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Abstract—In this article we present an Elitism Levels Traverse Mech- Il. ALGORITHMS AND PROBLEMS
anism that we designed to find bounds on population-based Elgionary
Algorithms solving unimodal functions. We prove its efficiecy theoreti- A~ Algorithm
cally and test it on OneMax function deriving boundscun logn—O(un).
This analysis can be generalized to any similar algorithm usg variants  Although the mechanism described in this paper is quiteawsal, we
of elitist selection and genetic operators that flip or swap nly 1 bit in test it on (u + A\)EA; s solving OneMax problem. This problem

each string. . . ; . .
i . i ) is well-known in EA community, recent achievements inclydk
Index Terms—Evolutionary computation, Genetic algorithms, Compu- . . .
tational complexity [11] with some sharp bounds. We selected this problem duésto i
simplicity and the ability to compare our findings to thosaikble
already.
I. INTRODUCTION
TABLE |

We analyze an elitist population-based Evolutionary Aidpon with ALGORITHM

population sizeu and recombination pool sizg, (1 + A)EA using (z + X\) Evolutionary Algorithm using 1-Bit-Swap (1BS)

a genetic operator 1-Bit-Swap that recombines informalietween createy starting species at random

parents (se€ [1]). t=0

loop
select using a variant of fitness-proportional Tournansetfection
% pairs of parents into the pool

A WN P

Most research in theoretical EA community is focused on
mutation-based single species algorithms such(last 1)1 EA

5 swap bits in each pair
(see e.g.[[2]+[4]) with some sharp bounds on runtime obthiioe 6 keep the currently-elite species in the population, @plhe rest
OneMax function such a8.982n logn in [4]. with the pool, first with new currently-elite, then at random

7 t=t+1

8 end loop

Results on population-based algorithms are less abundand,
are restricted to mostlyu + 1)1 EA (see [5]) with upper bound

O(un + nlogn) and (1 + A\)1EA (see [8], [7]) with upper
bound on OneMaxO(n logn + nA) in [6] and all linear functions B. Selection function

nlogn n loglog A H . L. . .
O([ =58 + 5= ) in [l Throughout the article we analyze an elitist recombinatidaen

(n+ ) EA using a variant of tournament selection. It is both simple
Although so far (u + A) or (N + N) EAs have deserved 18ssy; jmplement and analyze. But since we recombine informatio

attention, they have been the subject of analysis [in [I8{10,eryeen parents, we are interested in formprars of species in
Specifically, in [10] it was derived that for &V + N) EA with 0 recompination pool, and on the construction of theses thie

mutation and tournament selection solving OneMax the uppand . herties of the algorithm will be derived. This formatioocurs in
is O(nNlog N + nlogn) if measured in the number of function o following way:

evaluations.

TABLE Il
Unfortunately many of these results are not directly corablr SELECTION FUNCTION
due to the difference in selection functions (fitness-priypoal,
truncation, elitist, tournament, etc) and elitism setsifgave 1 best Variant of Tournament Selection
species or some variable proportion). fg;o

select two species from the population at random
examine their fitness, the better one enters the pool
k=k+1

end loop

Even more significantly, it was shown already [in [8] that datian

effect is generally problem-specific, so it is quite hard emeralize

findings to other functions. There is ample evidence thougl. (

[5], [6]) that for mutation-based algorithms (incl. Randeed

Local Search, RLS) optimizing simple functions such as OaeM Thus it is obvious that better-fit species have higher charufe

population is not beneficial and tends to degrade performanc entering the pool, so we can expect the proportionvadpecies to
be higher in the pool rather than in the population.
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C. 1-Bit-Swap Genetic Operator is broken down into three disjoint subsets:

We apply the 1-Bit-Swap operator that was found to be useful o : currently best species
solving a large number of test problems in [1] and was andlyzeB
extensively in[[12],[1B] to have outperformed the mairsmeRLS
algorithm both theoretically and numerically.

