
              

City, University of London Institutional Repository

Citation: Ter-Sarkisov, A. (2012). Elitism Levels Traverse Mechanism For The Derivation of

Upper Bounds on Unimodal Functions. Paper presented at the 2012 IEEE Congress on 
Evolutionary Computation, 10-15 Jun 2012, Brisbane, Australia. 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/21328/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


ar
X

iv
:1

20
2.

52
84

v3
  [

cs
.N

E
]  

2 
A

pr
 2

01
2

Elitism Levels Traverse Mechanism For The Derivation of
Upper Bounds on Unimodal Functions

Aram Ter-Sarkisov

Department of Computer Science
Massey University

Wellington, New Zealand
Email: a.ter-sarkisov@massey.ac.nz

Abstract—In this article we present an Elitism Levels Traverse Mech-
anism that we designed to find bounds on population-based Evolutionary
Algorithms solving unimodal functions. We prove its efficiency theoreti-
cally and test it on OneMax function deriving boundscµn logn−O(µn).
This analysis can be generalized to any similar algorithm using variants
of elitist selection and genetic operators that flip or swap only 1 bit in
each string.

Index Terms—Evolutionary computation, Genetic algorithms, Compu-
tational complexity

I. I NTRODUCTION

We analyze an elitist population-based Evolutionary Algorithm with
population sizeµ and recombination pool sizeλ, (µ + λ)EA using
a genetic operator 1-Bit-Swap that recombines informationbetween
parents (see [1]).

Most research in theoretical EA community is focused on
mutation-based single species algorithms such as(1 + 1) 1

µ
EA

(see e.g. [2]–[4]) with some sharp bounds on runtime obtained for
OneMax function such as0.982n log n in [4].

Results on population-based algorithms are less abundant,and
are restricted to mostly(µ + 1) 1

µ
EA (see [5]) with upper bound

O(µn + n log n) and (1 + λ) 1

µ
EA (see [6], [7]) with upper

bound on OneMaxO(n log n + nλ) in [6] and all linear functions
O(⌊n log n

λ
+ n log log λ

log λ
⌋) in [7].

Although so far (µ + λ) or (N + N) EAs have deserved less
attention, they have been the subject of analysis in [8]–[10].
Specifically, in [10] it was derived that for a(N + N) EA with
mutation and tournament selection solving OneMax the upperbound
is O(nN logN + n log n) if measured in the number of function
evaluations.

Unfortunately many of these results are not directly comparable
due to the difference in selection functions (fitness-proportional,
truncation, elitist, tournament, etc) and elitism settings (save 1 best
species or some variable proportion).

Even more significantly, it was shown already in [8] that population
effect is generally problem-specific, so it is quite hard to generalize
findings to other functions. There is ample evidence though (e.g.
[5], [6]) that for mutation-based algorithms (incl. Randomized
Local Search, RLS) optimizing simple functions such as OneMax
population is not beneficial and tends to degrade performance.

II. A LGORITHMS AND PROBLEMS

A. Algorithm

Although the mechanism described in this paper is quite universal, we
test it on (µ + λ)EA1BS solving OneMax problem. This problem
is well-known in EA community, recent achievements include[4],
[11] with some sharp bounds. We selected this problem due to its
simplicity and the ability to compare our findings to those available
already.

TABLE I
ALGORITHM

(µ + λ) Evolutionary Algorithm using 1-Bit-Swap (1BS)
1 createµ starting species at random
2 t = 0
3 loop
4 select using a variant of fitness-proportional Tournamentselection

λ
2

pairs of parents into the pool
5 swap bits in each pair
6 keep the currently-elite species in the population, replace the rest

with the pool, first with new currently-elite, then at random
7 t = t+ 1
8 end loop

B. Selection function

Throughout the article we analyze an elitist recombination-driven
(µ+λ) EA using a variant of tournament selection. It is both simple
to implement and analyze. But since we recombine information
between parents, we are interested in formingpairs of species in
the recombination pool, and on the construction of these pairs the
properties of the algorithm will be derived. This formationoccurs in
the following way:

TABLE II
SELECTION FUNCTION

Variant of Tournament Selection
1 k = 0
2 loop
3 select two species from the population at random
4 examine their fitness, the better one enters the pool
5 k = k + 1
6 end loop

Thus it is obvious that better-fit species have higher chances of
entering the pool, so we can expect the proportion ofα species to
be higher in the pool rather than in the population.

http://arxiv.org/abs/1202.5284v3


C. 1-Bit-Swap Genetic Operator

We apply the 1-Bit-Swap operator that was found to be useful
solving a large number of test problems in [1] and was analyzed
extensively in [12], [13] to have outperformed the mainstream RLS
algorithm both theoretically and numerically.

