IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Czerwinski, W., Daviaud, L., Fijalkow, N., Jurdzinski, M., Lazi¢, R. & Parys, P.
(2019). Universal trees grow inside separating automata: Quasi-polynomial lower bounds
for parity games. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms. (pp. 2333-2349). Society for Industrial and Applied Mathematics. ISBN 978-1-
61197-548-2

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21302/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

Universal trees grow inside separating automata:

Quasi-polynomial lower bounds for parity games

Wojciech Czerwinski* Laure Daviaud!

Ranko Lazié¢t

Abstract

Several distinct techniques have been proposed to de-
sign quasi-polynomial algorithms for solving parity
games since the breakthrough result of Calude, Jain,
Khoussainov, Li, and Stephan (2017): play summaries,
progress measures and register games. We argue that
all those techniques can be viewed as instances of the
separation approach to solving parity games, a key tech-
nical component of which is constructing (explicitly or
implicitly) an automaton that separates languages of
words encoding plays that are (decisively) won by ei-
ther of the two players. Our main technical result is
a quasi-polynomial lower bound on the size of such
separating automata that nearly matches the current
best upper bounds. This forms a barrier that all exist-
ing approaches must overcome in the ongoing quest for
a polynomial-time algorithm for solving parity games.
The key and fundamental concept that we introduce
and study is a universal ordered tree. The technical
highlights are a quasi-polynomial lower bound on the
size of universal ordered trees and a proof that every
separating safety automaton has a universal tree hidden
in its state space.

1 Introduction

1.1 Parity games. A parity game is played on a
directed graph by two players who are called Even and
Odd. A play starts at a designated vertex and then the
players move by following outgoing edges forever, thus
forming an infinite path. Every vertex of the graph
is owned by one of the two players and it is always the
owner of the vertex who moves by following an outgoing
edge from the current vertex to the next one.

This completes the description of the dynamics of
a play, but how do we declare the winner of an infinite
path formed in this way? For this, we need to inspect

MIMUW, University of Warsaw, Poland
fDepartment of Computer Science, University of Warwick, UK
fCNRS, LaBRI, France and The Alan Turing Institute, UK

Nathanaél Fijalkow? Marcin Jurdzinskif

Pawet Parys*

positive integers that label all edges in the graph, which
we refer to as edge priorities, or simply priorities. Player
Even is declared the winner of a play if the highest
priority that occurs infinitely many times is even, and
otherwise player Odd wins; equivalently, the winner is
the parity of the limsup (limes superior) of the priorities
that occur in the play.

The principal algorithmic problem studied in the
context of parity games is deciding the winner: given a
game graph as described above and a starting vertex,
does player Even have a winning strategy—a recipe
for winning every play starting from the designated
vertex, no matter what edges her opponent Odd follows
whenever it is his turn to move.

Determinacy and complexity. A positional strategy
for Even is a set of edges that go out of vertices she
owns—exactly one such edge for each of her vertices;
Even uses such a strategy by always—if the current
vertex is owned by her—following the unique outgoing
edge that is in the strategy. Note that when Even uses
a positional strategy, her moves depend only on the
current vertex—they are oblivious to what choices were
made by the players so far. A basic result for parity
games that has notable implications is their positional
determinacy [12), 28]: for every starting vertex, exactly
one of the players has a winning strategy and hence
the set of vertices is partitioned into the winning set
for Even and the winning set for Odd; moreover, each
player has a positional strategy that is winning for her
from all starting vertices in her winning set.

An important corollary of positional determinacy
is that deciding the winner in parity games is well
characterized, i.e., it is both in NP and in co-NP [13].
Several further complexity results suggest that it may
be difficult to provide compelling evidence for hardness
of solving parity games: deciding the winner is known
to be also in UP and in co-UP [23], and computing
winning strategies is in PLS, PPAD, and even in their
subclass CLS [9] [10]. Parity games share this intriguing

Copyright © 2019 by SIAM

2333 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

complexity-theoretic status with several other related
problems, such as mean-payoff games [33], discounted
games, and simple stochastic games [§], but they are no
harder than them since there are polynomial reductions
from parity games to mean-payoff games, to discounted
games, and to simple stochastic games [23] [33].

Significance and impact. Parity games play a funda-
mental role in automata theory, logic, and their applica-
tions to verification and synthesis. Specifically, the algo-
rithmic problem of deciding the winner in parity games
is polynomial-time equivalent to the model checking in
the modal p-calculus and to checking emptiness of au-
tomata on infinite trees with parity acceptance condi-
tions [I3], and it is at the heart of algorithmic solutions
to the Church’s synthesis problem [29].

The impact of parity games goes well beyond their
place of origin in automata theory and logic. We
illustrate it by the resolutions of two long-standing
open problems in stochastic planning and in [linear
programming, respectively, that were directly enabled
by the ingenious examples of parity games given by
Friedmann [18], on which the strategy improvement
algorithm [32] requires exponentially many iterations.
Firstly, Fearnley [15] has shown that Friedmann’s exam-
ples can be adapted to prove that Howard’s policy iter-
ation algorithm for Markov decision processes (MDPs)
requires exponentially many iterations. Policy iteration
has been well-known and widely used in stochastic plan-
ning and Al since 1960’s, and it has been celebrated for
its fast termination: until Fearnley’s surprise result, no
examples were known for which a superlinear number of
iterations was necessary. Secondly, Friedmann, Hansen,
and Zwick [19] have adapted the insights from the lower
bounds for parity games and MDPs to prove that nat-
ural randomized pivoting rules in the simplex algorithm
for linear programming may require subexponentially
many iterations. The following quote from the full ver-
sion of Friedmann et al. [I9] highlights the role that
parity games (PGs) played in their breakthrough:

“our construction can be described and under-
stood without knowing about PGs. We would
like to stress, however, that most of our in-
tuition about the problem was obtained by
thinking in terms of PGs. Thinking in terms
of MDPs seems harder, and we doubt whether
we could have obtained our results by thinking
directly in terms of linear programs.”

In both cases, Friedmann’s examples of parity games
and their analysis have been pivotal in resolving the the-
oretical worst-case complexity of influential algorithms
that for many decades resisted rigorous analysis while

performing outstandingly well in practice.

Current state-of-the-art. It is a long-standing open
question whether there is a polynomial-time algorithm
for solving parity games [I3]. The study of algorithms
for solving parity games has been dominated for over
two decades by algorithms whose run-time was exponen-
tial in the number of distinct priorities [14] 4 3], 24, 32]
30], or mildly subexponential for large number of priori-
ties [2,126]. The breakthrough came in 2017 from Calude
et al. [B] who gave the first quasi-polynomial-time algo-
rithm using the novel idea of play summaries. Several
other quasi-polynomial-time algorithms were developed
soon after, including space-efficient progress-measure
based algorithms of Jurdziniski and Lazi¢ [25] and of
Fearnley, Jain, Schewe, Stephan, and Wojtczak [16], and
the algorithm of Lehtinen [27], based on her concept of
register games.

1.2 The separation approach. Bojaiczyk and Cz-
erwinski [3, Section 3] have observed that the main tech-
nical contribution of Calude et al. [5] can be elegantly
phrased using concepts from automata theory. They
have pointed out that in order to reduce solving a par-
ity game of size at most n to solving a conceptually and
algorithmically much simpler safety game, it suffices to
provide a finite safety automaton that achieves the task
of separating two sets EvenLoops,, and OddLoops,, of
infinite words that describe plays on graphs of size at
most n that are decisively won by the respective two
players. For encoding plays in parity games, they use
words in which every letter is a pair that consists of
a vertex and a priority. The definition of such a word
being decisively won by a player that was proposed by
Bojanczyk and Czerwinski is that the biggest priority
that occurs on every cycle—an infix in which the first
vertex and the vertex immediately following the infix
coincide—is of her parity. Concerning separation, for
two disjoint languages J and K, we say that a lan-
guage S separates J from K if J C S and SNK = 0,
and we say that an automaton A is a separator of
two languages if the language L(.A) of words recognized
by A separates them. The main technical contribution
of Calude et al. [5] can then be stated as constructing
separators—of quasi-polynomial size—of the languages
EvenLoops,, and OddLoops,,.

Note that a separator of EvenLoops, and
OddLoops,, has a significantly easier task than a rec-
ognizer of exactly the set LimsupEven of words that
are won by Even—that is required to accept all words
in LimsupEven, and to reject all words in LimsupOdd,
the set of all words that are won by Odd. Instead, a
separator may reject some words won by Even and ac-

Copyright © 2019 by SIAM

2334 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

cept some words won by Odd, as long as it accepts all
words that are decisively won by Even, and it rejects all
words that are decisively won by Odd.

What Calude et al. [5] exploit is that if one of the
players uses a positional winning strategy then all plays
are indeed encoded by words that are won decisively
by her, no matter how the opponent responds. The
formalization of Bojaiiczyk and Czerwiriski [3] is that—
using positional determinacy of parity games [12], 28]—
in order to solve a parity game of size at most n, it
suffices to solve a strategically and algorithmically much
simpler safety game that is obtained as a simple chained
product of the parity game and a safety automaton that
is a separator of EvenLoops, and OddLoops,,.

1.3 Owur contribution. Our main conceptual con-
tributions include making explicit the notion of a wuni-
versal ordered tree and unifying all the existing quasi-
polynomial algorithms for parity games [5l, 25 20] 16
27) as instances of the separation approach proposed by
Bojanczyk and Czerwinski [3].

We point out that it is exactly the universality prop-
erty of an ordered tree that makes it suitable for serving
as a witness search space in progress measure lifting al-
gorithms [24) [T, B0, 25| [TT], and that the running time of
such algorithms is dictated by the size of the universal
tree used. In particular, by proving a quasi-polynomial
lower bound on the size of universal trees in Section [2.4]
we rule out the hope for improving progress measure lift-
ing algorithms to work in sub-quasi-polynomial time by
finding smaller universal trees. As our other main tech-
nical results in Section |[b[show, however, universal trees
are fundamental not only for progress measure lifting
algorithms, but for all algorithms that follow the sepa-
ration approach.