1 : species with next-best fitness
B4 : the rest of the population that cannot evolve over 1 germrati

. ~ Since 1BS swaps exactly 1 bit between two parents, thistipartin
Another advantage of 1BS is that we can compare it directombination with the assumptions made above enables cotistr
to RLS, since both are local search operators that cannot rroay of a very precise model, since the value @fcannot jJump‘ more

far from the current best search point. The operator workéh@ than 1 level of fithess and only-species can breed better population,

following way: but only 3; -species may evolve inta and change the probability of
evolution.
TABLE Il
GENETIC OPERATOR C. a-levels subpartition

1-Bit-Swap Operator Thi_s additional partitign is necessary for functions withtpaus for
1 j=0 which we use potential functions explained above. The needt f
2 loop o ] ) becomes evident in the next section, when probabilitiesvofving
3 select a bit in the first parent uniformly at random elite species on two types of functions are compared. Intiaddio
4 select a bit in the second parent uniformly at random the eliti level titi for functi ith plat dt
5 swap values in these bits e elitism levels partition, for functions with plateaus weed to
5 j=j+1 subpartition thex-level.
6 end loop

In slight abuse of notation in the rest of this article, we atenA

the set of chromosomes in the population with the highesed&n
I1l. DEFINITIONS Also ~ is the length of the plateau of fithess. Therefore the set A
can be partitioned into

Basic approach to analyzing elitist EA with a simple 1-bittation A=A UAU--UAy

solving unimodal binary-encoded EAs was introduced by Wege where each subset,, has equal fitness. In order to differentiate

in [14] that is based on fitness partitioning: on a set of irsdrings petweenA4,,, we assign each elite species an additional auxiliary
{0,1}" size2™ a partition into a finite number of nonempty subsetgunction, V;, that tracks progress to the next level by counting the
A1, Az, -+, Ap is defined with orderingd; 3 A2 3 --- T Am  number of 1-bits in the fitness levelty < A; < ... 3 A, 1 with

s.t. alla € A, are the global optimum. corresponding auxiliary value < Vi ... < V,_1, i.e. OneMax is

used as an auxiliary function. Species with both higheses$gnand
This approach allows definition and derivation of the loweud of  gyxiliary values can be viewed as super-elitendr

success probability of transition between state§;) = P(Ai+1|A:)

and the upper bound on expected convergence time of tfif the next section we use the notatien o to denote the

algorithm, expected first hitting time of the best fitnesselev set of elite or super-elite species, an element of that st size

E(Xs) <s7'+s;"... 45,5, This idea can be extended to theof it. This is done to reduce notational clutter.

situation when we apply non-negative weight$f) (see [2], [14])

and to derive lower bounds (by considering the upper bound @r). IV. ELITISM LEVE'-STRQVERSEMECHAN'SM FORUPPER
OUNDS

A. Fitness levels partition

Another tool used extensively in the analysis of EAs are mitae In this section we present the main result of the article or@eal
(auxiliary) functions that measure progress (skel [14])isTis function that is later confirmed by further application to édax
especially useful when working on functions that have fisnesTest Function. We are interested in the upper bounds on gatiion
plateaus (see e.d. [15]), in which case we make the diffecenc  time (for explanation of Landau notation see e.g. Chapter [16]).
1) fitness functions decide whether the new binary inputdigsg ) B ]
is better than the old one The working of the Elitism Levels Traverse Mechanism can
2) potential function tracks the progress between statethef P illustrated by an example from immunology.

algorithm (fitness levels)

. . . There exists a population of species si¥e which is susceptible to
OneMax (or some simple transformation of it) is used as arpote pop P © P

. . . . M types of infection, which are mutually exclusive, i.e. a @pe
tial function for more complicated problems (Royal Roadsay cannot be infected by more than one infection. The size oheac
Values, Short/Long Path etc).

set of infected species cannot be larger thap. We denoteE;
an event that there are < r < m; infected species of type,
of which exactly one spawns an infected offspring that dgstra
In this article we extend this approach to a population-hasitist healthy member of the population. Since the sets of infespeties
algorithm, but rather than tracking the traverse of levdlditoess, gre mutually exclusive, by additivity we obtain the probiapithat

we do the same to the levels of elitism, i.e., number of eﬁl@ciﬂs any of the infected species adds exacﬂy one infected mpr
in the population.

