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ABSTRACT 

 

Silicon based integrated circuits has been dominating the electronics technology industry in the last 

few decades. As the telecommunications and the computing industry slowly converges together, the 

need for a material to build photonics integrated circuits (PIC) that can be cost-effective and be 

produced in mass market has become very important.   

 This thesis describes and outlines the characteristics of high index contrast waveguides as a 

building blocks that can be designed, fabricated and employed on devices in silicon photonics.  

Initially in this work, a fully vectorial H-field based finite element method has been used to obtain the 

modal characteristics of high index contrast bent waveguide to get a better understanding of the 

curved section.  Through the beam propagation method, the propagation losses and the spot-size along 

the propagation distance are obtained when a mode from the straight guide is launched into a bent 

guide.  It is also learnt that mode beating exists at the junction of a straight-to-bent waveguide, in 

which higher order modes will also be generated.  It will be shown in this work that power do 

exchange between the two polarization states, therefore the polarization conversion, the power losses 

and the bending losses will be investigated.  It will also shown in here that by applying lateral offsets 

with coupled waveguides of unequal widths, the insertion loss can be reduced. 

 Secondly, for a high index contrast waveguide such as the silicon strip waveguide with a 

nanoscale cross-section, modes in such waveguide are not purely TE or TM but hybrid in nature,  with 

all the six components of their E and H-fields being present.  Therefore a detail analysis of the modal 

field profiles along with the Poynting vector profile will be shown.  The effects of waveguide's width 

and height on the effective indices, the hybridness, the modal effective area and the power 

confinement in the core or cladding has been studied.  Furthermore the modal birefringence of such 

strip waveguide will be shown.  It will be presented that for a strip waveguide with height of 260 nm, 

single mode exists in the region of the width being 200 nm to 400 nm and that the modal effective is 

at its minimum when width is around 320 nm for both polarization states. 

 Thirdly, a compact polarization rotator with an asymmetric waveguide structure design, 

suitable for fabrication that does not require a slanted side wall or curved waveguide is considered in 

this work.  It will be shown in  here that due to the hybrid nature of the asymmetric waveguide design, 

maximum polarization rotation (from TE to TM) will be achieve by enhancing the non-dominant field 

profile of both polarized fundamental mode.  As the modal hybridness and the propagation constants 

of both polarized modes will be obtained, the half-beat length, polarization conversion and 

polarization cross-talk will be calculated by using the FEM and the least squares residual boundary 

method (LSBR).  It is learnt that a compact single stage polarization rotator with a device length of 48 

μm with more than 99% of polarization conversion is achieved in this work. 

 Finally, a study of vertical and horizontal slot waveguide will be shown.  Based on silicon 

strip waveguide, a detail modal characteristics of E and H-fields along with the Poynting vectors are 

presented.  It will be shown that for slot waveguide, high power confinement and power density will 

be achieved in the slot area.  It will be presented that by optimising the waveguide and slot dimension, 

the performance of the power confinement and power density in the slot region can be improved. 



 1 

1 
 

Introduction 
 

 

1.1 OPTICS 

 

Light can be treated as wave phenomenon.  It was described that light was identified 

as propagating wave in 1637 by Rene´ Descartes.  Then the wave theory of light was 

developed by Christiaan Huygens in 1690, known as Huygens’ construction.  

However, Sir Issac Newton described light as a stream of particles in Opticks, 

published in 1704 and discouraged the wave theory.  It was not until 1800s that the 

wave theory was firmly established.  The double slit experiment in an opaque screen, 

creating interference fringes where the two beams overlapped demonstrated by 

Thomas Young, the effect of such experiment could only be explained in terms of 

waves.  Then in 1821, Augustin-Jean Fresnel extended the work carried out by 

Young, and was able to show by mathematical methods that wave must be transverse 

oscillation.  Then in 1873 James Clerk Maxwell contributed significantly to the field 

of optics with the Maxwell equations inspired by the electromagnetism work carried 

out earlier by Michael Faraday.  Maxwell combined basic physics of electricity and 

magnetism into four partial differential equations, and realised that light is an 

electromagnetic disturbance propagated through the field at a speed according to 

electromagnetic laws.  The discovery of electromagnetism, wave theory and 

Maxwell equations led directly to the development of wireless communications, 

modern radio, radar, television, electromagnetic imaging, and optical 

communications.  
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1.2 TELECOMMUNICATION 

 

Telecommunication has played a key role for the advanced development of optics.  It 

is described that the system of telecommunication is to transmit information from 

one place to another through a medium or a channel.  Normally a basic 

telecommunication system consists of three elements, a transmitter, a receiver and a 

transmission channel.   The first optical transmission system to transmit voices over a 

short distance was developed by Alexander Graham Bell in 1880.  Such invention 

was called the "photophone" and it was designed to used sunlight reflected off a 

vibrating mirror and a selenium photocell.  However sending light signals through 

the air was not so reliable as severe weather would block the light path and interrupt 

communications.  Moreover, such light beam communications required a clear line-

of-sight path between the transmitter and the receiver.  Therefore Bell decided to 

abandon such idea and concentrated more efforts to commercialising the telephone 

system where it uses electricity as transmission signal. 

 

Optical Fibre 

 

 The propagation of light in an optical system depends on the phenomenon of 

“total internal reflection”, whereby light confines in a medium due to the differences 

in refractive indices of the two materials involved, such as glass in air.  It can be 

described that optical fibres are essentially transparent rods of glass or plastic 

stretched into long and flexible wires.  In the early researches, fibres were made with 

total internal reflection at a glass-air interface.  Then in the early 1950s, van Heel 

developed a clad fibre, which basically covered the total-reflection surface with a 

transparent cladding of lower refractive index.  Such development inspired Larry 

Curtiss to suggest making glass clad fibres by melting a tube onto a rod of higher-

index glass. 

 

 The demonstration of semiconductor LASER in the early 60’s by Maiman 

[Maiman, 1960] paved the way to develop a transmission medium capable for 

transmitting and processing large bandwidth of signals reliably.  From previous 

researches, it had been known that light can be guided in thin fibres made of 
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transparent dielectric materials.  Theoretically, fibre optics communications 

technology was known to be possible, however, such system did not emerge for 

several more years.  It was not until the 1966 finding by Charles Kao and George A. 

Hockham [Kao and Hockham, 1966] at Standard Telephone Laboratories (STL) in 

Britain that a major breakthrough to communicating through glass was not the 

material itself but the impurities in it.  At that time, the thought of light in a glass 

medium can carry more information over longer distances than electrical signals can 

carry in a copper or coaxial medium was thought to be possible.  With the impurities 

removed, they calculated that fibre could carry light as far as one kilometre while 

retaining a small percentage of the light signal.  Such small percentage of light 

sounds trivial, but if it could be achieved, it would be the same as the copper based 

telephone system which did not require repeated transmission over the same 

distance.  Kao then  had the intuition to show that an intractable form of pure glass 

called fuse silica would have no attenuation at all.  Kao's finding inspired the 

researchers at Corning to focus their attention on fused silica material.  Later Maurer 

and his associates [Kapron et al., 1970] created the first fibre with a completely new 

technology to fabricate the glass fibre that can reduce signal losses over any distance.  

By 1970, his team had produced a fibre with a measured attenuation of less than 20 

dB/km.  Soon Corning managed to create a next generation of fibre that could 

lowered the attenuation level to 1.0 dB/km.  In these early designs, fibres were 

multimode in which the fibre had larger core area and allowed different modes of 

light to propagate simultaneously.   

 

 In these early optical transmission systems, multimode fibres were used to 

transmit light from optical transmitter with LEDs (Light Emitting Diodes) sources 

operating at wavelength near 800 nm.  It was found that with these systems, the fibre 

employed here has attenuation of 3 dB/km and it is much better than the coaxial 

cable which has attenuation of 10-20 dB/km.  However, the fibres used in the optical 

transmission system suffers chromatic and modal dispersion in which such 

interferences would cut the distance the signals could travel.  Maurer's team at 

Corning then made further development on the fibre.  They proved that by reducing 

the size of the fibre to under 10 microns, they could restrict the light waves to a 

single mode travels down the fibre.  With the single mode fibre, it would eliminate 

the modal dispersion; and around the same time a newer semiconductor laser was 
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also developed.  This latest laser operated at an infrared wavelength at 1330 nm band 

and would reduce chromatic dispersion. 

 

 Single mode fibres operated at 1310 nm wavelength are designed to carry 

higher capacity over long distances with low intrinsic loss and zero modal dispersion.  

These types of fibre became the ideal transmission medium for longer distance and 

higher bandwidth.  A laser operating at the 1550 nm band was developed afterwards 

and when signals were transmitted down the fibre, it was found that the attenuation 

of the fibre was at its minimum.  However such 1550 nm laser was less effective than 

the 1330 nm laser for reducing dispersions in fibre.  Nevertheless, with these 

developments and other advancement, liked dispersion compensating techniques and 

development in hardware, liked integrated circuit (IC) or optical electronics 

integrated circuits (OEIC), fibre optics telecommunications were now widely 

deployed. 

 

Wavelength Division Multiplexing (WDM) 

 

 As technology advances, the demand for bandwidths has surged due to the 

growth of internet.  Such demand put substantial strains on the telecommunication 

network and to overcome this, the wavelength division multiplexing (WDM) 

transmission system was developed [Lin et al., 1988].  In a pre-WDM 

telecommunication system era, light signal was carried in the fibre by one channel, 

but now the WDM system exploits the inadequate fibre bandwidth by introducing a 

technique that can sent many "colour" or infrared light down a single fibre at once.  

This was done by sending different wavelength of light, each bearing a different 

stream of information, hence, many channels simultaneously.  However, all 

wavelengths used in fibre optics telecommunications are in the near infrared band, 

within the bandwidth of fibre amplifiers, therefore the number of channels transmits 

in the single optical fibre is finite.  It should be noted that the narrower the spacing 

between channels, the larger the number of channels that can be transmitted.  In 

order to make these systems, the optical components, electronics, and fibre coupling 

will need to be integrated onto a silicon or other substrate material and that is where 
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photonics integrated circuit will play a key role in the development of future optical 

systems. 

 

 

1.3 PHOTONICS INTEGRATED CIRCUITS 

 

To understand photonics integrated circuits, we have to recognise what is 

"photonics" and what is "integrated circuits".  Both of these terms will be explained 

in the following section. 

 

 Photonics is the technology associated with signal generation, processing, 

transmission and detection where the signal is carried by photons.  The primary 

interest in the applications of photonic devices is in an even narrower range of visible 

and near infrared wavelengths. 

 

Integrated Circuit 

 

 Integrated Circuit (IC) or chip is basically an advanced electric circuit behind 

all electronics devices.  An electric circuit is normally consists of different electrical 

components such as transistors, resistors, capacitors, and diodes that are 

interconnected to each other.  One of the components that is most important for the 

development of integrated circuit is the transistor.  It was developed in 1947 

[Bardeen and Brattain, 1948] and since then the smaller, faster and effective 

transistor allowed engineer to build more advanced circuits.  However building 

advanced circuits required putting many individual components together and 

connecting them together with metal wires became a problem.  Another problem 

would be the size of the circuit, with a complex circuit, the number of individual 

components increased and in turn the size of the circuit also increased.  This made 

the electric signals could not travel fast enough through a large circuit.  All these 

problem can be solved by integrated circuit.  The first integrated circuit was created 

by Jack Kilby at Texas Instruments in 1958.  He proposed to make all the 

components and the chip out of the same block of a thin substrate of semiconductor 
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material, normally the thin substrate is made from silicon.  Such technology allowed 

rapid developments of electronics devices.   

 

 Gordon Moore [Moore, 1965] foresaw this exponential growth and predicted 

that the number of transistors that could be placed on a chip would roughly double 

every 18 months as illustrated in Fig.1.1.   

 
Fig. 1.1  Number of components per integrated function for minimum cost per component 

  extrapolated against time. [Moore, 1965] 

 

 From his review, it was said that more components enable higher 

performance, and this has been the basis of five decades of constantly improving 

system speeds.  This Moore’s Law has been upheld since the early prediction and 

with the latest technology of scaling down of the transistor size to achieve the 

exponential growth of transistor counts, experts believe that it will continue for some 

times.  For instance, a Quad-Core Intel® Core™2 Extreme processor contains 820 

million transistors. 

 

 Photonics Integrated Circuits (PIC) is described to be very similar to 

electronics integrated circuits.  PIC integrates individual optical components such as 

laser, modulator, detectors, waveguides or optical amplifiers onto one optical circuit.  

PIC started after S.E. Miller [Miller, 1969] proposed to fabricate integrated optical 

circuits through a process in which passive and active guided optical components, 

were integrated onto a single substrate.  The transmission medium that interconnect 

all these individual optical components is called waveguide, and instead of guiding 
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electricity liked in electronic IC, waveguide is used to guide light in the PIC.  

Waveguide is an important building block in PIC and it is usually made of silica, 

polymer, or semiconductors.  Miller also suggested the term "integrated photonics" 

in which he emphasised the similarity between planar optical circuits technology and 

the well established electronic integrated circuits.  By integrating multiple optical 

functions onto a single photonic device, the costs for building advanced optical 

devices will be lower and therefore driving the cost down for advanced optical 

systems.  Therefore the main goal pursued by integrated photonics is to develop 

miniaturised optical circuits of high functionality on a common substrate, similar to 

the way in which electronic integrated circuits have shrunk electronic devices.  

Normally the sizes of the fabricated optical circuits and compact optical devices are 

in the order of micros because light that travels inside the waveguide has a short 

wavelength range (0.5 - 2.0 μm).  In order to achieve the compact sizes of the optical 

circuits, planar lithographic fabrication technique has to be employed and in fact, it is 

quite similar to the electronic ICs fabrication, using the tools and techniques of the 

semiconductor industry.  Similar to electronic ICs, PICs can include both monolithic 

and hybrid integration.  In monolithic integration, all the optical components 

including light sources, light control, electronics and detectors are incorporated on a 

single substrate.  However in hybrid integration technology, the optical chip 

fabricated on a single substrate controls the optical signals, while additional 

components such as lasers or detectors are built on different substrates and are 

directly attached to the integrated photonic device or interconnected by optical fibres. 

 

 The most commonly used of substrates for PIC are glassed, Lithium Niobate 

(LiNbO3), Silica on Silicon, Indium Phosphide (InP) and Gallium Arsenide (GaAs) 

and polymers.  Each type of material has its own advantages and disadvantages, and 

the choice of a specific substrate depends on the particular application of the 

photonic device. Nowadays there exists a great variety of devices based on each of 

these materials.  The most promising materials to achieve full monolithic integration 

are semiconductor materials, in particular InP and GaAs. 

   

 One of the materials used in the fabrication of integrated optical devices is 

LiNbO3.  This type of material shows very interesting physical properties which 

allows the fabrication of functional devices such as phase modulator, switches, 
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directional couplers and etc.  However PIC based on LiNbO3 substrate would not be 

economically practical as it cannot be used to implement active optoelectronic 

components like lasers and detectors. 

 

 Silica-on-silicon is a waveguide platform that allows to fabricate very low 

loss optical filters, but due to the low refractive index contrast, the devices are large 

and the integration density is limited. 

 

 GaAs material can be the substrate for PIC as active optoelectronic device 

can be implemented.  However it might not be widely used as the intrinsic band-gap 

of GaAs generally only operates in the 850 nm telecom band, therefore restricting its 

use to local area network applications and limiting its use in the much wide-area 

telecom networks. 

 

 It was found that the most promising material to use in PIC as a substrate is 

InP.  It has been known that InP optical devices can be active and passive, operating 

in the 1310 nm or 1550 nm wavelength band.  InP based PIC would be cost effective 

to fabricate as individual optical components such as, laser, optical modulator, light 

detector and optical amplifier can be integrated onto one single substrate.  The 

development of InP based PIC would offer compact system design, improved 

performance characteristics, power consumption, reliability however costs can be 

quite high. 

 

 Silicon (Si) has attracted substantial interest to be the substrate platform for 

large scale fabrication of PIC.  It has been suggested that Si has shown great 

promises for passive optical devices such as the arrayed waveguide gratings (AWG) 

and optical switches.  Si PIC can also offers the ability to be build by using the 

standard Complementary Metal Oxide Semiconductor (CMOS) processing 

infrastructure, currently employed in the electronics world, and therefore Si PIC 

holds a potential to integrate both optical and electronic devices on a single substrate.  

However Si has problems implementing the high-performance active optoelectronic 

functions such as lasing, modulation and light detection.  Nevertheless, Si PIC holds 

a great potential as the primary host material for PIC design.  
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 Nowadays, photonic and optoelectronic devices based on PIC have grown in 

such a way that they have not only clearly dominate long-distance communications 

through optical fibres, but have also opened up new fields of application, such as 

sensor devices, and are also beginning to penetrate in the field of the information 

processing technology. In fact, the actual optoelectronic devices may be merely a 

transition to a future of all-optical computation and communication systems. 

 

 

1.4 SILICON PHOTONICS 

 

Currently most of the photonic devices are fabricated from InP, LiNbO3, and other 

exotic materials that are relatively expensive to made.  However, this is not the case 

for silicon.  It has been known that Si is the second most abundant element on earth, 

next to oxygen. Due to the stability of silicon oxide compounds, elemental silicon 

does not occur in its free state in nature, but occurs as oxide, i.e. sand, therefore this 

made Si as an inexpensive  material.  More recently, the applications for Si now 

include electronics in the form of electronic IC.  A Si based device is found in almost 

every consumer product available in our world today.  Si has been the dominated 

technology in electronics industry since the first IC was created and it is going to be 

dominance for the foreseeable future.   

 

 The concept of Si photonics was worked on by Soref [Soref and Lorenzo, 

1986] extensively in the mid to late 1980s.  One of the advantages to use Si for 

photonics components is because Si is transparent at the infrared wavelength at 

which optical communication systems normally operate (typically around 1.31 - 1.55 

μm).  Another advantage of Si photonics is the strong optical confinement offered by 

the high index contrast, such as between Si and SiO2.  Such strong index contrast as 

Si (n = 3.45) and SiO2 (n = 1.45) makes it possible to reduce the size of the photonics 

circuits or create a very compact and high density waveguide called, Si photonics 

wire.  Si photonics can also be fabricated on a  silicon-on-insulator (SOI) wafer scale 

using CMOS technology.  Normally, a SOI wafer consists of a thin Si waveguide 

layer on top of a buried oxide (SiO2) layer on a Si substrate. The top Si layer is the 
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waveguide core and the oxide layer is the bottom cladding layer.  The Si substrate 

itself has no optical functionality. 

 

 However there is one major limitation of Si as optical material for PIC 

because Si is an indirect band gap semiconductor therefore it leads to inefficient band 

to band light emission.  Also due to the inversion symmetry of silicon's crystal 

structure, this leads to the absence of the linear electro-optic effect, a measure of how 

fast light can be controlled through the presence of an electrical field.  That 

characteristic means it is not very good at modulating a laser beam.  However these 

problems did not discourage researchers in the field of silicon photonics but in fact 

more researches had been done in this field which resulted in the demonstration of 

both passive and active components and system devices such as, modulator, laser, 

optical filter, silicon waveguide, silicon coupler and detector.   

 

Applications 

 

There are numerous application that can be employed by Si photonics.  One of the 

applications could be benefited is in fibre-optic telecommunication system.  For 

instance,  the extremely popular Fibre To The Home (FTTH) device which requires 

low cost of fabrication, makes it an ideal product for Si photonics mass production 

technology.  Another application could be in optical interconnection between digital 

electronic chips [Miller, 2000] for example, chip-to-chip, board-to-board or rack-to-

rack interconnections.  The concept of optical interconnects was first introduced by 

Goodman in 1984 [Goodman et al., 1984].  He described the possibility of using 

optics to replace the electrical interconnects for backplane-to-backplane and chip-to-

chip communications in Very Large Scale Integration (VLSI) systems.  The 

motivation for using optics to solve the electrical interconnect bottleneck comes from 

the widespread successes of optics in the telecommunication industry.  It was 

suggested that by replacing the copper interconnect with optical interconnect, higher 

bandwidths can be achieved without the constraint of distance and still maintaining 

the tight power constraints of the optical interconnect system.  Other application 

could be in the field of biosensing [Jokerst et al., 2005], it was suggested that one 
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likely application area for Si photonics is the lab-on-chip [Saarinen et al. 2005] in 

which both reaction and analysis are performed in a single device.   

 

Fig. 1.2  Silicon photonics integrated circuit. 

 

 It can be suggested that the goal of Si photonics is to integrate optical 

components such as, laser, modulator, photodetector and waveguides, onto a single 

chip as shown in Fig. 1.2 that can be mass manufactured using the standard 

semiconductor equipment like CMOS electronics. 

 

Silicon laser 

 

Si has an indirect bandgap which means that it cannot amplify the light.  There has 

been many approaches in emitting and amplifying light in silicon such as Raman 

laser [Boyraz and Jalali, 2004], nano-patterning [Cloutier et al., 2005], 

nanocrystalline-Si structures [Pavesi et al., 2000].  These approaches are found to be 

optically pumped by another laser source or operating at cryogenic temperatures.  