We argue that in the separation approach, it is ap-
propriate to slightly adjust the choice of languages to
be separated, from EvenLoops, and OddLoops, pro-
posed by Bojariczyk and Czerwiriski [3] to the more
suitable EvenCycles,, and OddCycles,, (see Section
for the definitions). We also verify, in Section |4} that
all the three distinct techniques of solving parity games
in quasi-polynomial time considered in the recent litera-
ture (play summaries [0l 20} [16], progress measures [25],
and register games [27]) yield separators for languages
EvenCycles,, and LimsupOdd, which (as we argue in
Section makes them suitable for the separation ap-
proach.

The main technical contribution of the paper, de-
scribed in Sections and |5 is a proof that every
(non-deterministic) safety automaton that separates
EvenCycles,, from LimsupOdd has a number of states
that is at least quasi-polynomial. Recall that in Sec-

tion [2.4] we establish a quasi-polynomial lower bound
on the size of universal trees. Then, in Section |5} our
argument is based on proving that in every separating
automaton as above, one can define a sequence of linear
quasi-orders on the set of states, in which each quasi-
order is a refinement of the quasi-order that follows it
in the sequence. Such a sequence of linear quasi-orders
can be naturally interpreted as an ordered tree in which
every leaf is populated by at least one state of the au-
tomaton. We then also prove that the ordered tree must
contain a universal ordered tree, and the main result fol-
lows from the earlier quasi-polynomial lower bound for
universal trees.

Another technical highlight, presented in Sec-
tion is a comstruction of a separator from an ar-
bitrary universal tree, which together with the lower
bound in Section [5| implies that the sizes of small-
est universal trees and of smallest separators coincide.
The correctness of the construction relies on existence
of progress measures that map from vertices of game
graphs into leaves of universal trees, and that witness
winning strategies.

The significance of our main technical results is
that they provide evidence against the hope that any of
the existing technical approaches to developing quasi-
polynomial algorithms for solving parity games [5] [25]
16}, 27] may lead to further improvements to sub-quasi-
polynomial algorithms. In other words, our quasi-
polynomial lower bounds for universal trees and sep-
arators form a barrier that all existing approaches must
overcome in the ongoing quest for a polynomial-time
algorithm for solving parity games.

2 Progress measures and universal trees

Progress measures are witnesses of winning strategies
that underpin the design of the small progress measure
lifting algorithm [24]. For nearly two decades, this al-
gorithm and its variants [T, 30} [6, 25, II] have been
consistently matching or beating the worst-case perfor-
mance guarantees of the state-of-the-art algorithms for
solving parity games.

In this section we introduce the notion of wuniver-
sal ordered trees and we point out how the univer-
sality property uniformly justifies the correctness of
progress measure lifting algorithms, and that the size
of universal trees used in such algorithms drives their
worst-case run-time complexity. Those observations
motivate the key technical question that we tackle in
this section, namely whether the recent construction
of quasi-polynomial universal trees by Jurdzinski and
Lazié [25] can be significantly improved to yield a sub-
quasi-polynomial algorithms for solving parity games.

The main original technical contribution of this sec-

Copyright © 2019 by SIAM

2335 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

tion is a negative answer to this question: we establish
a quasi-polynomial lower bound on the size of univer-
sal trees that nearly matches (up to a small polynomial
factor) the upper bound of Jurdziriski and Lazi¢. This
dashes the hope of obtaining a significantly faster algo-
rithm for solving parity games by constructing smaller
universal trees and running the progress measure algo-
rithm on them.

2.1 Game graphs and strategy subgraphs.
Throughout the paper, we write V' for the set of ver-
tices and F for the set of edges in a parity game graph,
and we use n to denote the numbers of vertices. For
every edge e € E, its priority 7(e) is a positive integer,
and we use d to denote the smallest even number that
priority of no edge exceeds. Without loss of generality,
we assume that every vertex has at least one outgoing
edge. We say that a cycle in a game graph is even if the
largest edge priority that occurs on it is even; otherwise
it is odd.

Recall that a positional strategy for Even is a set
of edges that go out of vertices she owns—exactly one
such edge for each of her vertices. The strategy subgraph
of a positional strategy for Even is the subgraph of
the game graph that includes all outgoing edges from
vertices owned by Odd and exactly those outgoing edges
from vertices owned by Even that are in the positional
strategy. Observe that the set of plays that arise
from Even playing her positional strategy is exactly the
set of all plays in the strategy subgraph. Moreover,
note that every cycle in the strategy subgraph of a
positional strategy for Even that is winning for her is
even: otherwise, by repeating an odd cycle indefinitely,
we would get a play that is winning for Odd. Further
overloading terminology, we say that a (parity game)
graph is even if all cycles in it are even.

2.2 Ordered trees and progress measures. An
ordered tree is a prefix-closed set of sequences of a
linearly ordered set. We refer to such sequences as tree
nodes, we call the elements of such sequences branching
directions, and we use the standard ancestor-descendent
terminology for nodes. For example: node () is the root
of a tree; node (x) is the child of the root that is reached
from the root via the branching direction z; node (x,y)
is the parent of node (z,y, 2z); nodes (), (x), and (x,y)
are ancestors of node (z,y,z); and nodes (z,y) and
(x,y, z) are descendants of nodes () and {(x). Moreover,
a node is a leaf if it does not have any descendants.
All nodes in an ordered tree are linearly ordered by the
lexicographic order on sequences that is induced by the
assumed linear order on the set of branching directions.
For example, we have (z) < (x,y), and (x,y, w) < (z, 2)

if y < z. The depth of a node is the number of elements
in the eponymous sequence, the height of a tree is the
maximum depth of a node in it, and the size of a tree
is the number of its leaves.

A tree labelling of a parity game is a mapping
1 from the vertices in the game graph to leaves in
an ordered tree of height d/2; for convenience and
without loss of generality we assume that every leaf has
depth d/2. We write (mg_1,mg4—3,...,m1) to denote
such a leaf, and for every priority p, 1 < p < d,

we define its p-truncation (mg_1,mg—3,...,mi)l, to
be the sequence (mgq_1,mq_3,...,mp) if p is odd, and
(Mg—1,Mg—3,...,mpy1) if p is even. We say that a

tree labelling p of the game is a progress measure if the
following progress condition holds for every edge (v, u)
in the strategy subgraph of some positional strategy for
Even:

o if pis even then 1(v)|x(v,u) > 1(U)|r(v,u);

o if p is odd then 1(v)|x(v,u) > ()] x(v,u)-
We recommend inspecting the (brief and elementary)
proof of [25] Lemma 2], which establishes that every
cycle in the strategy subgraph whose all edges satisfy the
progress condition is even. It gives a quick insight into
the fundamental properties of progress measures and it
shows the easy implication in the following theorem that
establishes progress measures as witnesses of winning
strategies in parity games.

THEOREM 2.1. ([12], 24]) Even has a winning strategy
from every vertex in a parity game if and only if there
s a progress measure on the game graph.

2.3 Finding tree witnesses on universal trees.
It is a straightforward but fruitful observation of Ju-
rdziriski and Lazié¢ [25] that a progress measure on a
game graph with n vertices and at most d distinct edge
priorities is a mapping from the vertices in the game
graph to nodes in an ordered tree of height at most d/2
and with at most n leaves (all subtrees that no vertex is
mapped to can be pruned). It motivates the fundamen-
tal concept that we introduce in this section—universal
trees.

An (¢, h)-universal (ordered) tree is an ordered tree,
such that every ordered tree of height at most h and
with at most ¢ leaves can be isomorphically embedded
into it; in such an embedding, the root of the tree must
be mapped onto the root of the universal tree, and
the children of every node must be mapped—injectively
and in an order-preserving way—onto the children of its
image.

The following proposition follows directly from the
above “straightforward but fruitful” observation and the
definition of a universal tree.

Copyright © 2019 by SIAM

2336 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ProOPOSITION 2.1. ([25]) Ewvery progress measure on a
graph with n vertices and with at most d priorities can
be seen as a map into an (n,d/2)-universal tree.

We offer the following interpretation of the small
progress measure lifting [24] and the succinct progress
measure lifting [25] algorithms, highlighting the central
role played in them by the concept of universal trees that
we introduce here. Both algorithms perform an iterative
search for a progress measure (a witness for a winning
strategy for Even), and their search spaces are limited
by restricting the labels considered in candidate tree
labellings to leaves in specific (n,d/2)-universal trees.
Where the two algorithms differ is the universal trees
they use: in the former algorithm it is the full n-ary
tree of height d/2, and in the latter it is an ordered tree
of height d/2 in which the branching directions are bit
strings, where for every node, the total number of bits
used in all its branching directions is bounded by [lgn].

We observe that what is common for both algo-
rithms is that their correctness relies precisely on the
universality property of the ordered tree from which
the candidate labels are taken from. Indeed, if there
is a witness for a winning strategy for Even in the form
of a progress measure (whose existence is guaranteed
by Theorem , then by Proposition it suffices to
look for one that uses only leaves of a universal tree as
labels. The original papers [24][25] contain the technical
details of the iterative scheme that both algorithms use.
Here, we highlight the following two key insights about
the design and analysis of those algorithms:

e cach algorithm computes a sequence of tree la-
bellings that is monotonically increasing (w.r.t. the
pointwise lexicographic order), while maintaining
the following invariant: the current labelling is
pointwise lexicographically smaller than or equal
to every progress measure;

e the worst-case run-time bound for the algorithm is
determined (up to a small polynomial factor) by
the size of the universal tree used.