B. Elitism Levels Partition

M M mj M mj M
We focus on species that can either evolve to the currentlp( U E’-‘) = p< U U E* ) = ZZP(Ef )= ZP(E%)
J ar ar J

j=1 j=1

best over 1 iteration or are already best. Therefore, thailptpn P et



This expression is quite complicated for a number of reasmgsthe and those that do not)/;", we can find the lower bound on the
knowledge ofm;. Although we can find bounds on the partial sunprobability of adding another elite species:

of rows of Pascal triangle, it is guaranteed to make thg dl?un i Mj ag&n  MiAnp:

quite messy. Therefore we need to lower-bound this proipabive P(S:) >
do this by considering only one infected species of each taeer ) )

than~ and the event of spawning exactly one infected species By Functions with plateaus

E;. This gives us the lower bound on the total probability ofindd As noted in [10], algorithms with well-chosen populatiornzesi
exactly one infected offspring, which is proven in Appenidix perform similar to, and best individuals evolve along thmegath

as (1 + 1)EA. The difference betweeru(+ A)and (1 + 1) lies in

the cost of traversing plateau. For this type of functions léngth

of plateauy > 1. So we have K plateaus w.l.0.g. of the same length
v €Zt, andn = yK.

2 2u

P(E) 2 P(Ej) ) _P(Ej) 2 P(E)) @)

In the notation of EAN = % the number of pairs of parents in the
recombination pool with parents that are able to producetBxane Also we assume that at the start of the algorithm each ‘bin’
elite offspring.du (for 0 < 6 < 1) is the number of elite individuals (plateau) starts with an equal number of 1's and 0’s unifgrml
in the population that, once it is reached, the probabititgénerate distributed, therefore fitness of the best species at thinhieg of
an offspring with higher fitness is arbitrarily close to one,1—o(1). the run is 0. To track progress between jumps in fitness vakees
We also have: — 1 levels of fitness. Combining this with the upperuse OneMax as an auxiliary function (roughly along the limés
bound on the probability of adding elite offsprings to theplation, using potential or distance functions, see €.¢. [7]) thatsbits in
we obtain the upper bound (worst-case) on the optimizatioe bf  the plateau.
the algorithm:
0 o The tricky part in this analysis is that the selection is blase
ET:O(ZZ 1 ) ) on fithess of the string rather thar\ auxiliary function, bbe t
Pt Z;‘il P(E;(a, k)) progl;ess ftowards thghnﬁ?(thlevel ofll.fltnesslapgatea# dehper}céﬂ';mn
o ) . ) number of parents with highest auxiliary valug, rather thanf(s).
Derivation of _the upper _bound from_ Equatibh 2 is rather viesa By denoting the subset af with highest auxiliary functionro™, we
We need to identify pairs of possible parents p;,p2 > such

that th ist bability of ing bits bet " notice thatf(a) = f(a™), andV, < Vu«. Also trivially o* < o
at there exists some probabiity of swapping bits bEWRRIEN'S ;e case of functions without plateaus these functians

;(k) > 0 that as a results of applying a genetic operator to thl entical and last two expressions are equalities).

pair either a newn species evolves from lower-ranked ones or an

existing o is preserved after the recombination. As shown before, for a unimodal function without plateaus

regardless of fithess function, the probability that onehef parents
%s elite is % since if two elite species are selected for breeding,

parent is chosen randomly. Obviouﬁ < % Additionally,

Intuitively, for the functions with plateaus both the pogtibn
size and the number of elite species are more important tban
those without plateaus. In the remainder of this section thaws
that the probability to add a super-elite offspring whenveg a a* (a—a*) 1 a* a
. . . - . P S A < =
function with plateaus is less than the probability to addetite L 1 2= o
offspring when solving functions without plateaus.