For the Si Raman laser approach, it was proposed in 2002 [Claps et al., 2002] and 

soon led to the demonstration of the first Si laser [Boyraz and Jalali, 2004].  The 

pulsed laser demonstration was followed by demonstration of continuous wave (CW) 

lasing in 2005 [Rong et al., 2005].  However the Si Raman laser needs to be optically 

pumped by another laser.  This make it unsuitable and not economically viable to 

employ in Si photonics system.  Another approach has been focused on developing 

hybrid platform that integrate communication wavelength bandgap-matched 

materials such as group III-V (GaAs or InP) or Germanium (Ge) material on Si 

waveguides.  This is called hybrid integration.  Such approach may be done using 

flip-chip bonding [Friedrich et al., 1992] [Kato and Tohmori, 2000], self-assembly 

[Kato et al., 2001] or vertical coupling of membrane type devices [Monat et al., 
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2001].  However all these approaches have the same problem in which a pre-

fabricated laser chip has to be aligned to the Si waveguide precisely, hence it will be 

time consuming, expensive and increase the cost of producing the optical device.  

Although the membrane III-V disc laser [Hattori et al., 2006] can ease the alignment 

tolerance but coupling is still an issue due to the different materials used for the laser 

and the waveguide. 

 

Fig. 1.3  Schematic drawing of the hybrid laser structure with the optical mode 

superimposed. [Fang et al., 2006] 

 

 One of the laser that can be electrically pumped is the III-V hybrid laser [Park 

et al., 2005], sometimes called the Si evanescent device.  This is a device with a 

hybrid structure that consists of an offset multiple quantum well region bonded to a 

Si waveguide which is fabricated on a SOI wafer, as illustrated in Fig. 1.3.  It is 

found that optical mode can obtain electrically pumped gain from the III-V region 

with such architecture while being guided by the underlying Si waveguide region.   

 

Modulator 

 

Optical modulator is a device to convert electrical signal into light signal.  It was 

described [Reed 2010] that an optical modulator is a device that is used to modulate 

(to change the characteristic of) a light beam propagating either in free space or in an 

optical waveguide.  These device can change different beam parameters in which it 

can be classified as either amplitude, phase or polarisation modulator.  Also 

modulator can be known as either elector-refractive or electro-absorptive by applying 

an electric field to the real part and the imaginary part of the material's refractive 

indices, respectively.  The primary electric field effects that are traditionally useful in 

semiconductor materials for causing either electro-absorption or electro-refraction 
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are the Pockels effect, the Kerr effect and the Franz–Keldysh effect. However, it has 

been shown that these are weak in pure Si at the telecommunications wavelengths of 

1.3 μm and 1.55 μm [Reed and Knights, 2004], therefore modulation of light is not 

possible.   

 

Fig. 1.4  Schematic cross-section of SOI strip waveguide for λ=1.55 μm 

for plasma dispersion modulation. [Gardes et al. 2005] 

 

 To achieve modulation in Si, thermal modulation can be used due to the large 

thermo-optic coefficient of Si but such technique is too slow for the high frequencies 

required by telecommunication application.  Another technique to achieve 

modulation in Si is to exploit the plasma dispersion effect, in which the concentration 

of free charges in silicon changes the real and imaginary parts of the refractive index.  

Such method has been investigated by Soref and Bennett [Soref and Bennett, 1987].  

Most monolithic devices exploited carrier injection, using the plasma dispersion 

effect for modulating either the refractive index or the absorption coefficient of the 

material [Barrios et al., 2003].  Carrier depletion is another technique that 

manipulates free-carrier densities in a modulator to avoid the speed limitation posed 

by the minority carrier lifetime. Devices based on carrier depletion liked the one 

shown in Fig. 1.4 [Gardes et al., 2005], operate by allowing the propagating light to 

interact with the junction region of a p–n diode operated at reverse bias.  The diode’s 

depletion width, and therefore the free-carrier density in the waveguide, varies with 

the applied reverse bias.  Carrier-injection type optical modulators suffer from the 

static power dissipation, however the carrier depletion modulators will have 

negligible static power dissipation.  
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Photodetector 

 
 

 Fig. 1.5  Cross section of waveguide-based SiGe p-i-n PD. [Jalali et al. 2006] 

 

The function of photodetector is to collect the photons travelling in the waveguide 

and convert them into electrical signals.  Photodetector can also be used to monitor 

the optical beam's properties such as the power and the wavelength, these 

information are then fed back to the transmitter so that the optical beam can be 

optimized.  Si based photodetectors are widely used in the visible spectrum however, 

for Si to detect light in the communication wavelength is not possible.  Therefore 

Germanium (Ge) has been introduced to the Si based detectors (similar to the one 

shown in Fig. 1.5) to improve the detection.  It is found that Ge absorbs infrared 

radiation at longer wavelengths than does Si. So implementing Ge in part of the Si 

waveguide creates a region where infrared photons can be absorbed.  Recent research 

[Kang et al., 2009] has demonstrated a 340 GHz gain–bandwidth Ge–Si avalanche 

photodiode using CVD growth of Ge and Si layers at 850°C.  

 

Silicon optical waveguide 

 

In PIC, individual optical components such as, laser,  modulator and photodetector 

are integrated onto a single chip, however it is the purpose of a waveguide to connect 

or interconnect all of these individual components together to form a workable 

device.  Therefore waveguide is the most essential building block of a photonic 

circuit.  The main function of waveguide is to trap light locally and then guide it in a 

specific direction.  Waveguide can be made from different optical materials 

depending on the applications.  In Si photonics, Si waveguide will be used, the first 

Si waveguides were reported in the mid 1980s, in silicon on doped silicon [Soref and 
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Larenzo, 1986], silicon on sapphire [Albares and Soref 1987], silicon germanium 

[Soref et al. 1990], and SOI [Cortesi et al. 1989]. 

 

 Normally Si waveguide based on a SOI structure is a promising platform for 

highly integrated, ultra-small optical circuits or devices.  In Si waveguide normally 

the strip [Vlasov and McNab, 2004] type waveguide with a rectangular core and a 

rib-type waveguide [Chan et al., 2005] are used for Si photonics.  The first Si 

waveguide was developed by Bookham Technology [Bestwick 1998], it was a rib 

waveguide with a large cross-section.  In this waveguide, the loss was less and it was 

designed to couple to fibre easily as the waveguide spot-size was bigger but it was 

found that such waveguide has a large bending radius.  However the Si strip 

waveguide consisting of a rectangular Si core and SiO2 cladding has very high index 

core with a low index cladding, therefore it leads to extremely strong light 

confinement within a geometry that is several times smaller than the wavelength of 

light.  In general the core size at 1.55 μm wavelength is designed to be less than 1.0 

μm, and with a sharp bending radius of only a few micrometers.  Since most of the 

waveguides considered in this thesis are for used in integrated optical devices, a brief 

discussion of the fabrication process of Si waveguide will be presented next. 

 

Fig. 1.6  Typical fabrication process for silicon waveguides. [Tsuchizawa et al. 2008] 

 

 Figure 1.6 shown the typical fabrication process for the Si wire waveguide 

[Tsuchizawa et al. 2008].  First, the resist patterns that will become the Si core are 

formed on SOI wafer by E-beam (EB) lithography or deep ultraviolet (DUV) 

lithography, which can provide 100-nm-level patterns. Next, the Si core is formed 

with the dry etching based on the patterned resist using a low-pressure plasma, such 

as electron cyclotron resonance (ECR) plasma or inductive coupled plasma (ICP).  

Finally, the wafer is coated with another layer of polymer or SiO2 for the over-
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cladding. On formation of the over-cladding, a low temperature process is needed in 

order to avoid distortion of the Si core shape and to not destroy electronic devices 

integrated monolithically with the waveguide. The plasma enhanced chemical vapour 

deposition (PECVD) method is commonly used for the over-cladding film. 

 

 

1.5 AIMS AND OBJECTIVES OF THE THESIS 

 

The discussion given so far provides an insight of the potential applications that can 

be offered by Si photonics technology.  The primary aims and objectives of this 

research work can be summarized as follows: 

 

1. To implement the rigorous, accurate and efficient finite element method 

(FEM) based on vector H-field variational formulation for the analysis of 

optical waveguides based on indium gallium arsenide phosphide (InGaAsP) 

material. 

 

2. To implement the conformal transformation algorithm used to study arbitrary 

bends into the vector H-field FEM to determine the modal characteristics of a 

bent waveguide. 

 

3. To implement the beam propagation method (BPM) to study the leakage loss 

of a straight waveguide coupled to a bend waveguide. 

 

4. To implement the least squares boundary residual (LSBR) method together 

with the modal solutions obtained from the vector H-field FEM in order to 

achieve an accurate waveguide junction analysis and to account for power 

conversion phenomenon. 

 

5. To study in depth of the Si strip waveguide by the use of vector H-field FEM 

and to implement the E-field formulations with Poynting vector into the 

FEM. The characteristics of the modal profiles of the H-field, the E-field and 



Chapter 1  

 

 17 

Poynting vector will be study in detail, in doing so the critical size of such 

waveguide can be determined. 

 

6. To design and characterise a novel Si rotator device by implementing the 

FEM and the LSBR to show that such device can achieve almost 100% 

polarisation conversion with a very short device lengths. 

 

7. To characterise the Si slot waveguide with nano-cross section, and to enhance 

the power confinement and power density in the slot area by optimising the 

different design parameters of the waveguide. 

 

 

1.6 STRUCTURE OF THE THESIS 

 

The work presented in this thesis is based on the research carried out by the author in 

the use of the versatile FEM, the LSBR and the BPM in the analysis of Si photonics 

devices.  The discussion given here is an outline of the structure of the thesis. 

 

 A general introduction is given in the first chapter, this chapter introduces the 

reader to a brief historical view of optics and telecommunication. This is followed by 

a review of photonics integrated circuits, in which different substrates materials are 

described for use in photonics integrated circuits.  This is then lead to the topic of 

silicon photonics, where different applications and devices are discussed. 

 

 Chapter 2 presents the numerical methods used during the research.  Firstly, 

the theoretical formulation of the FEM as a numerical tool in analysing optical 

waveguides is described.  In here, a brief history of the FEM is presented focusing on 

their importance in analysing waveguide problems.  The fundamental mathematical 

relations derived from Maxwells equations, for the application of this approach in the 

solution of optical waveguides problems are defined and examined.  Furthermore, a 

comparison of several variation formulations is presented with an emphasis on the 

vector H-field FEM.  The utilization of triangular elements, coordinates and the 

shape functions are studied to calculate the propagation constants and the field 
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profiles of various modes propagating through an uniform waveguide. The problem 

of spurious solutions is also investigated and the penalty function method is 

implemented to avoid the appearance of non-physical solutions.  Secondly, the BPM 

based on the FEM is presented.  An overview of different BPM formulations are 

reviewed and the mathematical derivation of the BPM is reported.  The propagating 

beam power to determine how much power is transmitted by the unit length of the 

optical waveguide device is also presented.  Then the theoretical foundation of a 

junction analysis approach called the LSBR method is presented.  A brief 

introduction of waveguide discontinuity analysis is described.  The use of the finite 

element output data in the LSBR approach is also explained.  The insertion loss of 

optical waveguides which can be obtained by using the scattering coefficients 

calculated by employing the LSBR approach is also shown. 

 

 Chapter 3 provides a detailed analysis of bent waveguides based on indium 

gallium arsenide phosphide symmetric rib waveguide.  Initially, the vectorial H-field 

based FEM is used to simulate the rib waveguide with straight side walls to obtain 

the modal solutions, in which the modal field profiles are thoroughly examined.  The 

characteristics of the rib waveguide, such as, the effective index, power confinement 

in core, spot size and the birefringence are considered.  This is then followed by 

analysing the bent rib waveguide.  In order to simulate such bent rib waveguide, a 

conformal transformation method has to be applied to the vectorial H-field based 

FEM.  The use of BPM to determine the leakage loss/propagation loss when a 

straight waveguide is butt-coupled to the bent waveguide is also presented.  The least 

LSBR is also employed in here to determine the existence of higher order modes 

when straight and bent waveguides are butt-coupled together.  The TE to TM power 

conversion, the bending loss and the power loss are also examined in here.  It is also 

described in here that by using lateral offsets to butt-couple straight and bent 

waveguide together, the transition losses and polarization conversions can be 

reduced.  The investigation of a slanted rib waveguide is also reported in this chapter.  

The effects of bending on polarization conversions when a straight waveguide is 

butt-coupled to a slanted bent waveguide is also examined. 

 

 Chapter 4 focuses on the Si photonics waveguides.  In this chapter, a 

thorough investigation of a Si strip waveguide defining the modal characteristics 
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such as the effective index, the hybridness, the mode size effective area, the power 

confinement in Si core and the power confinement in SiO2 substrate are examined 

with different dimensions of the waveguide.  The modal profiles of the H-field, the 

E-field and the Poynting vector are analysed by the used of the vectorial H-field 

based FEM. 

 

 In Chapter 5, following the detailed investigation of a Si waveguide in 

Chapter 4, a polarization rotator based on the concept of a Si strip waveguide but 

with a trench section in the Si strip waveguide is proposed in here.  The vectorial H-

field based FEM is used to obtain the modal H-field profiles of the asymmetric 

trench polarization rotator waveguide.  The rigorous LSBR method is employed to 

calculate the excited modal coefficients of the modes in the rotator for both TE and 

TM polarizations.  The characteristics of the Si polarization rotator, such as the 

hybridness, the power confinement in core, the half-beat length and the birefringence 

are examined.  When the asymmetric polarization rotator is butt-coupled to a straight 

strip waveguide, the study of polarization conversion and cross-talk are determined 

by the LSBR method.  A lateral offset analysis to determine the minimum total 

power loss and polarization cross-talk is also studied. 

 

 Chapter 6 discusses the numerically simulated results by using the vectorial 

H-field based FEM on Si slots waveguides.  It is described in here that an ultra high 

optical power density can be achieved in the low refractive index slot region that 

may be suitable for various device such as the four wave mixing or optical sensors.  

The modal H-field profiles, the modal E-field profiles along with the Poynting vector 

profiles for both the vertical and horizontal slot waveguide form the foundation for 

future researches.  The characteristics such as the mode size effective area, power 

confinement in slot and power density in slot for both vertical and horizontal slot 

waveguide for quasi-TE and TM modes are thoroughly investigated. 

 

 Finally in Chapter 7, general conclusions gained from this research work are 

summarised and explores. Possible future research related to this research work are 

also suggested.  The thesis also concludes with a list of relevant publications in the 

major international literature by the author followed by a list of references cited in 

this work. 
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2 
 

Numerical 
Methods 
 

 

2.1 INTRODUCTION 

 

Numerical methods have been widely used in science and engineering.  This chapter 

explains the numerical methods used for optical waveguide problems. The finite 

element method, the beam propagation method and the least squares residual method, 

as they are used in this work, will be discussed in detail in the following sections. 

 

 

2.2 ELECTROMAGNETIC WAVEGUIDE 

 

   

(a) (b) (c) 

 Fig. 2.1  Classification of waveguides. (a) Planar waveguide. (b) Axially 

   symmetric waveguide. (c) Strip cross-section waveguide. 

 

Electromagnetic waveguide problems can be grouped into two categories according 

to their cross-sectional shapes.  Figure 2.1 (a), shows a planar waveguide and a 
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circular waveguide is shown in Fig. 2.1 (b), both of these waveguides can be treated 

as a one dimensional problem.  Normally, a strip waveguide illustrated in Fig. 2.1 (c) 

is generally treated as a two dimensional problem. 

 

 

2.3 BASIC EQUATIONS 

 

The Maxwell's equations and boundary conditions are the fundamentals equations to 

consider fist when applying the FEM. 

 

2.3.1 MAXWELL'S EQUATIONS 

 

Maxwell's equations are a set of equations that formed the foundation of the classical 

electromagnetic wave phenomena.  The equations can be represented in both integral 

and differential form.  However in the use of FEM, it is more convenient and 

necessary to consider these equations in differential form. 

 

 For the time-varying electromagnetic fields, the differential form of 

Maxwell's equations are written as: 

t


 



B
E   (Faraday's law)  (2.1) 

t


  



D
H J  (Ampere's law)  (2.2) 

D     (Gauss's law)   (2.3) 

0B    (Gauss's law of magnetics)  (2.4) 

 

  E = electric field intensity (Vm
-1

) 

  H = magnetic field intensity (Am
-1

) 

  D = electric flux density (Cm
-2

) 

  B = magnetic flux density (Wbm
-2

) 

  J = electric current density (Am
-2

) 

  ρ = electric charge density (Cm
-3

) 
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 The fundamental field vectors E and H are called the electric and magnetic 

field intensities, and the vectors functions D and B are called the electric flux density 

and the magnetic flux density, respectively. 

 

 The divergence conditions of (2.3) and (2.4) are consequences of the 

fundamental field equations, (2.1) and (2.2), provided charge is conserved.  If charge 

is conserved, another fundamental equation which specifies the conservation of 

charge, called the continuity equation, can be written as: 

J
t


 


         (2.5) 

 

 The associated constitutive relations for the field and the medium can be 

written as: 

D E          (2.6) 

B H          (2.7) 

where ε is the permittivity and µ is the permeability of the medium. 

 

 Currently all the equations are time dependent and it is necessary and more 

convenient to express the time derivatives to be exp(jωt), where j is the imaginary 

unit, ω is the angular (radian) frequency and t is the time.  As the factor exp(jωt) is a 

common factor in all terms, it can be assumed that all the time derivatives in all the 

equations can be replaced by the term jω.  Hence, the improved differential form of 

Maxwell's equations becomes: 

j  E B         (2.8) 

j   H D J        (2.9) 

thus the continuity equation becomes: 

J j         (2.10) 

 

2.3.2 INTERFACE AND BOUNDARY CONDITIONS 

 

The Maxwell's equations considered so far are not a complete classical description of 

the electromagnetic field since these equations have not considered the abrupt 

changes between different materials (i.e. silica-air interface) at the boundary between 
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two interfaces.  Therefore boundary conditions have to be enforced on the Maxwell's 

equations and boundary conditions are described in here as the conditions that must 

be met at the boundary of its domain where two different media come into contact.   

 

 Fig. 2.2  Boundary on surface S between two different media.  

 

 Figure 2.2 considers the case of two media with unit normal vector n 

separated by a surface S and directed from region 2 to region 1.  In the absence of 

surface charges (ρ = 0) and surface currents (J = 0), the boundary conditions are 

given by: 

 

1. The tangential components of the electric field must be continuous:  i.e. the 

tangential components of the electric field to be continuous  across S and so n x E is 

continuous across S.  Thus if E1 denotes the  limiting value of the electric field as S is 

approached from region 1 and E2 denotes that the limit of the field from the other 

region, then 

 1 2 0  n E E   on S   (2.11) 

1 2t t E E         

2. The tangential of the magnetic field must be continuous: 

 1 2 0  n H H   on S   (2.12) 

1 2t t H H         

3. The normal components of the electric flux density must be 

 continuous: 

 1 2 0  n D D   on S   (2.13) 

1 2n nD D   1 1 2 2n nE E  
 
where 1 2n nE E
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4. The normal components of the magnetic flux density must be 

 continuous: 

 1 2 0n B B      on S   (2.14) 

1 2n nB B   1 1 2 2n nH H        

 

 For most of the optical waveguides, the relative permeabilities in region 1 and 

region 2 is equal to one (µ1= µ2=1), thus equation 2.14 becomes: 

 

1 2n nH H

   

on S   (2.15) 

which suggests that the magnetic field vector is continuous at the boundary. 

 

 For a perfectly electric conductor, the boundary condition is described as an 

“electric wall” with the following condition: 

 

0 n E

 

or  0 n H     (2.16) 

 

 This boundary condition means that the magnetic field vector, H is forced to 

disappear and therefore it remains the continuity of the electric field vector, E at the 

boundary. 

 

 For a perfectly magnetic conductor, magnetic wall conduction is imposed as: 

 

0 n H

 

or  0 n E     (2.17) 

 

 This boundary condition means that the continuity of the magnetic field 

component, H at the boundary and its electric field vector E is forced to disappear. 
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2.4 FINITE ELEMENT METHOD 
 

The FEM is now widely accepted as one of the most powerful and versatile 

techniques for the numerical solution to solve complicated problems in science and 

engineering.  This method originated during the 1940s in the work carried out by 

Courant [Courant, 1943] to study the torsion problem in structural mechanic, who 

used a collection of triangular elements to get approximate numerical solutions on 

the unknown function.  It was not until the work by Clough, Turner, Martin and 

Topp at the Boeing Aircraft Company [Turner et al, 1956] in 1956 that this method 

was widely accepted to use for a variety of engineering applications.  Clough then 

introduced the term 'finite element' in 1960 [Clough, 1960] to such method to 

describe the new technique for plane stress analysis.  The method was then 

incorporated into the field of electromagnetic in 1969 by Ahmed [Ahmed, 1968], 

since then it has been applied to many other domains, such as, fluid mechanics, 

thermodynamics, semiconductor devices, optical waveguides, biomedical 

engineering, etc. 

