

City, University of London Institutional Repository

Citation: Colcombet, T. & Daviaud, L. (2013). Approximate comparison of distance

automata. In: Portier, N. & Wilke, T. (Eds.), 30th International Symposium on Theoretical
Aspects of Computer Science (STACS 2013). Leibniz International Proceedings in
Informatics (LIPIcs), 20. (pp. 574-585). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik.
ISBN 9783939897507

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21299/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Approximate comparison of distance automata∗

Thomas Colcombet and Laure Daviaud

Université Sorbonne Paris Cité, Cnrs, Liafa

Abstract
Distance automata are automata weighted over the semiring (N ∪ {∞},min,+) (the tropical
semiring). Such automata compute functions from words to N ∪ {∞} such as the number of
occurrences of a given letter. It is known that testing f 6 g is an undecidable problem for
f, g computed by distance automata. The main contribution of this paper is to show that an
approximation of this problem becomes decidable.

We present an algorithm which, given ε > 0 and two functions f, g computed by distance
automata, answers “yes” if f 6 (1−ε)g, “no” if f 66 g, and may answer “yes” or “no” in all other
cases. This result highly refines previously known decidability results of the same type.

The core argument behind this quasi-decision procedure is an algorithm which is able to
provide an approximated finite presentation to the closure under products of sets of matrices
over the tropical semiring.

We also provide another theorem, of affine domination, which shows that previously known
decision procedures for cost-automata have an improved precision when used over distance auto-
mata.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Distance automata, tropical semiring, decidability, cost functions

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.574

1 Introduction

One way to see language theory, and in particular the theory of regular languages, is as a
toolbox of constructions and decision procedures allowing high level handling of languages.
These high level operations can then be used as black-boxes in various decision procedures,
such as in verification. Since the early times of automata theory, the need for the effective
handling of functions rather than sets (as languages) was already apparent. Schützenberger
proposed already in the sixties models of finite state machines used for computing functions.
These are now known as weighted automata [11] and are the subject of much attention from
the research community. In general, weighted automata are non-deterministic automata,
weighted over some semiring (S,⊕,⊗). The value computed by such an automaton over a
given word is then the sum (for ⊕) over every run over this word of the product (for ⊗) of
the weights along the run.

Several instances of this model are very relevant for modelling the behaviour of systems,
and henceforth attract much attention. This is in particular the case of probabilistic
automata (over the semiring (R+,+,×) with some additional constraints enforcing weights
to remain in [0, 1]), and distance automata which are automata weighted over the semiring
(N ∪ {∞},min,+). In such an automaton, each transition is labelled with a non-negative
integer (usually 0 or 1), and the weight of a word is the minimum over all possible paths of

∗ The research leading to these results has received funding from the European Union’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement no259454.

© Thomas Colcombet and Laure Daviaud;
licensed under Creative Commons License BY-ND

30th Symposium on Theoretical Aspects of Computer Science (STACS’13).
Editors: Natacha Portier and Thomas Wilke; pp. 574–585

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.574
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

T. Colcombet and L. Daviaud 575

the sum of the weights. These automata naturally capture some optimisation problems since
computing the value amounts to find the path of minimal weight.

The subject of this paper is to develop algorithmic tools for distance automata, and
more precisely to develop the question of comparing distance automata. We know from the
beginning that exact comparison is beyond reach.

I Theorem 1 (Krob [7]). The problem to determine, given two functions f, g computed by
distance automata, whether f = g or not is undecidable. The problem whether f 6 g or not
is also undecidable, even if g is deterministic.

Despite this, some positive results exist but for a comparison relation less precise than
inequality, namely domination. Given two functions A∗ → N ∪ {∞}, f is dominated by g
(and we note f 4 g) if there is a function α : N→ N, extended with α(∞) =∞, such that

f 6 α ◦ g .

Moreover, if α is a polynomial, we say that f is polynomially dominated by g. The following
theorem shows the good properties of the domination relation.

I Theorem 2 ([2] extending results and techniques from [4, 9, 13, 6, 1]). Given two functions
computed by distance automata, domination is decidable. Furthermore, if a function dominates
another, then it polynomially dominates it1.

The motivation of this work is to improve Theorem 2 and to answer the following question:

Is it possible to decide “approximations” of the inequality of functions computed by
distance automata that are finer than domination ?

We answer positively this question in two ways. We first show:

I Theorem 3 (affine domination). Given two functions f and g computed by distance
automata, if f is dominated by g then f is affinely dominated by g, i.e., f 6 α ◦ g for some
polynomial α of degree 1.

A consequence of this theorem is that the decision procedure provided by Theorem 2 in
fact decides the affine domination, which is finer than the polynomial domination2.

Our second, and main contribution is an even more accurate decision-like procedure. One
says that an algorithm, given two functions f and g and some real ε > 0, ε-approximates the
inequality if:

if f 6 (1− ε)g, the output is “yes”,
if f 66 g, the output is “no”,
otherwise the output can be either “yes” or “no”.