Using our interpretation of the progress measure
lifting algorithms and the terminology of universal trees,
the small progress measure lifting algorithm [24] is us-
ing a tree whose universality is straightforward, and
whose size—©(n%?)—is exponential in the number of
priorities. On the other hand, the main technical con-
tribution of Jurdziriski and Lazi¢—that yields their
quasi-polynomial succinct progress measure lifting algo-
rithm [25] Theorem 7)—can be stated as the following
quasi-polynomial upper bound on the size of universal
trees.

THEOREM 2.2. (|25, LEMMAS 1 AND 6]) For all pos-
itive integers € and h, there is an (£, h)-universal

tree with at most quasi-polynomial number of leaves.
More specifically, the number of leaves is at most
QE(HgM,th), which is polynomial in € if h = O(log¢);
it is O (hO18(W/18O+145) it b = w(logl); and—more
crudely—it is always £'8h+O1)

A natural question then arises, whether one can signifi-
cantly improve the worst-case upper bounds on the run-
time complexity of solving parity games by designing
significantly smaller universal trees. We give a negative
answer to this question in the next section.

2.4 Smallest universal trees are quasi-poly-
nomial. The main technical result in this section is a
quasi-polynomial lower bound on the size of universal
ordered trees that matches the upper bound in The-
orem up to a small polynomial factor. It follows
that the smallest universal ordered trees have quasi-
polynomial size, and hence the worst-case performance
of progress measure lifting algorithms [24] [25] cannot be
improved to sub-quasi-polynomial by designing smaller
universal ordered trees[]

THEOREM 2.3. For all positive integers £ and h, ev-
ery (¢, h)-universal tree has at least (Uggflh_l) leaves,

which is at least 0'8/180=1 provided that 2h < 0.

This lower bound result shares some similarities with
a result of Goldberg and Lifschitz [2I], which is for
universal trees of a different kind: the height is not
bounded and the trees are not ordered.

Proof. First, we give a derivation of the latter bound
from the former; we show that

lgt]+h—1Y _ (llgt]+h—1 S (lah/150)-1
h—1 |lg ¢] -

provided that 2h < ¢. We start from the inequal-

ity (%)é < (’Z) applied to the binomial coefficient

(ng fljg%kl% and take the lg of both sides. This yields

«(hen)2

> l1g¢) - [1g (g) +h —1) ~ lgllg]
>(gl—1)-(Igh —1glg¥)
>1gl- (lg(h/1gt) — 1),

where the second inequality follows since £ > 2, and the
third by the assumption that 2h < /.
TThe quasi-polynomial lower bound on the size of universal

trees has appeared in the technical report [17], which is subsumed
by this paper.

Copyright © 2019 by SIAM

2337 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

To prove the first bound, we proceed by induction
and show that any (¢, h)-universal tree has at least
g(£, h) leaves, where

V4
=> g([¢/8],h— 1),
6=1

g(¢,1) =4, and g(1,h) = 1.

The bounds are clear for h =1 or £ = 1.

Let T be a (¢, h)-universal tree, and § € {1,...,/¢}.
We claim that the number of nodes at depth h — 1 of
degree greater than or equal to 4 is at least g(|£/d],h —
1).

Let T5s be the subtree of T' obtained by removing all
leaves and all nodes at depth h — 1 of degree less than
0: the leaves of the tree T have depth exactly h — 1.

We argue that T is ([£/d], h—1)-universal. Indeed,
let ¢ be a tree with [¢/5] leaves all at depth h — 1. To
each leaf of t we append § children, yielding the tree ¢
which has [£/¢] -6 < ¢ leaves all at depth h. Since T'
is (¢, h)-universal, the tree ¢4 embeds into 7. Observe
that the embedding induces an embedding of ¢t into T},
since the leaves of ¢ have degree ¢ in ¢, hence are also
in Tg.

Let £s5 be the number of nodes at depth A — 1 with
degree exactly §. So far we proved that the number of
nodes at depth h — 1 of degree greater than or equal to
d is at least g(|£/6],h — 1), so

1
> 4= g([4/5),h - 1).
=5

Thus the number of leaves of T is
¢ VA ’
i=1 6=1i=6 s=1
It remains to prove that
lg?| +h— 1>
2.1 l h) > .
en aenz (B

Define G(p, h) = g(2P, h) for p > 0 and h > 1. Then we
have

G(p,h) > YX_ o Glp—Fkh—1),
G(p,1) = i
G0,h) = 1.

QA
S
-
Il
-
=
I
=
+
Q
[
L
=

so that G(p,h) > G(p,h). We verify by induction that
G(p,h) (Hhe 1) Wthh follows from Pascal’s identity

<p+h1> <p+h2> <p+h2>
= + .
p p p—1
This implies that G(p, h) > (erZ*l), from which
follows.

3 The separation approach

3.1 Languages of play encodings. The outcome of
the two players interacting in a parity game by making
moves is an infinite path in the game graph. We encode
such infinite paths as infinite words over the alphabet
¢ = {1,2,...,d} in a natural way: each move—in
which an edge e is followed—is encoded by the letter
m(e), i.e., the priority of edge e.

We write LimsupEven, for the set of infinite words
in which the biggest number that occurs infinitely
many times is even, and we write LimsupOdd, for
the set of infinite words in which that number is odd.
Observe that sets LimsupEven,; and LimsupOdd, form
a partition of the set (X4)“ of all infinite words over the
alphabet ¥;. As intended, an infinite play in a parity
game graph (of arbitrary size) with edge priorities not
exceeding d is winning for Even if and only if the infinite-
word encoding of the play is in LimsupEven,.

Recall that a (parity game) graph is called even if
every cycle in it is even (i.e., the highest priority that
occurs on the cycle is even). For all positive integers n
and d, we define the language EvenCycles, ; C (¥34)*
to consist of infinite words that encode an infinite
path in an even graph with at most n vertices and d
priorities. The languages EvenCycles,, ; can be thought
of as finitary under-approximations of the language
LimsupEven, because

EvenCycles, ; C EvenCycles, 4, C -+ C LimsupEven,;.

Languages OddCycles,, ;—that can be thought of
as finitary under-approximations of the language
LimsupOdd, ;—are defined in an analogous way.

3.2 Safety automata and games. The classi-
cal and well-known model that the statement of our
main technical result formally refers to is a (non-
deterministic) safety automaton. Superficially, it closely
resembles the classic model of finite automata: each
safety automaton has a finite set of states, a designated
initial state, and a transition relation. (Without loss of
generality, we assume that the transition relation is to-
tal, i.e., for every state s and letter a, there is at least one
state s, such that the triple (s, a, s') is in the transition
relation.) The differences between our model of safety

Copyright © 2019 by SIAM

2338 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

automata and the classic model of finite automata with
designated accepting states are as follows:

e safety automata are meant to accept or reject
infinite words, not finite ones;

e a safety automaton does not have a designated set
of accepting states; instead it has a designated set
of rejecting states;

e a safety automaton accepts an infinite word if there
is an infinite run of the automaton on the word in
which no rejecting state ever occurs; otherwise it
rejects the infinite word.

We say that a safety automaton is deterministic if the
transition relation is a function: for every state s and
letter a, there is a unique state s, such that the triple
(s,a,s’) is a transition.

Finally, we define the elementary concept of safety
games, which are played by two players on finite directed
graphs in a similar way to parity games, but the goals of
the players are simpler than in parity games: the safety
player wins if a designated set of unsafe vertices is never
visited, and otherwise the opponent (sometimes called
the reachability player) wins.

3.3 Safety separating automata. For positive in-
tegers n and d, we say that an automaton A is an
(n, d)-separator if it is a separator of EvenCycles,, ; and
OddCycles,, ;; and we say that it is a strong (n,d)-
separator if it is a separator of EvenCycles, ;, and
LimsupOdd,. Note that if an automaton is a strong
(n,d)-separator then it is also an (n,d)-separator, but
not every (n, d)-separator is strong.

To illustrate the concept of a (strong) (n,d)-
separator, we present a simple “multi-counter” strong
(n, d)-separator that is implicit in the work of Bernet et
al. [I]. We define the automaton C,, 4 that, for every odd
priority p, 1 < p < d — 1, keeps a counter c, that stores
the number of occurrences of priority p since the last oc-
currence of a priority larger than p (even or odd). It is
a safety automaton: it rejects a word immediately once
the integer stored in any of the d/2 counters exceeds n.

In fact, instead of “counting up” (from 0 to n),
we prefer to “count down” (from n to 0), which is
equivalent, but it aligns better with the definition
of progress measures. More formally, we define the
deterministic safety automaton C, g in the following
way':

o the set of states of C, 4 is the set of d/2-sequences
(¢4—1,€d4—3,...,c1), such that ¢, is an integer such
that 0 < ¢, < n for every odd p, 1 < p <
d — 1; and it also contains an additional rejecting
state reject;

e the initial state is (n,n,...,n);

e the transition function ¢ is defined so that

5(reject,p) = reject for all p € X, and
(5(<cd_1, Cd—3, - - - ,cl>,p) is equal to:
— (Cd—1,€d—3, .-, Cpt1,M, ..., n) if pis even,
— (cd-1,¢d—3,...,cp—1L,m,...,n)if pis odd and
cp >0,
— reject if p is odd and ¢, = 0.
Note that the size of automaton C,, 4 is ©(n%/?).

ProprosITION 3.1. ([1l, B]) The safety automaton C, 4
is a strong (n,d)-separator.

Proof. Firstly, we argue that if the unique run of C,, 4 on
an infinite word contains an occurrence of the rejecting
state then the word is not in EvenCycles,, ;. Indeed,
the only reason for the unique run of C, 4 to reach the
rejecting state is that the state reached after reading
some prefix of the word is (¢4_1, c4—3,...,c1) with ¢, =
0 for an odd p, and p is subsequently read. For this to
happen, there must be a suffix of the prefix in which
there are m occurrences of priority p and no priority
higher than p occurs, and the currently read letter is
the (n 4 1)-st occurrence of priority p in the prefix. We
argue that if the input word is an encoding of an infinite
play in an even graph with at most n vertices then—by
the pigeonhole principle—there is a cycle in the graph
in which the highest priority is p, which contradicts the
assumption that the graph was even. It follows that the
infinite word is not in EvenCycles,, .