Another advantage of 1BS is that we can compare it directly
to RLS, since both are local search operators that cannot move too
far from the current best search point. The operator works inthe
following way:

TABLE III
GENETIC OPERATOR

1-Bit-Swap Operator
1 j = 0
2 loop
3 select a bit in the first parent uniformly at random
4 select a bit in the second parent uniformly at random
5 swap values in these bits
5 j = j + 1
6 end loop

III. D EFINITIONS

A. Fitness levels partition

Basic approach to analyzing elitist EA with a simple 1-bit mutation
solving unimodal binary-encoded EAs was introduced by Wegener
in [14] that is based on fitness partitioning: on a set of binary strings
{0, 1}n size2n a partition into a finite number of nonempty subsets
A1, A2, · · · , Am is defined with orderingA1 - A2 - · · · - Am

s.t. all a ∈ Am are the global optimum.

This approach allows definition and derivation of the lower bound of
success probability of transition between states,si(a) = P (Ai+1|Ai)
and the upper bound on expected convergence time of the
algorithm, expected first hitting time of the best fitness level,
E(Xf ) ≤ s−1

1 + s−1
2 . . . + s−1

m−1. This idea can be extended to the
situation when we apply non-negative weightsw(f) (see [2], [14])
and to derive lower bounds (by considering the upper bound onsi(a).

Another tool used extensively in the analysis of EAs are potential
(auxiliary) functions that measure progress (see [14]). This is
especially useful when working on functions that have fitness
plateaus (see e.g. [15]), in which case we make the difference:

1) fitness functions decide whether the new binary input (species)
is better than the old one

2) potential function tracks the progress between states ofthe
algorithm (fitness levels)

OneMax (or some simple transformation of it) is used as a poten-
tial function for more complicated problems (Royal Roads, Binary
Values, Short/Long Path etc).

B. Elitism Levels Partition

In this article we extend this approach to a population-based elitist
algorithm, but rather than tracking the traverse of levels of fitness,
we do the same to the levels of elitism, i.e., number of elite species
in the population.

We focus on species that can either evolve to the currently-
best over 1 iteration or are already best. Therefore, the population

is broken down into three disjoint subsets:

α : currently best species

β1 : species with next-best fitness

β−1 : the rest of the population that cannot evolve over 1 generation

Since 1BS swaps exactly 1 bit between two parents, this partition in
combination with the assumptions made above enables construction
of a very precise model, since the value ofα cannot ’jump‘ more
than 1 level of fitness and onlyα-species can breed better population,
but onlyβ1-species may evolve intoα and change the probability of
evolution.

C. α-levels subpartition

This additional partition is necessary for functions with plateaus for
which we use potential functions explained above. The need for it
becomes evident in the next section, when probabilities of evolving
elite species on two types of functions are compared. In addition to
the elitism levels partition, for functions with plateaus we need to
subpartition theα-level.

In slight abuse of notation in the rest of this article, we denote A
the set of chromosomes in the population with the highest fitness.
Also γ is the length of the plateau of fitness. Therefore the set A
can be partitioned into

A = A0 ∪A1 ∪ · · · ∪Aγ−1

where each subsetAm has equal fitness. In order to differentiate
betweenAm, we assign each elite species an additional auxiliary
function, Vm that tracks progress to the next level by counting the
number of 1-bits in the fitness level:A0 - A1 - . . . - Aγ−1 with
corresponding auxiliary valuesV0 < V1 . . . < Vγ−1, i.e. OneMax is
used as an auxiliary function. Species with both highest fitness and
auxiliary values can be viewed as super-elite orα∗.

In the next section we use the notationα, α∗ to denote the
set of elite or super-elite species, an element of that set and the size
of it. This is done to reduce notational clutter.

IV. ELITISM LEVELS TRAVERSEMECHANISM FORUPPER

BOUNDS

In this section we present the main result of the article on a general
function that is later confirmed by further application to OneMax
Test Function. We are interested in the upper bounds on optimization
time (for explanation of Landau notation see e.g. Chapter 9 in [16]).

The working of the Elitism Levels Traverse Mechanism can
be illustrated by an example from immunology.

There exists a population of species sizeN , which is susceptible to
M types of infection, which are mutually exclusive, i.e. a species
cannot be infected by more than one infection. The size of each
set of infected species cannot be larger thanmj . We denoteE∗

j

an event that there are1 ≤ r ≤ mj infected species of typej,
of which exactly one spawns an infected offspring that destroys a
healthy member of the population. Since the sets of infectedspecies
are mutually exclusive, by additivity we obtain the probability that
any of the infected species adds exactly one infected offspring:

P

( M
⋃

j=1

E
∗
j

)

= P

( M
⋃

j=1

mj
⋃

r=1

E
∗
jr

)

=

M
∑

j=1

mj
∑

r=1

P (E∗
jr) =

M
∑

j=1

P (E∗
j )



This expression is quite complicated for a number of reasons, e.g. the
knowledge ofmj . Although we can find bounds on the partial sum
of rows of Pascal triangle, it is guaranteed to make the derivation
quite messy. Therefore we need to lower-bound this probability. We
do this by considering only one infected species of each typerather
than r and the event of spawning exactly one infected species by
Ej . This gives us the lower bound on the total probability of adding
exactly one infected offspring, which is proven in AppendixA:

P (E∗
j ) ≥ P (Ej) ↔

M
∑

j=1

P (E∗
j ) ≥

M
∑

j=1

P (Ej) (1)

In the notation of EA,N = λ
2

, the number of pairs of parents in the
recombination pool with parents that are able to produce exactly one
elite offspring.δµ (for 0 < δ < 1) is the number of elite individuals
in the population that, once it is reached, the probability to generate
an offspring with higher fitness is arbitrarily close to one,i.e.1−o(1).
We also haven− 1 levels of fitness. Combining this with the upper
bound on the probability of adding elite offsprings to the population,
we obtain the upper bound (worst-case) on the optimization time of
the algorithm:

Eτ = O

( n
∑

k=1

δµ
∑

α=1

1
∑M

j=1 P (Ej(α, k))

)

(2)

Derivation of the upper bound from Equation 2 is rather versatile.
We need to identify pairs of possible parents< p1, p2 > such
that there exists some probability of swapping bits betweenparents
ϕj(k) > 0 that as a results of applying a genetic operator to this
pair either a newα species evolves from lower-ranked ones or an
existingα is preserved after the recombination.

Intuitively, for the functions with plateaus both the population
size and the number of elite species are more important than for
those without plateaus. In the remainder of this section we show
that the probability to add a super-elite offspring when solving a
function with plateaus is less than the probability to add anelite
offspring when solving functions without plateaus.

For the rest of this section we denotef1 function without
plateaus andf2 function with plateaus. What we show is that
P (Ef1

j (α, k)) ≥ P (Ef2
j (α, k)).

A. Functions without plateaus

For this type of unimodal functions (e.g. OneMax) intuitively it is
easier to add an elite offspring and thus reduce the optimization
time, but we need to show it rigorously.

The probability to select a pair with anα-parent can be bounded by

P
f1
sel ≥

α

µ
ξ1

whereξ1 is the probability to select a non-elite species to be paired
with the elite one. Also bound the probability to flip the bitsϕj(k) ≥
η ∀ j, k. So the probability of an eventEj that includes pairs with
elite species is

P (Ef1
j ) ≥

(

λ
2

1

)

α

µ
ηξ1 =

λαηξ1

2µ

The probability to select a pair without the the currently-elite species
is lower-bounded byρ1

µ
. By breaking down the set of parentsMf1

in the recombination pool into those includingα− parents,M∗
f1

and those that do not,M∗∗
f1

, we can find the lower bound on the
probability of adding another elite species:

P (Sf1
α,k) ≥

M∗
f1
λαξ1η

2µ
+
M∗∗

f1
ληρ1

2µ

B. Functions with plateaus

As noted in [10], algorithms with well-chosen population size
perform similar to, and best individuals evolve along the same path
as (1 + 1)EA. The difference between (µ + λ)and(1 + 1) lies in
the cost of traversing plateau. For this type of functions the length
of plateauγ > 1. So we have K plateaus w.l.o.g. of the same length
γ ∈ Z

+, andn = γK.

Also we assume that at the start of the algorithm each ‘bin’
(plateau) starts with an equal number of 1’s and 0’s uniformly
distributed, therefore fitness of the best species at the beginning of
the run is 0. To track progress between jumps in fitness valueswe
use OneMax as an auxiliary function (roughly along the linesof
using potential or distance functions, see e.g. [7]) that sums bits in
the plateau.

The tricky part in this analysis is that the selection is based
on fitness of the string rather than auxiliary function, but the
progress towards the next level of fitness plateau depends onthe
number of parents with highest auxiliary value,Vs rather thanf(s).
By denoting the subset ofα with highest auxiliary functionα∗, we
notice thatf(α) = f(α∗), andVα < Vα∗ . Also trivially α∗ ≤ α

(for the case of functions without plateaus these functionsare
identical and last two expressions are equalities).

As shown before, for a unimodal function without plateaus
regardless of fitness function, the probability that one of the parents
is elite is α

µ
, since if two elite species are selected for breeding,

parent is chosen randomly. Obviouslyα
∗

µ
≤ α

µ
. Additionally,

α∗

µ
· (α− α∗)

µ
· 1
2
≤ α∗

µ
≤ α

µ

Obviously, unlike f1, for the evolution process onf2 only a
small subset of parents are of use, these having the highest and
next-highest auxiliary values. Therefore pairs that do notinclude
at least 1 of these parents can’t add anα∗ offspring. Similar to
f1, Mf2 =M∗

f2
+M∗∗

f2
and clearlyM∗

f2
≤M∗

f1
andM∗∗

f2
≤M∗∗

f1
.