Hence, if such an algorithm answers “yes”, one has a guaranty that f 6 g. Conversely if f is
ε-inferior to g (meaning f 6 (1 − ε)g), one is sure that the algorithm answers “yes”. Our
second and main result reads as follows:

I Theorem 4 (approximate comparison). There is an EXPSPACE algorithm which ε-
approximates the inequality of functions computed by distance automata.

1 Technically, this is not stated in [2] , but can be derived directly from the proofs which explicitly
compute the function α using operations preserving polynomials.

2 Theorem 2 holds for more general classes of automata, cost automata, for which affine domination does
not hold. Affine domination is specific to distance automata.

STACS’13

576 Approximate comparison of distance automata

This result is in fact a consequence of a theorem – called the core theorem below – stating
that it is possible, given a set of matrices X in the tropical semiring, to approximate (in a
suitable way) the set {

1
`

(M1 ⊗ · · · ⊗M`) : M1, . . . ,M` ∈ X
}
,

where ⊗ denotes the product of matrices. More precisely, the core theorem states that it is
possible to approximate the upper envelope of the set of pairs

{(M1 ⊗ · · · ⊗M`, `) : M1, . . . ,M` ∈ X}

for a suitable notion of approximation. This core theorem, Theorem 6, will be described
precisely in the first section of this paper.

In Section 2 we present some classical definitions and formally state our core theorem.
Section 3 is devoted to the proof of the core theorem. Section 4 applies the core theorem for
answering our original motivation, and shows the decidability of the approximate comparison
between distance automata. We prove on the way our result of affine domination, Theorem 3.
Section 5 concludes the paper.

2 Description of the core theorem

In this first section, we introduce the basic definitions, and define sufficient material for
stating our core theorem 6. Its proof is the subject of Section 3 and its application to the
comparison of distance automata is the subject of Section 4. We first introduce some classical
algebraic definitions in Section 2.1, and finally state our core theorem in Section 2.2.

2.1 Classical definitions
A semigroup (S, ·) is a set S equipped with an associative binary operation “·”. If the

product has furthermore a neutral element, it is called a monoid. The monoid is said
commutative when · is commutative. An idempotent in a monoid is an element e such that
e · e = e. Given a subset A of a semigroup, 〈A〉 denotes the closure of A under product,
i.e., the least sub-semigroup that contains A. Given two subsets X,Y of a semigroup, X · Y
denotes the set {a · b : a ∈ X, b ∈ Y }.

A semiring is a set S equipped with two binary operations ⊕ and ⊗ such that (S,⊕) is
a commutative monoid of neutral element 0, (S,⊗) is a monoid of neutral element 1, 0 is
absorbing for ⊗ (i.e., x⊗ 0 = 0⊗ x = 0) and ⊗ distributes over ⊕. We will consider three
semirings: (R+ ∪ {∞},min,+), denoted R+, its restriction to N ∪ {∞}, denoted N, and its
restriction to {0,∞} denoted B. The third, finite semiring is called the Boolean semiring,
since if we identify 0 with “true” and ∞ with “false”, then ⊕ is the disjunction and ⊗ the
conjunction. Remark that in the three cases, the “0” is ∞, and the “1” is 0.

Let S be R+, N or B. The set of matrices with m rows and n columns over S is denoted
Mm,n(S). For M ∈Mm,n(S), we denote by M̃ the matrix over B in which all entries of M
different from ∞ are changed into 0. We define the multiplication A⊗ B of two matrices
A,B (provided the number n of columns of A equals the number of rows of B) as usual by:

(A⊗B)i,j =
⊕

0<k6n
(Ai,k ⊗Bk,j) = min

0<k6n
(Ai,k +Bk,j) .

For a positive integer k, we also use the notation Mk = M ⊗ · · · ⊗M︸ ︷︷ ︸
k times

.

T. Colcombet and L. Daviaud 577

For λ ∈ S, we denote by λA the matrix such that (λA)i,j = λAi,j , with the convention
λ∞ =∞ (the standard product is used here, not the one of the semiring). We denote also
by B + λ the matrix such that (B + λ)i,j = Bi,j + λ. Finally, we write A 6 B if for all i, j,
Ai,j 6 Bi,j .

2.2 Weighted matrices and the core theorem
In this section we state our core approximation result, Theorem 6. This theorem states

that given a set of weighted matrices, it is possible to compute a finite presentation of its
closure under product up to some approximation. Hence we have to introduce weighted
matrices, the approximation, and what are finite presentations before disclosing the statement.
This requires some specific definitions that we present beforehand. We fix now a positive
integer n, and all matrices implicitly belong toMn,n(R+).

