& < p, then the conclusion obviously
holds. Otherwise, we factorize this sequence into £ = ¢!, /%> where ¢? has length

p. Let 51 be the sum of the sequence ¢! and s, be the sum of f5. From the

hypothesis, we know that each integer in 2 is at least equal to = 0 Thus
ps1
1-m

So = , which means

Hence / is p, n-small. O

Let us advance toward the factorisation we aim at. We want to extract
uniform p,n-small sequences of positive integers. Uniformity is a two-sided
notion, since it requires that both the first and last integers in the sequence
are ‘small’. That is why, as an intermediate step, we consider the one-sided
versions of uniform p,7n-smallness. Formally, a sequence of positive integers
ly,. .., b of sum ¢ is right-uniform p,n-small (resp. left-uniform p,n-small) if
there exist 1 < i1 < -+ < iy < k (resp. 1 < iy < -+ < iy, < k) for some
m < p such that Z;n:l i, <l

We are now ready to prove a one-sided variant of Lemma [14] we aim at.

Lemma 23 Let n > 0, there exists an integer p such that all sequences of
positive integers ¢ can be factorized as = (', ... (* such that

— (Y, ..., (£F=1) are right-uniform p,n-small, and

— 0% is p,n-small.
Proof Let 1 > 0 and p be obtained from Lemma [22|for the value 7.
We prove first claim (x). Given any sequence ¢ of positive integers, then

— either £ is p, n-small, or
— it has a non-empty prefix which is right-uniform p, n-small.

Let £ be a sequence of positive integers. Two cases may arise, either for all
k>1

&
Gttt ” 2

and then by Lemma lis p, Z-small and hence p,n-small,
Otherwise, let ¢1, ..., ¢; be the shortest non-empty prefix such that

L

O+-+0 2
Note first that, by minimality in its construction, the sequence f1,..., 05 1
satisfies the hypothesis of Lemma [22| for the value . Hence, it is p, 4-small.
Since furthermore £y < 3 (¢1+4--+{y), it follows that /1, ..., £} is right-uniform
p,n-small. Claim (%) is proved.

The lemma itself is obtained by induction on the length of the sequence,

using Claim (). O
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Let us now extend the above result into a two-sided version.

Lemma 24 Let n > 0, there exists an integer p such that all sequences of

positive integers { can be factorized as (', ... 0% such that

— l717 and (% are p,n-small, and
— (2),...,(f*1) are uniform p,n-small.

Proof The principle is to compose Lemma [23] with itself, or more precisely,
with its symmetric variant. For this, we need to be able to compose several
use of such lemmas. This is the subject of the following claim.

We first Claim (x): Given a sequence £ factorized into £ = £ ... % of

respective sums si1,...,Sx = §,

— if the sequences (£'), ..., (£*¥) are all p,-small, and 3 is p,n-small, then ¢
is p?, 2n-small,

— if the sequences (/1),...,(¢*) are right-uniform p,n-small, and 5 is left-
uniform p, n-small, then ¢ is uniform p?, 2n-small.

For the first item. Let 4; < --- <, with 7 < p be the indices witnessing that
§ is p,n-small. Since each ¢* is p,n-small, there exists a sub-sequence b* of ¢*
of length at most p and sum at least (1 — n)s;. Now, consider the sequence

b="b", ... b .

This is a sub-sequence of £, of length at most p?, and its sum is at most

N

(L =m)siy +---+ (L =m)si, <(L=n)(siy +--- +53,)

(1—n)%t < (1-2n)t,

N

where ¢ is the total sum of the sequence ¢. Hence b is a witness that ¢ is
p?, 2n-small. For the second item, this is the same proof, with just the extra
remark that under the stronger assumptions that the sequences (¢1), ..., (£%)
are right-uniform p, n-small and 5 is left-uniform p, n-small, then neither the
first element of ¢!, nor the last element of £* are used in the construction of b.
Hence this time, the same sequence b is a witness that ¢ is uniform p?, 2n-small.

Claim (x) is established.
Consider now a sequence ¢. According to Lemma [23| used with parameter

£, it can be decomposed as £ = £*,... ™ where (¢*),..., (™) are right-
uniform p, Z-small, and ¢ is p, Z-small. Let s1, ..., s,, be the respective sums
of (¢%),...,(¢™). We apply now Lemma but this time in a mirrored version,
to the sequence 5 = s1,...,5m, and get 5',...,5", where 5 is p,n-uniform,
and 32,...,5" are left-uniform p,n-small. Now, let us recall that each 5 is
of the form s;,8,41,...,8,. Let ' be the sequence ¢, ¢**1 ... ¢¥. Clearly,

t',...,t" = (. Using now the first item of Claim (%), we get that #' and
t" are p?,n-small. Using finally the second item of Claim (x), we get that
(£2),...,(#"1) are uniform p?, n-small. O

Let us recall now Lemma [14]
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Lemma 14 For all X C ¢~ Y(E) and all n > 0 there is an integer p such that:
<X> = <X>pn7 U <X>p,n ® <<X>Z,n> ® <X>p,n :

Proof Given a product of weighted matrices resulting in a weighted matrix
in (X), it is sufficient to apply Lemma to the sequence of the weights
of the weighted matrices. The resulting decomposition exactly matches the
conclusion of the lemma. O

5 Conclusion and further remarks

In this paper, we have provided an algorithm for deciding the approximate
comparison of distance automata. This algorithm involves the computation of
the closure under product of sets of weighted matrices. This result can be of
independent interest.

The main open question is the complexity of the problem. It is clear that the
problem is at least PSPACE hard. A correct implementation of the arguments
in this paper shows that EXSPACE is an upper bound. We conjecture that
the exact complexity is PSPACE.
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