Along the lines of arguments in the previous subsection,∃ξ2
s.t. probability to select a non super-elite parent in addition to the
super-elite one is upper-bounded by it. We get:

P
f2
sel ≤

α∗(α− α∗)ξ2
2µ2

so the probability of an event that anα∗ parent is added to a pool
and a newα∗ offspring evolves is upper-bounded by

P (Ef2
j ) ≤ M∗

f2
λα∗(α− α∗)ξ2η

4µ2

where η is the lower bound on the probability of swapping bits.
Therefore the probability to add one moreα∗ species to the popula-
tion is

P (Sf2
α,k) ≤

M∗
f2
λα∗(α− α∗)ξ2η

4µ2
+
M∗∗

f2
ληρ2

2µ

Combining the inequalities above, and takingM∗∗
f1

≥M∗∗
f2

+ ǫ
ρ1
, 0 <

ǫ < 1, we compare the values in the first and second fractions



in the expressions forP (Sf1
α,k) andP (Sf2

α,k). It is easy to see that
∃ two constantsψ2 < ψ1 s.t.

P (Sf2
α,k) ≤ ψ2 < ψ1 ≤ P (Sf1

α,k) (3)

V. UPPERBOUND ON RUNTIME OF (µ+ λ)EA1BS ON ONEMAX

TEST FUNCTIONUSING ELITISM LEVELS TRAVERSEMECHANISM

In this section we present our findings on the upper bounds on runtime
of (µ + λ)EA with 1-Bit-Swap operator optimizing OneMax func-
tion using the Elitism Levels Traverse Mechanism. We distinguish
four pairs of parents that make possible evolution of currently-elite
species:

E1 :< α, β1 >

E2 :< β1, β1 >

E3 :< α, β−1 >

E4 :< β1, β−1 >

We do not consider the obvious pair< α, α > as it either adds
two elite offsprings, of generates an offspring with higherfitness,
something we do not use in the Mechanism.

For the upper bound on optimization time we only consider
increase of the number of elite species by at most one. Increase
by two or more is ignored, or otherwise transformed into any of
the lower-ranked species. Similar approach was used in [10]in
bounding the takeover time.

A. Simple upper bound

Of these four cases we start analysis with the first two. Main reason is
that the other two cases involve cubic function, which becomes quite
complicated to solve (see next subsection). For the casesE1, E2 we
get the following probabilities of success:

P (E1) = 2

(

λ
2

1

)

ϕ1(k) · α
µ
· β1
µ

(

1− α

µ

)

=
αβ1λ(µ− α)ϕ1(k)

µ3

P (E2) =

(

λ
2

1

)

ϕ2(k)

(

β1

µ

(

1− α

µ

))2

=
λϕ2(k)β

2
1(µ− α)2

2µ4

The probability of at least 1 of these events is

P (Sα,k) ≥ P (E1) + P (E2) =
2ϕ1(k)αβ1λ(µ− α)

µ3

+
ϕ2(k)λβ

2
1ϕ1(k)(µ− α)2

2µ4

and, sinceP (S) is minimal, the upper bound on expected time to
traverse levels of elitism large enough to get a1− o(1) probability
of evolution is

ET̃α,k ≤
δµ
∑

α=1

1

P (Sα)
(4)

The expression for the expected first hitting time we obtain as a result
of this setup is

ET̃α,k ≤ 2µ4
δµ
∑

α=1

1

β1λ(µ− α)(2αµϕ1(k)− αβ1ϕ2(k) + β1µϕ2(k))

=
2µ4

λ
·

δµ
∑

α=1

1

(ϕ2(k)− 2µϕ1(k))α2 + (2µ2ϕ1(k)− 2µϕ2(k))α+ µ2ϕ2(k)

=
2µ4

λ(ϕ2(k)− 2µϕ1(k))

δµ
∑

α=1

1

α2 + b1α+ b0
(5)

where

b0 =
µ2ϕ2(k)

ϕ2(k)− 2µϕ1(k)

b1 =
2µ(µϕ1(k)− ϕ2(k))

ϕ2(k)− 2µϕ1(k)

At this point we setβ1 pessimistically to 1 to simplify the derivation.
This a quadratic equation inα. The full solution to Equation 5 is in
Appendix B.

The optimization time is

Eτ(µ+λ)EA1BS
= O(µ1+ε2n log n) (6)

for some constantε2(µ). For the second option ofδ = c
µ

the upper
bound becomes

Eτ(µ+λ)EA1BS
= O(µn log n) (7)

or, in the number of function evaluations

Eτ(µ+λ)EA1BS
= O(λµn log n) (8)

B. Refined upper bound

We add the other two cases to obtain a sharper upper bound on
optimization time, we setβ1 = 1:

P (E3) = 2

(

λ
2

1

)

α

µ
·
(

1− α+ β1

µ

)2

ϕ3(k)

≈ λα

µ

(

1− α

µ

)2

ϕ3(k)

P (E4) = 2

(

λ
2

1

)