As already mentioned in the introduction, our goal is to approximate a set of pairs (M, `)
where M is a matrix and ` is a positive integer. We call such pairs weighted matrices. A
weighted matrix is an ordered pair (M, `) where M ∈Mn,n(R+) and ` is a positive integer.
The positive integer ` is called the weight of the weighted matrix. The set of weighted
matrices is denoted by Wn,n. Weighted matrices have a semigroup structure (Wn,n,⊗),
where (M, `)⊗ (M ′, `′) stands for (M ⊗M ′, `+ `′). Given A,B subsets of Wn,n, one denotes
by A ⊗ B the set {M ⊗ N : M ∈ A, N ∈ B}, and by 〈A〉 the closure under ⊗ of A.
With this terminology, our goal is, given a finite set of weighted matrices X, to approximate
〈X〉. (Intuitively, if (M, `) is a weighted matrix, M represents the behaviour of a distance
automaton that computes a function f , over a word w, while ` stands for the lengths of w.
So, weighted matrices let us compare f(w) with |w| which is exactly what we want. The
operation ⊗ between two weighted matrices matches with the concatenation of words, i.e.
the product in the tropical semiring for matrices and the sum for lengths.)

We describe now the notion of approximation that we use. Given some ε > 0 and two
weighted matrices (M, `) and (M ′, `′), one writes

(M, `) 4ε (M ′, `′) if ` > `′, M̃ = M̃ ′ and M 6M ′ + ε` .

Remark that in particular, this implies 1
`M 6 1

`′M
′ + ε, which is the intention behind this

definition. The definition of 4ε is more constraining: this is mandatory for having better
properties with respect to the product of matrices, such as in Lemma 5 below. This definition
extends to sets of weighted matrices as follows. Given two such sets X,X ′, X 4ε X ′ if for
all (M, `) ∈ X, there exists (M ′, `′) ∈ X ′ such that (M, `) 4ε (M ′, `′). One writes X ≈ε X ′
if X 4ε X ′ and X ′ 4ε X (and says X is ε-equivalent to X ′).

The following lemma establishes some simple properties of the 4ε relations (as a con-
sequence, the same properties hold for ≈ε).

I Lemma 5. Given X,X ′, Y, Y ′, Z ⊆ Wn,n and ε, η > 0,
if X 4ε Y and Y 4η Z then X 4ε+η Z,
if X 4ε X ′ and Y 4ε Y ′ then X ⊗ Y 4ε X ′ ⊗ Y ′,
if X 4ε X ′ then 〈X〉 4ε 〈X ′〉.

Proof. First item. If (M, `) 4ε (M ′, `′) 4η (M ′′, `′′), then ` > `′ > `′′, M̃ = M̃ ′ = M̃ ′′ and
M 6 M ′ + ε` 6 M ′′ + η`′ + ε` 6 M ′′ + (ε + η)`. This easily extends to sets of weighted
matrices.

Second item. Assume (M, `) 4ε (M ′, `′) and (N, t) 4ε (N ′, t′). Then, ` + `′ > t + t′,
M̃ ⊗N = M̃ ′ ⊗N ′ and M ⊗N 6 (M ′+ ε`)⊗ (N ′+ εt) 6M ′⊗N ′+ ε(`+ t). This naturally
extends to sets of weighted matrices.

STACS’13

578 Approximate comparison of distance automata

Third item. By induction, applying the second item. J

The last ingredient required is to describe how to represent (infinite) sets of weighted
matrices. Call a set of weighted matrices W ⊆ Wn,n finitely presented if it is a finite union
of singleton sets, and of sets of the form {(kM, k) : k > `} where M ∈Mn,n(R+) and ` is a
positive integer. Our algorithm manipulates finitely presented sets of weighted matrices.

The core technical contribution of this paper can now be stated, as follows.

I Theorem 6 (core theorem). Given X ⊆ Wn,n finitely presented and ε > 0, one can compute
effectively Y ⊆ Wn,n finitely presented such that:

Y ≈ε 〈X〉 .

A sketch of the proof of this result will be the subject of Section 3. The application of
this theorem to the comparison of distance automata is presented in Section 4. The two
sections are independent.

3 Proof of the core theorem

In this section we describe the key arguments involved in the proof of Theorem 6. It is
the combination of several arguments. The first one is the use of the forest factorisation
theorem of Simon.

3.1 The main induction: the forest factorization theorem of Simon
The forest factorization theorem of Simon [12] is a powerful combinatorial tool for

understanding the structure of finite semigroups. In this short abstract, we will not describe
the original statement of this theorem, in terms of trees of factorisations, but rather a direct
consequence of it which is central in our proof.

I Theorem 7 (equivalent to the forest factorization theorem [12]3). Given a semigroup
morphism ϕ from (S,⊗) (possibly infinite) to a finite semigroup (T, ·), and some X ⊆ S, set
X0 = X and for all k > 0,

Xk+1 = Xk ∪Xk ⊗Xk ∪
⋃

e is idempotent ∈T
〈Xk ∩ ϕ−1(e)〉 ,

then 〈X〉 = XN for N = 3|T | − 1.

This proposition teaches us that, for computing the closure under product in the semigroup
S, it is sufficient to know how to compute (a) the union of sets, (b) the product of sets, and
(c) the restriction of a set to the inverse image of an idempotent by ϕ, and (d) the closure
under product of sets of elements that all have the same idempotent image under ϕ. Of
course, this proposition is interesting when the semigroup T is cleverly chosen.