A

Obviously, unlike f1, for the evolution process orf, only a
For the rest of this section we denot§ function without small §ubset of .p.arents are of use, these.having the. highett a
plateaus andf, function with plateaus. What we show is thatm_})(t_hlghest auxiliary values. Therefore pairs that do.mpiude
P(Efl (a, k) > P(Ef2(a k) : at least 1 of these parents can't add ah offspring. Similar to
3\ = 3\ fi, My, = M3z, + M3 and clearlyM;, < My and Miy < M;!.
A. Functions without plateaus
For this type of unimodal functions (e.g. OneMax) intuitvét is
easier to add an elite offspring and thus reduce the opttioiza
time, but we need to show it rigorously.

Along the lines of arguments in the previous subsecti@;
s.t. probability to select a non super-elite parent in aoidito the
super-elite one is upper-bounded by it. We get:
ph < o (a—a”)é
The probability to select a pair with am-parent can be bounded by sel = 212
Pfll > 361 so the probability of an event that ari* parent is added to a pool
T and a newn™ offspring evolves is upper-bounded by
where, is the probability to select a non-elite species to be paired o M7 A" (a— a”)éan
with the elite one. Also bound the probability to flip the biis(k) > P(E}?) < 12
n VY j,k. So the probability of an everi; that includes pairs with ] B ) ]
where n is the lower bound on the probability of swapping bits.

elite species is o i
Therefore the probability to add one maxé species to the popula-

A . .
PEN) > (2 Lner = Aané, tion is o * B
1/ p 244 P(ST ) < M7, Aa™ (o — a™)éam n M7 Anp2
ak) =
The probability to select a pair without the the currentliyeespecies Ap? 2p

is lower-bounded by%. By breaking down the set of parenig;, Combining the inequalities above, and takihg,” > M}*j+ﬁ7 0<
in the recombination pool into those including— parents,M; ¢ < 1, we compare the values in the first and second fractions



in the expressions foP(S{:{k) and P(S{i’fk). It is easy to see that The expression for the expected first hitting time we obtaia aesult

3 two constantgpe < i1 S.t. of this setup is
Sp
- 1
P(S%2,) <o <1 < P(SI1,) @) Ef., <2t
’ ’ P> BrX(p — ) 2ouupr (k) — afrpa(k) + Pryupa (k)
V. UPPERBOUND ON RUNTIME OF (1 + A)EA1ps ON ONEMAX o2t
TEST FUNCTIONUSING ELITISM LEVELS TRAVERSEMECHANISM X
Sp
1

In this section we present our findings on the upper boundsitimne Z D —2 N2 + (220 (k) —2 % 20 (ke
of (1 + \)EA with 1-Bit-Swap operator optimizing OneMax func- =1 (2 (k) wer(k))a? + (2t (k) wea(k))ar+ o2 (k)

tion using the Elitism Levels Traverse Mechanism. We dggtish 2t on 1
four pairs of parents that make possible evolution of culyeglite  — M2 (k) — 21 (K)) Z a2 + bia + by ®)
species: o=t
where
By <o, B> 1 2 (k)
bp = — T

FEo :< f1, 51 > 0 w2(k) — 2up1 (k)

E3:<a,fo1> by — 2 (k) — p2(k))

By :< B, -1 > p2(k) — 2up1 (k)

At this point we sef3; pessimistically to 1 to simplify the derivation.
This a quadratic equation in. The full solution to Equatiofl5 is in

We do not consider the obvious pait o, o > as it either adds APpendix[B.
two elite offsprings, of generates an offspring with higliiéness, S
something we do not use in the Mechanism. The optimization time is
ET(M+A)EAlBS = O(N1+62n10g n) (6)

For the upper bound on optimization time we only consider ] .
increase of the number of elite species by at most one. Isered0r SOMe constant (). For the second option af = 1 the upper
by two or more is ignored, or otherwise transformed into afiy ¢ound becomes
the onver-ranked specigs. Similar approach was used_ih [10] ET(10EA,5s = O(unlogn) )
bounding the takeover time. . . .

or, in the number of function evaluations

A. Simple upper bound ET(uiapaps = O(Aunlogn) ®

B. Refined upper bound

We add the other two cases to obtain a sharper upper bound on
optimization time, we sef; = 1:

Of these four cases we start analysis with the first two. Meason is
that the other two cases involve cubic function, which beesmuite
complicated to solve (see next subsection). For the cAse&, we

2
et the following probabilities of success: A
g gp P(Es3) =2 i @, (1_Lﬂl o3 (k)
N 5 Iz 7
P(E,) =2 5>¢1(k).9._1 1_9> 2
<1 BB Iz g)‘_a<1_ﬂ> 03 (k)
_ B\ — o) (k) A )
/1/3 2 ﬂl (% o+ ﬂ1
PEH)=2[2])~1-—=]|1-—— k
(Ea) <1> m . m pa(k)
Y 2 2 2 b\ ?
5 B o A2 (k)Bi (1 — a) ~2(1-¢ k
N ) 21 _ =2 — ~
P(E2) = <1><P2(k‘)<u (1 M)) o " m pa(k)
N ) The probability to evolve one more elite species B 1), P(E-)
The probability of at least 1 of these events is are the same as in the previous derivation):
2p1 (k AMp — P(Sax) =P(E P(E P(E P(E
P(Sun) 2 P(B) + P(Fz) = 22100 = ) (Sak) = P(Ex) + P(Ez) + P(Es) + P(Ex)
) ) H and the expected time until there @ne elite strings in the population:
w2(k)ABip1 (k) (p — a)
2pt ET,..

and, sinceP(.S) is minimal, the upper bound on expected time to

5
traverse levels of elitism large enough to get & o(1) probability — oyt i 1
of evolution is bsad + baa? + b + bo
Sp 4 6'“'
[ 1 ©)
ET.r < P(Sa) 4 Z ad + b2 oz2 + bl ot 2



where
bo = M? (2ppa () + 2 (k))
by = 2Au(ppr (k) + ppa(k) — 3ppa(k) — w2(k))
by = M2(k) — 441 p3(k) — 2p01 (k) — Gppa (k)
bs = 2A(ups (k) — wa(k))

Full solution of Equatiofi ]9 is in Appendix]C.

The upper bound on expected optimization time is fo£ ﬁ,c is
a constant):
1+e
nwrtn
-0
(=)

= in the number of function

1

cu'tnlogn

A

for 0 < ¢(p) < 1 and if 6 =
evaluations:

(10

E7(u+0EAps =

ET(u1nEA,ps = cunlogn — O(un) (11)

This bound is sharper than the one obtained using simplensgts

earlier in this paper up to the order (since more possibilities of
adding elite species are considered). It is also comparabline

results in [[6], [7], [10] (see below). Such a result likely ams that
population has positive effect for some relatively smallbut as it

keeps increasing it either levels out (at best) or startsegratie
performance.

C. Generations vs Function evaluations

for a function without plateaus. This means that the very lpemof
super-elite species in the population is more importanheformer
case than the number of elite species in the latter.

It may seem from the derived equations that population gdiger
degrades performance (singeis in the numerator), but for small
size of population, when the cost of functions evaluatiocaot
much different from 1, population brings about some posig¥fect.

As it keeps increasing, the effect levels out, at the samee tim
the costs of evaluating functions grows and population dogge
benefit. For other algorithms, s.a. RLS the effect even ofllssized
population is usually negative, which makes EA+1BS (andsjiuy,
other recombination-based algorithms) stand out.

At the same time the recombination pool improves performanc
(at least when measured in terms of the number of genergtions
since X is in the denominator. This means there is a benefit from
increasing recombination pool size when the algorithm is om
parallel computers.

The Mechanism we have designed in this article proved to be
quite efficient in deriving upper bounds for OneMax functiand

we are confident it can also yield tight upper bounds on other
population-driven algorithms and more complicated protse

VII. CONCLUSIONS ANDFUTURE WORK

Tournament selection has a property that you do not needaloae There are many reasons to use population in evolutionarypatny
every species, but we need to makeevaluations (since two speciesrather than just1 + 1) or (1, 1) algorithms, that includes higher di-
compete for 1 slot in the recombination pool, so the numbevafu- versity and shorter evolutionary path (seel[10]). We intendxpand
ations each generation (). Therefore, in terms of the number ofthe results in this article by considering the following endions to

functions evaluations the rough bound becom¥giAn logn) and

the refined oneO(unlogn). If px = XA = O(1) this reduces to
the well-known result ofO(nlogn) for OneMax function. The\

term in the denominator means that for the algorithm run oalfzh
computers the increase in the recombination pool size ivgsréhe
performance.