β1

µ

(

1− α

µ

)(

1− α+ β1

µ

)2

ϕ4(k)

≈ λ

µ

(

1− α

µ

)3

ϕ4(k)

The probability to evolve one more elite species is (P (E1), P (E2)
are the same as in the previous derivation):

P (Sα,k) = P (E1) + P (E2) + P (E3) + P (E4)

and the expected time until there areδµ elite strings in the population:

ET̃µ,k ≤
δµ
∑

α=1

1

Sα,k

= 2µ4
δµ
∑

α=1

1

b3α3 + b2α2 + b1α+ b0

=
2µ4

b3

δµ
∑

α=1

1

α3 + b2
b3
α2 + b1

b3
α+ b0

b3

(9)



where

b0 = λµ
2(2µϕ4(k) + ϕ2(k))

b1 = 2λµ(µϕ1(k) + µ
2
ϕ3(k)− 3µϕ4(k)− ϕ2(k))

b2 = λ(ϕ2(k)− 4µ2
ϕ3(k)− 2µϕ1(k)− 6µϕ4(k))

b3 = 2λ(µϕ3(k)− ϕ4(k))

Full solution of Equation 9 is in Appendix C.

The upper bound on expected optimization time is (forδ 6= c
µ
, c is

a constant):

Eτ(µ+λ)EA1BS
=
cµ1+ǫn log n

λ
−O

(

µ1+ǫn

λ

)

(10)

for 0 < ǫ(µ) < 1 and if δ = c
µ

, in the number of function
evaluations:

Eτ(µ+λ)EA1BS
= cµn log n−O(µn) (11)

This bound is sharper than the one obtained using simpler arguments
earlier in this paper up to the orderλ (since more possibilities of
adding elite species are considered). It is also comparableto the
results in [6], [7], [10] (see below). Such a result likely means that
population has positive effect for some relatively smallµ, but as it
keeps increasing it either levels out (at best) or starts to degrade
performance.

C. Generations vs Function evaluations

Tournament selection has a property that you do not need to evaluate
every species, but we need to make2λ evaluations (since two species
compete for 1 slot in the recombination pool, so the number ofevalu-
ations each generation isO(λ). Therefore, in terms of the number of
functions evaluations the rough bound becomesO(µλn log n) and
the refined oneO(µn log n). If µ = λ = O(1) this reduces to
the well-known result ofO(n log n) for OneMax function. Theλ
term in the denominator means that for the algorithm run on parallel
computers the increase in the recombination pool size improves the
performance.

D. Comparison to earlier results

The closest comparison we can draw is to (N+N )EA with mutation
and tournament selection function in [10],O(nN logN + n log n)
if measured in the number of function evaluations (Proposition 4).
By settingN = O(1) = c ≥ 1 this bound becomesn log n +
O(n), which is larger than justO(n log n). If instead we setµ =
N = O(

√
log n) or O( log n

log log n
) the result in [10] is sharper than in

this paper. For populationsΩ(
√

n

log n
) though the bound in this article

becomes sharper again, e.g., forµ = N = O(
√
n) it is cn

3

2 log n−
n

3

2 , and in [10] it is n
3

2 log n

2
+O(n log n).

VI. D ISCUSSION

We presented a new tool to analyze population-based elitistEAs,
Elitism Levels Traverse Mechanism, which we used to derive anew
upper bound on(µ + λ) EAs with a recombination operator and a
variant of tournament selection solving OneMax problem.

We derived and proved the lower bound on the probability of
evolving exactly 1 new currently-elite species, which helped us
obtain the upper bound on the expected optimization time.

We showed that for a function with fitness plateaus it is harder to
add a super-elite offspring to the population than an elite offspring

for a function without plateaus. This means that the very number of
super-elite species in the population is more important in the former
case than the number of elite species in the latter.

It may seem from the derived equations that population generally
degrades performance (sinceµ is in the numerator), but for small
size of population, when the cost of functions evaluations is not
much different from 1, population brings about some positive effect.

As it keeps increasing, the effect levels out, at the same time
the costs of evaluating functions grows and population loses its
benefit. For other algorithms, s.a. RLS the effect even of small-sized
population is usually negative, which makes EA+1BS (and, possibly,
other recombination-based algorithms) stand out.

At the same time the recombination pool improves performance
(at least when measured in terms of the number of generations),
sinceλ is in the denominator. This means there is a benefit from
increasing recombination pool size when the algorithm is run on
parallel computers.

The Mechanism we have designed in this article proved to be
quite efficient in deriving upper bounds for OneMax functionand
we are confident it can also yield tight upper bounds on other
population-driven algorithms and more complicated problems.

VII. C ONCLUSIONS ANDFUTURE WORK

There are many reasons to use population in evolutionary computing
rather than just(1+ 1) or (1, 1) algorithms, that includes higher di-
versity and shorter evolutionary path (see [10]). We intendto expand
the results in this article by considering the following extensions to
the upper bound tool:

1) Analysis of functions with fitness plateaus. Apparently for
functions with fitness plateaus (e.g. Royal roads) both large
populations and large number of elite parents are crucial
compared to functions without one, so we will extend our
findings to these functions as well.