In our case, we are going to use the above proposition with (S,⊗) = Wn,n, (T, ·) =
Mn,n(B), and ϕ the morphism which maps (M, `) to M̃ . Our algorithm will compute, given
a finitely presented set of weighted matrices X, an approximation of 〈X〉 following the same
inductive construction as in the forest factorisation theorem. This is justified by the two
following lemmas, for which we provide the sketch of a proof.

3 Modern proofs of this theorem can be found in [8, 3], in particular with the exact bound of N = 3|T | − 1
(Simon’s original proof only provides N = 9|T |).

T. Colcombet and L. Daviaud 579

I Lemma 8. For all ε > 0 and all finitely presented sets X,Y ⊆ Wn,n there exists effectively
a finitely presented set product(ε,X, Y) ⊆ Wn,n such that

product(ε,X, Y) ≈ε X ⊗ Y .

Given a set X of weighted matrices, let us set X̃ = {M̃ | (M, `) ∈ X}.

I Lemma 9. For all ε > 0 and all finitely presented set X ⊆ Wn,n such that X̃ = {e} for
an idempotent e, there exists effectively a finitely presented set idempotent(ε,X) ⊆ Wn,n

such that
idempotent(ε,X) ≈ε 〈X〉 .

Assuming that Lemmas 8 and 9 hold, it is easy to provide an algorithm which, given
X ⊆ Wn,n finitely presented, computes X ′ ⊆ Wn,n finitely presented such that X ′ ≈ε 〈X〉.
The principle of the algorithm is to implement Theorem 7, using finitely presented sets that
approximate the Xk’s.

Set Y0 = X and N = 3(2n2)− 1 = 3|Mn,n(B)| − 1.
For all 0 6 k 6 N , set ε(k) = ε

2N−k and

Yk+1 = Yk ∪ product(ε(k), Yk, Yk) ∪
⋃

e⊗e=e∈Mn,n(B)

idempotent(ε(k), Yk ∩ ϕ−1(e)) .

output YN
Correction can be justified as follows: one proves by induction that Yk ≈ε(k) Xk for all
k = 0, . . . , N where Xk is defined as in Theorem 7 (with S = Wn,n, T = Mn,n(B) and
ϕ(M, `) = M̃). For k = 0, one has Xk = X = Yk. Let k > 0, suppose that Yk ≈ε(k) Xk, then
by Lemma 8, Lemma 5 and the induction hypothesis,

product(ε(k), Yk, Yk) ≈ε(k) Yk ⊗ Yk ≈ε(k) Xk ⊗Xk .

Finally, by Lemma 5, product(ε(k), Yk, Yk) ≈2ε(k) Xk ⊗Xk. Similarly, by Lemma 9, for all
idempotent e, idempotent(ε(k), Yk∩ϕ−1(e)) ≈2ε(k) 〈Xk∩ϕ−1(e)〉. Thus Yk+1 ≈ε(k+1) Xk+1.

Hence, what remains to be done is to establish Lemmas 8 and 9.

3.2 Approximate products of sets
In this part, we give the main ideas of the proof of Lemma 8. It shows explicit examples

of the approximation arguments that are used in a more advanced way for proving Lemma 9.

Proof of Lemma 8. Since the finitely presented sets of weighted matrices are closed under
union, it is sufficient to prove Lemma 8 for the atomic blocks of the finite presentation.
Namely, it is sufficient to consider the case X = {(M,x)} or X = {(`M, `) | ` > x} together
with Y = {(N, y)} or Y = {(`N, `) | ` > y}. This results in four possibilities, among which
only three remain up to symmetry: (a) X = {(M,x)} and Y = {(N, y)}, (b) X = {(M,x)}
and Y = {(`N, `) | ` > y}, and finally (c) X = {(`M, `) | ` > x} and Y = {(`N, `) | ` > y}.

Let us explain the most interesting case, case (c). Let a be the maximum absolute value
of a non-infinite entry of M or N . Choose some z such that 2ax 6 εz and 2ay 6 εz, and let
Z be the set Z1 ∪ Z2 defined by:

Z1 = {(x′M ⊗ y′N, x′ + y′) | x′ + y′ < z} ,
and Z2 = {(`(λM ⊗ (1− λ)N), `) | ` > z, λ ∈ [0, 1]} .