 

 The fundamental purpose of the FEM is that it is a numerical technique to 

provide an approximate solution at a set of governing equations, normally in the 

forms of algebraic, differential, or integral equations through a discretization process 

of a problem domain.  The principal characteristic of the FEM is the discretization of 

the problem domain into an equivalent set of smaller sub-domains (elements).  

Rather than solving the problem as a whole domain in one operation, the solutions 

are formulated by each element in a simplified manner expressed in terms of the 

values at several points of a element called element nodes and then combined to 

obtain the solution for the original whole domain. 

 

 The FEM is a systematic technique for generating the basic functions used in 

the variational method (Rayleigh-Ritz) and weighted residual method (Galerkin).  In 

the variational technique, the differential equation is put into an equivalent 

variational form, and then the approximate solution is assumed to be a combination 

of given approximation functions called trial functions.    On the other hand, the 

weighted residual method is in which the domain of the differential equation is 

discretized and the overall solution is obtained by minimising the error residual of 
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the differential equation.  However for problems with arbitrary domains and irregular 

shaped boundaries, it is very difficult to impose the boundary conditions and to 

construct the approximation functions by employing such method. 

 

 As the FEM provides a more systematic approach to the derivation of the 

approximation functions, it reduces the difficulty encountered in the variational 

methods.  It is said that there are two well-know features in FEM that would 

distinguish its superiority over other methods.  Firstly, a geometrically complex 

domain of the problem is characterized as a collection of geometrically simple sub-

domains, called 'finite element', which could be different shapes, such as, triangular 

or rectangular.  Secondly, over each finite element the approximation functions are 

derived using the fundamental idea that any continuous function can be corresponded 

to by a linear combination of algebraic polynomials. 

 

2.4.1 VARIATIONAL FORMULATIONS 

 

As discussed earlier, in essence, the formulation of the FEM depends on either the 

variational method or the weighted residual approach.  It is found that the weighted 

residual method like the Galerkin method is more straight forward to apply with the 

FEM, however, the variational approach is more advantageous as especially only one 

global parameter such as the propagation constant is needed to solve for the final 

solution.  Therefore, in this thesis's work, only the variational method is considered 

here. 

 

 Once the variational method is chosen, it can be converted into a standard 

eigenvalue problem through the application of FEM in the form of: 

 

     x xA = B

 

    (2.18) 

where [A] and [B] are real symmetric sparse matrices, and [B] is also the positive 

definite matrix. 
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Equation (2.18) can also be expressed as: 

 

      0x xA - B =

 

    (2.19) 

where the eigenvalue λ can be defined as k0
2
 or β

2
 depending on the variational 

formulation, as k0 as the free space wavenumber and the eigenvectors {x} represent 

the unknown value of the nodal fields.  Equation (2.19) is of canonical form, as it 

allows for a more efficient solution and useful to solve for, by employing one of the 

standard subroutines to obtain different eigenvectors and eigenvalues. 

 

 Normally scalar or vector formulations are used by the variational 

formulations in the finite element method.  Both of these approaches will be studied 

and in particular the vector formulations will be discussed more in greater details. 

 

2.4.2 SCALAR FORMULATIONS 

 

The scalar formulation was first used in FEM in the 1960s for the analysis of 

electromagnetic waveguides problems.  The simplest formulation of this kind can be 

used to described the mode of the waveguide fields as either predominantly TE 

(transverse electric) or TM (transverse magnetic).  There have been numerous 

variational scalar formulations use with FEM proposed in the past, liked the analysis 

of anisotropic waveguides by Koshiba [Koshiba et al., 1982].  The most notable 

approach of using scalar formulation of FEM was by Mabaya [Mabaya et al., 1981] 

and the scalar variational expression was described as: 

 

   
22

2 2 2 2

0F m k n dxdy
x y

 
  



    
      

     


  

(2.20) 

where,  β is propagation constant 

  k0 is the free space wavenumber 

  n is the refractive index 

 

 In the equation (2.20), Ω represents the cross-sectional domain where the 

integration is carried out over the whole domain.  For a FEM incorporated with the 

above mentioned F functional yields that β
2
 as the eigenvalue of the matrix equation 
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for a given k0 and the eigenvector, φ is given as φ(x,y) as described as the transverse 

field distribution.  As optical waveguide can be described as TE or TM, equation 

(2.20) can be re-written accordingly. 

 

 For the dominant quasi-TE modes, m is equal to 1, φ is given as φ(x,y) and for 

the case of TE modes, Ex is the dominant fields component and the scalar 

formulation for the TE modes is then based on the following functional: 

 

 
22

2 2 2 2 2

0
x x

x xk n dxdy
x y

 


    
      

     


E E
F E E

  

(2.21) 

 

 For the dominant quasi-TM mode, m is equal to 1/n
2
, and Hx is the dominant 

fields component, the scalar formulation for the TM modes is expressed as: 

 

 
22

2 2 2 2 2

02

1 x x
x xk n dxdy

n x y
 



    
      

     


H H
F H H

  

(2.22) 

 

 Although scalar formulation based FEM is sufficient for solving solutions on 

quasi-TE, quasi-TM or any one dimensional waveguide problems, it is however, 

inadequate to found solutions for hybrid modes of anisotropic or inhomogeneous or 

any two-dimensional optical waveguide problems.  The vectorial based FEM 

formulations is more appropriate for the two-dimensional hybrid modes problems.  

Nevertheless, there are some advantages for employing the scalar formulations, such 

as that, the TE and TM scalar functionals are positive definite and therefore all the 

eigenvalues are positive and therefore there will not be any spurious modes or non-

physical solutions.  Spurious modes happen when numerical methods are introduced 

to the matrix eigenvalue equation and it will be explain in more details in a later 

Section.  Apart from the non-existence of spurious modes, scalar formulations have 

also lowered the computational cost when compared to the vectorial formulations, in 

which the number of matrix elements to be solved are reduced. 
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2.4.3 DIFFERENT TYPES OF VECTOR FORMULATIONS 

 

As discussed in section (2.4.2) that scalar formulation is inadequate to handle the 

hybrid modes of anisotropic or two dimensional, inhomogeneous optical waveguide 

problems.  However a vectorial wave analysis with at least two field components is 

required to evaluate rigorously the propagation characteristics of these waveguide 

problems.  The vectorial formulations also provide more accuracy on the solution of 

general waveguide problems when compared to the corresponding scalar 

formulations.  There are several forms of the FEM that used the vector formulations 

depending on which electromagnetic field component is considered for formulation.  

These components are deemed as followed: 

 

1. using the longitudinal (axial) components of Ez and Hz of the electromagnetic 

fields of E and H. 

2. using the transverse electric field components, Et. 

3. using the transverse magnetic field components, Ht. 

4. using the transverse components Et and Ht of the fields. 

5. using the both the full vector E and H fields (all six electromagnetic field 

components). 

6. using the full vector electric field components, E. 

7. using the full vector magnetic field components, H. 

 

 The FEM based vectorial formulations in terms of both the longitudinal 

electric and magnetic field components of Ez and Hz was one of several vector 

formulations used in finite element to solve many different types of guiding 

structures.  This was primarily developed for microwave waveguides but later on 

extended to optical waveguide problems.  This type of formulation can also analyse 

anisotropic waveguides, however such formulation will destroy the canonical form of 

the eigenvalue matrix problem in Equation (2.19).  It is also found that it is 

significantly difficult for this method to enforce the boundary conditions on a 

waveguide with arbitrary dielectric distribution.  The fundament drawback for such 

method is that it is based on the longitudinal components of the vector fields that are 

significantly less important when analysing with optical waveguide problems. 
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 A variation formulations for the FEM in terms of the transverse electric (E) 

and magnetic (H) field component has been developed by Angkaew [Angkaew et al., 

1987].  Although such method discriminated the spurious solution but it has led to 

produce a large sparse, non-symmetric matrices in the eigenvalue equation, which 

would increase the computation time, therefore efforts have been made to the sparse 

matrix solvers [Fernandez et al., 1991] in order to tackle such problems. 

 

 The total vector E and H formulation has been developed by Svedin [Svedin, 

1989] and English and Young [English and Young, 1971].  These finite element 

formulations used all six components of the electric and magnetic fields and also 

based on variational principles or Galerkin approach, but such formulations created 

complicated problem when solving the matrix equations in which the matrix size 

double when compared to E or H field formulation and therefore does not appear to 

have much advantage. 

 

 A FEM based on vector E-field formulation has been applied to analyse 

cylindrical and anisotropy, but loss-less waveguide problems by English and Young 

[English and Young, 1971], Hano [Hano, 1984] and Koshiba [Koshiba et al., 1985b; 

Koshiba et al., 1986].  It is found that the natural boundary conditions satisfy only 

the magnetic wall condition, and therefore for the electric wall situation, (n x E = 0) 

needs to be implemented and imposed on any conducting boundaries.  However such 

condition is difficult to implement for irregular shaped structures.  Also the field is 

not continuous across dielectric interfaces. 

 

 The first vectorial formulations based on FEM in terms of the H-field, the E-

field or both was derived by Berk [Berk, 1956] in 1956 for lossless anisotropic and 

resonators.  This vector H-field formulation is further developed by Rahman and 

Davies [Rahman and Davies, 1984a; Rahman and Davies, 1984b] for general 

anisotropic problems with a non-diagonal permittivity tensor.  For optical waveguide 

analysis, the magnetic field for this formulation is continuous everywhere and that 

for the natural boundary condition it corresponds to electric wall, in which it is 

relatively simple to enforce and that it can be left free for arbitrary shaped structures. 
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The full H-field vector-formulation [Rahman and Davies, 1984c] can then be written 

as: 

   1

2
d

d











    


  





H H

H H
    

(2.23) 

where, ε and µ are the general anisotropic permittivity and permeability of the loss 

free medium, respectively. While, ω is the radian frequency and Ω is the integration 

carried over the whole domain (the waveguide cross-section). 

 

 For such formulation, by applying the Rayleigh-Ritz procedure equation 

(2.23), in which the solution is minimized with respect to each of the variables, 

which are the unknown nodal field components  Hx, Hy and Hz led to a matrix 

eigenvalue equation as stated in equation (2.19), where now [A] is a complex 

Hermitian matrix which can be transformed to a real symmetric matrix for a loss-less 

problem and [B] is a real symmetric and positive define matrix because of the 

general 90° phase difference between the axial and transverse components of H 

[Konrad, 1977].  The eigenvectors {x} represent the unknown field components at 

the nodal points for different modes with ω
2
 corresponding eigenvalues.  For mode 

analysis, for a given wavelength, λ, in which λ is proportional to ω
2
, the propagation 

constant, β, has to be changed iteratively until the output eigenvalue corresponds to 

the desired wavelength. 

 

 Unfortunately, most of these formulations suffered the possible appearance of 

spurious and non-physical solutions which will appear to mix up with correct 

solutions.  Such spurious solutions will be discussed in section (2.4.5) and efforts on 

how to avoid spurious solutions will also be studied. 

 

2.4.4 NATURAL BOUNDARY CONDITIONS 

 

In variational approach, the boundary condition which is automatically satisfied is 

called the "natural boundary condition".  Such condition can be set free and 

automatically satisfied if it is the same as the required boundary conditions in 

variational formulations. 
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 For instance,  in the scalar formulations equation (2.20), the functional has 

the continuity of m(∂φ/∂n) where m = 1 for TE and m = 1/n
2
 for TM, as the natural 

boundary condition, where n is the outward normal unit vector.  Whereas in the 

vector H-field formulation given in equation (2.23), the natural boundary condition is 

of electric wall where, n ∙ H = 0, in which, there is no need to force any boundary 

condition on conducting guiding walls. 

 

 However, for optical waveguides analysis, the geometry of the waveguide 

problem can be symmetric and therefore sometimes it is necessary to enforce the 

boundary condition so that the size of the matrix problem can be greatly reduced and 

therefore significantly decreased the computational cost. 

 

2.4.5 SPURIOUS SOLUTIONS 

 

It is already mentioned earlier on that in using vector finite element formulations in 

optical waveguides analysis, non-physical and spurious solutions will appear along 

with the real solutions.  The cause of this spurious modes has been know for 

sometimes and various methods have been developed to suppress such occurrences.  

Although a number of factors could cause the spurious solutions such as the 

enforcement of the boundary conditions or the non zero divergence of the trial fields 

[Rahman and Davies, 1984a; Rahman and Davies, 1984c], it has been found 

[Konrad, 1976; Mabaya et al., 1981; Davies et al., 1982] that spurious solution will 

not appear if the trial field precisely satisfies the condition of div B = 0.  However in 

the H-field finite element formulation, the H is not satisfied and caused the 

spurious solutions to occur.  This is further observed by Rahman and Davies 

[Rahman and Davies, 1984a; Davies et al., 1982] that when the divergence free 

condition (div H = 0) is neither implied or force, spurious mode will occur. 

 

 In order to remove the spurious solutions, it is essential to identify the 

solution as either a physical or spurious solutions.  For a physical mode, the 

eigenvector has to satisfy the zero divergence condition, in which div H = 0.  To 

identify the spurious solutions of real modes, H  is calculated over the whole cross 

section of the waveguide for each solution and the real modes would be the lower 
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values of H  while those with higher values are the spurious modes.  Based on 

this, the penalty function method [Rahman and Davies, 1984b; Koshiba et al., 1984; 

Koshiba et al., 1985a; Young, 1988] was applied to equation (2.23) by Rahman and 

Davies [Rahman and Davies, 1984b].  The penalty term approach has been used in 

structural engineering [Bathe, 1982] and by imposing certain constraints on solutions 

variables, spurious solution would be eliminated. 

 

 For optical waveguide analysis, Rahman and Davies [Rahman and Davies, 

1984b] applied additional integral to the variational formulation in equation (2.23) 

which satisfied the zero divergence conditionH .  Therefore the functional of the 

vectorial H-field finite element formulation with the penalty term can be expressed 

as: 

       1

02

d d

d





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  


  





H H H H

H H
  

(2.24) 

where α is the dimensionless penalty number.  To implement the additional penalty 

term in equation (2.24), a separate subroutine in the finite element program has to be 

introduced.  The value of the parameter α can be estimated as 1/εg where εg is the 

dielectric constant of the waveguide core.  It is found that by increasing the value of 

the penalty coefficient term the more divergence-free constraint is imposed and 

further reduced the spurious modes on the solutions.  The other advantage of 

applying the penalty function is that it does not increase the matrix order of the 

eigenvalue problem so that no additional memory usage is required. 

 

 

2.5 FORMULATION AND IMPLEMENTATION OF THE 

 FINITE ELEMENT METHOD 

 

The finite element is based on the idea that the differential operator equations of the 

waveguide programs are replaced by an appropriate extremum functional F in Euler 

density form and of variational for the desired quantity.  The problem can be said to 

be as that of obtaining a solution surface H over a specified region of the transverse 

plane so that the boundary conditions for such problem are satisfied and that the 
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extermum requirement of F is met.  It is assumed that most waveguides problems can 

be treated as two dimensional and that the axial dependence is in the form of exp
(-jβz)

, 

and that the transverse plane is used for the discretization. 

 

2.5.1 DISCRETIZATION OF THE PROBLEM 

 

 

 Fig. 2.3  Cross-section of the arbitrary waveguide subdivided into first-order  

   triangular finite elements. 

 

The first step in FEM is to sub-divide the problem region into a set finite polygonal 

sub-regions called 'finite element' as shown in Fig. 2.3.  Such element can be of 

different shapes and different elements can be used in the same domain.  Elements 

can be described as one, two or three dimensional.  Most problems are in three 

dimensional but under certain assumptions it is possible to approximate certain 

problems in two dimensional format and these two dimensional elements are shown 

in Fig. 2.3.  In this study a first-order triangular element is selected for two-

dimensional analysis of waveguide problems.  It is found that when the size of the 

element is small, the final solution is more accurate.   

 

 As the domain is sub-divided into smaller regions, the distribution of 

unknown H is also discretized and therefore it is easier to examine the elements 

when compared to the whole domain.  In Fig. 2.3, the intersections of the side of the 

triangular elements (normally the vertices or the corner points) are defined as nodes 

or nodal points and the interfaces between the elements are called nodal lines.  

Within the actual boundary of the problem, the elements are interconnected at a 
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discrete number of nodal points and that the values of H at these nodal points are the 

unknown basic parameters needed to solve the functional F. 

 

2.5.2 SHAPE FUNCTIONS 

 

Once the domain is discretized, the distribution of the unknown field H at the 

vertices of the triangular shape element is approximated by a set of polynomials 

approximation called the 'shape function'.  Polynomials are used because it can be 

easily manipulated both algebraically and computationally.  Shape functions are also 

consider as continuous function within the element and across the element 

boundaries.  A first degree polynomials are used in this study where there are three 

coefficients, in which it can be corresponded to the three nodal values at the 

triangular element vertices. 

 

 The continuous field function Φ(x,y) in the problem domain may be replaced 

by a set of discrete values {Φe, where e = 1,2,3, ...,m), where m is the total number of 

nodes. Such function is going to be continuous across adjacent triangles. For these 

functions to be admissible, field across the elements boundaries must be continuous. 

 

 

 Fig. 2.4  A typical first-order triangular element. 

 

 A first order triangular element is shown in Fig. 2.4.  In here, for each first 

order triangular element, Φ is continuously interpolated. Such continuality can be 

achieved by introducing the nodal shape function Ni(x,y). Therefore by incorporating 
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the interpolation functions for i = 3, the field Φe(x,y) inside the element can be 

written as: 

   
3

1

, ,e i i

i

x y N x y


         (2.25) 

where, Φi are the nodal field values. 

 

 Equation (2.25) can also be expressed in the matrix form: 

   
1

1 2 3 2

3

,e x y N N N

 
 

   
  

      (2.26) 

    ,e ex y N          (2.27) 

where [N] is the shape function matrix and the column vector {Φe} is the vector 

corresponding to the element nodal field values. 

 

 The first-degree polynomial can be described as (a + bx + cy) and such 

polynomial is used for the first order triangular elements over each element.   

 

 It can be shown that the element shape functions can be written in the matrix 

notation form [Reddy, 1984; Davies,1989] as: 

 
1 2 3 3 2 2 3 3 2

2 3 1 1 3 3 1 1 3

3 1 2 2 1 1 2 2 1

1
1

2A

T

e

N x y x y y y x x

N N x y x y y y x x x

N x y x y y y x x y

       
     

    
     
            

   (2.28) 

in which T denotes the transpose.  Ae is the area of the triangle and x1, x2, x3, y1, y2 

and y3 are the x,y coordinates of the three nodes of the triangle.  Ae is also given by: 

     
1 1

2 2 2 3 3 2 3 1 1 3 1 2 2 1

3 3

1
1 1

1
2 2

1

e

x y

x y x y x y x y x y x y x y

x y

      A

 

 (2.29) 

 

 Such shape function can also be expressed as: 

 
1 1 1 1

2 2 2 2

3 3 3 3

T

N a b x c y

N N a b x c y

N a b x c y

   
   

 
   
      

      (2.30) 
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 The coefficients of ai, bi and ci (for i = 1,2,3) can be calculated as: 

2 3 3 2
1

2 e

x y x y
a




A
      (2.31) 

2 3
1

2 e

y y
b




A
       (2.32) 

3 2
1

2 e

x x
c




A
       (2.33) 

 

 For the value of a2, b2, c2, a3, b3 and c3, it can be calculated by cyclic 

exchange of 1→2→ 3 in equations (2.31), (2.32) and (2.33) respectively. 

 

 The shape functions can be normalised in terms of x and y coordinates.  By 

considering a typical point P(x,y) inside the triangular element as shown in Fig. 2.4.  

The shape functions Ni (for i = 1,2,3) can be expressed by using the areas of the 

triangles as: 

1

area of  the sub - triangle P - 2 - 3
N

area of  the full - triangle 1- 2 - 3
      (2.34) 

where (P-2-3) denotes the triangle with vertices, the nodes or nodal points are 

defined as P, 2 and 3, respectively. 

 

 For N2 and N3, it can be defined similar to Equation (2.34). and it can be 

noted that from Fig. 2.4, N1 takes the value of 1 at node 1 and the value 0 at nodes 2 

and 3 and at all points on the line passing through these nodes.  Therefore it 

demonstrates that this is the unique interpolating first degree polynomial for node 1.  

For the shape functions of N2 and N3, the value of 1 will be at nodes 2 and 3 

respectively and 0 at any other nodes.  Therefore the shape functions Ni (i = 1,2,3) 

can also be defined as: 

3

1

1i

i

N


       (2.35) 

 

2.5.3 FORMATION OF ELEMENT & GLOBAL MATRICES 

 

It was described earlier on that the solution of the optical waveguide problems by 

FEM can be defined as a standard eigenvalue equation as seen in Equation (2.20).  In 
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here, matrices [A] and [B] are known as 'global matrices' and that such matrices are 

form by adding all of the element matrices of each triangular element of the 

discretized domain of the optical waveguide. 