2) Typical runtime analysis. It is fairly obvious that the actual
number of elite species grows every generation at some rate
that realistically lies between the upper and lower bounds.We
need to find an approximation on the expected number ofα

added to the population every generation and thus estimate the
typical runtime.

3) Elitism rates analysis. In this article we never really considered
the rate of elitism, i.e. the actual number of species saved in the
population each generation, although numerical computation
shows that it has a strong effect on the runtime. So far we
only said that all the elite species are saved each generation,
thus accumulating over time tillδµ. It would be interesting to
compare elitism level 1 to 50%, i.e. if there is any difference
if only 1 species is saved compared to half of the population.

4) Derivation of δµ to find the proportion of elite species that
yields a high enough probability of evolution. Quite obviously
it is different for functions with plateaus and without.

5) Derivation of the optimal population size. We will do thisby
comparing the number of functions evaluations necessary of
(1 + 1) and (µ+ λ) algorithms.
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APPENDIX A
PROOF OFEQUATIONS 1-2

Main idea and logic of the lower bound on the probability of adding
an elite offspring and the upper bound on runtime following from
this is presented in Section IV. Here we present the derivation of
this bound.

We prove this lower bound inequality for an arbitrary subset
(it is not to be confused with at trivial one of the form

∑

k≥r

(

n

k

)

pk(1− p)k >
(

n

r

)

pr(1− p)n−r):

P (Ej) =

(

λ
2

1

)

PselPswap =

(

λ
2

1

)

Pselϕj(k)

P (E∗
j ) = P

( mj
⋃

r=1

E
∗
jr

)

=

mj
∑

r=1

(

λ
2

r

)

P
r
sel(1− Psel)

λ
2
−r

(

r

1

)

ϕj(k)(1− ϕj(k))
r−1

In this expressionPswap is not necessarily the probability to swap
bits < 0, 1 >. It is the probability to swap bits such that an elite
offspring evolves. Since all the terms in the sum are positive, we use
the lower bound on this expression:

P (E∗
j ) ≥

mj
∑

r=1

(

λ
2

r

)

P
r
sel(1− Psel)

λ
2
−r
ϕj(k)(1− ϕj(k))

r−1

≥ ϕj(k)

(1− ϕj(k)

( mj
∑

r=0

(

λ
2

r

)

P
r
sel(1− ϕj(k))

r(1− Psel)
λ
2
−r

− (1− Psel)
λ
2

)

≥ ϕj(k)

( mj
∑

r=0

(

λ
2

r

)

P
r
sel(1− ϕj(k))

r(1− Psel)
λ
2
−r−

(1− Psel)
λ
2

)

Canceling outϕj(k) and moving the terme−1 ≤ (1 − Psel)
λ
2 ≤

1√
e
< 1 on the other side, LHS of the inequality becomes

P (E∗
j ) ≥

mj
∑

r=0

(

λ
2

r

)

P
r
sel(1− ϕj(k))

r(1− Psel)
λ
2
−r

≥ (Psel(1− ϕj(k)) + 1− Psel)
λ
2

= (1− Pselϕj(k))
λ
2

and the RHS is upper-bounded by

1√
e
+
λPsel

2
=

1√
e
+ o(λc−1)by the argument below

LHS is lower-bounded by (using Bernoulli inequality forλ
2
≥ 1):

P (E∗
j ) ≥ (1− Pselϕj(k))

λ
2 ≥ 1− λPselϕj(k)

2

Since we can selectPsel = o(λc) andϕj(k) = O( 1
nc ), c ∈ Z, the

expression is

P (E∗
j ) = 1− o(1) >

1√
e
+ o(1) = P (Ej) (12)

thus proving the upper bound on the probability of evolving 1more
elite species for an arbitrary subset. This logic applies for each of
the M subsets (types of pairs) of the recombination pool, andthe
inequality becomes

P

(

M
⋃

j=1

E
∗
j

)

>

M
∑

j=1

P (Ej) (13)

The upper bound in Equation 2 follows directly.