Secondly, we argue that if a word is in LimsupOdd,
then the unique run of C,4 on the word contains
an occurrence of the rejecting state. Consider an
infinite suffix of the word in which all priorities occur
infinitely many times. Unless the unique run reached
the rejecting state on the corresponding prefix already,
let (¢4—1,Cd—3,- - -, 1) be the state reached in the unique
run at the end of the prefix. By the assumption that
the word is in LimsupOdd,, the highest priority that
occurs in the suffix is odd and it occurs infinitely many
times. Take the shortest prefix of the suffix in which the
highest priority p occurs n—c,+1 times. The unique run
of C,, 4 on the original infinite word reaches the rejecting
state upon reading that prefix.

3.4 The separation approach. We now explain
how safety separating automata allow to reduce the
complex task of solving a parity game to the (conceptu-
ally and algorithmically) straightforward task of solving
a safety game, by exploiting positional determinacy of
parity games. This is the essence of the separation ap-
proach that implicitly underpins the algorithms of Ber-
net, Janin, and Walukiewicz [I] and of Calude et al. [5],
as formalized by Bojariczyk and Czerwiriski [3], Chapter
3]. Here, we only consider the simple case of determin-
istic automata. We postpone the discussion of using

Copyright © 2019 by SIAM

2339 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

non-deterministic automata in the separation approach
to Sections [4.3] and [£:4] which is the only place where
non-determinism seems to be needed.

Given a parity game G with at most n vertices and
priorities up to d, and a deterministic safety automa-
ton A with input alphabet ¥4, we define a safety game
as the chained product G > A, in which

e the dynamics of play and ownership of vertices is

inherited from the parity game G;

e the automaton A is fed the priorities of the edges
corresponding to the moves made by the players;

e the safety winning condition is the safety accep-
tance condition of the automaton A.

ProprosITION 3.2. If G is a parity game with n vertices
and priorities up to d, and if A is a deterministic safety
(n,d)-separator, then Fven has a winning strategy in G
if and only if she has a winning strategy in the chained-
product safety game G > A.

Proof. If Even has a winning strategy in the parity
game G then—by positional determinacy [12, 28—
she also has one that is positional. We argue that if
Even uses such a positional winning strategy in G when
playing the chained-product game G > A, then she also
wins the latter. Indeed, the strategy subgraph of the
positional winning strategy for Even in G is an even
graph with at most n vertices, and hence all words that
are fed to the automaton A are in EvenCycles,, ,4, and
hence they are accepted by A.

Otherwise, Odd has a positional winning strategy
in G, and it can be transferred to a winning strategy for
him in G > A in the same way as we argued for Even
above.

In the rest of the paper, we focus on strong (n,d)-
separators for two reasons. Firstly—as described in
Section [l—all the known quasi-polynomial algorithms
for parity games are underpinned by strong (n,d)-
separators. Secondly, our proof of the quasi-polynomial
lower bound in Section [5{ only applies to strong (n, d)-
separators.

4 Separating automata everywhere

In this section we argue that the three distinct tech-
niques that have been developed so far for designing
quasi-polynomial algorithms for solving parity games
can be unified as instances of the separation approach
introduced in the previous section. The main unify-
ing aspect that we highlight in this section is that all
the three approaches yield constructions of separating
automata of quasi-polynomial size, which provides ev-
idence of significance of our main technical result: the
quasi-polynomial lower bound on the size of separa-
tors (Theorem forms a barrier that all of those

approaches need to overcome in order to further sig-
nificantly improve the known complexity of solving par-
ity games. We note that, in contrast to the results of
Calude et al. [5] and Lehtinen [27], not all of the pro-
posed quasi-polynomial algorithms explicitly construct
separating automata or other objects of (at least) quasi-
polynomial size [25] [T6], but in the worst case, they too
enumerate structures that form the states of the related
separating automata (leaves in a universal tree and play
summaries, respectively).

In Section we generalize the simple separator
described in Section B.3] to a construction that cre-
ates strong separators from arbitrary universal trees.
This result implies that the main combinatorial struc-
ture underlying all the progress measure lifting algo-
rithms [24] [l [30, [6], including the quasi-polynomial
succinct progress measure lifting of Jurdzinski and
Lazié¢ [25] [11]], is intimately linked to the separation ap-
proach. In Section we briefly discuss the observa-
tion of Bojanczyk and Czerwinski [3] that Calude et
al.’s [0] play summaries construction can be straightfor-
wardly interpreted as defining a separating automaton;
we refer the reader to their very readable technical ex-
position. Finally, in Sections and we discuss
how to adapt the separation approach to also encap-
sulate the most recent quasi-polynomial algorithm for
solving parity games by Lehtinen [27], based on register
games. This requires care because, unlike the construc-
tions based on play summaries and universal trees, sep-
arating automata that underpin Lehtinen’s reduction
from parity games to register games seem to require
non-determinism, and in general, Proposition does
not hold for non-deterministic automata.

4.1 Separating automata from universal trees.
For positive integers n and d, such that d is even,
let L, q/2 be the set of leaves in an (n,d/2)-universal
tree. The definition of the deterministic safety automa-
ton Uy, q bears similarity to the definition of the sim-
ple “multi-counter” separator S, 4 from Section
Again, the states are d/2-sequences of “counters”, but
the “counting down” is done in a more abstract way
than in S, g, using instead the natural lexicographic or-
der on the nodes of the universal tree.

More formally, we define a deterministic safety
automaton U, 4 in the following way:

e the set of states of Uy, 4 is the set L,, 4/o of leaves
in the (n,d/2)-universal tree together with an ad-
ditional reject state;

e the initial state is the largest leaf (in the lexico-
graphic tree order) and the only rejecting state is
reject;

e the transition function ¢ is defined so that

Copyright © 2019 by SIAM

2340 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

d(reject,p) = reject for all p € X4, and if
s # reject then (s, p) is equal to:
— the largest leaf s’ such that s|, = §'[, if p is
even,
— the largest leaf s’ such that s|, > §'|, if p is
odd,
— reject if p is odd and no such leaf exists.

REMARK 4.1. Let T, q be an ordered tree in which all
the leaves have depth d/2 and every non-leaf node has
exactly n children; note that Ty, 4 is trivially an (n,d/2)-
universal tree. An instructive exercise that we recom-
mend is to compare the structures of the automaton Uy, 4
based on the (n,d/2)-universal tree Ty, q and of the sim-
ple separating automaton Sy, q from Section .

THEOREM 4.1. For every (n,d/2)-universal tree, the
safety automaton Uy, 4 is a strong (n,d)-separator.

Proof. First we prove that if an infinite word w €
Y4 is in EvenCycles, , then it is accepted by the
safety automaton U, 4. Let G be an even graph
with at most n vertices and priorities up to d, in
which w occurs as an encoding of an infinite path;
let (v1,v9,v3,...) be the sequence of vertices in the
infinite path in G. By Theorem [2.I]and Proposition [2.1
there is a progress measure p that maps vertices in G
into the set of leaves L, 4/o in the (n,d/2)-universal
tree. Consider the unique run (qi,¢2,¢3,...) of Upn 4
on the word w, where ¢ is the initial state of Uy, 4
and we have §(q;, m(v;,v;41)) = ¢4+1 for all positive
integers ¢. By the definition of the initial state in 4, 4,
we have that ¢ > p(v1), and the definition of the
transition function of U, 4 allows to establish—by a
straightforward induction on i—that ¢; > u(v;) for all
positive integers i. It follows that the run never reaches
the reject state, and hence the run is accepting.

Now we argue that for every infinite word w
in LimsupOdd,, the unique run of U, 4 on it eventually
reaches the reject state. Our argument is a generaliza-
tion of the corresponding one in the proof of Proposi-
tion Consider an infinite suffix © = (z1,x9,x3,...)
of the word w in which all priorities occur infinitely
many times. Unless the unique run reached the reject-
ing state on the corresponding prefix already, let s; be
the state reached in the unique run at the end of the pre-
fix. Let p be the highest priority that occurs in z; by the
assumption that w is in LimsupOdd,, the priority p is
odd. Let (sq, sz, s3,...) be the unique run of U, 4 on z:
for every positive integer i, we have §(s;,z;) = Siy1.
Note that (s1,s2,83,...) is a suffix of the unique run
of Uy, ¢ on w. By the definition of the transition function
of Uy, 4, if 5; and s;41 are not equal to the reject state
then s;|, > sit1lp, and if z; = p then s;|, > si41]p.

Therefore, unless s; = reject for some positive inte-
ger 4, there is an infinite subsequence of (s1, so, s3,...)
whose p-truncations form a strictly decreasing sequence,
which contradicts finiteness of the set L, 4/o of states
of un,d-

The following can be obtained by using the nearly
optimal quasi-polynomial (n,d/2)-universal trees from
Theorem [2.2]in the construction of the automaton U, 4.

COROLLARY 4.1. There are deterministic safety auto-
mata that are strong (n, d)-separators of size n's d+0(1)

4.2 Separating automata from play summaries.
Bojariczyk and Czerwiniski [3, Chapter 3] give an ac-
cessible exposition of how the breakthrough result of
Calude et al. [5] can be viewed as a construction of a
deterministic automaton of quasi-polynomial size that
separates EvenLoops,, ; from LimsupOdd,, which im-
plies separation of EvenCycles,, ; from LimsupOdd,.
One superficial difference between our exposition of
separators and theirs is that we use the model of safety
automata, while they consider the dual model of reach-
ability automata instead. (In reachability automata, an
infinite word is accepted if and only if one of the des-
ignated accepting states is reached; otherwise it is re-
jected.) If, in Bojariczyk and Czerwinski’s construction,
we swap the roles of players Even and Odd, and we make
the accepting states rejecting, we get a safety automa-
ton that separates EvenCycles,, ; from LimsupOdd,.