 

 The element matrices derived in this section are based on the full H-field 

variational expression of Equation (2.23).  It is found that within each triangular 

element, there are three unknown H-field components and the magnetic field 

components of Hx, Hy and Hz can be written as: 

 
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in which, Hxi, Hyi and Hzi (for i = 1,2,3) represents the x, y and z components of the 

nodal magnetic fields.   

 

Therefore the nodal magnetic field vector [H ]e can be defined as: 
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  (2.39) 

 

Equation (2.39) can also be written as: 

    N
ee

H H       (2.40) 

where {H}e is the column vector which consists the nodal field values of the three 

components in the element and [N] is the matrix of the shape function. 
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 Also by taking the Curl H within each element with the factor          in 

Equation (2.40), the equation can be written as: 
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N N   (2.41) 

where the matrix [Q] can be defined as: 
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where, 

   0 0 0 0       (2.43) 

   1 2 3N N NN       (2.44) 

 
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x
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

N
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 
 1 2 3c c c

y






N
      (2.46) 

 

 The coefficients of the shape functions b1, b2, b3, c1, c2 and c3 have been 

defined in Equations (2.45) and (2.46). 

 

 By substituting the Equations (2.40) and (2.41) into the variational expression 

Equation of (2.23) and assuming that the material is isotropic then the vector H-field 

formulation for an element can be expressed as: 

             1 2 TT T

e e e e e
F H Q Q H H N N H  

 

 

       (2.47) 

where Ω is the integration over the triangular element domain, T denotes the 

transpose and * is the complex conjugate transpose. 
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 The total function F, can be defined by adding all the individual Fe functions 

of all the elements across the whole area of the waveguide and it can be expressed as: 

1

N

e

e

F F


        (2.48) 

where N is the number of elements. 

 

 By applying the Rayleigh-Ritz procedure in Equation (2.48), in which the 

equation is differentiated with respect to the field nodal values and equated to zero: 

 
0

e

F

H





       (2.49) 

where e is the element number, in which e = 1,2,....., n. 

 

 Such minimisation leads to following eigenvalue equation being achieved: 

     2 0H H A B      (2.50) 

where 
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where {H } is the column matrix in which it contains all the H-field nodal values on 

the whole cross section of the waveguide. [A] and [B] are the global matrices of the 

eigenvalue equation while [A]e and [B]e are the element matrices.  Appendix 1 shows 

the calculations and implementation of the element matrices of [A]e and [B]e.  

 

 

2.6 BEAM PROPAGATION METHOD 

 

In section (2.4) the fundamentals of vectorial H-field base finite FEM is presented, in 

which it can be described as a versatile tool for the modal solution of optical 

waveguide problems. However in integrated optics, it is essential to analyse, model 

and simulate how electromagnetic wave is propagated through the optical waveguide 

device before such device is fabricated.  Although the H-field FEM can simulate the 

modal field in the device but such method does not simulate on how light is 

propagating and interacting with the medium in the longitudinally non-uniform 
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structures.  For that reason various numerical methods have been develop and one of 

these is the beam propagation method (BPM), which will be the main focus of this 

chapter.  The BPM is described as the propagation of light is simulated by taking a 

small longitudinal step (in z-direction) and calculated the relating input fields and 

output fields of the section.  The calculations are repeated for each step in a manner 

of step like calculation of the propagating field. 

 

 The BPM has been first developed by Feit and Fleck [Feit and Fleck, 1978; 

Feit and Fleck, 1980] for the study of optical fibres to calculate the modal properties.  

Since then many other optical waveguide structures [Neyer et al.,  1985] such as 

taper [Hermansson et al.,  1983], bends [Baets et al.,  1983], gratings, [Yevick et al.,  

1982] non-linear directional coupler [Thylen et al., 1986] and waveguide modulator 

[Danielsen, 1984] have been analysed and evaluated by using the BPM. 

 

2.6.1 DIFFERENT TYPES OF PROPAGATION ALGORITHMS 

 

Various kinds of BPM have been developed for the analysis and simulation of a 

guided wave propagation in axially non-uniform structures, such as bends, tapers and 

directional couplers.  The numerical algorithms of the BPM can be categorised into 

the following numerical approaches: 

 Fast Fourier transform Method (FFT-BPM) 

 Finite Difference Method (FD-BPM) 

 Finite Element Method (FE-BPM) 

 All these numerical approaches will be discuss briefly in the following 

sections. 

 

FAST FOURIER TRANSFORM BPM (FFT-BPM) 

 

The FFT-BPM [Feit and Fleck, 1978; Thylen et al., 1983] was the first BPM 

algorithm to be used and it had been widely applied to design optical waveguides 

until the finite difference method BPM [Chung and Dagli, 1990; Yamauchi et al., 

1991; Liu and Li, 1991; Huang and Xu, 1993; Yamauchi et al., 1995] was developed.  

The fundamental for this method is described as the wave propagation in the 
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inhomogeneous medium is modelled as a plane wave in the spectral domain and the 

effect of the medium inhomogeneity is treated as the phase correction in the spatial 

domain at each propagation step [Feit and Fleck, 1978].  Such method can be 

expressed as: 

( , , ) ( , , )x y z z PQP x y z        (2.53) 

where 𝜓(x,y,z) and 𝜓(x,y,z+  ) are the field distributions at two subsequent 

propagation steps, P is a propagator which can be solved by FFT and Q is the phase 

correction. 

 

 The FFT-BPM has the following disadvantages due to the nature of the 

conventional FFT: 

 For a modern optoelectronic device structure based on semiconductor 

materials, such structure has large index discontinuities.  It is found that FFT-

BPM formulation cannot be described for such discontinuities, due to the fact 

that FFT-BPM formulation is derived under the assumption that the refractive 

index difference in the transverse plane is very small, so that the phase error 

term can be expressed by the first term in a Taylor series. 

 The FFT-BPM is only accurate when the beam propagates in  the z-axis 

direction with a small angle due to the fact that a paraxial approximation has 

been applied to the derivation. 

 The vectorial properties of polarization dependence and polarization coupling  

of the guided-wave devices cannot be treated as FFT-BPM can only work 

with the scalar wave propagation. 

 

 However FFT-BPM is historically important and there are still some 

advantages over such method: 

 FFT-BPM can be applied to structure with arbitrary cross section. 

 For the FFT-BPM, both the guided and radiation waves are included in the 

analysis. 
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FINITE DIFFERENCE BPM (FD-BPM) 

 

The FD-BPM is a very powerful tool and it has been extensively used for optical 

waveguide analysis.  The FD-BPM [Lagasse and Baets, 1987; Rolland et al., 1989; 

Yevick and Glasner, 1989a; Yevick and Hermansson, 1989b; Yevick and 

Hermansson, 1990; Splett et al., 1991] is described as BPM that solves the paraxial 

form of the scalar wave equation by the FEM and such approach has been developed 

by Hendow and Shakir [Hendow and Shakir, 1986].  Initially, the FD-BPM has been 

developed for the cylindrically symmetric structures but the one developed by Chung 

and Dagli [Chung and Dagli, 1990] which introduced the FD-BPM to the Cartesian 

coordinate system is found to be most successful due to the fact that such method 

yields good accuracy, numerical efficiency and excellent stability.  It is found that 

the FD-BPM has some numerical advantages over the conventional FFT-BPM and it 

is described as following: 

 To analyse a given cross-section, the FD-BPM computation is proportional to 

the number of mesh points, N, compared to NlogN in FFT-BPM.   Therefore 

the computational time in FD-BPM is better than FFT-BPM. 

 The FD-BPM is more accurate especially in modelling structures with large 

refractive index discontinuities. 

 The FD-BPM can also accommodate the wide-angle propagation and full 

vector algorithms [Hadley, 1992c; Huang and Xu, 1992c]. 

 

 Research has also been carried out on developing the semi and full vectorial 

beam propagation algorithms based on the finite difference method [Huang et al., 

1991a; Huang et al., 1991b; Liu and Li, 1992; Huang et al., 1992a; Huang et al., 

1992b; Liu et al., 1993].  Such method is found to be able to analysis the polarization 

dependence and polarization coupling of optical waveguide.  However, the 

disadvantages for such method are described as following: 

 The FD-BPM always discretized the cross-section with uniform grids, in 

which, it results in higher computational efforts and for curved boundaries, 

the FD-BPM present a very crude approximation. 

 When an arbitrary input field is studied, FD-BPM will generate some 

unphysical gain (lossless structure is assumed) during the propagation 
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[Kriezis, 1997].  The reason for that is that the propagation matrices involved 

in the FD-BPM algorithms are complex non-Hermitian, which enhance the 

unphysical spurious mode to appear. 

 

FINITE ELEMENT BPM (FE-BPM) 

 

The FE-BPM is described as one of the most versatile and powerful numerical 

algorithms for the beam propagation method.  A method developed by Koch and 

Davies [Koch et al., 1989; Koch et al., 1991] seen that a variational method is 

employed to solve the scalar wave equation, under the paraxial approximation, with 

the finite element applied to the transverse cross section and the finite difference 

Crank-Nicolson method employed to the longitudinal axis of propagation.  Another 

FE-BPM derived via the used of Galerkin's formulation to solve the scalar wave 

equation is developed by Koshiba [Hayata et al., 1990; Tsuji et al., 1996; Tsuji et al., 

1997a; Tsuji et al., 1997b; Niiyama and Koshiba, 1998].  In this method, a wide 

angle Pade approximation has been employed to model the longitudinally non-

uniform optical devices instead of the crude paraxial approximation.  A transparent 

boundary condition needs to be satisfied to minimise the occurrence of the non-

physical reflections from the edge of the computational domain.  However all the 

FE-BPM described so far are solving scalar wave equation, which means that these 

methods cannot be solve for polarization properties and the power coupling of 

optical devices. 

 

 A vectorial approach by Montanari [Monanari et al., 1997; Monanari et al., 

1998] was developed based on the paraxial approximation and did not have to satisfy 

the absorbing boundary condition.  However, such method yields a large 

computational effort and storage requirements for solving three magnetic field 

components. 

 

 It is found that a full vectorial FE-BPM by Obayya [Obayya et al., 2000a; 

Obayya et al., 2000b] based on the two transverse components of the magnetic field 

was more versatile and efficient.  Such method employed the robust perfectly 

matched layer (PML) boundary condition into the FE-BPM formulation to absorb the 

unwanted radiation out of the computational domain and the sparsity of the matrix 
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equation will not be destroyed.  This FE-BPM has also certain advantages over the 

FD-BPM and FFT-BPM, such as the discretization of the domain, better 

approximation of curved structures and an efficient distribution of nodal points.  The 

advantages of the vectorial FE-BPM considered in this work are described below: 

 It uses wide angle approximation therefore it better to find waves propagating 

off the propagation axis 

 Employed the perfectly matched layer (PML) as boundary condition. 

 The computational time and the computational storage will be reduced and 

minimised as FE-BPM solve only the transverse components of the magnetic 

field. 

 

 In the following sections, the vectorial FE-BPM formulation will be 

discussed and presented, as this approach will be used in this project. 

 

2.6.2 BOUNDARY CONDITIONS 

 

The computational domain window in BPM formulation is finite therefore it is 

fundamental to employ and specify the boundary condition when optical waveguide 

analysis is studied.  It is essential to choose a correct boundary condition so that 

when analysing an optical waveguide, the effect of the boundaries does not introduce 

additional errors in the propagation of the optical field.  These errors can occur when 

the boundary conditions are not set properly and that the radiation tends to reflect 

back to the region of interest from the boundaries of the computational window.  

Different types of BPM has different types of natural boundary conditions.  Besides 

that they can consider different boundary conditions. 

 

 For instance, in the FFT-BPM, the boundary condition used is the 'absorbing 

boundary condition' [Feit and Fleck, 1978; Feit and Fleck, 1980; Lagasse and Baets, 

1987].  Such approach inserts a lossy medium at the edges of the computational 

window to absorb the reflections at the boundary.  However, this method is problem 

dependent, usually the absorption coefficient is set in between zero to some 

maximum value at the boundary node but if such coefficient is too large then itself 

will generate reflections.  Also for a specific structure, various parameters of this 
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approach have to be chosen carefully in respect of the thickness of the lossy region, 

the value of the absorption coefficient and the functional shape.   

 

 The boundary condition associated with FD-BPM in here is known as 

'transparent boundary condition' (TBC)[Hadley, 1991; Hadley, 1992a].  Such method 

is to approximate the wave near the boundary of the computational domain as a plane 

wave which satisfies: 

j k






 


      (2.54) 

where Φ is the field near the boundary, k is the transverse wave-vector and ρ is the 

distance in the direction normal to the boundary.  In essence, this method simulates a 

non-existent boundary [Hadley, 1991; Hadley, 1992a] and that radiation is allowed 

to escape the problem region without significant reflection.  This transparent 

boundary condition is more robust and problem independent than the absorbing 

boundary condition.  However such boundary condition is not sufficient to suppress 

large radiation of the outgoing wave near the boundary. 

 

 Perfectly matched layer (PML) is a boundary condition that was developed 

by Berenger [Berenger, 1994; Berenger, 1996; Sacks et al., 1995] as an alternative to 

the absorbing or transparent boundary conditions.  Its aim is to synthesise an 

absorbing layer for the finite difference time domain (FDTD) method.  In its original 

form, the field components are split into two sub-components, in doing so, it leads to 

non-Maxwell's equations, which finite elements cannot be applied to.  Therefore, 

Pekel and Mittra [Perkel and Mittra, 1995a; Perkel and Mittra, 1995b] have 

introduced a new form of PML to solve the free space scattering problems.  Such 

method does not split the field components and it also retaining the desired form of 

the Maxwell's equation for the finite element application.  Obayya [Obayya et al., 

2000a] has also incorporated the PML in FE-BPM formulations. 

 

2.6.3 PERFECTLY MATCHED LAYER (PML) 

 

In this chapter, the PML boundary condition is incorporated into the vectorial FE-

BPM equations.  The cross section of an arbitrarily shaped waveguide is shown in 

Fig. 2.5.  The transverse direction is defined as x and y, where as z is the propagation 
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direction, Ω corresponds as the computational domain region.  Hx and Hy are the 

width and height of the computational domain in the x and y directions, respectively.  

Region Ω1 and Ω2 are the PML regions normally faced with x and y directions, 

respectively, where as Ω3 corresponds to the four corners of the PML regions. 

 

 

 Fig. 2.5   An arbitrarily shaped waveguide with different PML regions. 

 

 Maxwell's curl equations with PML can take the form of: 

2

0j n  H E       (2.55) 

0j   E H       (2.56) 

where H and E are the magnetic and electric field vectors, respectively. 

 

 The square of the refractive index is n
2
 and   is the modified differential 

operator which is defined as: 

α αx yx y z
x y z

  
   

  
    (2.57) 

where, 

 

2
00

1 1

1 1
t

e m

t xor y

j j
n


 



  

 

   (2.58) 

in which, σe and σm are the electric and magnetic conductivities of the PML, 

respectively.  Equation (2.58) shows that the PML satisfies the impedance matching 
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condition with an adjacent medium in the computational domain with refractive 

index n and impedance 0

2

0n




.

 

 In the PML region, αx and αy are defined as: 

 

1. In region Ω (computation domain) 

αx = 1 and αy = 1 

 

2. In region Ω1 (right or left region) 

αx = αt and αy = 1 

 

3. In region Ω2 (top or bottom region) 

αx = 1 and αy = αt 

 

4. In region Ω3 (four corners region) 

αx = αt and αy = αt 

 

 In the PML regions, the electric conductivity is expressed as: 

  max

m

e
w


  

 
  

 
      (2.59) 

where ρ is the distance inside the PML region, which is measured from the interface 

of the computational domain and the PML section.  The maximum value of the 

electric conductivity corresponds to σmax and m is the power of the conductivity 

profile, normally it is taken as the value of 2.  For the conductivity profile, the 

theoretical reflection coefficient R, at the interface between the PML region and the 

computational domain is defined as [Huang et al., 1996]: 

2

max

0 0

exp 2

m
w

R
cn w

 




  
    

   
      (2.60) 

where c is the velocity of light in free space.  By integrating equation (2.60), σmax can 

be given as: 

0
max

3 1
ln

2

cn

d R




 
  

 
      (2.61) 
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 The value of the theoretical coefficient R can be chosen and normally it is set 

to a very small value, the maximum electric conductivity, σmax can be calculated by 

using equation (2.61).  In doing so, the electric conductivity profile, σ(ρ) and the 

PML parameters αx and αy will also be calculated for different PML regions.  With 

these arrangements of PML in different regions, any nonphysical radiation wave will 

freely leave the computational domain. 

 

2.6.4 WAVE EQUATIONS 

 

To derive the vectorial wave equations, Maxwell's curl equations of (2.55) and (2.56) 

will be required.  By taking the curl equation of (2.55) and substituting equation 

(2.56) into equation (2.55) gives: 

 2 2

0 0n k      H H      (2.62) 

where k0 is the free space wavenumber and it is given by: 

0 0 0

2
k


  


        (2.63) 

where λ is the free space wavelength. 

 

 The full vectorial wave equation shown in equation (2.62) that it consists of 

three components of the magnetic field vector, H.  This full vectorial wave equation 

can be reduced to two transverse components of Hx and Hy by the use of zero 

divergence condition, which is expressed as: 

= 0 α αH
yx z

x y

HH H

x y z

 
   

  
   (2.64) 

 

 By substituting equation (2.64) into equation (2.62) yields the following two 

coupled wave equations: 

 

For Hx component, 

2 2 2 2
0

2 2

0 x x x
y y x x x

y y

x y y x

H H H
n n n k H

z z y y x x

H H
n n

x y y x

   

   

  

 

        
       
         

     
    

      

 (2.65) 
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Similarly for Hy component, 

2 2 2 2
0

2 2

0 ( )
y y y

x x y y y

x x
y x x y

H H H
n n n k H

z z x x y y

H H
n n

y x x y

   

   

  

 

       
      
        

    
    

      

 (2.66) 

 

 The refractive index in the direction of propagation is assumed to be slowly 

varying in deriving the wave equations of (2.65) and (2.66), in which
2

0
n

z

 
 

 
. 

 

 It is found that it is much easier to solve equations (2.65) and (2.66) then 

equation (2.62) because the number of unknown components are small and also zero 

divergence condition is automatically satisfied through the derivation, therefore it 

eliminates the occurrence of spurious solutions. 

 

 By assuming the wave travels along the +z direction, the fields can be 

separated as slowly-varying envelopes and a fast-oscillating phase term as: 

 Let  0 0jn k z

t tH e 
        (2.67) 

 

Equation (2.67) can be expressed as: 

 0 0exp
x x

y y

H
jn k z

H





   
    

   
     (2.68) 

where n0 is a reference index of refraction, Φx an Φy are the slowly-varying 

envelopes of Hx and Hy components, respectively.  In order to slowly-varying the 

envelopes in the +z direction, n0 should be chosen to the effective index of the 

guided mode(s) of the structure. 

 

 In the case of analysing the monomode waveguide, n0 can be set to the 

effective index of the fundamental mode.  However, for the analysis of multimode 

waveguides, the effective indices of all guided modes have to be determined in order 

to set the value of n0.  In any case, for a better approximation, it is better to set n0 as 

the average value of the guide and substrate refractive indices. 

 



 Numerical methods 

 51 

 By substituting equation (2.68) into equations (2.65) and (2.66) yields the 

following two coupled unidirectional wave equations: 

 

2
2 2 2 2

0 02 2

2 2 2 2 2

0 0

0 2

1

x x x x
y y x x

y y

x x y y x

n jn k n n n
z z y y x x

k n n n n
x y y x

   
   

 
    

   

  

       
      

       

     
      

      

  (2.69) 

 

 

2

2 2 2 2

0 02 2

2 2 2 2 2

0 0

0 2

1

y y y y

x x y y

x x
y y x x y

n jn k n n n
z z x x y y

k n n n n
y x x y

   
   

 
    

   

  

       
      

        

    
      

      

  (2.70) 

 

 

2.7 BPM FINITE ELEMENTS FORMULATION 

 

Equations (2.69) and (2.70) will be used to solve the slowly varying envelope by the 

application of the finite element method.  First assume that the waveguide cross 

section shown in Fig. 2.5 is discretized into a patchwork of first order triangular 

elements. 

 

 By applying Galerkin's procedure to equations (2.69) and (2.70) leads to the 

following two equations: 

 

2
2 2 2 2

0 02

2
2 2 2 2 2

0 02

2

2 2

0 2

1

x x x
i i y i

e e e

x
x i x i

e e

y y

x y i x y i

e e

n N ds jn k n N ds n N ds
z z y y

n N ds k n n N ds
x

n N ds n N ds
x y y x

  



 

 
   

  

 

 

   
    

    


  



  
   

    

  

 

 

 (2.71) 
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 

2

2 2 2 2

0 02

2

2 2 2 2 2

0 02

2
2 2

0 2

1

y y y

i i x i

e e e

y

y i y i

e e

x x
x y i x y i

e e

n N ds jn k n N ds n N ds
z z x x

n N ds k n n N ds
y

n N ds n N ds
x y x y

  



 

 
   

  

 

 

   
    

    


  



  
   

    

  

 

 

 (2.72) 

where Ni are the shape functions with i = 1,2,3 over the first order triangular element, 

e, and  
e

ds is the integration over the element area. 