D. Comparison to earlier results

The closest comparison we can draw is - N)EA with mutation
and tournament selection function in [1@)(nN log N 4+ nlogn)
if measured in the number of function evaluations (Propmsid).
By setting N = O(1) = ¢ > 1 this bound becomeslogn +
O(n), which is larger than jusO(nlogn). If instead we sefu =
N = O(y/Togn) or O(=2£"_) the result in[[10] is sharper than in

loglogn
this paper. For populatior@(;4%) though the bound in this article

becomes sharper again, e.g., fo= N = O(y/n) it is en? logn —
3
n?, and in [10] it is 221952 4 O(nlogn).

VI. DISCUSSION

We presented a new tool to analyze population-based efitist,
Elitism Levels Traverse Mechanism, which we used to deriveewa

upper bound or(x + A) EAs with a recombination operator and a

variant of tournament selection solving OneMax problem.

We derived and proved the lower bound on the probability of

evolving exactly 1 new currently-elite species, which leelpus
obtain the upper bound on the expected optimization time.

We showed that for a function with fitness plateaus it is hatde
add a super-elite offspring to the population than an elftspang

the upper bound tool:

1) Analysis of functions with fitness plateaus. Apparentty f
functions with fitness plateaus (e.g. Royal roads) bothelarg
populations and large number of elite parents are crucial
compared to functions without one, so we will extend our
findings to these functions as well.

Typical runtime analysis. It is fairly obvious that thetwa
number of elite species grows every generation at some rate
that realistically lies between the upper and lower bouids.
need to find an approximation on the expected numbed of
added to the population every generation and thus estirhate t
typical runtime.

Elitism rates analysis. In this article we never reallpsidered

the rate of elitism, i.e. the actual number of species savéhe
population each generation, although numerical compmrtati
shows that it has a strong effect on the runtime. So far we
only said that all the elite species are saved each generatio
thus accumulating over time tifl. It would be interesting to
compare elitism level 1 to 50%, i.e. if there is any differenc

if only 1 species is saved compared to half of the population.
Derivation of 6x. to find the proportion of elite species that
yields a high enough probability of evolution. Quite obwbu

it is different for functions with plateaus and without.
Derivation of the optimal population size. We will do thig
comparing the number of functions evaluations necessary of
(1+1) and(u+ A) algorithms.
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Since we can seledPs.; = o(A\°) andp; (k) = O(-%),c € Z, the
expression is
APPENDIXA P(E* 1
(E7)=1-0(1) > —= +0o(1) = P(Ej;) (12)
PROOF OFEQUATIONS[IHZ Ve

Main idea and logic of the lower bound on the probability ofliad
an elite offspring and the upper bound on runtime followimgri
this is presented in SectidnlIV. Here we present the deonatf
this bound.

We prove this lower bound inequality for an arbitrary subsethe

(it is not to be confused with at trivial one of the form

thus proving the upper bound on the probability of evolvinghdre
elite species for an arbitrary subset. This logic appliesefach of
the M subsets (types of pairs) of the recombination pool, #red
inequality becomes

M M
P< U Ej) > " P(E;) (13)
j=1 j=1
upper bound in Equation[ 2 follows directly.



APPENDIXB The second step is due to partial fraction expansion. Alhothis
SOLUTION OF EQUATION[H seems quite a loose bound given cubicuinwe takey = O(\) so

We have a quadratic equation all we need to establish i to reduce the power.