STACS’13

580 Approximate comparison of distance automata

The set Z1 is finite, and merely lists all weighted matrices of weight less than z in X ⊗ Y .
The set Z2 (which is not finitely presented) takes all barycentres of M and N , and produces
corresponding weighted matrices for all possible weights greater or equal to z. We need to
prove two things. First that Z ≈ ε

2
X⊗Y , and second that one can further approximate Z2 by

a finitely presented set Z3 ≈ ε
2
Z2. By Lemma 5 we can then conclude that X⊗Y ≈ε Z1∪Z3,

and that Z1 ∪ Z3 is finitely presented and computable from X and Y .
Let us prove that Z ≈ ε

2
X ⊗ Y . Remark first that X ⊗ Y ⊆ Z. For the converse

direction, consider (W, `) ∈ Z. Clearly, if ` < z, then (W, `) ∈ Z1 ⊆ X ⊗ Y . Otherwise,
W = (λ`M) ⊗ ((1 − λ)`N). It is sufficient for us to find x′ > x and y′ > y such that
x′ + y′ = `, and

∣∣∣λ− x′

`

∣∣∣ 6 ε
2a : indeed, assuming the existence of such x′, y′, the matrix

W ′ = (x′M ⊗ y′N, `) is such that (W, `) ≈ ε
2

(W ′, `), and furthermore (W ′, `) ∈ X ⊗ Y . For
proving the existence of such x′, y′, consider the evolution of the value x′

` when x′ ranges
from x to ` − y. Since ` > z, x` 6 ε

2a , and similarly `−y
` > 1 − ε

2a . Furthermore when x′

increases of 1, the quantity x′

` increases of at most 1
z 6 ε

2a . As a consequence, x
′

` gets to be
ε

2a -close of any λ ∈ [0, 1] when x′ ranges from x to `− y. Consider x′ witnessing this fact
and set y′ = `− x′. The pair x′, y′ satisfies the requirement.

One now needs defining a set Z3 ≈ ε
2
Z2 which is finitely presented. The set Z3 is defined

as the set Z2, but for the fact that λ is discretized by steps of ε
4a . This can be written as:

Z3 =
⋃

λ∈([0,1]∩ ε
4aN)
{(`(λM ⊗ (1− λ)N), `) | ` > z} .

Clearly, this set is finitely presented. It is also simple to prove that Z3 ≈ ε
2
Z2. J

4 Comparing distance automata

In this section, we consider the problem of comparing the functions computed by distance
automata. In particular, we establish Theorem 3, and we reduce Theorem 4 to our core
theorem, Theorem 6. We start by describing distance automata, and their relationship with
matrices over the tropical semiring (Section 4.1).

4.1 Distance automata
An alphabet is a finite set of symbols. The set of words over an alphabet A is denoted A∗.

A distance automaton is a tuple (A, Q, I, F, T), where Q is a finite set of states (that we can
assume to be {1, . . . , n}) where I (resp. T) is a row-vector (resp. column-vector) indexed by
Q, and F is a morphism from words toMn,n(N). The function f computed by a distance
automaton (A, Q, I, F, T) over an input word u is:

f : A∗ → N
u 7→ I ⊗ F (u)⊗ T .

We assume from now on that the initial and final vectors I, T of distance automata only
range over {0,∞}. The theorems are equally true without this assumption, but this simplifies
slightly the proof. In practice the theorems without this restriction can be obtained by simple
reductions to this case.

We have defined so far distance automata in terms of matrices. One can see this object
in a more “automaton” form as follows. There is a transition labelled (a, x) from state p to
state q if x <∞ and x = F (a)p,q. A state p is initial if I1,p = 0. It is final if Ti,1 = 0. An
example of distance automaton is as follows:

T. Colcombet and L. Daviaud 581

p q r

a, b : 0

b : 0

a : 1

b : 0

a, b : 0

One can redefine the function computed by a distance automaton as follows. A run of an
automaton over a word a1 . . . ak is a sequence p0, . . . , pk of states. The weight of a run is
the sum of the weights of its transitions, i.e., F (a1)p0,p1 + · · ·+ F (ak)pk−1,pk

. Remark that
if there is some non-existing transition in this sequence, say from pi−1 to pi, this means that
F (ai)pi−1,pi

=∞, and as a consequence the run has an infinite weight. A run is accepting if
p0 is initial and pk is final. One defines the function accepted by the automaton as:

f : A∗ → N
u 7→ inf{weight(ρ) : ρ accepting run over u} .

This definition is equivalent to the matrix version presented above.
For instance, the function computed by the above automaton associates to each word

u = an0ban1 . . . bank the value min(n0, . . . , nk).

4.2 Superior limits
In this section, we present Theorem 10 which allows us to compute the superior limit of

some infinite set of matrices.
In order to define the superior limit of a set of matrices, a topology is required. The

matrices over N are equipped with the following metric. When two matrices are distinct,
their distance is 1/n where n is the maximal positive integer such that the entries that carry
values at most n are the same in both matrices. If no such integer exists, the distance is 1.

Given X ⊆Mn,n(N), a matrix N (which may not be in X) belongs to the superior limit
of X if:

N is the limit of some sequence of matrices from X,
there exists no M ∈ X such that M > N .

Let us denote lim sup(X) the set of matrices in the superior limit of S.

I Theorem 10 (consequence of [5]). Given a set X ⊆Mn,n(N), the set lim sup(X) is finite.
Furthermore, there is a PSPACE algorithm which, given a morphism F from A∗ toMn,n(N),
and a non-deterministic automaton for a language L ⊆ A∗, enumerates lim sup(F (L)).