THEOREM 4.2. ([B, B]) The play summaries data
structure of Calude et al. yields deterministic safety

automata that are strong (n,d)-separators of size
nled+0(1)

4.3 Non-deterministic automata and the sep-
aration approach. The possible usage of non-
deterministic automata in the separation approach to
solving parity games is less straightforward. First of all,
the game dynamics needs to be modified to explicitly in-
clude the choices that resolve non-determinism in every
step. We give the power to make those choices to Even,
but this extra power does not suffice to make her win
the chained-product game whenever she has a winning
strategy in the original parity game. The reason for this
failure in transferring winning strategies from the par-
ity game to the chained-product safety game is that in
arbitrary non-deterministic automata it may be impos-
sible to successfully resolve non-deterministic choices at
a position in the input word without knowing the letters
at the later positions. In the game, however, the play is
a result of the future choices of both the player and her
opponent, and the former cannot predict the latter.

Copyright © 2019 by SIAM

2341 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

A well-known example of non-deterministic au-
tomata for which the chained-product game is equiv-
alent to the original game is the class of good-for-games
automata [22]. They have the desired property that the
non-deterministic choices of the automaton can always
be resolved based only on the letters in the word at the
positions up to the current one, thus making it possible
to continue constructing an accepting run for all words
accepted by the non-deterministic automaton that have
the word read so far as a prefix.

We consider a weaker property than the one men-
tioned above, one that is sufficient for strategy transfer
in the context of the separation approach. We say that a
non-deterministic automaton A is a good-for-separation
strong (n, d)-separator if for every parity game G with
at most n vertices and d priorities, in the chained-
product game G > A, there is a way to resolve the
non-deterministic choices of 4 based only on the pre-
fix of the play so far, in such a way that a construction
of an accepting run can be continued for all words in
EvenCycles,, ; (but not necessarily for all the words ac-
cepted by A).

More formally, a non-deterministic automaton A is
a good-for-separation strong (n, d)-separator if it rejects
every word in LimsupOdd,, and for every even game GG
with n vertices and priorities up to d, there is a winning
strategy for Even in the chained-product game G > A.
We note that the automata that can be derived using
Lehtinen’s techniques [27] are good-for-separation and
hence they are suitable for being used in the separation
approach.

Note that our quasi-polynomial lower bound in
Section [5| holds for all non-deterministic strong (n,d)-
separators, regardless of their suitability for strategy
transfer and for solving parity games using the sepa-
ration approach.

4.4 Separating automata from register games.
First, we recall the definition of a (non-deterministic)
parity automaton. Like safety automata, parity au-
tomata process infinite words, but instead of having des-
ignated rejecting states, every transition has a priority,
which is a positive integer. The set of transitions con-
sists of tuples of the form (s, a,p,s’): such a transition
has priority p, and when reading a letter a in state s,
the automaton moves to state s’. We say that a run
of a parity automaton on an infinite word is accepting
if the highest transition priority that occurs infinitely
often is even; otherwise it is rejecting. The automaton
recognizes the language of all words on which it has an
accepting run. The following observation is straightfor-
ward.

PROPOSITION 4.1. For every positive integer d, there is

a deterministic parity automaton Py, with 1 state and d
priorities, that recognizes the language LimsupEven,.

Indeed, it suffices to equip the transition relation Py
with transitions (s,p,p,s), where s is the unique state
of Py, for all p € ¥;. Observe that recognizing the
language LimsupEven, implies being a strong (n,d)-
separator for all positive integers n: a much stronger
property than being a strong (n, d)-separator for some
positive integer n. Since the automaton Py is deter-
ministic, it is in principle suitable for the separation
approach applied to games with d distinct priorities.
Note, however, that using it brings no tangible bene-
fit for solving parity games: the chained-product game
G > Py has as few vertices as the original game G, but
its number of distinct priorities is no smaller.

We argue that the key technical result in the recent
work of Lehtinen [27] can be interpreted as proving the
following theorem.

THEOREM 4.3. ([27]) For all positive integers n and d,
there is a good-for-separation parity automaton R, 4,
with at most (dﬂlg”Hl) = nledtO0) sates and

2|lgn| + 3 priorities, that is a strong (n,d)-separator.

Note that this theorem does indeed bring tangible ben-
efits for solving parity games (via the separation ap-
proach) because if a parity game G has n vertices and d
priorities, then the chained-product game G >R, 4 has
only a quasipolynomial number of vertices and a log-
arithmic number of priorities. Even if an unsophisti-
cated algorithm—with run-time that is exponential in
the number of priorities—is used to solve the chained-
product game G > R, 4, the overall run-time is quasi-
polynomial.

For every parity game G, Lehtinen defines the
corresponding register game R¢, whose vertices consist
of vertices of game G together with |1+ 1gn]-sequences
("|141gn)s - - -»T2,71) of the so-called registers that hold
priorities, i.e., numbers from the set {1,2,...,d}. The
game is played on a copy of G in the usual way,
additionally at her every move player Even is given a
chance—but not an obligation—to “reset” one of the
registers, and each register always holds the biggest
priority that has occurred since it was last reset.

What needs explaining is what ‘“resetting a
register” entails. When the register at posi-
tion k is reset, then the next register sequence is
(Tlitign]s- > Th41sTk—1,---,71, 1), that is registers at
positions 1 to k —1 are promoted to positions 2 to k, re-
spectively, and the just-reset register is now at position 1
and it has value 1. Moreover—and very importantly for
Lehtinen’s construction—resetting the register at posi-
tion k causes the even priority 2k to occur in game Rg

Copyright © 2019 by SIAM

2342 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

if the value in the register was even, and the odd pri-
ority 2k + 1 otherwise. If, instead, Even decides not to
reset any register then the odd priority 1 occurs.

Lehtinen’s main technical result is that the original
parity game G and the register game Rg have the same
winners. She proves it by arguing that if Even has
a (positional) winning strategy in G then she has a
strategy of resetting registers in Rg so that she again
wins the parity condition (albeit with the number of
priorities reduced from an arbitrarily large d in G to
only |1+41gn] in Rg). Our approach is to separate the
graph structure from Lehtinen’s mechanism to capture
the original parity winning condition using registers.
We now define an automata-theoretic analogue of her
construction in which we use non-determinism to model
the ability to pick various resetting strategies.

For all positive numbers n and d, such that d is even,
we define the non-deterministic parity automaton Ry, 4
in the following way.

o The set of states of R,, 4 is the set of non-increasing
|1+ 1gn|-sequences (r|14ign],---,72,71) of “regis-
ters” that hold numbers in {1,2,...,d}. The initial
state is (1,1,...,1).

e For every state s = (7|141gn),---,72,71) and letter
p € Y4, we define the update of s by p to be the state
(Tl1i41gn)>- > Tk Dy - - -, D), Where k is the smallest
such that ry > p.

e For every state s = (r|i4ign],.--,72,71) and for
every k, 1 < k < |14+lgn|, we define the k-reset of s
to be the state (7|1 11gn s > TRt Tho1,- -+, 72, 1).

e For every state s and letter p € X4, there is a
transition (s,p,1,s’) of priority 1 in the transition
relation, and where s’ is the update of s by p; we
call this a non-reset transition.

e For every state s, letter p € ¥4, and for every k,
1<Ek<L Ll + lgnj, if s = <rL1+lgnJa---aT27r1> is
the update of s by p and r; is even, then there
is a transition (s,p,2k,s’) of priority 2k in the
transition relation, where s’ is the k-reset of s”. We
say that this transition is an even reset of register k.

e For every state s, letter p € ¥4, and for every k,
1<k<L Ll + lgnj, if s = <r[1+1gnJ" .. ,7’2,7‘1) is
the update of s by p and ry is odd, then there is a
transition (s,p, 2k + 1, ") of priority 2k + 1 in the
transition relation, where s’ is the k-reset of s”. We
say that this transition is an odd reset of register k.

The states of R, 4 are monotone sequences of length
1+ lgn, consisting of positive integers no larger than d,
and hence their number is bounded by (d+ ngd"Hl) <
dt1en) which is n'8 4t We note that the register
game Rq that Lehtinen constructs from a parity game G
is essentially the same as the chained-product game
G Rn,d-

The proof that the parity automaton R, is a
strong (n,d)-separator can be obtained by adapting
Lehtinen’s proofs showing that the register index of a
parity game with n vertices is at most 1 + lgn [27]
Theorem 4.7] and that a winning strategy for Odd in
a parity game G yields a winning strategy for him in
the corresponding register game Rg [27, Lemma 3.3)].
We refer an interested reader to Lehtinen’s paper for
the details. We note, however, that the strategy
for resetting registers in the register game Rg (and
hence also in the chained-product game G' > R,, 4) that
Lehtinen constructs in the proof of [27, Theorem 4.7]
depends only on the current content of the registers and
the current vertex in the game. This property implies
that the automata R, 4 are good-for-separation (n,d)-
separators in the sense discussed in Section

We stress that the quasi-polynomial lower bound
for the size of strong separators that we establish in
Section [5| applies to safety automata, but not to parity
automata such as R, 4.

On the other hand, we argue that the parity au-
tomata R, 4 can be turned into good-for-separation
safety (n,d)-separators by taking a chained product
with other deterministic safety separators. Let R be
a parity automaton over the alphabet X4 and with d’
transition priorities, and let S be a safety automaton
over the alphabet YX4. Consider the following chained-
product automaton R > S.

e The set of states is the set of pairs (r, s), where r is
a state of R and s is a state of S. The initial state
is the pair of the initial states of the two automata.
A state (r, s) is rejecting if s is rejecting in S.

e If (r,a,p,r') is a transition in R, where a € ¥ is
the letter read by the transition and p € ¥y is the
priority of the transition, and if (s,p,s’) is a tran-
sition in S (for deterministic automata, we often
write §(s,p) = s’ instead), then ((r,s),a, (1, ') is
a transition in R > S.