APPENDIX B
SOLUTION OF EQUATION 5

We have a quadratic equation

S(µ, k) =
∑

α

P2(α) =

δµ
∑

α=1

1

α2 + b1α+ b0

with

b0 =
µ2ϕ2(k)

ϕ2(k)− 2µϕ1(k)

b1 =
2µ(µϕ1(k)− ϕ2(k))

ϕ2(k)− 2µϕ1(k)

In order to simplify the already complicated derivation, wewant the
expression above in the form

P2(α) =
1

(α+ r)2
=

1

(α2 + 2rα+ r2)

for some r, not necessarily rational. From equating coefficients it
becomes clear that

r =
√
b0 ∨ r = b1

2

and so, using the first root

S(µ, k) =

δµ
∑

α=1

1

(α+ r)2
= ψ1(

√
b0)− ψ1(

√
b0 + δµ+ 1)

For largeb0 these expressions involving digamma function can be
expanded asymptotically in Taylor series (we use only the first two
terms):

S(µ, k) ≈
(

1

b0
− 1

2b0

)

−
( 1

b0
− δµ

b0
− 1

2b0

)

=
δµ

b0

=
δµ(ϕ2(k)− 2µϕ1(k))

µ2ϕ2(k)
=
δ(ϕ2(k)− 2µϕ1(k))

µϕ2(k)

and therefore the expected time to traverse enough levels ofelitism to
improve 1 bit of the string is (plugging this expression intoEquation
5)

ET̃µ,k =
2µ4

λ(ϕ2(k)− 2µϕ1(k))
· δ(ϕ2(k)− 2µϕ1(k))

µϕ2(k)

=
2µ3δ

λϕ2(k)

To improve the pair< β1, β1 > we need to either swap 1 from the
first parent and 0 from the second, or the other way around (anyother
outcome just keeps the current number of bits in each parent):

ϕ2(k) = 2 · k − 1

n
· n− k + 1

n
=

2(k − 1)(n− k + 1)

n2

Plugging this into the expression forET̃k, we obtain the expected
optimization time of the algorithm, pessimistically assuming that at
the beginning of the run the best species has only 2 1-bit and finishes
at n − 2, since if the fitness ofβ1 = n − 1 implies the fitness of
α = n.

Eτ(µ+λ)EA1BS
≤ µ3n2δ

λ

n−2
∑

k=2

1

(k − 1)(n− k + 1)

=
δµ3n2

λ
· 1
n

(

n−2
∑

k=2

1

k − 1
+

n−2
∑

k=2

1

n− k + 1

)

=
δµ3n

λ

(

log(n− 1) +O(1)

)

The second step is due to partial fraction expansion. Although this
seems quite a loose bound given cubic inµ, we takeµ = O(λ) so
all we need to establish isδ to reduce the power.

Obviously 0 < δ < 1, but we need to select it s.t. summation
over α makes sense. We setδ = µ−ε1 for an arbitrary
ε1 > 0 s.t. δµ = µ1−ε1 > 1. Then δµ2 = µ2−ε1 = µ1+ε2 .
For example,ε = 1

2
yields δµ =

√
µ andδµ2 =

√

µ3. Therefore,
the upper bound on the expected convergence time is

Eτ(µ+λ)EA1BS
= O(µ1+ε2n log n) (14)

In fact if (similar to [10]) we setδ = c
µ

for c ∈ Z
+, we getδµ =

c andδµ2 = cµ = O(µ), so the expectation becomes linear inµ:

Eτ(µ+λ)EA1BS
= O(µn log n) (15)

APPENDIX C
SOLUTION TO EQUATION 9

We need a solution to the cubic equation of the form

S(µ, k) =
∑

α

P3(α) =

δµ
∑

α=1

1

α3 + b′2α2 + b′1α+ b0

where

b
′
2 =

ϕ2(k)− 4µ2ϕ3(k)− 2µϕ1(k)− 6µϕ4(k)

2(µϕ3(k)− ϕ4(k))

b
′
1 =

µ(µϕ1(k) + µ2ϕ3(k)− 3µϕ4(k)− ϕ2(k))

2(µϕ3(k)− ϕ4(k))

b
′
0 =

µ2(2µϕ4(k) + ϕ2(k))

2(µϕ3(k)− ϕ4(k))

Solution toS(µ, k) is of the form

S(µ, k) =
∑

α

1

(α+ ρ)3
=
∑

α

1

α3 + 3α2ρ+ 3αρ2 + ρ3

Equating the coefficients we obtain three rootsρ:

ρ =
b′2
3

ρ = ±
√

b′1
3

ρ = 3
√

b′0

To simplify the increasingly hard notation, we select only the last
root:

S(µ, k) =

δµ
∑

α=1

1

(α+ 3

√

b′0)
3
=
ψ2( 3

√

b′0 + δµ+ 1)− ψ2( 3

√
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2

=
1

2
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− 1

3
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2
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2δµ+ 1
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−
(

− 1

3

√

b′0
2
+

1
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))

=
1

2
· 2δµ
b′0

=
δµ

b′0

The second line in the derivation was obtained by expanding both
second-order polygamma functions in Taylor series asb′0 → ∞ and
taking two first terms of each function. We now combine the front
term in Equation 9 with this derivation to obtain the expression on



the upper bound on achieving the number of elite species in the
populationδµ:

ET̃µ,k ≤ 2µ5δ

λb3b′0
=

2δµ3

λ(2µϕ3(k) + ϕ4(k))

since

b3b
′
0 = 2(µϕ3(k)− ϕ4(k)) · µ

2(2µϕ3(k) + ϕ4(k))