The first part of the statement is a consequence of Higman’s lemma. The second part relies
on a result of Hashiguchi [5] (improved by Leung and Podolskiy [10]) which implies that
the non-infinite entries in the matrices in lim sup(F (L)) are at most exponential. This is
crucial for representing matrices in polynomial space, and hence exploring the state space in
PSPACE.

4.3 A first reduction: the theorem of affine domination
Our goal in this section is to establish the theorem of affine domination (Theorem 3).

This will be the opportunity to introduce some notations used in the subsequent section.
Let us fix ourselves two distance automata over the same alphabet A. The first one,

Af = (A, Qf , F, If , Tf) calculates a function f . The second one, Ag = (A, Qg, G, Ig, Tg)
calculates a function g.

STACS’13

582 Approximate comparison of distance automata

Define Rp,0,q ⊆ A∗ to be the set of words over which there is a run of Ag of weight 0
from state p to state q. Let ` be a non-null weight occurring in some transition of Ag, and
p, q be states in Qg. Define Rp,`,q ⊆ A∗ to contain the words over which there is a run of Ag
from state p to state q which uses one transition of weight `, and otherwise only transitions
of weight 0. We will reuse this languages in the next section.

Proof of theorem 3. Let K be the largest number that occurs in one of lim sup(F (Rp,`,q))
for some states p, q and weight of a transition ` (such a number exists since by Theorem 10
it is the maximum of finitely many numbers). Given a matrix M , call an m-expansion of M
a matrix M ′ >M such that for all i, j, Mi,j > K implies M ′i,j > m. We first show a claim
concerning expansions.

Claim. For all M ∈ F (Rp,`,q) and for all m there exists an m-expansion M ′ ∈ F (Rp,`,q)
of M .
Indeed, by definition of the superior limit, there is some L ∈ lim sup(F (Rp,`,q)) such that
L > M . Furthermore, by choice of K, whenever Mi,j > K, Li,j = ∞. Finally, still by
definition of the superior limit, L is the limit of a sequence of matrices in F (Rp,`,q). Hence,
for all m, there exists a matrix M ′ in this sequence which is sufficiently close to L that it is
an m-expansion of M . This proves the claim.

Let us turn now to the core of the proof. Our goal is to prove that if f is dominated
by g, (i.e., there exists α : N → N extended with α(∞) = ∞ such that f 6 α ◦ g), then
f 6 K(1 + g). The proof is by contraposition. Thus, assume f 66 K(1 + g). This means
f(u) > Kg(u) +K for some word u. We have to prove that f is not dominated by g.

The first case is g(u) = 0. This means that u ∈ Rp,0,q with p initial and q final. Using
the above claim, one can choose for all m a word v(m) ∈ Rp,0,q such that F (v(m)) is an
m-expansion of F (u). Since f(u) > K, this means that for all initial state r and all final
state s of Af , F (u)r,s > K. This means that for all such r, s, F (v(m))r,s > m. It follows
that f(v(m)) > m. Hence over the sequence (v(m))m, g is bounded and f tends to infinity.
This forbids the existence of a function α such that f 6 α ◦ g, f is not dominated by g.

Assuming g(u) 6= 0, the argument is similar. Remark first that g(u) is finite since
f(u) > Kg(u) + K. This means one can find p0, . . . , pk with p0 initial, pk final, and such
that:

u = u1 . . . uk, u1 ∈ Rp0,`1,p1 , . . . , uk ∈ Rpk−1,`k,pk
,

where `1, . . . , `k are all non-null and of sum g(u). By the above claim, for all i = 1 . . . k, and all
m, one can select v(m)

i in Rpi−1,`i,pi
such that F (v(m)

i) is an m-expansion of F (ui). Consider
now the word v(m) = v

(m)
1 . . . v

(m)
k . Clearly g(v(m)) = g(u). For the sake of contradiction,

assume now that f(v(m)) < m for some m. This means that there exists q0, . . . , qk such that
q0 is initial, qk is final, and F (v(m)

i)qi−1,qi < m for all i = 1 . . . k. Since F (v(m)
i) is an m

-expansion of F (ui), this implies F (ui)qi−1,qi
6 K. It follows that f(u) 6 Kk 6 Kg(u). A

contradiction. Hence f(v(m)) > m. Thus, g is bounded over (v(m))m while f is not. As a
consequence, f is not dominated by g. J

4.4 The reduction construction
We reuse definitions and notations of automata Af and Ag given in the preceding section.

In particular, we use the sets Rp,`,q again.
Our goal is to construct a finite set of weighted matrices X that captures the relationship

between f and g. The key ideas behind this reduction are the following. Each matrix (M, `)
in X corresponds to a set of runs of g, that start in a given state p and end in a given state

T. Colcombet and L. Daviaud 583

q, and use exactly one transition of non-null weight `. The corresponding matrix M is in
charge of (a) simulating the behaviour of F over some word corresponding to such a run
(there may be infinitely many such runs, but only the finitely many matrices of the superior
limit need to be considered), and (b) keeping information concerning the first and last state
of the run of Ag for being able to check that pieces of run of g are correctly concatenated.