Let n' = (dﬂl‘%i"Hl) = n'gd+O0() he the number of
states in the parity register automaton R, 4 and let
d' = 2|lgn] 4+ 4 be an upper bound on its priorities.

ProposITION 4.2. If S is a deterministic safety strong
(n',d")-separator then the chained-product automaton
Rn.a> S is a safety good-for-separation strong (n,d)-
separator.

Proof. Let G be an even graph with n vertices and
priorities up to d. Careful inspection of Lehtinen’s
proof of [27, Theorem 4.7] reveals that Even has a
positional winning strategy o in the chained-product
game G > R,, 4. Note that the strategy subgraph G’ of
that strategy is even, and that it has at most n’ vertices
and priorities up to d’. Since S is a deterministic (n’, d’)-

Copyright © 2019 by SIAM

2343 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

separator, on every path in G’ the unique run of S
on the sequence of priorities that occur on the path is
accepting. It follows that in the game (G > R, q4) > S,
using strategy o on the G> R, 4 component guarantees
that Even always wins, and hence Even has a winning
strategy in the equivalent game G > (R, q4 > S).

On the other hand, every word in LimsupOdd, is
rejected by R,, 4 because it is a strong (n, d)-separator.
It follows that in every run of R, 4 on such a word, the
highest transition priority that occurs infinitely often
is odd. In other words, in every run of the chained-
product automaton R, 4 > S on such a word, the word
over the alphabet ¥4 that is fed into the automaton S
is in LimsupOdd, , and hence it is rejected because S is
a strong (n', d’)-separator.

Consider taking S to be the deterministic safety au-
tomaton U, ¢ from Theorem By Proposition
the chained-product automaton R, 4> U, ¢ is a safety
good-for-separation (n, d)-separator. Moreover, if U, 4
is based on the nearly optimal quasi-polynomial univer-
sal trees from Theorem [2.2] then the size of R, 4 >Up/ ar

is nlg n(lg d+0O(1)) .

5 Universal trees inside separating automata

The main result established in this section, and a main
technical contribution of the paper, is the following
quasi-polynomial lower bound on the size of all safety
strong separators.

THEOREM 5.1. Every non-deterministic safety strong
(n,d)-separator has at least (Ugnﬁlszf*l) states, which
is at least n'e(@/18n)=2

Since the currently known quasipolynomial time algo-
rithms for solving parity games implicitly or explicitly
construct a separating automaton [5l 25] [T6], 27], the size
of which dictates the complexity, this result explains in a
unified way the quasipolynomial barrier. Moreover, our
proof of the theorem pinpoints universal trees as the un-
derlying combinatorial structure behind all the recent
algorithms, by establishing that there is an (n,d/2)-
universal tree hiding in the set of states of every safety
strong (n, d)-separator.

LEMMA 5.1. If A is a (non-deterministic) safety strong
(n, d)-separator then there is an injective mapping from
the leaves of some (n, d/2)-universal tree into the states

of A.

Note that Theorem [5.] follows from Lemma [5.1] by ap-
plying Therem 2.3} —our quasi-polynomial lower bound
for universal trees, because d < n.

We prove Lemma in two steps. In the first step,
we show that every safety strong (n, d)-separator has a

tree-like structure (Lemma [5.2]). Then, assuming this
special structure, we prove that there is a universal tree
whose leaves can be injectively mapped into the set of

states of A (Lemmal5.3).

5.1 Tree-like structure. A binary relation < on a
set X is called a linear quasi-order if it is reflexive,
transitive, and total (i.e. such that for all x,y € X
either x < y, or y < x, or both). If x <y and y A =,
then we write £ < y. An equivalence class of < is a
maximal set e C X such that x < y and y = z for all
xz,y € e. It is well-known that the equivalence classes
of < form a partition of X and given two equivalence
classes e and ¢, there exist x € e and y € €’ such that
x X yifand onlyifforallz € eandy € ¢/, x < y. When
this is the case, it is denoted by e < €/, and e < ¢’ when
additionally €’ # e.

Given two linear quasi-orders <; and <5, we write
=<1 C Xqif for all z,y € X, ¢ <7 y implies z =<5 y.
In that case, any equivalence class of <5 is formed
with a partition of equivalence classes of <;. In other
words, an equivalence class of < is included in a unique
equivalence class of <5 and disjoint from the other ones.

For an automaton A over the alphabet 4, a tree-
decomposition of A is a sequence of linear quasi-orders
=<7 € =23 C .-+ C =441 on the set of non-rejecting
states of A such that:
1. if (s,p, ') is a transition in A then s =q;41 &' for all ¢

such that p < 2i4+1<d+ 1.

2. if (s,p,s’) is a transition in A and p is odd then
$ 9,41 8 for all ¢ such that 1 <2i+1 <p.
3. =<4+1 has a single equivalence class, containing all

non-rejecting states of A.

In other words, reading a priority cannot cause an
increase with respect to orders with indices greater than
it, and additionally reading an odd priority necessarily
causes a decrease with respect to orders whose indices
are smaller than or equal to this priority. If there is
a tree-decomposition of A, we say that A is tree-like.
Given a tree decomposition D of A, we define the D-tree
of A, denoted treep(A), as follows (recall the notation
for ordered trees from Section [2.2)):

e nodes of the ‘treep(A) are sequences
(€d—1,€d—3, ... €p), where pisodd, 1 <p <d—1,
and where every branching direction e; is an
equivalence class of the quasi-order <;, such that
€d—1 2 €d—3 2 -+ 2 €,

e the order between branching directions e;, e, being
equivalence classes of <; is e; < e} when e; <; €.

Notice that for a non-rejecting state ¢ of A, there is
a unique sequence eq_1 2 eq_3 2D --- 2O e; where for
every i, e; is an equivalence class of =<; containing q.
One can thus assign a non-rejecting state ¢ to the

Copyright © 2019 by SIAM

2344 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

corresponding leaf (ej_1,e4-3,...,€1) in such a way
that for every odd priority p € {1,3,...,d—1}, ¢ <, ¢
if and only if the p-truncation of the leaf assigned to q is
smaller in the lexicographic order than the p-truncation
of the leaf assigned to ¢'.

An automaton is accessible if for every state q there
exists a run from an initial state to ¢, and moreover, if
q is non-rejecting, there exists such a run which does
not go through any rejecting state. The first of the two
steps of the proof of Lemma [5.1| can be summarized by
the following lemma.

LEMMA 5.2. FEvery accessible non-deterministic safety
strong (n, d)-separator is tree-like.

Proof. We define the linear quasi-orders inductively
starting from higher indices, that is, in the order
=<dt1, d—1,---,=1. As <411 we take the quasi-order in
which all non-rejecting states are in a single equivalence
class. Condition 3. is already satisfied.

Assume now that the quasi-orders
=<d+1, Rd—1,--.,22;+3 are already defined, and
that they fulfil Conditions 1. and 2. We define <5, 41
as a refinement of <5;413. If ¢ <g9;43 r then we set
q <2i+1 7 as well. So it remains to define whether
=9i+1 holds for states ¢ and r in the same equivalence
class of <9;13. Before this, notice that we are already
guaranteed that =<9;41 satisfies Conditions 1. and 2.
for priorities higher than 2¢ + 1. Indeed, Condition
1. talks only about priorities smaller than 2¢ + 1. By
Condition 2. applied to <3;13 we know that if priority p
isodd, p > 2i + 3 (ie, p > 2i+ 1), and (s,p,s")
is a transition, then s >9;,13 &', so also s »9;41 §.
Therefore we only need to define <5;41 in such a way
that Condition 1. is satisfied for priorities from the
set {1,...,2i} and Condition 2. is satisfied for the
priority 2¢ + 1. Intuitively speaking, now we only have
to care about priorities that are at most 2¢ + 1.

Let e be an arbitrary equivalence class of <9, 3.
Consider an automaton A, 241, which contains a part
of A consisting of only the states that belong to the
class e, and only the transitions that have endpoints
inside e and are labelled by priorities at most 2: + 1
(notice that A, 2,41 may not be complete). Observe
now that there cannot be any odd cycle in A. 2;41. In-
deed, otherwise we could consider the infinite run that
first reaches this cycle from an initial state in A with-
out visiting any rejecting state (which is possible un-
der the assumption that A is accessible), and then goes
around this cycle forever (note that none of the states
in the cycle is rejecting); the word read by this run
would be in LimsupOdd,, but it would be accepted
by the automaton (and it should not). Notice that

this is exactly the point in the proof of Lemma [5.2
where we need the assumption about rejecting all the
words from LimsupOdd,. Rejecting all the words from
OddCycles,, ; would not be sufficient, as the word de-
scribed above may not arise from an odd graph of size n,
and thus does not have to belong to OddCycles,, 4.
Therefore, on every path in A¢ 2;41, at most |Ae 2i41]—1
edges are labelled by letters with priority 2¢+1. Let the
resistance of a state in A¢ 2,41 be the maximal num-
ber of edges labelled by priority 2¢ + 1 over all paths
starting in that state. By the previous observation, the
resistance of a state is always finite. Having defined the
resistance, for two states s and s” in A, 2,11, we say that
s <9;41 s if the resistance of s is not greater than the
resistance of s’.