2(µϕ3(k)− ϕ4(k))

= µ
2(2µϕ3(k) + ϕ4(k))

We are now ready to find the upper bound on the expected optimiza-
tion time of the algorithm:

Eτ(µ+λ)EA1BS
≤

n−3
∑

k=3

ET̃µ,k =
2δµ3

λ

n−1
∑

k=3

1

2µϕ3(k) + ϕ4(k)

(16)
Here again we pessimistically assume that the best species at the start
of the run has fitness 3, since in such case fitness ofβ−1 has minimal
fitness of 1, otherwise we obtain inconsistencies s.a.1

0
. We have two

probabilities to consider for the two new types of pairs:

< α, β−1 >: ϕ3(k) =
k

n
· k − 2

n
+
n− k

n
· n− k + 2

n

=
k(k − 2) + (n− k)(n− k + 2)

n2

We need to preserve the better parent in order to get it added to the
population, so need to either select 1-bits in each parent or0-bits in
each parent. for the last swap probability,ϕ4(k), we need only to
select a 0 in theβ1 parent and 1 inβ−1 parent, other options either
degrade the better parent or leave the current fitness.

< β1, β−1 >: ϕ4(k) =
(n− k + 1)(k − 2)

n2

We continue with manipulating with the summand overk:

S(n, k) =
1

2µϕ3(k) + ϕ4(k)

=
n2

(4µ− 1)k2 + (n− 8µ− 4µn+ 3)k + 4µn− 2n+ 2µn2 − 2

≤ n2

µ
· 1

k2 − 4(n+ 2)k + 2n(n+ 1)

We leave out the first fraction, and factor the denominator inthe form
(k − s)(k − r), s.t. s, r are solutions to the set of equations:

{

s+ r = 4(n+ 2)
sr = 2n(n+ 1)

The resulting solution (we only use one of the roots, which are
symmetric) is:

{

s = 2n+
√
2
√
n2 + 7n+ 8 + 4

r = 2n−
√
2
√
n2 + 7n+ 8 + 4

The value under the root can be bounded by

n+ 2 ≤
√

n2 + 7n+ 8 ≤ n+ 4

So the expression becomes upper-bounded by

1

(k − (2n+
√
2(n+ 2)))(k − (2n−

√
2(n+ 4)))

Expanding this in partial fractions, we obtain

1

2
√
2(n+ 3)

·
(

1

k − (2n+
√
2(n+ 2))

− 1

k − (2n−
√
2(n+ 2))

)

We obtain two sums over k:

S1(n, k) =
n−3
∑

k=3

1

k − (2n+
√
2(n+ 2))

≈ ψ0(n− 2n−
√
2n)− ψ0(3− 2n−

√
2n)

= ψ0(−(1−
√
2)n)− ψ0(3− (2 +

√
2)n)

= O(1) −O(1) = −O(1)

The result of−O(1) is due to the fact that we can select anyn, for
which the values of digamma function are small negative constants
(see Appendix D for details on Taylor series expansion ofψ0(n) for
n < 0). For the second sum, we notice the upper bound on the value
in the denominator, since2−

√
2 ≈ 0.58 < 1:

S2(n, k) =

n−3
∑

k=3

1

k − (2n−
√
2(n+ 2))

≤
n−3
∑

k=3

1

k − n
= −

n−3
∑

k=3

1

n− k
≈ − log(n− 3) +O(1)

the minus sign in front of the expression cancels out and we obtain
the upper bound forS(µ, n):

S(µ, n) ≤ n2(log(n− 3) −O(1)

µn

and the upper bound on the expected first hitting time:

Eτ(µ+λ)EA1BS
≤ 2δµ2n(log(n− 3)−O(1))

λ
(17)

with δ = c
µ

the expression becomes (measured in the number of
generations, forc > 0)

Eτ(µ+λ)EA1BS
=
cµn log n

λ
−O

(

µn

λ

)

(18)

or, in the number of function evaluations,

Eτ(µ+λ)EA1BS
= cµn log n−O(µn) (19)

APPENDIX D
MATHEMATICAL EXPRESSIONS

There is a number of important mathematical expression used
throughout the article, we present some of them here:

H(n) =

n−1
∑

k=0

1

n− k
=

n−1
∑

k=0

1

k
≈
∫ n−1

0

dx

n− x
= log n < log n+ 1

Digamma function:

ψ0(n) = log n+O

(

1

n

)

For ψ0(n) with n → −∞ we use the largest term of Taylor series
for asymptotic expansion:

ψ0(n) ≈ π cot(πn) +O

(

1

n

)



The values forcot(πn) for integer n, such as in this article, are
infinity. Therefore for expressions forS1(n, k) andS2(n, k) we have
selected some constants, e.g.−(1 −

√
2), 2 −

√
2, s.t. the resulting

values are constants. Sincen is arbitrarily large, we can find suchn
that the difference between them is negative, hence we obtain term
−O(1).
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