 

 Several assumptions have been made to derive equations (2.71) and (2.72).  It 

has been assumed that the refractive index, n, and the PML αx and αy parameters are 

fixed to constant values within each element.  Therefore, when working with the step 

index waveguides, the discontinuity of the refractive index and the associated 

interface boundary conditions will not be accounted for.  But, using Green's theorem 

for integration by parts will result in line integrations around each element, which 

can be utilized to satisfy the following interface boundary conditions: 

 

Interface boundary conditions 

 

 Ez is continuous, in which, 

2 y x
zE n

x y

 
 

  
  

       

 2 xn
x

 


 and 2 y

n
y






 are discontinuous along the horizontal and vertical 

interfaces between two different media. 

 

 By considering the above interface boundary conditions and using the Green's 

theorem for integration by parts to equations (2.71) and (2.72) results in: 
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 
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
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
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  
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  
    

  

   
   
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  

  

  

 

 (2.73) 
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  
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  



   
  

   

 
    

  

    
   
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  

  

  

 (2.74) 

in which, nx and ny are the direction cosines between the normal to the element 

boundary Γe and x and y directions, respectively.  
e

ed

    corresponds to the 

integration over the element boundary, Γe.   

 

 The line integrals in equation (2.73) and (2.74) are there for the interface 

boundary conditions, they are also responsible for the polarization dependence and 

coupling, therefore these integrals are mandatory for a full vectorial formulations. 

 

 Let the whole cross section of the computational window be divided into a 

number of triangles and approximate Φx and Φy as follow: 

 

 Over an element of e and in terms of shape functions, Ni, the transverse 

magnetic field envelopes can be expressed as: 

3

( , , ) ( , )

1

( )e

x x y z xi i x y

i

h z N


     (2.75) 

3

( , , ) ( , )

1

( )e

y x y z yi i x y

i

h z N


      (2.76) 
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in which, hxi(z) and hxi(z) are the element nodal values of the x and y components of 

the magnetic field, respectively. 

 By substituting Equations (2.75) and (2.76) into (2.73) and (2.74), and 

collecting the contributions from all elements results in: 

 
 

 
 

       
2

2 2

0 0 0 02
2 0

t t

t

h h
M jn k M K n k M h

z z

 
   

   
 (2.77) 

where {0} is a column vector with all zero entries, and {ht} is defined as the 

following: 

 
 
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3

1
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3
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xx

t e
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y

y

h

h

hh z
h

hh z

h

h

 
 
 
     

    
    

 
 
  

     (2.78) 

where hx(z) and hx(z) represent the nodal values of the x and y components of the 

magnetic field over the whole domain. 

 

 The global matrices [M] and [K] in equation (2.77) can be expressed as the 

summation of the corresponding element matrices: 

   
   

 

3 3 3 3

6 6

3 3 3 3

0

0

xx

e

e e yy

M
M M

M

 



 

 
  

    

     (2.79) 

 

   
 

3 3 3 3

6 6

3 3 3 3

xx xy

e

e e
yx yy

K K
K K

K K

 



 

     
        

     (2.80) 

in which, 
e

 stands for the contribution of all element matrices [Me] and [Ke].  The 

calculations of the element matrices are shown in Appendix 2. 

 

 It is noted that the element matrix [Ke], from equation (2.80) is responsible 

for coupling and polarization dependence issues.  It is recognized that the inclusion 

of the line integrals in the matrices [Kxx] and [Kyy] make them unequal, and therefore 

polarization dependence is accounted for.  As the matrices [Kxy] and [Kyx] are not 

zeros, the coupling between the polarization states is taken into account. 
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 Although such formulation only considers two transverse components of the 

magnetic field but it is still being categorized as full-vectorial formulation.  One 

advantage for such vectorial formulation is that the resulting global matrices [M] and 

[K] are sparse and therefore only nonzero elements values have to be stored and 

consequently, it reduced the computational cost greatly, unlike other full vectorial 

formulations based on transverse components, in which the resulting global matrices 

are dense matrices.  This full vectorial formulation also has the ability to work as 

semi-vectorial formulation and scalar formulation, for instance, by neglecting some 

matrices liked the [Kxy] and [Kyx], so that the formulation reduced to two decoupled 

wave equations for Hx and Hy, hence, the formulation became semi-vectorial. 

 

 The formulation shown in equation (2.77) represents the exact nonparaxial 

vectorial wave equation that needs to be solved in a step by step procedure in the z-

direction.  By neglecting the z-second derivative term, the formulation reduces to the 

approximate paraxial equation, in which this formulation is only valid for wave 

propagating very near to the axis of propagation, z.  It is found that by using Pade' 

approach [Hadley, 1992b],  a better approximation can be obtained.  The equation 

(2.77) can be written as: 

 
       2 2
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

 
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


 

   (2.81) 

 

 By utilising the first order Pade' approximation (Pade'(1,0)) by putting i = 0 

in the recurrence Pade relation in equation (2.81) and that
0

0
z





,  shows: 

 
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t
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
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   (2.82) 

where 
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4
M M K n k M

n k
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2.7.1 WIDE ANGLE APPROXIMATION 
 

By replacing matrix M 
  by M in equation (2.82), the paraxial equation can be 

easily obtained.  Equation (2.82) is also called the 'wide angle equation', as this 

equation can trace waves propagating off the propagation axis more accurately than 

the paraxial equation.  To solve equation (2.82) in a finite range of the z-domain, it 

has to be divided into sections each of a width z .   

 

 Fig. 2.6  Shape functions and different cases of weighting functions for  

   discretisation along the logitudinal z-axis. 

 

Figure 2.6 shows that over the k
th

 section, the finite element method can also be used 

to approximate the field [Zienkiewicz, 1997] as : 

            1 1t k t k k t kh L h L h          (2.84) 

where   is the local coordinate of the k
th

 section,   t kh  and   1t kh   are the 

column vectors containing the field nodal values over the whole cross section at k
th

 

and (k+1)
th

 propagation steps, respectively, while  kL  and  1kL   are the shape 

functions which can be expressed as:  

  1kL          (2.85) 

 1kL          (2.86) 

 

 Substituting the equations (2.84), (2.85) and (2.86) into equation (2.82) and 

applying Galerkin's method with weighting functions Wm gets the following 

equation: 

       
1t tk kk k

A h B h

      (2.87) 
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where 

      2 2

0 0 0 02
k k kk

A jn k M z K n k M          (2.88) 

        2 2

0 0 0 02 1
k k kk

B jn k M z K n k M         
 (2.89) 

where z is the propagation step size, subscripts k and k+1 corresponds to the k
th

 and 

(k+1)
th

 propagation steps, respectively, and   is the scheme parameter given as: 

1

0

1

0

m

m

W d

W d

 










     (2.90) 

 

 Once the initial field is specified, the equation (2.88) can then be solved to 

find the field at the successive propagation steps. 

 

 The value of the scheme parameter, θ, depends on the choice of the weighting 

function Wm shown in Fig. 2.6.  The value of θ decides the stability and the numerical 

losses of the propagation algorithm.  It has been reported that for θ ≥ 0.5, the 

algorithm is going to be unconditionally stable [Zienkiewicz, 1997].  When θ = 0.5, 

which it corresponds to the finite difference Crank-Nicolson algorithm, the algorithm 

will be stable and the propagating beam power is also conserved as well.  However, 

as Crank-Nicolson algorithm is used, there will be some high frequency oscillations 

exist in the field distribution.  One way to compensate this would be to use higher 

values of the scheme parameter, θ, but such approach would result into some 

nonphysical numerical losses.  The other method would be to employ PML boundary 

conditions in which, it would eliminate the appearance of high frequency oscillations 

within the field whenever Crank-Nicolson algorithm is used.  Therefore it is found 

that the vectorial propagation algorithm proposed in this section is unconditionally 

stable when θ is chosen to be 0.5 and that the power in the field is conserving as 

well. 
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2.8 POWER DEFINITION 
 

In the analysis of optical devices, the propagating beam power is an important 

parameter to determine how much power is transmitted by the unit length of the 

optical waveguide device.  Also, if the waveguide is bent, then the power losses of 

the bent section can be calculated and its losses can be minimised. 

 The power associated with a beam propagating in the +z direction is defined 

in terms of the Poynting's vector: 

   * * *1 1
ˆ

2 2
e e x y y xP R E H zd R E H E H d       

  
 

 (2.91) 

where, Re means taking the real part, * is defined as the complex conjugate, ẑ is the 

unit vector in the z-direction and that integration is carried out over the whole of the 

computational domain.  For the Quasi-TE (Ex) and Quasi-TM (Ey) modes, these 

transverse electric field components can be given in terms of the magnetic field 

components as: 

20 0

0

x y

n k
E n H



      (2.92) 

20 0

0

y x

n k
E n H



       (2.93) 

 

 Assuming that in deriving the Ex and Ey expressions, the second order 

derivatives with respect to the transverse coordinates, x and y can be neglected.  Then 

by substituting the equations (2.92) and (2.93) into equation (2.91) gives: 

 2220 0

2
x y

n Z
P n H H d      (2.94) 

in which, Z0 = 0

0




= 377 ohms or 120π ohms, is the free space wave impedance.  By 

substituting equations (2.68), (2.75) and (2.76) into equation (2.94) gives: 

    0 0

2

T

t t

n Z
P h M h     (2.95) 

where,  th is the nodal values of the propagating field, [M] is the global matrix and T 

corresponds to the transpose of complex conjugate. 
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2.9 LEAST SQUARES BOUNDARY RESIDUAL 

 (LSBR) METHOD 

 

In the design of integrated optical devices, discontinuity problems in optical 

waveguides are important issues to overcome.  These problems play a fundamental 

role in designing practical devices, such as, an isolated step discontinuity as found in 

the simple butt-joining of two waveguides of different widths, or as finite cascades of 

discontinuities found in the bending of an optical waveguide in an integrated optical 

directional coupler, or as found in the tapering of a channel waveguide for efficient 

coupling to an optical fibre and etc.  

 

 The LSBR method is a very powerful tool for the calculation of the 

discontinuity problem and such method is widely used in our simulation for the 

analysis of optical devices.  In this thesis, the discontinuities in dielectric waveguides 

are accurately analysed using the LSBR developed by Rahman and Davies [El-

Mikati and Davies, 1985; Rahman and Davies, 1988].  In this method, LSBR has to 

be used alongside the vectorial H-field FEM [Rahman and Davies, 1984c] in order to 

calculate the power transfer from one waveguide section to another.  The LSBR 

method considered here is found to be an alternative point-matching  (and Galerkin) 

method of numerically solving scattering problems.  It is found that LSBR method 

satisfies the boundary conditions more easily in the usual least-squares sense over the 

discontinuity interface.  Unlike the point matching method, the LSBR [Davies, 1973; 

Brooke and Kharadly, 1976; Cullen and Yeo, 1987; Fernandez and Davies, 1988] is 

a rigorously convergence procedure free from the phenomenon of relative 

convergence.  In this study it will be shown that LSBR method is an accurate and 

versatile numerical tool to obtain the power transfer between coupled waveguides. 

 

 

2.10 LSBR FORMULATIONS 

 

The LSBR method is  a very useful and powerful numerical tool that can be used to 

analyse the discontinuity problems at an abrupt junction of two dielectric 

waveguides.  Figure 2.7 illustrates how the discontinuity of two dielectric waveguide 



Chapter 2  

 

 60 

is represented.  Firstly, let's consider the vertical section of the discontinuity between 

two different waveguides, side I and side II, respectively, as shown in Fig. 2.7.a.   

  

(a) (b) 

 Fig. 2.7  Discontinuity at the junction of two dielectric waveguide. (a) Vertical 

   section of the discontinuity between side I and side II. (b) Transverse 

   cross section of the discontinuity between side I and side II. 

 

 Assuming that an incoming wave is propagating through the guided medium 

from side I of the waveguide to the guided medium of the side II waveguide, it is 

thought that at the discontinuity junction (where two different waveguides are joined 

together), this interface (discontinuity plane) is excited by an incident wave of one 

mode from side I.  Part of this incident wave is reflected back to side I waveguide, 

part of it is transmitted through to side II waveguide and part of it is radiated to the 

cladding and to the substrate. 

 

 Consider this in a mathematical term and suppose that Et
in

 and Ht
in

 are the 

transverse components of the electric and magnetic fields of the incident wave, 

respectively.  As mentioned, some of the incident wave is reflected back to the side I 

waveguide but due to the boundary conditions principle, many modes will be 

generated at the discontinuity plane and these modes can be guided or radiated 

modes in both sides of the discontinuity to satisfy its boundary conditions.  

Therefore, the total transverse electric and magnetic fields Et
I
 and Ht

I
 in side I and 

Et
II
 and Ht

II
 in side II at the discontinuity plane (z=0), can be expressed in terms of 

the eigenvalue modes in side I and side II, respectively as: 

1

I in I

t t i ti

i

E E a E




       (2.96) 
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1

I in I

t t i ti

i

H H a H




       (2.97) 

1

II II

t i ti

i

E b E




       (2.98) 

1

II II

t i ti

i

H b H




       (2.99) 

 

 It is now known that at the discontinuity plane, the modes generated may be 

propagating, radiating or evanescent to satisfy the boundary conditions.  Equations 

(2.96) and (2.97) show that Eti
I
 and Hti

I
 represent the transverse field components of 

the i
th

 mode reflected from the discontinuity junction in side I and that ai are the 

corresponding modal amplitudes of these reflected modes.  Similarly for equations 

(2.98) and (2.99), instead of reflecting, Eti
II
 and Hti

II
 are the transverse field 

components of the i
th

 mode transmitted in side II and that bi are the modal amplitudes 

of these transmitted modes. The ai and bi are also called the scattering coefficients 

and these values will be determined in the later section. 

 

 The aim of the LSBR method is to look for a stationary solution to satisfy the 

continuity conditions of the tangential fields in a least squares sense by minimising a 

functional, and by considering the fields in either side of the discontinuity junction, 

the functional can be defined as: 

2 2
2

0

I II I II

t t t tJ E E Z H H d         (2.100) 

where, α is the dimensionless weighting factor, Z0 is the free space wave impedance. 

 

 In order to obtain the approximate numerical solution of the problem (as in 

Equation (2.100)), the infinite expansions of Equations (2.96), (2.97), (2.98) and 

(2.99) are truncated, including all relevant propagating modes plus as many radiating 

and/or evanescent modes as convenient.  By employing the LSBR method in the 

analysis, all the coefficients of reflection, transmission and radiation fields are 

determined in such a way that J becomes a minimum.  Therefore equation (2.100) is 

minimised to the following: 

0,
i

J

a





  0

i

J

b





  for i = 1 ..... ∞  (2.101) 
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which results in a set of linear equation: 

C x v        (2.102) 

 The solution of equation (2.102) gives {x}, which is the required approximate 

modal coefficient of ai and bi.  These constitute one column of the scattering matrix 

which corresponds to the chosen incident mode.  The parameter C in equation 

(2.102) represents a square matrix generated from the eigenvectors, and v is an array 

due to the incident mode.  The elements of C matrix and v are given as: 

2, ,ij ti tj ti tjC E E Z H H       (2.103) 

2, ,in in

i t ti t tiv E E Z H H       (2.104) 

in which, i, j = 1, .....N, and the value of N is the total number of modes in side I and 

side II, and that the vectors Et and Ht are made up of all the corresponding modal 

fields in both sides.  The inner product involved in equations (2.103) and (2.104) is 

defined as: 

*

1 2 1 2,x x x x ds       (2.105) 

where x1 and x2 are the two field vectors, the complex conjugate of x2 is represent by 

x2
*
 and that the integration is carried out over the whole waveguide cross section. 

 

 In this section, the LSBR is outlined briefly and the application of such 

method will be given in more details in the next few chapters to analyse a relevant 

waveguide problems concerning power transfer between waveguides and in 

particular the unwanted polarization crosstalk in the polarization rotator. 

 

 

2.11 APPLICATION OF LSBR METHOD BY USING 
 FINITE ELEMENT MODAL SOLUTION OUTPUT 
 

The vectorial H-field FEM described earlier has become a versatile numerical tool 

for the analysis of microwave and optical waveguides.  In order to analyse power 

transfer characteristics of coupled waveguides, the LSBR method can be used along 

with the vectorial H-field FEM.  It is found that by employing the penalty method in 

FEM, spurious solutions will be eliminated and this will improve the quality of the 

eigenvectors that FEM generated, which is a very important factor for the analysis of 

the discontinuity problems. By employing the finite element program on both of the 
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waveguides (side I and side II), the nodal values of the complete H-field for each 

mode are obtained.  By applying the Maxwell's equation, the E-field over each 

element are calculated using these nodal H-field vales.  Next all the modal 

eigenvalues and eigenvectors of all the modes in both sides of the discontinuity that 

are generated by the vectorial H-field method are then used as the input data to the 

LSBR method.  The LSBR program reads all the input data and calculates the 

integral J and minimizes the error criteria given by equation (2.100) with respect to 

each value of ai and bi for any given incidence by solving a homogeneous linear 

equation in (2.102).  The solution generated by equation (2.102) gave a unknown 

column vector {x}, which consists of unknown reflected and transmitted coefficients 

of all the modes considered in the analysis. 

 

 The LSBR method has been applied on a wide range of discontinuity 

problems involving an abrupt change at the transverse plane between arbitrary 

guiding structures of uniform cross section, vertical shifts, horizontal misalignments, 

sudden changes of width or height and etc.  LSBR method can also be used to find 

the optimum matching of the two waveguides by controlling the geometries and 

material properties of the guides.  It is also found that the radiation loss from random 

fluctuations in waveguide geometry and refractive index can be minimised by 

choosing the optimum guide parameters.  In doing so the resulting reflecting matrix 

and the transmission matrix give a complete understanding of the discontinuity 

problem which help to improve the design of optical devices. 

 

 

2.12 FORMULATION OF LOSSES IN OPTICAL   

 WAVEGUIDES 

 

The LSBR method can be applied to analyze the optical losses in the waveguide 

devices.  When light wave is propagating through a guided medium in the optical 

waveguide devices, some optical power losses will occur.  These losses can be 

propagation loss, coupling loss, electrode loading loss and waveguide bending loss.  

In particular for the propagating loss, normally it made up of three different 

additional losses such as, scattering loss, absorption loss and radiation loss.  It is 
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found that the scattering loss is usually predominates in glass or dielectric 

waveguides, while the absorption loss is most important in semiconductors and other 

crystalline materials.  Also radiation losses become more significant when 

waveguides are bent, where, photons can be scattered, absorbed or radiated, in which 

it leads to the reduction of the total power transmission.  Therefore the intensity 

(power per area) at any point along the length of the waveguide is given as: 

0( ) zI z I e       (2.106) 

in which, I0 is the initial intensity at z = 0, and α is the power attenuation coefficient. 

 

 The LSBR method is known to analyse the waveguide junction efficiently in 

order to calculate the power transfer from the input guide to the other waveguide.  

Normally the waveguide junction is described as a butt join or coupled with two 

optical waveguides.  It is found that when a guided TE or TM mode is incident on 

the discontinuity plane between two waveguides, some of the incident wave (light) 

power is lost and such loss is called the 'insertion loss'.  The LSBR method can also 

be used to calculate the power loss suffered by TE or TM mode by utilising the 

scattering coefficients.  The insertion loss expressed in decibel (dB) is given as: 

2

10

1

10log
N

i

i

L b


 
  

 
      (2.107) 

where, bi are the transmission coefficients of the i
th

 mode and N is the total number 

of modes considered. 

 

 The attenuation (dB) of an optical beam can be express as: 

1010log in
L

out

P
I

P
       (2.108) 

in which, IL is the insertion loss, Pin is the input power and Pout is the output power. 
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2.13 SUMMARY 

The FEM based on the variational principle has been discussed in this chapter for 

solving optical waveguides programs.  A brief overview of the method is also 

presented.  The Maxwell's equations along with the boundary conditions, variational 

formulations of different scalar approximation method and vectorial methods are also 

discussed.  In particular, the vector H-field based FEM is studied in great detail in 

which, the domain discretization, shape functions, natural boundary conditions and 

the formation of the element and global matrices are also evaluated.  In order to 

eliminate the non-physical or spurious solution, the penalty function method is 

reviewed and discussion on the application of the penalty function method has also 

been studied. 

 

 Next the BPM based on the finite element technique has been presented.  The 

incorporation of the PML boundary condition into the vectorial wave equations, in 

which the vectorial propagation algorithm can account for the polarisation 

dependence and coupling has also been shown.  Such BPM is based on the transverse 

magnetic field components.  The formulation for such method does not only consider 

the minimum number of components for a real vector formulation, but also, it 

satisfies the boundary condition at the interface and hence, automatically satisfies the 

zero divergence condition.  Therefore the possibility for spurious solutions to 

propagate will not exist. 