We have to show that such a definition of <g9;4;
indeed fulfils Conditions 1. and 2. For Condition 1. we
have to check that letters with priority smaller than
2i 4+ 1 never cause an increase in the quasi-order <g;41.
Consider priority p, such that p < 2i + 1 and (s,p, s)
is a transition. We know by the induction assumption
that s =9;13 8. If 8 »9;13 & then as well s »9;11 &,
and we are done with Condition 1. Otherwise, s and
s’ are in the same equivalence class of <9;,3, and it is
enough to show that s has resistance not greater than
that of s’. However, if s’ has resistance k and (s, p, s’)
is a transition, then s also has resistance at least k.
Thus, state s cannot have smaller resistance than s’.
This implies that indeed s =2;11 s’, and Condition 1. is
fulfilled. For Condition 2., we need to show that reading
priority 2¢ + 1 causes a decrease with respect to <g;11.
Assume that there is a transition (s,2i + 1,s’). By
the inductive hypothesis for <, 3, Condition 1. implies
that s >=9;13 8. If s 9,13 ' then we are done as before,
so assume that s and s’ are in the same equivalence class
of <9;13. In order to show that s 9,11 s’ it is enough
to observe that s has greater resistance than s’, which
establishes Condition 2.

5.2 Universal tree. The main goal of this section is
to complete the proof of Lemmal[5.1] by showing that the
tree-like structure of every safety strong (n, d)-separator
uncovered in the previous section has hidden inside it an
(n,d/2)-universal tree, whose leaves can be injectively
mapped into states of the separator.

Let A be a safety strong (n, d)-separator. First note
that we can assume that A is accessible, by removing the
states that are not reachable from initial states and by
making rejecting the non-rejecting states which are only
reachable by visiting a rejecting state. By Lemmalb.2{we
know that there is a tree-decomposition D of A. We are
going to prove that treep(.A) is a (n, d/2)-universal tree
and that there is an injective mapping from its leaves

Copyright © 2019 by SIAM

2345 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

5
a L 1 3 1
S~ 7] 2 ~ 2
4 6 4

N\ J

by by l3ly U5 Lol g \

Figure 1: An ordered tree ¢t and the corresponding even graph Gy.

into the states of A.

By definition, there is a bijection between the leaves
of treep(A) and the equivalence classes of <7, mapping
a leaf (eq_1,e4—3,...,€1) to e;. For every equivalence
class e of <1, pick a state ¢, in e. Consider the function
mapping a leaf (ej_1,e4-3,...,e1) of treep(A) to the
state ¢o,. This function is injective from the leaves of
treep(A) into the states of the automaton. Thus, in
order to complete the proof of Lemma [5.1} it suffices to
prove the following lemma.

LEMMA 5.3. If A is a safety strong (n,d)-separator
then for every tree-decomposition D of A, the D-tree
of A is (n,d/2)-universal.

Proof. 1t is enough to show that every tree t of height
at most d/2 and with at most n leaves can be isomor-
phically embedded into treep(A). Without loss of gen-
erality, we assume that ¢ has exactly n leaves, and that
all the leaves have depth d/2. Otherwise, if the num-
ber of leaves is less than n, add some branches to the
tree so as to have exactly n leaves; and if a leaf is not at
depth d/2, add a path from the leaf so as to reach depth
d/2. If such a tree can be isomorphically embedded in
treep(.A) then so can the original one.

As a running example, consider the ordered tree ¢
with n = 8 and d = 6 in Figure

The proof proceeds by the following three steps.

1. The construction of an even graph G; with n ver-
tices and d priorities, whose structure reflects the
structure of the ordered tree ¢ and, in particular,
whose vertices correspond to leaves in ¢.

2. The construction of an infinite word «; that is the
priority projection of an infinite path in G; (and
that hence is in EvenCycles,, ,), whose sufficiently
long finite prefix is highly repetitive.

3. A proof—using the highly repetitive nature of
word a;—that ¢ can be isomorophically embedded
into treep(A).

Construction of G;. As the set of vertices of G; we
take {v1, v, ...,v,}. There is a vertex v; for each leaf ¢;

in tree t, for every ¢ = 1,2,...,n, where ¢1,0s,..., ¢,
are all the leaves of tree t listed in the (increasing)
lexicographic order. Consider ¢ and j, such that 1 < i <
j < n, and let p be the smallest priority in { 1,2,...,d },
such that ¢;], = ¢;|,. Note that then ¢;|, = ¢;|, is the
maximum-depth common ancestor of leaves ¢; and ¢;,
and p is even. In graph Gy, there is then an edge from v;
to v; with the even priority p, and there is an edge
from v; to v; with the odd priority p — 1. Moreover, for
every vertex v; and every even priority p, 1 < p < d,
there is a self-loop from v; to itself in Gy with the even
priority p. Note that every cycle in graph G, is even.

The right-hand-side of Figure [I] illustrates the
graph G, for our running example tree t illustrated in
the left-hand-side of the figure. In order to avoid clutter,
a single edge drawn in Figure[I] from one set of vertices
(enclosed in a rounded rectangle) to another denotes the
set of edges from every vertex in the former set to ev-
ery vertex in the latter; moreover, the self-loops are not
shown.

Construction of ;. We now describe an infinite path
in G; whose priority projection gives an infinite word ay;
note that the latter is in EvenCycles, ; because Gy
is an even graph. Before we give the rigorous and
general construction, we illustrate the construction on
our running example. In the case of graph G; in
Figure [1] the infinite path is as follows.

1. Follow the cycle between vertices vg and vy a
large number of times, alternating between edge
priorities 1 and 2.

2. Reach vertex vg from vertex vz with edge priority 3.
Follow the cycle between vertices vg and v; a
large number of times, alternating between edge
priorities 1 and 2.

Reach vertex vg from vertex vs with edge priority 4.
Repeat steps and [4] a large number of times.
Reach vertex vy from vertex vs with edge priority 5.
Take the self-loop around vertex vy, with edge
priority 2, a large number of times.

8. Reach vertex v from vertex v, with edge priority 3.

@

N oot

Copyright © 2019 by SIAM

2346 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ap = ((1-2)M 3. (12)M 5 (2413 (1-1.2)M1 . 1)

Bo = ((2)H41-3-(1-1-2)41. 4
a, =@2)M4-3.(1-1-2)M
Be=(1-1-2)M Be = ()M
a,=1-1 Oy =€
gl 62 63 64

[Al

Be = ((1-2)41-3. (1. 2)41 . 4)
a, = (1-2)M.3.(1.2)MAl
Bo = (1:2)4 B = (1)
az =1 a, =1
s Lg by lg

Figure 2: Words «, and (3, for every non-leaf node x in the ordered tree ¢t from Figure

9. Follow the cycle going through vertices vs, vo, and
v1 a large number of times, alternating between
edge priorities 1, 1, and 2.

10. Reach vertex vy from vertex v; with edge priority 4.

11. Repeat steps [7, [8, 0], and [I0] a large number of
times.

12. After all those steps, in order to make the path
and the word infinite, once vertex vy is reached
after step 9], take the self-loop around v, with edge
priority 2, infinitely many times.

Now we give a general and rigorous definition of an
infinite word oy for an arbitrary ordered tree t and the
corresponding even graph G;. For every node x of ¢,
we define two finite words o, and [, inductively. If z
is a leaf then we set a, = 8, = €. Let z be a node
of depth d/2 — k, 0 < k < d/2, and let x1,22,...,2¢
be the children of x, listed in the increasing order. We
define «,, and 3, in the following way:

Oy = By - 2k—=1)-By,_, - 2k—=1)---(2k—1)- By, ,

and
B = (az- 2R

where |A| is the number of states in A. Finally, we set
ap = o, - (2)% where r is the root of the tree t. Notice
that the highest priority appearing in «; is at most d
(because the height of ¢ is d/2), and so a; € £4.

In Figure 2] we give the pairs (o, 3;) for all non-
trivial nodes x in the tree ¢ from Figure

ProproOSITION 5.1. There is an infinite path in graph Gy
whose priority projection is the infinite word oy.

Proof. We argue—by induction on the structure of the
ordered tree t—that for every node x in t, there are
two finite paths containing only vertices in G that
correspond to leaves in the subtree of ¢ rooted at =z,

and whose priority projections are the words «, and 5,
respectively. The base case, when z is a leaf, is
straightforward. The inductive case for

Oy = By 2k—1)- By, - 2k—1)---(2k —1) - By,

when z is a node with children x1, o, ..., z, follows rou-
tinely from the inductive hypothesis and the definition
of the set of edges with priorities in the graph G;. The
claim for 8, = (ay - (Qk))‘Al can be equally routinely
obtained from the result for a,. Finally, extending the
finite path whose priority projection is «,., where r is the
root of tree ¢, to an infinite path whose priority projec-
tion is «y is straightforward, because every vertex in G;
has a self-loop with priority 2.

Embedding ¢ isomorphically in treep(A). We
prove the following claim for every node x in t; let the
depth of x be d/2 — k.

CraM 5.1. Let p be a finite run of A mnot wvisiting
rejecting states (p needs mot start in an initial state)
that either:
o reads oy and is such that all states wvisited by p
belong to the same equivalence class of Raopy1, or
e reads B,.

Then there exists a node ¥’ = (eq—1,€4—3,- - -, €2k+1) Of
treep(A) such that
1. the classes eq_1,€4—3,...,€2b+1 contain some state

visited by p,
2. the subtree of t rooted at x embeds isomorphically in
the subtree of treep(A) rooted at x'.

Let us first show how this claim finishes the proof
of Lemma Because «; € EvenCycles,, 4, there is a
run of A that reads oy and never visits rejecting states;
let p be the prefix of this run that reads «,., where r

Copyright © 2019 by SIAM

2347 Unauthorized reproduction of this article is prohibited

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

is the root of ¢. Recall that the depth of all the leaves
in tis d/2. All states visited by p belong to the same
equivalence class of <41, because this quasi-order has
only one equivalence class. Using the claim for the run p,
we obtain that tree ¢ embeds isomorphically in treep (A)
(note that z’ is necessarily the root of treep(.A)).

We now prove the claim by induction on k. In
the base case, when x is a leaf, we have a, = £, =
g, and as branching directions of the node z' =
(ed—1,€d—3,...,e1) we take the equivalence classes of
=<d—1,2d—3, - - -, =1 containing the only state of p; such
a node indeed fulfils Conditions 1. and 2.