One also needs to define the part of the matrix in charge of controlling the validity of the
run of Ag. The construction behind Lemma 11 below is the one of a deterministic automaton,
that reads words over the alphabet Q2

g, and accepts a word (p1, q1) . . . (pk, qk) if, either p1 is
not initial, or qk is not final, or if qi−1 6= pi for some i. One can verify that this language
is accepted by a deterministic and complete automaton of states Qg] {i,⊥}. The unique
initial state is i, and, when reading the word (p1, q1) . . . (pk, qk), the automaton reaches state
⊥ if p1 is not initial or qi−1 6= pi for some i, otherwise it reaches state qk. The final states
are the ones not in Tg plus ⊥ plus possibly i if there are no states that are both initial and
final in g. Translated in matrix form, this yields Lemma 11.

I Lemma 11. There are (|Qg|+ 2, |Qg|+ 2)-matrices (Cp,q)p,q∈Qg over B and vectors IC
and TC such that for all p1, q1, . . . , pk, qk ∈ Qg,

IC⊗Cp1,q1⊗· · ·⊗Cpk,qk⊗TC =
{
∞ if p1 ∈ Ig, q1 = p2, . . . , qk−1 = pk and qk ∈ Tg,
0 otherwise.

Proof. This is implemented in matrix form as follows. For each p, q where p, q ∈ Qg, set the
matrix Cp,q that has indices in Qg ∪ {i,⊥}, to be such that:

(Cp,q)p′,q′ =



0 if p′ = i, p ∈ Ig and q′ = q,

0 if p′ = i, p 6∈ Ig and q′ = ⊥,
0 if p′ = p and q′ = q,

0 if p′ 6= i and p′ 6= p and q′ = ⊥,
∞ otherwise.

Define furthermore IC be the vector with all entries ∞ but i which is 0, and let TC be the
vector with all entries equal to 0 except Tg and i if there is a state both initial and final in
Ag. J

We can now construct the set X as follows:

X =
{((

M ∞
∞ Cp,q

)
, `

)
: M ∈ lim sup(F (Rp,`,q))

}
(1)

and the vectors

I = (If IC) and T =
(

Tf
TC

)
. (2)

The following lemma shows the validity of the construction, and more particularly how it
relates the comparison of distance automata to the computation of the closure of a set of
weighted matrices.

I Lemma 12. For all β > 0, f 6 βg if and only if for all (W, `) ∈ 〈X〉, I ⊗W ⊗ T 6 β`.

STACS’13

584 Approximate comparison of distance automata

Proof. Assume first f 66 βg, which means f(u) > βg(u) for some u. Then clearly, g(u) is
finite and hence, there is an accepting run ρ of g over u. This means that one can find
p0, . . . , pk with p0 initial, pk final, such that:

u ∈ Rp0,`1,p1Rp1,`2,p2 . . . Rpk−1,`k,pk
,

where `1, . . . , `k are all non-null and of sum ` = g(u). For all i = 1 . . . k, set Mi to be some
matrix in lim sup(F (Rpi−1,`i,pi)) such that F (ui) 6Mi. Let also Ci be Cpi−1,pi . Clearly, the
weighted matrix

(Wi, `i) with Wi =
(
Mi ∞
∞ Ci

)
belongs to X. Hence (W, `) belongs to 〈X〉, where W = W1 ⊗ · · · ⊗Wk. We then have
I ⊗W ⊗ T = min(xf , xC) with

xf = If ⊗M1 ⊗ · · · ⊗Mk ⊗ Tf and xC = IC ⊗ C1 ⊗ · · · ⊗ Ck ⊗ TC .

By choice of the Mi’s, xf > If ⊗ F (u)⊗ Tf = f(u). Furthermore, by Lemma 11, xC =∞.
It follows that I ⊗W ⊗ T > f(u) > βg(u) = β`.

Assume now that f 6 βg. Consider some (W, `) ∈ 〈X〉, it is obtained as (W, `) =
(W1, `1)⊗ · · · ⊗ (Wk, `k) with (Wi, `i) ∈ X for all i. By definition of X, each of the Wi’s can
be written, for some pi, qi ∈ Qg, as

Wi =
(
Mi ∞
∞ Cpi,qi

)
with Mi ∈ lim supF (Rpi,`i,qi

).

Once more, one has I ⊗W ⊗ T = min(xf , xC) with

xf = If ⊗M1 ⊗ · · · ⊗Mk ⊗ Tf and xC = IC ⊗ C1 ⊗ · · · ⊗ Ck ⊗ TC .

Remark first that if xC = 0, clearly, I ⊗W ⊗T = 0 6 β`. Hence, let us assume that xC =∞.
This means by Lemma 11 that p1 is initial, qk is final, and pi = qi−1 for all i = 2 . . . k. One
needs to prove xf 6 β`.