 

 Finally, the LSBR is described for use to analyse the discontinuities in optical 

waveguides.  It is described in this chapter that by using the scattering coefficients, 

the power transfer between two waveguides can be calculated in which the insertion 

loss is found by using the LSBR method.  

 

 The FEM along with the BPM and the LSBR presented here form the 

fundamental of the numerical works in the analysis of the optical waveguides 

problems.  The application of these methods to characterise and optimise the 

performance of various waveguides and photonic devices will be presented in the 

subsequent chapters. 
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3 
 

Analysis of  
Bent Waveguides 
 

 

3.1 INTRODUCTION 

 

In the design of a PIC, most of the optical components used are assembled as basic 

elements which then are connected by using straight and bent waveguides.  Bent 

waveguides are important building blocks used to interconnect non-collinear straight 

waveguides and input/output ports, and they are also used in the design of 

specialized components, such as ring resonators [Little et al., 1997], arrayed 

waveguide filters [Zirngibl et al., 1993], optical delay lines [Hayes, and Yap, 1993] 

and S-bend attenuators [Jiang et al., 2006].  It is important to design a low-loss 

compact bend waveguide, such as an S-bend or a U-bend and to fold the guided 

wave sections to reduce the overall dimension of the PIC, which also reduces its 

fabrication cost.  This procedure would also allow for a greater density of optical 

components onto the same overall ‘footprint’ of the PIC, in order to increase its 

functionality and the reliability of the sub-systems.  Addressing these issues in this 

chapter, a rigorous study of various loss mechanisms in bent waveguides is 

presented. 

 

 Previous research has shown that the field distribution of the fundamental 

mode in a bent waveguide is different from that of the straight waveguide [Gambling 

et al., 1978].  The radiation and transition losses between the straight and the bent 
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waveguide contribute to the propagation properties of a bent waveguide.  As a result, 

the power loss in a bent waveguide will be higher, due to the conversion of the 

incident beam to the higher order modes.  By introducing an offset [Pennings et al., 

1988; Subramaniam et al., 1997; Rajarajan et al., 2000b] for the input straight 

waveguide when coupled to a bent waveguide, the coupling or transition loss can be 

reduced. The unequal bending loss of the even and odd supermodes can also cause 

crosstalk in a directional coupler-based device [Powelson et al., 1998]. Previously it 

has also been reported [Yeung et al., 1988] that two polarized modes exchange 

power in bent waveguides causing polarization crosstalk. Bent waveguides are also 

be deliberately used in the design of compact polarization rotators [Van Dam et al., 

1996; Lui et al., 1998; Little and Chu, 2000; Obayya et al., 2001], which are 

important in the design of polarization-independent or polarization-diversity PICs, as 

they can be used to control the polarization state.  Recent research has shown that 

hybrid optical modes exchange power between the polarization states if the modes 

are nearly phase-matched and have an enhanced overlap between them.  However, to 

achieve power conversion, some forms of discontinuity such as bends, junctions or 

tapers should exist along the propagation direction.  Therefore a polarization rotator 

may be made by using a number of uniform [Somasiri et al., 2002] or curved 

[Obayya et al., 2002] butt-coupled waveguide sections to transfer power between the 

two polarized modes.  This emphasizes the importance of a rigorous investigation of 

the polarization rotation in bent waveguides and thus is the basis of this chapter. 

 

 Curved optical waveguides have attracted increasing interest in the design of 

compact PICs but, however, the rigorous analysis of such bent waveguides is a 

challenging problem. Marcatili [Marcatili, 1969] has developed an approximate 

solution for the eigenvalue equation, by dividing the waveguide cross-section into 

several regions and using field expansion and field matching at the interfaces in order 

to obtain the curvature loss. Another simplified formula has been introduced by 

Marcuse [Marcuse, 1976] by utilizing a similar field expansion and field matching, 

but its validity is limited for a single-mode weakly guided waveguide with a 

sufficiently large bending radius.  

 

 Subsequently, to study arbitrary bends, various numerical methods have been 

developed and used to simulate the light propagation in bent waveguides with the 
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aim of reducing the bending, transition and polarization losses.  The conformal 

transformation [Heiblum and Harris, 1975] has been used widely to represent bent 

waveguides by converting a curved dielectric waveguide to its equivalent straight 

waveguide with a modified index profile. Following that, a modal solution approach 

is necessary to find the modal solutions of the fundamental and higher order modes 

in both straight and bent waveguides and for this the eigenmode expansion 

[Bienstman et al., 2002], the method of lines [Gu et al., 1989; Pregla, 1996], the 

finite difference method [Kim and Gopinath, 1996; Nesterov and Troppenz, 2003], 

the variational method [Wassmann, 1999], the matrix method [Thyagarajan et al., 

1987], the WKB analysis [Berglund and Gopinath, 2000], and the beam propagation 

method (BPM) [Baets and Lagasse, 1983; Subramaniam et al., 1997; Rajarajan et al., 

2000b] have been used and also experimentally verified [Schermer and Cole, 2007].   

 

 The FEM has also been employed by using cylindrical coordinates with 

scalar [Yamamoto and Koshiba, 1993] and vector E-field [Jedidi and Pierre, 2007] 

formulations and the equivalent anisotropic refractive index approach [Tsuji and 

Koshiba, 2004].  Compact bends or rings can be modeled as resonators with 

rotational invariance [Yamamoto and Koshiba, 1993; Prkna et al., 2005], and using a 

cylindrical coordinate system [Kakihara et al., 2006], which is expected to be more 

accurate when the bending radius is comparable to the waveguide dimensions.  

Although finite-difference time-domain approach can also be used [Vu et al., 2008], 

this approach is more computer intensive than the modal solution or BPM approach 

used herein. 

 

 For this particular semiconductor waveguide (with a strong index contrast), as 

shown in Fig. 3.1, the modal fields are hybrid in nature due to a significant non-

dominant field component existing around the dielectric interfaces.  Therefore a full-

vectorial approach is necessary and this has been used in this study to obtain modal 

solutions of straight and bent waveguides. The FEM based on the vector H-field 

formulation (VFEM) [Rahman and Davies, 1984c] has been established as one of the 

most accurate and numerically efficient approaches to obtain the modal field profiles 

and propagation constants of the fundamental and higher order quasi-TE and TM 

modes.  The full vectorial formulation is based on the minimization of the functional 
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[Rahman and Davies, 1984c] in terms of the nodal values of the full H-field vector as 

described in Chapter 2 and equation (2.23). 

 

 The penalty function approach has also been incorporated to impose 

divergence-free condition of the magnetic field to reduce the appearance of spurious 

modes.  This full-vectorial FEM modal solution may also be used to determine the 

beat lengths between the fundamental and the higher order modes and also the 

polarization beat length between the two quasi-TE and TM polarized fundamental 

modes. 

 

 The first step in the process is to transform the curved optical waveguide to 

an equivalent straight optical waveguide by using the conformal transformation 

method [Heiblum and Harris, 1975].  

 

 At the junction between a straight and a bent waveguide besides the incident 

mode, other higher order modes can also be generated to satisfy the necessary 

boundary conditions. In this study a powerful numerical approach, the Least Squares 

Boundary Residual (LSBR) method [Rahman and Davies, 1988] has been used, 

which rigorously satisfies the continuity of the tangential electric and magnetic fields 

at the junction interface, and obtains the modal coefficients of the transmitted and 

reflected modes at the discontinuity interface.  The LSBR method looks for a 

stationary solution to satisfy the continuity conditions by minimizing the error energy 

functional, J, as given by [Rahman and Davies, 1988] and in Chapter 2 and equation 

(2.100).  The integration is carried out at the junction interface, Ω, between the 

straight and bent guides. 

 

 The beam propagation method (BPM) [Obayya et al., 2000a] is most widely 

used for the study of light propagation in optical waveguides, particularly through 

non-uniform and bent waveguides. Although a semi-vectorial BPM may yield 

polarization-dependent guiding properties, only a full-vectorial approach can identify 

the power coupling between the two polarization states.  The finite element-based 

full-vectorial BPM (FEBPM) [Obayya et al., 2000a] is used here to study the 

evolution of the optical beam in a bent waveguide for a given field excitation.   
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 From Maxwell’s two curl equations, the vector wave equation based on the 

magnetic field vector H can be derived as [Obayya et al., 2000a] and found in 

Chapter 2 and equation (2.64).  In this work, after application of the conformal 

transformation, the 3-D curved waveguide is replaced by a simpler 3-D straight 

waveguide, butt-coupled to the input-section. 

 

 In order to calculate the radiation loss in a bent waveguide, in this study a 

rigorous boundary condition incorporating the Perfect Matched Layers (PML) 

[Berenger, 1994] has been introduced around the orthodox computational window. 
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3.2 ANALYSIS OF RIB WAVEGUIDE 
 

 

 Fig. 3.1.  Schematic cross-section of the bent optical waveguide. 

 

The waveguide considered here for analysis is a symmetric rib waveguide.  The 

schematic cross-section of the structure is shown in Fig. 3.1.  Such structures can be 

fabricated by growing a 1.3 μm (H) thick indium gallium arsenide phosphide 

(InGaAsP) guiding layer on top of the indium phosphide (InP) substrate.  

Additionally a 0.5 μm InP cap layer (Hcap) can then be deposited on top of the 

InGaAsP guiding layer and subsequently a ridge can be etched with a core height 

(Hcore) of 1.2 μm.  The operating wavelength, λ for this analysis is considered to be 

1.55 μm and at this wavelength, the frequency dependent refractive indices of the 

InGaAsP and the InP layers are taken as 3.27 and 3.17, respectively.  All other 

parameters are given in Fig. 3.1. 

 

3.2.1   NUMERICAL ACCURACY 

 

At first, accuracy of the H-field based VFEM [Rahman and Davies, 1984c] method 

is tested with the other established methods.  For that the numerical accuracy is 

assessed for a rib waveguide, shown in Fig. 3.2 (a), which was compiled by Hadley 

and Smith, 1995]  is reported here, and further details are given below. 

 

The waveguide considered here for simulation is shown in Fig. 3.2 (a). The 

structure was simulated by exploiting the existing one-fold symmetry and using the 

H-field based VFEM. The effect of varying the mesh size on the effective index of 

the mode is shown in Fig. 3.2 (b).   
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 The effective index, neff  can be defined as: 

0

0

effn
k


       (3.1) 

where β0 is the propagation constant of a given mode and k0 is the free space 

wavenumber, defined as: 

 
1

2
0 0 0

2
k


  


       (3.2) 

In this case, ε0 is the free space permittivity, µ0 is the free space permeability 

of the medium and ω is the angular (radian) frequency.  Variations of the neff of the 

fundamental TE mode is shown in Fig. 3.2 (b). 

 

(a)                                                 (b) 

 Fig. 3.2.  (a) Schematic of the standard rib waveguide wih a broundary condition 

 at the left boundary, (b) the variations of neff with and without Aitkens 

 correction as mesh is increasing. 

 

It is known that for the finite difference method (FDM) or FEM solution, 

accuracy is increased as mesh refinement is carried out.  Therefore in this case, 

Aitkens extrapolation (AE) [Rahman and Davies, 1985] can give the solution for 

very high mesh.  It was extrapolated from 3 successive solutions when mesh was 

increased in a geometric ratio.  In here the same number of mesh division have been 

used in both the transverse direction.  It can be seen that, the neff values increase as 

mesh number is increased.  It can also be observed that without the AE, the accuracy 

of the simulation results improves markedly.  However, with the AE is employed, the 

neff was found to be converging to the value of 3.41475, which is in good agreement 

with values reported previously by Koshiba et. al, Abid et. al., Hadley et. al and 

Stern et. al. 
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3.2.2   MODAL SOLUTION 

 

In the first study, the H-field based VFEM is used to obtain the modal solutions of 

the waveguide.  In this approach, more than 20,000 first order triangular elements of 

different sizes have been used to represent the waveguide structure efficiently. The 

optical modes in semiconductor waveguides are highly hybrid in nature, where Hy 

and Ex components of the fundamental quasi-TE (Hy
11

) mode are the dominant field 

components.  Whereas Hx, Hz, Ey and Ez are of the non-dominant components.  

Hence, both the dominant and non-dominant components of the quasi-TE modal 

field are presented here. 

 

(a)                                                 (b) 

 Fig. 3.3.  (a) The dominant Hy field component and (b) the non-dominant Hx field 

   component of the quasi-TE mode,with W = 3.0 μm and H = 1.3 μm. 

 

 The dominant Hy field component of the Hy
11

 mode in this straight rib 

waveguide is shown in Fig. 3.3 (a).  Due to the stark refractive index contrast in both 

vertical and horizontal directions, the modal field is strongly confined at the centre of 

the waveguide.  Moreover, due to a lower refractive index contrast between the InP 

and InGaAsP layers, the field slightly extends towards the upper cap and lower 

substrate regions.  The non-dominant Hx field component of the Hy
11

 mode for the rib 

waveguide is shown in Fig. 3.3 (b).  As the Hx field is related to the spatial derivative 

of the dominant Hy field, it clearly shows four peak values with alternate positive and 

negative signs and at the centre of the guide, an odd functional along the Y-axis and 

a nearly odd functional in the X-direction.  The maximum magnitude of the Hx field 
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profile is very small and only about 0.006 times the maximum value of the dominant 

Hy field. 

 

 For the quasi-TM mode, the Hx field component of the Hx
11

 mode is 

dominant and the Hy field component is non-dominant (which were not shown here).  

Both these field components would show a similar contour plots like the quasi-TE 

mode.  However it is noted in here that for this particular waveguide, the 

fundamental quasi-TE (Hy
11

) mode is more dominant with its higher neff value than 

its equivalent quasi-TM (Hx
11

) mode. 

 

3.2.3   CHARACTERISTICS OF A RIB WAVEGUIDE 

 

From the modal solutions of the quasi-TE and TM modes, the effective index of 

these modes, modal confinement, modal intensity (spot-size) and their birefringence 

characteristics, will be studied more thoroughly in this section. 

 

 Fig. 3.4.  Variations of the neff with W  for different H for a straight waveguide. 

 

 Figure 3.4 shows the variation of the neff with the waveguide width, W.  As 

the W increases, the fundamental TE and TM modes for H = 1.3 μm becomes more 

confined inside the core area, and hence, their neff increase and becoming more 

closely matched to the refractive index of the core region.  By increasing the H of the 

waveguide, the proportion of the modal field leaking into the InP substrate reduces 

considerably. As a result, the phase velocity of the mode inside the core increases, 
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which results in higher neff of the mode.  The cut-off width of the waveguide for all 

three different heights were observed to be or near to 1.2 μm.  

 

 Fig. 3.5.  Variations of the ΓInGaAsP, with W of quasi-TE and TM modes. 

 

Figure 3.5 shows the variation of the optical confinement in the InGaAsP 

core (ΓInGaAsP ) of the waveguide as a function of the W.  The optical confinement in 

any area of the waveguide area normalized to the total power, can be obtained by 

integrating the Poynting vector, from the H-and E-fields. 

 

It is given as below: 

 z z
S dxdy



  E H      (3.3) 

 It is expected that as the waveguide dimension becomes large, most of the 

power would be confined in the InGaAsP core and that, ΓInGaAsP would be close to 

1.0.  However, it can be noted that, the maximum power confinement in this case is 

closer to 0.92 as the core height is finite and the rest would either be leaked into the 

InP substrate or radiated into the InP cap-layer or into air cladding.  It can be 

observed here that as W is reduced, the ΓInGaAsP also reduces. 

 

 From the neff values of the quasi-TE and TM modes, the modal birefringence 

of the waveguide can be calculated.  It is defined as the difference between the neff  of 

the two fundamental polarizations states (neffTE - neffTM).  Although the value of the 

modal birefringence is very small for this waveguide, however this can have an 

effect on the polarization dependent performance of the PIC. 



Chapter 3  

 

 76 

 

 Fig. 3.6.  Variations of the modal birefringene with W for different H. 

 

 Figure 3.6 shows the birefringence of the rib waveguide at three different sets 

of core height.  When H is large (as H = 1.3 μm) and W is small, it is possible to 

design a waveguide that the propagation constant of the fundamental quasi-TE and 

TM modes are the same and in which zero birefringence will be achieved.  However 

when H is small, and as W is getting smaller, zero birefringence cannot be achieved 

as the mode of the waveguide will get closer to the refractive index of InP, where the 

mode reaches its cut-off condition.  It is also shown that modal birefringence 

increases as W increases and then it saturates.  It can be seen in here that the 

birefringence is zero when the waveguide’s width and height are almost the same, in 

which polarization dependence can be eliminated. 

 

 Fig. 3.7.  Variations of σ with W for different H. 
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 It is shown in Fig. 3.7 that as W increases, the modal spot-size, σ will also 

increases.  Here the σ is defined as the area where the power density falls to 1/e
2
 of 

its maximum power density. The σ of the mode when W = 3.0 μm and H = 1.3 μm 

has been calculated to be 1.17μm
2
.  It is also shown that when H = 1.3 μm, its σ is 

higher than when H are at 1.1 μm and 0.9 μm, respectively. 

 

 

3.3 FEATURES OF A BENT RIB WAVEGUIDE 

 

For optical interconnect components, it is found that straight waveguides are useful 

and easy to couple them together for light to travel.  However in the design of optical 

components, sometimes it is necessary to change the direction of light and to do this, 

waveguide with bends can be introduced.   It is found that bending devices can be 

theoretically analysed by employing the conformal transformation method.  The 

coordinate transformation allows a bent optical waveguide in the x-plane to be 

represented by an equivalent straight waveguide with a modified refractive index 

distribution, n
*
(x,y) [Heiblum and Harris, 1975] 

   x,y x,y 1m

x
n n

R

  
  

 
    (3.4) 

where nm(x,y) is the original refractive index profile of the bent waveguide, n
*
(x,y) is 

the equivalent index profile of a straight guide, R is the radius of the curvature and x 

is an arbitrary point of the waveguide from the axis of the transformation. 

 

 Fig. 3.8.  Bend Orientations for the rib waveguide - left facet at bend radius, R.  

 

 Figure 3.8 illustrates the orientation of the bent rib waveguide. To further 

study the conformal transformation equation.  Figure 3.9 (a) shows the effect on the 
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refractive index distribution when the transformation axis is taken at different 

locations.  When the axis is taken as the outer edge of the waveguide, the modified 

refractive index distribution agreed well with the transformed index profile shown in 

[Smit and Pennings, 1993].  However most of the reports have considered the 

transformation axis at the centre of the waveguide [Baets and Lagasse, 1983] 

[Durniak and Love, 2007].  Therefore, it was decided in this work to employ the 

conformal transformation by taking the transformation axis at the centre of the 

waveguide.  Figure 3.9 (b) shows the result of the refractive index distribution with 

three different radii.  Although the original structure was symmetric along the 

vertical axis, however, after the transformation, symmetry along the transformation 

axis is destroyed, so the full waveguide needs to be considered for its modal 

solutions. 

 

(a)                                                 (b) 

 Fig. 3.9.  (a) Refractive index profile of the straight waveguide (solid) and  

  refractive index due to bending (dashed line). (b) Refractive index profile  

  due to bending with different radii. 

 

 The dominant Hy field profile for the Hy
11

 (quasi-TE) mode is shown in Fig. 

3.10 (a). In this case the modal field profile was obtained by using the VFEM after 

the conformal transformation equation (3.4) was applied to modify the equivalent 

index in the cross sectional plane of the rib waveguide.  It clearly shows that the field 

in the core region shifts outward (right side) and therefore it is no longer symmetric.  

Due to a higher equivalent index on the right boundary, the power leaks out at the 

lower-right side as shown in Fig. 3.10 (a). 
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(a)                                                 (b) 

 Fig. 3.10. (a) The dominant Hy field component and (b) the non-dominant Hx field  

   component of the quasi-TE mode of a bent  waveguide with R = 100 μm,  

   W = 3.0 μm and H = 1.3 μm. 

 

 The non-dominant Hx field component for Hy
11

 (quasi-TE) mode is also 

shown in Fig. 3.10 (b).  It can be observed that the shape of the non-dominant Hx 

field is similar to that of the dominant Hy field.  The magnitude of this non-dominant 

field in the bent waveguide is nearly 0.04 times than that of the dominant field.  

However, this magnitude is still significantly higher compared to the magnitude of 

the same field in a straight waveguide (which was 0.006).  It also clearly shows that 

the field leaks out towards the lower-right corner.  Similarly, for the quasi-TM Hx
11

 

mode, both the dominant Hx and the non-dominant Hy field profiles are of similar 

shapes but these are not shown here.  Since the dominant and non-dominant field 

profiles are similar in shape and the magnitude of the non-dominant component is 

higher in a bent waveguide, the overlap integral between the vector modal fields of 

the Hy
11

 and Hx
11

 modes is expected to be higher. As a result the power conversion 

between these two polarized modes will also be high. 