We now focuse on the inductive step. Suppose first
that p reads a,, and that all visited states belong to the
same equivalence class of <9x41. Let x1,29,...,2¢ be
the children of . Recall that

oy = By 2k—=1)- By, -2k —=1)---(2k = 1) - By,

We can divide p into fragments pg, ps—1, ..., p1, where
pi reads B,,. For every i € {1,2,...,¢}, by the
inductive hypothesis, we can find a node z;, =
<€i,d—1, €i.d—3,- - - ,eilgk_1> that fulfils Conditions 1.
and 2. with respect to p; and z;. By assumption, all
states visited by p belong to the same equivalence class
of <ax+1, hence also to the same equivalence class of =
forall j € {2k+1,2k+3,...,d—1}. On the other hand,
by Condition 2., the classes e; ; for i € {1,2,...,¢} and
j€{2k+1,2k+3,...,d—1} contain some state visited
by p. It follows that e; ; = e, ; for all 4,7 € {1,2,...,¢}
and j € {2k + 1,2k + 3,...,d — 1}, which implies that
the nodes 2,5, ..., 2} are siblings, having a common
parent z’. It is easy to see that the node z’ satisfies
Conditions 1. and 2.

Suppose now that p reads 8, = (ax . (2k)) By
the fact that D is a tree-decomposition of A, we know
that no transition in p goes up with respect to the quasi-
order <9141, because all priorities in 8, are at most 2k.
As A has at most |A| states, it means that at most
| A| —1 transitions of the considered run cause a decrease
with respect to <or1. This implies that there is a part
of this run that reads «a, and contains no increase nor
decrease with respect to <911, that is, all states visited
by this part of the run belong to the same equivalence
class of <9;4+1. We continue with this part of the run
as in the previous paragraph, and in this way we finish
the proof of the claim.

|A]

6 Open questions and further work

We leave open the question whether a stronger version
of our main technical result holds, namely whether
every safety automaton separating EvenCycles, from
0OddCycles,, has at least quasi-polynomial number of

states. Our argument cannot be directly extended to
that setting, as already the proof of Lemma/[5.2| crucially
relies on that fact that no word from LimsupOdd is
accepted.

We also leave it as open questions whether there are
parity automata as in Theorem [£.3|but with a sub-quasi-
polynomial number of states and a logarithmic number
of priorities, or whether quasi-polynomial lower bounds
can also be established for such parity automata.

A very recent technical report by Colcombet and
Fijalkow [7] gives alternative proofs of our Theorem
and Lemma [5.3] They do so by introducing a new
concept of wuniversal graphs, and they argue that a
subclass of universal graphs that satisfies an extra
(“saturation”) property corresponds to universal trees.
Their main result is that the sizes of the smallest strong
separators, universal trees, and universal graphs are
equal to one another, which is a refinement of the
corollary of our Theorem and Lemma that the
former two are. However, in order to conclude that all
those smallest sizes are quasi-polynomial, they too rely
on our Theorem 2.3

Acknowledgements

This research has been supported by the EPSRC grant
EP/P020992/1 (Solving Parity Games in Theory and
Practice). W. Czerwiniski and P. Parys are partially
supported by the Polish National Science Centre grant
2016/21/D/ST6/01376. N. Fijalkow is supported by
The Alan Turing Institute under the EPSRC grant
EP/N510129/1 and the DeLTA project (ANR-16-CE40-
0007).

References

[1] J. Bernet, D. Janin, and I. Walukiewicz. Permissive
strategies: from parity games to safety games. In-
formatique Théorique et Applications, 36(3):261-275,
2002.

[2] H. Bjorklund and S. G. Vorobyov. A combinatorial
strongly subexponential strategy improvement algo-
rithm for mean payoff games. Discrete Applied Math-
ematics, 155(2):210-229, 2007.

[3] M. Bojariczyk and W. Czerwiniski. An automata
toolbox, February 2018. https://www.mimuw.edu.pl/
~bojan/papers/toolbox-reduced-feb6.pdf.

[4] A. Browne, E. M. Clarke, S. Jha, D. E. Long, and
W. Marrero. An improved algorithm for the evaluation
of fixpoint expressions. Theor. Comput. Sci., 178(1—
2):237-255, 1997.

[5] C. S. Calude, S. Jain, B. Khoussainov, W. Li, and
F. Stephan. Deciding parity games in quasipolynomial
time. In STOC, pages 252-263, 2017.

Copyright © 2019 by SIAM

2348 Unauthorized reproduction of this article is prohibited

https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf
https://www.mimuw.edu.pl/~bojan/papers/toolbox-reduced-feb6.pdf

Downloaded 01/21/19 to 138.40.68.78. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

[6]

[12]

[13]

21]

22]

23]

[26]

K. Chatterjee, M. Henzinger, and V. Loitzenbauer.
Improved algorithms for parity and Streett objectives.
Logical Methods in Computer Science, 13(3), 2017.

T. Colcombet and N. Fijalkow. Parity games and uni-
versal graphs. CoRR, abs/1810.05106, 2018. https:
//arxiv.org/abs/1810.05106.

A. Condon. The complexity of stochastic games. Inf.
Comput., 96(2):203-224, 1992.

C. Daskalakis and Ch. Papadimitriou. Continuous
local search. In SODA, pages 790-804, 2011.

C. Daskalakis, Ch. Tzamos, and M. Zampetakis. A
converse to Banach’s fixed point theorem and its CLS
completeness. In STOC, pages 44-50, 2018.

L. Daviaud, M. Jurdzinski, and M. Lazi¢. A pseudo-
quasi-polynomial algorithm for solving mean-payoff
parity games. In LICS, pages 325-334, 2018.

E. A. Emerson and C. S. Jutla. Tree automata, mu-
calculus and determinacy. In FOCS, pages 368-377,
1991.

E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model-
checking for fragments of p-calculus. In CAV, pages
385-396, 1993.

E. A. Emerson and Ch.-L. Lei. Efficient model check-
ing in fragments of the propositional mu-calculus (Ex-
tended abstract). In LICS, pages 267-278, 1986.

J. Fearnley. Exponential lower bounds for policy
iteration. In ICALP, pages 551-562, 2010.

J. Fearnley, S. Jain, S. Schewe, F. Stephan, and
D. Wojtczak. An ordered approach to solving parity
games in quasi polynomial time and quasi linear space.
In SPIN, pages 112121, 2017.

N. Fijalkow. An optimal value iteration algorithm for
parity games. CoRR, abs/1801.09618, 2018. https:
//arxiv.org/abs/1801.09618.

O. Friedmann. An exponential lower bound for the
parity game strategy improvement algorithm as we
know it. In LICS, pages 145-156, 2009.

O. Friedmann, T. D. Hansen, and U. Zwick. Subexpo-
nential lower bounds for randomized pivoting rules for
the simplex algorithm. In STOC, pages 283-292, 2011.
H. Gimbert and R. Ibsen-Jensen. A short proof of
correctness of the quasi-polynomial time algorithm for
parity games. CoRR, abs/1702.01953, 2017. https:
//arxiv.org/abs/1702.01953.

M. Goldberg and E. Lifshitz. On minimal universal
trees. Matematicheskie Zametki, 4(3):371-380, 1968.
(In Russian).

T. A. Henzinger and N. Piterman. Solving games
without determinization. In CSL, pages 395-410, 2006.
M. Jurdziriski. Deciding the winner in parity games
is in UP N co-UP. Inf. Process. Lett., 68(3):119-124,
1998.

M. Jurdzinski. Small progress measures for solving
parity games. In STACS, pages 290-301, 2000.

M. Jurdziniski and R. Lazi¢. Succinct progress mea-
sures for solving parity games. In LICS, pages 1-9,
2017.

M. Jurdzinski, M. Paterson, and U. Zwick. A deter-

2349

ministic subexponential algorithm for solving parity
games. SIAM J. Comp., 38(4):1519-1532, 2008.

K. Lehtinen. A modal p perspective on solving parity
games in quasi-polynomial time. In LICS, pages 639—
648, 2018.

A. W. Mostowski. Games with forbidden positions.
Technical Report 78, Uniwersytet Gdanski, 1991.

M. O. Rabin. Automata on Infinite Objects and
Church’s Problem. American Mathematical Society,
1972.

S. Schewe. Solving parity games in big steps. J.
Comput. Syst. Sci., 84:243-262, 2017.

H. Seidl. Fast and simple nested fixpoints. Inf. Process.
Lett., 59(6):303-308, 1996.

J. Voge and M. Jurdziriski. A discrete strategy im-
provement algorithm for solving parity games. In CAV,
pages 202-215, 2000.

U. Zwick and M. Paterson. The complexity of mean-
payoff games on graphs. Theor. Comput. Sci., 158:343—
359, 1996.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

https://arxiv.org/abs/1810.05106
https://arxiv.org/abs/1810.05106
https://arxiv.org/abs/1801.09618
https://arxiv.org/abs/1801.09618
https://arxiv.org/abs/1702.01953
https://arxiv.org/abs/1702.01953

	Introduction
	Parity games.
	The separation approach.
	Our contribution.

	Progress measures and universal trees
	Game graphs and strategy subgraphs.
	Ordered trees and progress measures.
	Finding tree witnesses on universal trees.
	Smallest universal trees are quasi-polynomial.

	The separation approach
	Languages of play encodings.
	Safety automata and games.
	Safety separating automata.
	The separation approach.

	Separating automata everywhere
	Separating automata from universal trees.
	Separating automata from play summaries.
	Non-deterministic automata and the separation approach.
	Separating automata from register games.

	Universal trees inside separating automata
	Tree-like structure.
	Universal tree.

	Open questions and further work

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20181105132555
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 16
 17

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 7.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 7.2000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Up
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 17
 0
 1

 1

 HistoryList_V1
 qi2base