Sp . . .
1 Obviously 0 < § < 1, but we need to select it s.t. summation
S(p, k) = ZP2(Q) - Z:l a2 + bia + by over a« makes sense. We sef = p~°' for an arbitrary
, “ “ 1 > 0st.op = pt=°1 > 1. Thendp? = p2~° = pltes,
with I _ 2 3
For exampleg = 3 yieldsop = \/u andép” = /u?. Therefore,
bo = w22 (k) the upper bound on the expected convergence time is
w2(k) — 2up1 (k) Lie
by = 2ler (k) = pa(k) ET(uianpaps = O “nlogn) (14)
p2(k) — 2pp1 (k) In fact if (similar to [10]) we sety = < for c € Z", we getdu =
In order to simplify the already complicated derivation, want the ¢ anddu® = cu = O(p), so the expectation becomes linearin
expression above in the form
1 1 ET(+2)EBA, s = O(unlogn) (15)
P = =
2(a) (a+1)2 (a? + 2ra+12)
for somer, not necessarily rational. From equating coefficients it
APPENDIXC

becomes clear that
SOLUTION TO EQUATION[T

r= \/% Vr= 172_1
We need a solution to the cubic equation of the form

and so, using the first root

Sp
Sp _ ) _ 1
Stuk) =3 ﬁ = 1 (VBo) — 1 (Vo + dpu + 1) S(u, k) = EC;P-;(O‘) = ; % + thas + bha + bo
a=1

For largeb, these expressions involving digamma function can b\ghere

expanded asymptotically in Taylor series (we use only the fivo 2(k) — 4u”3(k) — 2up1 (k) — 6upa (k)

terms): b2 = 2(pp3 (k) — a(k))
11 1 6 1 5 e (K) + 12 ps(k) — 3ppa(k) — p2(k))
S(p, k) ~ (% - 2—60> - (% - b—g - %) = b—g b 2(pp3 (k) — pa(k))
1 2upa(k) + 2 (K))
_ Oplp2(k) = 2up1 (k) _ O(pa(k) — 2p1 (K)) %0 = s (k) — 91 (k)

p?pa(k) ppa (k)
and therefore the expected time to traverse enough levelitism to
improve 1 bit of the string is (plugging this expression ifguation Solution toS(yu, k) is of the form

) 1 1
S(p, k) = _ = i i
5 2ut 8(p2(k) — 2pp1(k)) () =3 (o +p)? 2 o’ +3a?p + 3ap® + p?
ET,u,,k — . [e «
AMp2(k) = 2up1 (k) pp2 (k) , - .
235 Equating the coefficients we obtain three ropts
~ Xpa(k) _ b
To improve the pai 51,81 > we need to either swap 1 from the 3 _
first parent and O from the second, or the other way around ¢ther p=+ VO
outcome just keeps the current number of bits in each parent) 3
_ 3 /
oalk) — 2. K= nk L 2k Dkt ) p= Vb
o(k) =2- . =
n n n? To simplify the increasingly hard notation, we select orie tlast
Plugging this into the expression fd@&7},, we obtain the expected root:
optimization time of the algorithm, pessimistically assognthat at m 3 AT B 5 T
the beginning of the run the best species has only 2 1-bit aighéis S (u, k) = Z L = Y2(V/bo +0n+1) = ¥2(Vb +1)
_ . . i o q . ¥ — (a—|— 3 b’)3 2
at n — 2, since if the fitness ofsy = n — 1 implies the fitness of a=1 o
a=n. _1<< 1 +25u+1> < 1
8,25 122 G U Y-S YRR B Y sy YA
wn<d 1 3/pr 2 0 3/pr2 0
ET(40EA 55 < Z 0 0
A k:2(k—1)(n—k:+1) 1 2p op
_atn? 1(RS 1 ’f 1 2 by b
Aon\fim k-1 Hn-k+1 The second line in the derivation was obtained by expandistyy b
5ud second-order polygamma functions in Taylor serie$@ass oo and
= MA <10g(n -1+ O(l)) taking two first terms of each function. We now combine thenfro
term in Equatiori ® with this derivation to obtain the expi@sson



the upper bound on achieving the number of elite species én tBxpanding this in partial fractions, we obtain