 

 The neff of this mode (bent guide with R = 100 μm) is found to be 3.24346, 

which is higher than that of the straight waveguide.  The higher neff is due to the shift 

of the modal field in the region where equivalent index is also higher.  It is also 

found that the σ of this bent guide when W = 3 μm and H = 1.3 μm is found to be 

0.8145 μm
2
, which is smaller than that of the straight waveguide as the field profile 

is more compact and shifted towards to the right as shown in Fig. 3.10 (a). 
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 Fig. 3.11. Variations of the neff of quasi-TE and TM modes with the W for a bent 

   waveguide. 

 

 Figure 3.11 shows the variation of the neff of the fundamental TE and TM 

modes with the bending radius, R, for W as 3 μm and 2 μm, respectively.  As also 

shown in Fig. 3.11 is that as R decreases, the neff increases.  It is also shown in here 

that neff of quasi-TE mode with bending is slightly higher than quasi-TM mode with 

bending for both W were shown.  Furthermore, when W is 3 μm, neff are much higher 

than that W of 2 μm as the waveguide area is much larger when W is 3 μm. 

 

3.3.1   LEAKAGE LOSS/PROPAGATION LOSS 

 

Next, to find the leakage loss of a bent rib waveguide, the FEBPM [Obayya et al. 

2000a] is used.  In this study, the fundamental Hy
11

 modal field profile of the straight 

guide with W = 3.0 μm and H = 1.3 μm, is used as the input field to launch into the 

FEBPM code [Obayya et al. 2000a], where the conformal transformation has also 

been used to represent a bent waveguide.  The initial field (input field) of the quasi-

TE mode of the straight waveguide propagates at a distance (z-direction) of 5000 μm 

through a bent waveguide (R = 100 μm).  The propagation loss of the structure is 

calculated by using equation (2.108) outlined previously in Chapter 2. 
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(a)                                                 (b) 

 Fig. 3.12. (a) Illustration of how the straight waveguide is coupled with a bent  

   waveguide with core waveguide W = 3.0 μm and H = 1.3 μm. 

   (b) Variation of power loss along the axial distance for a straight-to-bent 

   waveguide with W = 3.0 μm, H = 1.3 μm and R = 100 μm. 

 

 Figure 3.12 (a) illustrates the coupling between the dominant Hy field of 

quasi-TE mode of the straight and the bent waveguide.  For the bent waveguide, the 

centre of the mode profile can be noticed to shift towards the right side compared to 

the straight waveguide.  It should be noted that field profiles obtained by the mode 

solver and the BPM agree very well.  The variation of the power loss for straight-to-

bent waveguide along the propagation distance is shown in Fig. 3.12 (b).  Initially, 

the rate of variation of the power loss is about 2.2 dB/mm obtained from the gradient 

of the line, at z = 0, when the guide contains both the fundamental and higher order 

modes. As the field propagates further down the bent waveguide, the rate of power 

loss is clearly seen to be reduced as the optical beam strips off the more lossy higher 

order modes and it mostly contains the fundamental mode in this location.  It can be 

observed that the average loss value is about 0.74 dB/mm between the axial distances 

of 4000 μm to 5000 μm. 

 

3.3.2   CALCULATION OF SPOT-SIZE IN BPM 

 

The spot-size, σ has been defined previously in section 3.2.3 as the area where the 

power density falls to 1/e
2
 of its maximum power density.  The variation of the σ 

along the propagation distance is shown in Fig. 3.13 when a mode from the straight 

guide is launched into the bent guide. 
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 Fig. 3.13. Variation of the σ along the axial distance for a straight-to-bent 

   waveguide with W = 3.0 μm, H = 1.3 μm and R = 100 μm. 

 

 Rapid oscillations can be observed in the first 1000 μm and as the 

propagation distance increases, the σ appears to show damped oscillations and settles 

at around 0.82 μm
2
. This saturation value is also very similar to the value of 0.815 

μm
2 

obtained by using the VFEM for a bent waveguide. The output field profile is 

not shown here but at z = 2000 μm it was observed to be similar to the modal field 

profile of the bent guide, which was shown in Fig. 3.10 (a). The periodic change of 

the σ has a beat length of 20 μm.  This period again clearly correlates with Lπ = π / 

Δβ = 19 μm, where Δβ is the difference between the propagation constants of the 

Hy
11

 and Hy
21

 modes calculated by using the VFEM.  The agreement between the 

beat length obtained by the FEM based modal solution and the BPM confirms the 

accuracy of both the approaches.  This also suggests that at the junction of a straight-

to-bent waveguide, the higher order Hy
21

 mode is also generated.  The oscillations in 

the σ occurred because of the mode-beating between the fundamental mode and the 

higher order modes. 

 

3.3.3   INVESTIGATION OF HIGHER ORDER MODES 

 

It was described in previous section that higher order modes exist at the junction of a 

straight-to-bent waveguide.  To investigate the nature and quantify the magnitudes of 

the higher order modes generated, a LSBR method [Rahman and Davies, 1988] has 

been used.  Since the dominant mode in the bent guide is different from the input 
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field of the straight guide, the higher order modes are excited to satisfy the necessary 

boundary conditions. 

 

The modal transmission coefficients of the Hy
11

 and Hy
21

 modes calculated by 

using the LSBR method are 0.89 and 0.38, respectively.  This shows that although 

the fundamental Hy
11

 mode is dominant, the other modes also are excited and 

propagate along with the fundamental mode.  The existence of Hy
21

 mode agrees 

with the periodic spot-size variation due to the mode beating between the Hy
11

 and 

Hy
21

 modes.  It can be observed in Fig. 3.13 that when the propagation distance is 

more than the 500 μm, the optical field mostly contains the Hy
11

 mode with a 

significantly attenuated Hy
21

 mode. On the other hand, a small amount of the Hy
31

 

mode is also excited but being very close to its modal cut-off it leaks out very 

quickly, which correlates with the secondary peaks (shown in Fig. 3.13), which exist 

at an early stage, between a propagation distance of 0 and 400 μm. 

 

(a)                                               (b) 

 Fig. 3.14. Hy field profiles at two z propagation locations with W = 3.0 μm,  

   H = 1.3 μm and R = 100 μm. (a) At z = 1350 µm. (b) At z = 1370 µm. 

 

 To validate further the mode-beating exists, Fig. 3.14 (a) shows the bent Hy 

field profile at axial position A (at z =1350 μm) and Fig. 3.14 (b) shows the Hy field 

profile at axial position B (at z =1370 μm), as identified in Fig. 3.13. Although, they 

look very similar, but this change of σ is periodic.  To study this supple change 

further, the difference between the fundamental Hy field profiles at axial positions A 

(at z =1350 μm) and B (at z =1370 μm) is shown in Fig. 3.15, which clearly shows 

that this field profile is similar to that of the Hy
21

 mode in a bent guide mode as the 

field leaks out into the lower right-hand corner as well.  This clearly illustrates that a 
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small magnitude of Hy
21

 mode and its periodic addition and subtraction from the 

fundamental mode causes periodic change in their σ.  The existence of Hy
21

 mode 

from the BPM simulation illustrated here, and the calculation of its coefficient by the 

LSBR confirms the validity of both the approaches.  This section clearly illustrates 

the usefulness of various approaches, namely the mode solver, junction analysis and 

the beam propagation method. 

 

 Fig. 3.15. Difference between two Hy field profiles at two locations with a phase  

   reversal with W = 3.0 μm, H = 1.3 μm and R = 100 μm. 

 

3.3.4   POLARIZED POWER 

 

 Fig. 3.16. Evolution of the y and x-polarized powers along the axial distance for 

   straight-to-bent waveguide with W=3.0 μm, H=1.3 μm and R=100 μm. 

 

A bent waveguide is also known to exchange power between the two polarization 

states [Yeung et al. 1988]. A full-vectorial finite-element beam propagation program 
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(FEBPM) [Obayya et al. 2000a] with perfectly matched layer boundary conditions 

has been used here to find the TE-to-TM power conversion.  The evolution of the 

quasi-TE and TM powers along the z-direction is shown in Fig. 3.16 for straight-to-

bent waveguide coupling.  In this case, since the quasi-TE (Hy
11

) mode was incident 

at the start of the bend waveguide (z = 0), the Hx-polarized normalized power, Px, is 

nearly zero and the Hy-polarized normalized power, Py, is nearly 1.  As the modes 

propagate along the bent, the maximum polarization conversion occurs at z = 2500 

μm, which correlates well with the polarization-beat length LB.=.π./.|βy-βx|.  This was 

obtained by using the VFEM, where βy and βx are the propagation constants of the 

fundamental Hy
11

 and Hx
11

 modes in the bent waveguide.  Again, the strong 

correlation between the LB value obtained from the modal solution and the periodic 

power conversion length obtained from the BPM confirms the accuracy and the 

validity of both the methods. 

 

3.3.5   BENDING LOSS ANALYSIS 

 

 Fig. 3.17. Variations of power losses along the axial distance for bent-to-bent and 

    straight-to-bent with W = 3.0 μm, H =1.2 μm and R = 100 μm. 

 

In order to study the bending loss, the butt coupling between an imaginary bent-to-

bent waveguide has been analysed. In this case the mode profile of the bent 

waveguide, obtained by using the VFEM [Rahman and Davies, 1984c] (after a 

conformal transformation of the input guide), is launched into the BPM code 

[Obayya et al. 2000a] representing the bent guide (also using the conformal 

transformation).  The variation of the power loss along the propagation distance is 
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shown in Fig. 3.17 by a solid line.  In this case, the power loss is less than that of the 

straight-to-bent waveguide coupling, since the loss in a straight-to-bend additionally 

includes the loss due to the field mismatch.  For comparison, the loss for the straight-

to-bent guide, as shown earlier in Fig. 3.12 (b), is also shown here by a dashed line.   

It can be observed that for z > 2 mm, the slopes of both the curves are similar, 

because in the straight-to-bent case, the magnitudes of the higher order modes that 

remained beyond this position are very small and therefore the loss rates near the end 

are similar.  As can be seen from the bent-to-bent graph, the rate of power loss of the 

pure Hy
11

 mode (of a bent guide) is nearly uniform, with a value of 0.68 dB/mm. 

 

 To quantify the overall loss, the loss value for the Hy
21

 mode was also 

obtained by launching this mode profile into the FEBPM code and this loss value 

found to be 10.61 dB/mm. For a straight-to-bent coupling, at the start in the bent 

section, modal coefficients of the excited Hy
11

 and Hy
21

 modes calculated by the 

LSBR were found to be 0.89 and 0.38 respectively. These values corresponded to the 

transmitted field contained 79% of the power in the Hy
11

 mode, 14% of the power in 

the Hy
21

 mode and the rest in the higher order radiating modes obtained by using the 

LSBR method. In the bent waveguide, the modal loss values of the Hy
11

 and Hy
21

 

modes were calculated to be 0.68 dB/mm and 10.61 dB/mm, respectively. Their 

power fractions were also calculated to be 85% and 15%, respectively.  For which 

the overall loss value was found to be 2.17 dB/mm.  This value gives a good 

agreement with the loss value of 2.2 dB/mm shown previously in Fig. 3.12 (b) which 

also includes loss by other higher order modes.  Again, this also confirms the validity 

and the accuracy of the 3 independent formulations, namely the modal analysis, the 

junction analysis and the BPM analysis, all based on the FEM. In all these cases, the 

fundamental Hy
11

 mode suffers the same bending loss; however, in the case of a 

straight-to-bend waveguide, nearly 21% power in the higher order guided and 

radiated modes are quickly loss. This is clearly shown in Fig. 3.17 as the additional 

1.05 dB loss near the end, at z = 5 mm. 

 

 For the bent-to-bent coupling, the σ along the propagation distance was 

constant, but this is not shown here. However, the constant value of 0.824 μm
2
 

obtained, agrees well with the σ value of 0.82 μm
2
 calculated by using the VFEM for 
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a bent guide.  In this case, since no higher order mode was excited, mode beating was 

not observed. 

 

 Fig. 3.18. Variations of power losses with R, for bent-to-bent and straight-to-bent 

   waveguides with W = 3.0 μm, H =1.3 μm. 

 

 Power loss critically depends on the bending radius and the way the input and 

output sections are coupled. The variations of the total power loss values for a 

straight-to-bent and a bent-to-bent coupler with a 1 mm bent section are shown in 

Fig. 3.18.  The total loss value for the straight-to-bent coupling is shown by a dashed 

line.  On the other hand, for the bent-to-bent waveguide coupling, the loss values are 

shown by a solid line.  It is shown here that, in both of these cases, as R, decreases, 

the loss value increases which also shows a higher loss for a straight-to-bent 

coupling.  Here, the additional loss is due to the field mismatch at the discontinuity 

junction, which was previously discussed. It is worth mentioning here that the 

difference between the two sets also increases with the reduction of the bending 

radius.  Since the more modified field profile in the bent guide increases the field 

mismatch loss. 

 

3.3.6   ANALYSIS OF POLARIZATION CONVERSION 

   AND CROSSTALK 

 

It was also shown in Fig. 3.16 that such a bent waveguide suffers from the periodic 

exchange of power between the polarized modes.  Often this can increase the 

polarization cross-talk in an optoelectronic system comprising bent sections.  On the 
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other hand, such bent waveguides can be deliberately used to rotate the polarization 

state of an incoming signal.  To illustrates the polarization conversion, the variation 

of the maximum polarization conversion with R is shown in Fig. 3.19.  It can be 

clearly observed that as R decreases, the polarization conversion increases.  However 

polarization conversions are similar for both the cases, whether the input waveguide 

is straight or bent. This suggests that the polarization conversion primarily depends 

on the bending radius.  In order to keep the polarization cross-talk below an 

acceptable level, the maximum allowable R has to be designed carefully.   

 

 Fig. 3.19. Variations of the polarization conversions with R, for bent-to-bent and  

   straight-to-bent with W = 3.0 μm and H =1.3 μm. 

 

In this case, the R should be larger than 270 µm to keep the polarization 

cross-talk lower than – 20 dB.  However, on the other hand for the design of a 

polarization rotator, the objective is to maximize the polarization conversion with 

minimum power loss. It may, however, be difficult to achieve 100% polarization 

conversion, using a single section polarization rotator design by reducing R 

appreciably, as in this case the power loss would also increase significantly.  In such 

a case, several bend butt-coupled sections can be cascaded [Obayya et al., 2002] with 

phase reversal at a regular interval equal to the polarization beat-length, LB. 

However, most of the earlier work has only mentioned the normalized power 

conversion between the polarized modes (ignoring the power loss): our present study 

shows a significant power loss for compact bent sections, which cannot be ignored.  
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3.3.7   EFFECTS OF LATERAL SHIFT 

 

In the discussion above it is shown that radiation loss primarily depends on the 

bending radius and the additional loss arises due to the mismatch between the fields 

on the both sides of a junction. Since it would not be possible in a practical case to 

excite the bent section by launching a field similar to that of the bent waveguide, 

several approaches have been reported to reduce such losses. One of these 

approaches is created by introducing a lateral shift between the straight and bent 

guides [Pennings et al., 1988; Subramaniam et al., 1997; Rajarajan et al. 2000b].   

 

Δx OFFSET 

 

In this section, an offset is introduced where the input straight waveguide is shifted to 

the right when coupled to the bent waveguide in order to enhance the field matching 

(since the modal field of a bent guide shifts outwards).  Figure 3.20 (a) shows how 

the fundamental Hy field of the Hy
11

 mode of both straight and bent waveguide are 

represented, when they are coupled together with a Δx offset.  It can be noted that 

when the offset is at its optimum distance, Δx, the center core of the straight 

waveguide would have matched with the center core of the bent waveguide, hence 

they are in a similar position in horizontal axis, when the straight guide is shifted to 

the right by the optimum offset. 

 

(a)                                               (b) 

 Fig. 3.20. (a) Illustration of modal field profiles when a straight waveguide is  

   coupled to a bent waveguide with an offset, Δx, and (b) variations of the  

   power loss for a straight-to-bent coupled waveguide  with the waveguide 

   offset, Δx. 
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 Variation of the power loss at the junction with Δx, is shown in Fig. 3.20 (b).  

The inset diagram in Fig. 3.20 (b) also shows how this offset can be achieved.  As Δx 

increases, the total loss initially reduces and reaches its minimum value before it 

starts to rise.  The minimum loss is achieved when Δx = 0.19 μm, where the field 

matching is optimum and the minimum loss value is 0.84 dB.  As mentioned earlier, 

this loss contains the bending loss of the fundamental mode, the higher order modes 

and also the loss due to the field mismatch between the two coupled waveguides. 

 

 By using the LSBR method [Rahman and Davies, 1988], the modal 

coefficients of the Hy
11

 and Hy
21

 modes were calculated to be 0.923 and 0.2706, 

respectively, when Δx = 0.19 μm.  Therefore for this design optimization, the bent 

guide will contain about 85% of the power in the Hy
11

 and only 7.3% power in the 

Hy
21

 modes with the remaining power existing in higher order radiation modes.  It is 

important to note that by introducing an offset to the waveguide, the polarization 

conversion reduces substantially. 

 

Δw OFFSET 

 

(a)                                               (b) 

 Fig. 3.21. (a) Illustration of modal field profiles when a straight waveguide is  

   coupled to a bent waveguide with an offset, Δw, and (b) variations of the  

   power loss for a straight-to-bent coupled waveguide  with the Δw when  

   the waveguide widths are equal. 

 

It was shown in Fig. 3.10 (a) that the mode shape in a bent guide not only shifts 

outward but it also shrinks.  To address this, an alternative offset method is analysed 

where the W of the input waveguide (straight guide) is reduced to improve the mode 
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matching.  Figure 3.21 (a) shows how the fundamental Hy field of Hy
11

 mode of both 

straight and bent waveguide is represented when they are coupled together with an 

offset Δw.  It can be noted that when the offset is at its optimum distance, Δw, the 

width of the input straight waveguide (which is shifted to the right side) would have 

matched with the bent waveguide. Hence the centre of the cores for both of these 

waveguides are in a similar position along the x-axis. 

 

 The inset diagram in Fig. 3.21 (b) also demonstrates how this particular offset 

was achieved.  It can be observed in Fig. 3.21 (b) that as the width of the input 

waveguide decreases from 3 μm, the width difference, Δw increases and the loss 

value decreases until it reaches its minimum, following which the loss value again 

increases.  The optimum offset, Δw is found to be 0.73 μm when the minimum loss 

value of 0.619 dB is attained. This shows the improvement due to the use of unequal 

waveguide is higher than that of using lateral offset for waveguides with identical 

width.  It should be noted that most of the earlier work [Pennings et al., 1988; 

Subramaniam et al., 1997; Rajarajan et al. 2000b] reports only on the reduction of 

the transition loss by introducing an offset between the straight and curved section. 

However, this study shows for the first time, that by using waveguides of unequal 

width, the transition loss can also be reduced significantly.  

 

 Fig. 3.22. Variations of the σ along the axial direction when an optimized value of 

   Δw is used. 

 

The variation of the σ for the straight-to-bent waveguide but with the width 

difference, w = 0.73 μm, is shown in Fig. 3.22. For this case, the coefficient for the 

Hy
11

 increases to 0.977 and that of the Hy
21

 mode reduces to only 0.10, calculated by 
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using the LSBR method.  It should be noted in here that in this case the power 

carried by the Hy
21

 mode is only 1% as compared to a significantly larger value of 

14% when w = 0 μm.  Figure 3.22 also clearly shows that σ varies around  1.7%, 

compared to more than  12.6% for w = 0, which was shown in Fig. 3.13.  For 

many devices, the periodic pulsation of the σ also varies the local power density and 

this can bring detrimental nonlinear effects such as gain saturation or facet damage.  

It has also been observed that polarization conversion is only 0.4% when the 

optimized unequal waveguide width is used.  

 

 It is observed in Fig. 3.22 that the mode-beating, LB is found to be 20 μm.   

To illustrate that mode-beating exists, Fig. 3.23 (a) shows the bent Hy field profile at 

axial position A (at z = 782 μm) and Fig. 3.23 (b) shows the Hy field profile at axial 

position B (at z = 802 μm), as identified in Fig. 3.25.  

  

(a)                                               (b) 

 Fig. 3.23. Hy field profiles at two z propagation locations with W = 3.0 μm,  

   H = 1.3 μm and R = 100 μm. (a) At z = 782 µm. (b) At z = 802 µm. 

 

 The difference between the fundamental Hy field profiles at the axial position 

A (at z = 782 μm) and position B (at z = 802 μm) where the Hy
21

 mode has gone 

through phase reversal, is shown in Fig. 3.24, which clearly shows that this field 

profile is similar to that of the Hy
21

 mode in a bent guide mode and it leaks out into 

the lower right-hand corner. 
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 Fig. 3.24. Difference between two Hy field profiles at two locations with a phase  

   reversal with W = 3.0 μm, H = 1.3 μm and R = 100 μm. 