Assume for the sake of contradiction that xf > β`. By continuity of the product, and
using the definition of the superior limit, there exist words u1, . . . , uk such that for all
i = 1 . . . k, ui ∈ Rpi,`i,qi

, and If ⊗F (u1)⊗· · ·⊗F (uk)⊗Tf > β`. Furthermore, by definition
of the sets Rpi,`i,qi , the fact that p1 is initial, that qk is final, and that qi−1 = pi for all
i = 2 . . . k, it follows that g(u1 . . . uk) = `. It follows that f(u1 . . . uk) > βg(u1 . . . uk). A
contradiction. J

We are now ready to establish the main theorem of the paper.

Proof of Theorem 4. Let us consider two functions f and g computed by distance automata
and some ε > 0. The algorithm works as follows. It computes the set X of weighted matrices
as defined in this section (1), as well as the corresponding vectors I, T (2). Using Theorem 6,
it computes a finitely presented set Y of weighted matrices such that Y ≈ ε

2
〈X〉. Then it

tests the existence in Y of a weighted matrix (M, `) such that I ⊗ 1
`M ⊗ T > 1− ε

2 . This is
easy to do for finitely presented sets. If such a weighted matrix exists, the algorithm answers
“no”. It answers “yes” otherwise. Let us show the correctness of this approach.

Assume f 6 (1− ε)g, and that, for the sake of contradiction, the algorithm answers “no”.
This means that I ⊗ 1

`M ⊗T > 1− ε
2 for some weighted matrix (M, `) ∈ Y . Furthermore,

there exists (M ′, `′) ∈ 〈X〉 such that (M, `) 4 ε
2

(M ′, `′). This implies 1
`M 6 1

`′M
′ + ε

2 .
It follows that I ⊗M ′ ⊗ T > (1− ε)`′. This contradicts Lemma 12.

T. Colcombet and L. Daviaud 585

Assume f 66 g, then by Lemma 12, there exists a matrixM ∈ 〈X〉 such that I⊗ 1
`M⊗T > 1.

Furthermore, there exists M ′ ∈ Y such that (M, `) 4 ε
2

(M ′, `′). This implies 1
`M 6

1
`′M

′ + ε
2 , and hence I ⊗ 1

`′M
′ ⊗ T > 1− ε

2 . The algorithm answers “no”.
J

5 Conclusion and further remarks

In this paper, we provided an algorithm for deciding the approximate comparison of
distance automata. This algorithm involves the computation of the closure under product of
sets of weighted matrices, a result of independent interest.

The main open question is the complexity of the problem. It is clear that the problem is
at least PSPACE hard. A correct implementation of the arguments in this paper shows that
EXSPACE is an upper bound. We do not know the exact complexity.

Acknowledgments

We would like to thank Jean Mairesse for numerous enlightening discussions as well as
the anonymous referees for their helpful comments.

References
1 Mikolaj Bojańczyk and Thomas Colcombet. Bounds in ω-regularity. In LICS 06, pages

285–296, 2006.
2 Thomas Colcombet. The theory of stabilisation monoids and regular cost functions. In

Automata, languages and programming. Part II, volume 5556 of Lecture Notes in Comput.
Sci., pages 139–150. Springer, Berlin, 2009.

3 Thomas Colcombet. Green’s relations and their use in automata theory. In Adrian Horia
Dediu, Shunsuke Inenaga, and Carlos Martín-Vide, editors, LATA, volume 6638 of Lecture
Notes in Computer Science, pages 1–21. Springer, 2011. Invited lecture.

4 Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance functions. J.
Comput. Syst. Sci., 24(2):233–244, 1982.

5 Kosaburo Hashiguchi. New upper bounds to the limitedness of distance automata. Theor.
Comput. Sci., 233(1–2):19–32, 2000.

6 Daniel Kirsten. Distance desert automata and the star height problem. RAIRO, 3(39):455–
509, 2005.

7 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. Internat. J. Algebra Comput., 4(3):405–425, 1994.

8 Manfred Kufleitner. A proof of the factorization forest theorem. Technical Report Nr.
2007/05, Universität Stuttgart, Germany, 2007.

9 Hing Leung. On the topological structure of a finitely generated semigroup of matrices.
Semigroup Forum, 37:273–287, 1988.

10 Hing Leung and Viktor Podolskiy. The limitedness problem on distance automata: Hashigu-
chi’s method revisited. Theoretical Computer Science, 310(1-3):147–158, 2004.

11 Marcel-Paul Schützenberger. On the definition of a family of automata. Information and
Control, 4:245–270, 1961.

12 Imre Simon. Piecewise testable events. In H. Brackage, editor, Proc. 2nd GI Conf.,
volume 33, pages 214–222. Springer, 1975.

13 Imre Simon. On semigroups of matrices over the tropical semiring. RAIRO ITA, 28(3-
4):277–294, 1994.

STACS’13

	Introduction
	Description of the core theorem
	Classical definitions
	Weighted matrices and the core theorem

	Proof of the core theorem
	The main induction: the forest factorization theorem of Simon
	Approximate products of sets

	Comparing distance automata
	Distance automata
	Superior limits
	A first reduction: the theorem of affine domination
	The reduction construction

	Conclusion and further remarks