populationdu: 1 |
BF., < 2u°5 201° 2V/2(n+3) <k—(2n—|—\/§(n+2))
T Nbsby  A(2ups (k) + pa(k)) 1
since k- (2n— ﬁ(n+2))>
*(2ups (k) + pa(k i -
bably = 2(jups (k) — o (k) - HQEMZ:EIE))— ¢f?li)))) We obtain two sums3 over k:
- 1
=42 - Si(n, k) =
H Qs ) + (k) R =) e T VA T )
We are now ready to _find the upper bound on the expected optimiz ~ Yo(n — 2n — V2n) — 4o(3 — 2n — V2n)
tion time of the algorithm: — po(—(1— \/i)n) (3 — (24 \/§)n)
(L+X)EA < k=
. s A= 2mes(k) + pa(k) The result of—O(1) is due to the fact that we can select anyfor

i o (16)  which the values of digamma function are small negative tzans
Here again we pessimistically assume that the best spddies start (see AppendiXD for details on Taylor series expansiong(n) for
of the run has fitness 3, since in such case fitnegs ofhas minimal ,, 0). For the second sum, we notice the upper bound on the value
fitness of 1, otherwise we obtain inconsistencies 5.aVe have two i the denominator, sincg — v/2 ~ 0.58 < 1:

probabilities to consider for the two new types of pairs:

n—3
1
kE k-2 —k n—k+2 Sa(n, k) =
<afor gy = s S 2 T = k- (20— V2(n +2))
k(k—2)+(n—Fk)(n—-k+2) (| =
frd < — — ~ — —
) <2 2 log(n —3) + O(1)

We need to preserve the better parent in order to get it addéubt
population, so need to either select 1-bits in each parefthits in

each parent. for the last swap probabiligy (k), we need only to )
select a 0 in the3; parent and 1 in3_; parent, other options either S(un) < ™ (log(n —3) —O(1)
degrade the better parent or leave the current fitness. - un

and the upper bound on the expected first hitting time:

the minus sign in front of the expression cancels out and vtairob
the upper bound fof5(, n):

(n—k+1)(k—-2)

2 26u2n(log(n — 3) — O(1
n ET(/,L+)\)EA135 S M ( g( X ) ( )) (17)

< Br,B-1 > pa(k) =

We continue with manipulating with the summand o¥er

with § = ﬁ the expression becomes (measured in the number of
1

S(n, k) = generations, for > 0)
TN O N ) 1
2 cun l1ogn n
— n ET(ut0EA 55 = % - O<MT> (18)
4p — 1)k? + (n — 8u — 4un + 3)k + 4un — 2n + 2un? — 2
< n_2 . 1 or, in the number of function evaluations,
- k2 —4(n+2)k+2n(n+1
( ) ( ) ET(10)EBA, gs = cunlogn — O(un) (19)
We leave out the first fraction, and factor the denominatdhénform
(k — s)(k —r), s.t.s,r are solutions to the set of equations:
APPENDIXD
s+r =4(n+2) MATHEMATICAL EXPRESSIONS
sr =2n(n+1) There is a number of important mathematical expression used

. . . throughout the article, we present some of them here:
The resulting solution (we only use one of the roots, which ar 9 P

symmetric) is: n-! n-l n—1
d ) H(n):z L :Zl%/ dz =logn <logn +1
n—k k o n—x
s =2n+V2Vn2+Tn+8+4 k=0 k=0
ro=2n—v2Vn2+Tn+8+4 Digamma function:
The value under the root can be bounded by Yo(n) =logn + O <%>
< \/n2 < . .
nt2svnitint8sntd For ¢o(n) with n — —oo we use the largest term of Taylor series
So the expression becomes upper-bounded by for asymptotic expansion:
1 po(n) zﬂcot(wn)—i—O(l)
(k= (2n + V2(n +2)))(k — (2n — V2(n + 4))) "



The values forcot(wn) for integern, such as in this article, are
infinity. Therefore for expressions féf; (n, k) and S2(n, k) we have
selected some constants, e-g(1 — v/2),2 — /2, s.t. the resulting
values are constants. Singeis arbitrarily large, we can find such
that the difference between them is negative, hence werokgain
-0(1).
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