 

 For a specific design optimization, both the width change and offset can be 

incorporated simultaneously to reduce the bending loss, the transition loss, the mode 

beating and polarization conversion. Similarly, side trench [Rajarajan et al. 2000a] or 

index contouring by using multi-layers with a different refractive index profile 

[Tomlijenovic et al., 2003] can be used to increase the modal confinement in the 

outward side (here on the right side), to reduce the bending loss.  

 

 

3.4 CHARACTERISTICS OF SLANTED WAVEGUIDE  

 

In the previous section, the waveguide considered was a rib waveguide and for such 

waveguide the polarization conversion of TE mode to TM mode shown in Fig. 3.16 

is small, with Px at 24%  at half-beat length found to be 2500 μm when a straight 

waveguide was butt-coupled with a bent rib waveguide.   In order to enhance the 

polarization conversion, a non-symmetrical rib waveguide with only one slanted side 

wall is considered here, in which such waveguide would increase the non-dominant 

field values of the quasi-TE and quasi-TM modes.  Therefore by increasing the non-

dominant field value, the hybridness (for TE mode - ratio of field value of Hx/Hy and 

for TM mode -the Hy/Hx ratio) of the waveguide would also increase, in which 

higher polarization conversion is possible. 
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(a)                                               (b) 

 Fig. 3.25. (a) Schematic cross-section of the slanted rib waveguide, and  

   (b) example of how the slanted waveguide is discretized. 

 

 The waveguide considered here is an asymmetric rib waveguide with a 

slanted side wall.  The schematic cross-section of this slanted rib waveguide is 

shown in Fig. 3.25 (a).  This structure can be fabricated by growing a 1.3 μm (H) 

thick InGaAsP guiding layer on top of the InP substrate.  This is followed by 

depositing a 0.5 μm InP cap layer (Hcap) on top of the InGaAsP guiding layer and 

subsequently a ridge can be etched with a core height (Hcore) of 1.2 μm.  The right-

sided slanted side wall can be formed by wet etching.  It is found that the angle of 

this slanted wall with respect to the horizontal axis is naturally formed to be 52°, 

therefore, for the angle with respect to the vertical axis as shown in Fig. 3.25 (a), θ is 

considered to be 38°.  In the numerical simulations used, the width, W, is varied in 

order to understand its effect on modal field profiles and studying bending loss.  The 

operating wavelength used in this analysis is 1.55 μm and at this wavelength, the 

refractive indices of the InGaAsP and the InP layers are taken as 3.27 and 3.17, 

respectively.  All other parameter values of the waveguide are given in Fig. 3.25 (a). 

 

 The finite element discretization of the slanted waveguide is shown in Fig. 

3.25 (b).  The waveguide is discretized on a 200 x 200 mesh grid and with 80,000 

first-order triangular elements.  Each of these elements can be of various shapes and 

different sizes.  Orientation of the triangles and sub-zones are taken in such a way 

that the slanted interface matches exactly with the sides of the adjacent elements.  It 

should be noted here that, the FDM uses a staircase approximation and may not be 

satisfactory to evaluate polarization issues for such waveguides. 
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3.4.1 ANALYSIS OF SLANT AND A BENT SLANT 

WAVEGUIDE 

 

Figure 3.26 (a) shows the variation of the neff with the W for the fundamental TE and 

TM modes for a straight slant (no bend) waveguide and a bent slant waveguide (that 

is bending to the left vertical computational wall).  It can be noted in here that, as the 

W increases, the fundamental TE and TM modes will be more confined inside the 

core area, and hence, their neff increase.  It is also shown in here that for quasi-TE 

mode, its neff is slightly higher than that of quasi TM mode when W is large. 

 

(a)     (b) 

 Fig. 3.26. (a) Variations of the neff of quasi-TE and TM modes with W for a straight  

   slant and Bent slant (R =100μm) waveguide. (b) Variations of the neff of 

   quasi-modes with the bent radius of the slanted waveguide, R for  

   different W. 

 

 The variations of the neff, with the bending radius, R, is shown in Fig. 3.26 (b) 

at two different waveguide widths.  For a larger W, the neff of both the quasi-TE and 

TM modes can be noticed to higher than that of a narrow waveguide. This is due to a 

higher modal confinement of both the modes in a larger W waveguide. 

 

 The dominant Hy field profile of the Hy
11

 mode when W = 1.2 μm is shown in 

Fig. 3.27 (a), here, the field profile follows the shape of the slanted rib waveguide.  

The non-dominant Hx field profile is also shown in Fig. 3.27 (b) and it can be 

observed that the non-dominant field profile is very similar to that of the dominant 

field profiles of the Hx
11

 and Hy
11

 modes respectively.  It can be noted in here that the 

maximum Hx value is 0.35, where the Hx value with vertical side wall is only 0.004 
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and that the Hx value for bent waveguide with vertical side wall is 0.035 as discussed 

earlier.  Therefore the hybridness for the slant waveguide is substantially higher than 

other two waveguides (i.e. straight waveguide and straight-bent waveguide). 

 

(a)     (b) 

 Fig. 3.27. (a) The dominant Hy field component and (b) the non-dominant Hx field  

   component of quasi-TE mode of a slanted waveguide with W = 1.2 μm  

   and H = 1.3 μm 

 

(a)     (b) 

 Fig. 3.28. (a) The dominant Hy field component and (b) the non-dominant Hx field  

   component of quasi-TE mode of a bent slanted waveguide with  

   R = 100 μm for W = 3.0 μm and H = 1.3 μm. 

 

 Figure 3.28 (a) shows the dominant component of Hy field of the Hy
11

 mode 

when W = 3.0 μm for a bent slanted waveguide with a bending radius, R = 100 μm.  

It can be observed that the field profile tends to extends outside the slanted side wall 

of the waveguide but it is more restricted to the left side of the vertical side wall and 

hence the field is getting more confined in the guiding region.  For the non-dominant 

Hx field profile of the Hy
11

 mode, shown in Fig. 3.28 (b), it is similar to that of 
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dominant Hy field and its maximum Hx value is close to the Hy value and in this case 

they are 0.80 and 0.90, respectively.  Therefore the hybridness for this bent slanted 

waveguide is higher than the slanted waveguide and much higher than a rib 

waveguide with vertical side wall, and it is found that such high hybridness can have 

a high polarization conversion. 

 

 Fig. 3.29. Variations of the Lπ of quasi- modes with the slanted waveguide W for a  

   straight and Bent (R=100μm) waveguide. 

 

 Next the effect of the R on Lπ has been studied.  To do so, W was kept 

constant at W = 3.0 μm, whilst R, was varied.  The variation of Lπ between the Hy
11

 

and Hx
11

 modes as a function of the R, are shown in Fig. 3.29.  The figure shows that, 

the Lπ for the waveguide with the vertical wall is approximately 40% longer than the 

waveguide with the slanted wall, at a fixed R = 100 μm.  

 

 In order to illustrate the power loss of a bent slanted waveguide, the butt-

coupling of the input rib waveguide with the bent slanted waveguide (in which both 

waveguides width are aligned) is consider here for further analysis.  Figure 3.30 (a) 

shows the illustration of the butt-coupled waveguide.  Initially, for the input rib 

waveguide, a VFEM is used to obtain the modal solution of the quasi-TE mode with 

W = 3.0 μm. It is then launched into the FEBPM code of a bent (R = 100 μm) and 

slanted waveguide with W = 3.0 μm as an example. 
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(a)     (b) 

 Fig. 3.30. (a) Butt-coupling of a rib waveguide with a bent slanted waveguide, and  

   (b) the evolution of the power loss along the propagation direction of a  

   butt-coupled straight waveguide to slant waveguide with bent (R=100μm) 

   with different W. 

 

 Figure 3.30 (b) shows the variation of the power loss for straight-to-bent 

waveguide along the propagation distance of over 1 mm.  It can be observed that for 

W = 3.0 μm, the power loss is quite high (at 1 mm it is found to be about 23.69 dB).  

Initially, both the fundamental and higher order modes were propagated along the z-

direction.  As the field propagates further down the bent slanted waveguide, the 

optical beam strips off the more lossy higher order modes and leaving the 

fundamental mode as the dominant mode.  It can be noted that as the W decreases, 

the power loss of the waveguide at 1 mm also decreases. At W = 2.2 μm, the 

waveguide power loss at 1 mm is 40% of the loss value calculated at W = 3.0 μm.  It 

can be assumed that as the W decreases, the modal field of the input guide and the 

bent slanted waveguide are better aligned with each other at the butt-coupling 

junction. Hence, this reduces the propagation loss. 

 

3.4.2   EFFECTS OF LATERAL OFFSETS ON LOSS 

 

As described in the earlier section, an offset can be introduced to enhance the field 

mode matching.  An offset can be described as the input straight waveguide that is 

shifted to the left when coupling to the bent slanted waveguide at the butt-junction to 

minimise the transmission loss. 

 



 Analysis of bent waveguides 

 99 

 Fig. 3.31 (a) shows that a Δx offset is used to shift the slanted input 

waveguide to the left when butt-coupled to another slanted waveguide with both 

waveguides W at 3.0 μm.  In here, two type of offset conditions had been 

investigated.  Firstly, a slanted waveguide with no bend had been coupled to another 

slanted waveguide with R = 100 μm.  It can be noted in Fig. 3.31 (b) that as Δx is 

increased the loss is increased also.  Initially, when Δx is shifted 200 nm, the loss 

value is found to be about 14 dB, as Δx increased to 1000 nm, it is found that the loss 

is about 40% more.  This indicates that the field modes of these two do not match 

with each other. 

 

(a)     (b) 

 Fig. 3.31. (a) Butt-coupling of a (slanted) waveguide with a (bent) slanted  

   waveguide, and (b) variations of the power loss with waveguide offset,  

   Δx (μm) for both Slanted-to-Bent slanted (R=100μm) and Bent slanted- 

   to-Bent slanted (R=100μm) waveguide. 

 

 However, for the butt coupling between an imaginary bent-to-bent 

waveguide, the variation of the power loss along Δx at a propagation distance of 

1000 μm is shown in Fig. 3.31 (b) by a dash line (shown by the right y-axis).  In this 

case, the power loss is much less than that of the straight-to-bent waveguide 

coupling. This is due to a higher modal field mismatch between a straight and a bent 

waveguide.  It can be observed in here that for the bend-to-bend, the overall power 

loss is only about 1.21 dB, compared to 14 dB in a straight-to-bent waveguide, when 

Δx was taken to be 200 μm. 
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3.4.3 EFFECTS OF BENDING ON POLARIZATION 

CONVERSIONS 

 

In this study, the W was varied from 2.5 μm to 1.5 μm and the simulations have been 

carried out to observe the effect of W on the modal hybridness and the polarization 

conversion.  Initially in Fig. 3.32 (a) the variations of neff of the modes as a function 

of W in a rib waveguide (no bend), a slanted rib waveguide and a slanted rib 

waveguide with a bending radius R = 200 μm, are shown.  It can be observed in here 

that a rib waveguide with no bending has higher neff than both the slanted and bent 

slanted waveguide, as W of the waveguide is reduced. 

 

(a)     (b) 

 Fig. 3.32. (a) Variations of the neff of quasi-TE/TM modes for three different W. 

   (b) Variations of the Hybridness of quasi-TE/TM modes with the slanted 

   waveguide W for a straight and Bent (R=200μm) waveguide. 

 

 To achieve hybridness in any waveguide where there is a overlap between the 

vector field components of the quasi-TE and TM modes, the structure of the 

waveguide has to be asymmetric in some way.  From figure 3.32 (b), it can be 

observed that the hybridness can be shifted by exploiting a bent waveguide.  It can 

also be inferred that as the W decreases, the modal hybridness for different R in a 

slanted waveguide will be shifted towards to the hybridness for a slanted waveguide 

with no bend. This is also shown in Fig. 3.32 (b). 

 

 The TE to TM power conversion can be investigated by butt-coupled  straight 

rib waveguide to a slanted waveguide with bend and the schematic of such a butt-

coupled waveguide is illustrated in Fig. 3.33 (a).  In here, W is kept constant at 3.0 
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μm and that the width of the slanted waveguide with bend is set to W = 1.55 μm. 

Again the VFEM modal solution has been applied first and the resultant modal field 

profile of quasi-TE mode is launched in to the BPM code.  For simulation purposes, 

different R of the slanted waveguide are used to investigate the effect of the  

polarization conversions.   

 

(a)     (b) 

 Fig. 3.33. (a) Butt-coupling of a rib waveguide with a (bent) slanted waveguide, and  

   (b) variations of the polarization rotation along the slanted waveguide 

   withdifferent R when TE mode is incident. 

 

 It is expected that for larger W with a rising R, the modal field in the slanted 

waveguide (with bend) should be more confined in the core.  For W = 1.55 μm, 

where the centre of the modal field in a slanted waveguide is nearly aligned with the 

core centre of the rib waveguide with W = 3.0 μm.  The variations of the polarization 

rotation along the slanted waveguide with different R is shown in Fig. 3.33 (b).  

Initially, the input field is pure TE where at z = 0, the Hy polarized power, Py, is 

nearly equal to one and that the Hx polarized power Px is nearly zero. As the mode is 

propagating along the bent section of the slanted waveguide, the two polarized 

modes started to become out of phase, in which, Px starts to increase and Py starts to 

decrease.  For R = 200 μm, the polarization rotation (when TE becomes TM) is at its 

highest with a maximum value of 0.90 at a distance Lπ when z = 270 μm. 

Subsequently, the polarized power Px starts to reduce.  With the rise in R (in the case 

of R = 500 μm), the device length, Lπ is longer at z = 370 μm and that the power 

transfer from TE to TM will also be lower being at a maximum value of 0.80, when 

compared to shorter bending radius.  It can also be noted in here that with W = 1.55 

μm, polarization conversion will be at its maximum when R decreases  
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3.5 SUMMARY 

 

The rigorous full-vectorial modal solution, junction analysis and beam propagation 

methods have been used to study the bending loss, the transmission loss and the 

polarization conversion in a bent high index contrast semiconductor optical 

waveguide. It has been shown that by reducing the bending radius, the modal loss 

increases.  Additionally, the transition (propagation) loss also increases as the mode 

shape significantly modifies in a bent waveguide.  Rigorous full-vectorial 

characterization and design optimization of compact bent waveguides, to allow the 

highest degree of integration yet keeping the excess bending loss, transition loss, 

optical cross-talk, and polarization cross-talk within an acceptable limit are possible. 

It has also been shown here that by using a narrow input waveguide or an appropriate 

offset unit, the transition loss and polarization conversion can be reduced.  For a 

specific PIC structure, both the narrow input waveguide and the appropriate offset 

can be introduced simultaneously and the numerical approaches presented here are 

suitable to carry out such optimisation by using the computationally efficient finite 

element-based approaches. 

 

In a bent waveguide, the non-dominant field component is relatively large 

compared to that in a straight waveguide and its shape is also similar to that of the 

dominant field, so the overall integral between the two vector modal fields of the 

quasi-TE and TM modes is significantly higher. It is also shown that when the 

bending radius is reduced to design a compact PIC, the associated polarization 

conversion also increases significantly. However, by reducing the bending radius, a 

polarization rotator can be designed but it is also shown here that such devices suffer 

from a significant amount of power loss in the bent section.  By incorporating single 

or several cascaded bent sections with vertical and with an optimized offset design or 

width difference, a compact and low-loss polarization rotator can be designed 

effectively.  

 

By employing a slanted waveguide to couple with a straight waveguide, it is 

found in here that polarization conversion and higher hybridness can be achieved 

than the bent straight waveguide.  It has also shown in here that by applying a bend 
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to a slanted waveguide, the polarization conversion efficiency can be significantly 

improved. 

 

Overall, in this chapter, from the analysis of bent waveguides, the origin of 

higher order modes, the use of unequal guides and offsets on the coupling loss and 

polarization conversion and finally the use of slanted side in a bent waveguide to 

design polarization rotator are presented. 
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4 
 

Silicon Photonics 
Waveguides 
 

 

4.1 INTRODUCTION 

 

In recent years, there has been an increasing interest in the design of ultra-small and 

compact photonic devices.  However most photonic devices have been fabricated 

using exotic materials, such as Gallium Arsenide (GaAs), Lithium Niobate (LiNbO3) 

and Indium Phosphide (InP) that are complicated to process and unless their critical 

material properties, such as their excellent electro-optic properties or emissive 

capabilities are explicitly needed, are excessively expensive to produce.  A recent 

study [Lipson, 2005] has suggested that Silicon (Si) can be the material of choice to 

reduce the cost of fabrication and to increase the functionality of the components in 

building photonic integrated circuit (PIC).  Si waveguides based on the silicon-on-

insulator (SOI) platform are the most fundamental building blocks of many PIC 

systems, such as ring resonators [Vasalov and McNab, 2004], arrayed waveguide 

filters [Dai and He, 2006], modulators [Liao et al., 2005] and lasers [Boyraz and 

Jalali, 2004].  In photonic-based telecommunication systems, light is strongly 

confined in the Si waveguide because of the high refractive index contrast between 

the cladding and the core, and therefore, it allows for the waveguide core to be 

shrunk down to a submicron cross-section.  It also permits the minimum bending 

radius of waveguides to be reduced, thus allowing an overall reduction in the 

dimensions of the PIC, which ultimately decreases the cost of Si photonics devices.  

Previous research [Yin et al., 2007] has also shown that due to the strong electric 
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field in Si waveguides of small dimension, an ultra-high optical power density can be 

achieved in which the longitudinal field, Ez has a large effect on the waveguide 

nonlinearity. 

 

For high index difference (Δn) waveguides, the propagation/transmission loss 

is high, such loss usually contains the radiation loss and scattering loss.  However, 

the high transmission loss is mainly due to the scattering loss.  It is described that 

with Δn being high for the single-mode waveguide, the roughness of the sidewall 

results in transmission loss that scales with the square of the roughness amplitude 

[Payne and Lacey, 1994].  Scattering loss arises from the roughness of the side-wall 

interfaces associated with the fabrication process of waveguides.  It can be reduced 

by using geometries that minimize the mode overlap with the rough sidewalls of the 

waveguide, in which the scattering loss reduces as the dimension of the waveguide is 

increased.  This is due to the field mode is more confined and therefore smaller field 

will be at the interface.  It is also described that TM loss may be lower to the TE 

losss as generally when the waveguide is fabricated; the horizontal layers are much 

smoother than the vertical side walls. 

 

Typical scattering losses for a strip waveguide range from 0.2 to 5 dB/cm 

[Vlasov and McNab, 2004] and silicon slot waveguide can be higher.  However, if 

oxidizing the vertical sidewalls [Sparacin, et. al, 2005] of the waveguide is employed 

during the fabrication process, scattering loss of as low as 0.8 dB/cm can be realised. 

 

Scattering loss is generally estimated from the size of the roughness on the 

sidewall and the normalised field intensity at the interfaces [Tien, 1971].  In 

principle, FDTD can approximate the scattering loss, however such loss is difficult to 

calculate as the roughness of the sidewalls are often in the range of nanometre 

(which is beyond the mesh refinement used in the FDTD).  However, if a flexible 

mesh can be used, as in the FEM, then this type of problem may be analysed more 

rigorously. 

 

In this project, the calculation of scattering loss will not be included, 

nevertheless, the quoted scattering losses shown previously can be added to the 

calculated propagation/transmission losses in this thesis as an additional loss. 
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 It is the aim of this chapter to provide a comprehensive review of the modal 

characteristics of the Si photonic waveguide.  The E and H mode fields along with 

the Poynting vector of a Si strip waveguide with a nanoscale cross-section will be 

studied and shown in detail.  The geometrical criteria of the Si photonic waveguide 

will be shown and the core dimension of the waveguide for single mode operation 

will also be shown in this chapter.  Single mode condition is also a very important 

characteristic to design any function on a practical device.  This is because most of 

the functional devices depend on the fundamental guided mode, therefore the single 

mode condition on a specific core thickness will be determined.  In doing so, the 

hybridness, the effective area, the power confinements and the birefringence of the Si 

waveguide will also be studied for both air and SiO2-clad waveguides. 
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4.2   SILICON SLAB SOLUTION 
 

It is well known that analytical modal solutions are not possible for an optical 

waveguide with two-dimensional confinement, however, analytical solution is 

possible for a planar (slab) waveguide by solving the transcendental equations 

developed by matching the field continuity at the two dielectric interfaces. Therefore 

to benchmark the FEM results, initially an analytical solution of a 3 layers slab 

waveguide was carried out to find the neff of a Si slab on top of a SiO2 slab layer.  It is 

assumed that W is infinite and that the thickness of the Si slab can be adjusted as 

necessary. 

 

Fig. 4.1. Slab solutions for the variations of the neff of TE and TM modes with H 

for a Si slab waveguide. 

 

Cladding 

 

Thickness 

TE TM 

Analytical FEM Analytical FEM 

Air 260nm 2.977095 2.977070 2.310551 2.310550 

 300nm 3.066514 3.066492 2.592171 2.592170 

 500nm 3.294015 3.294005 3.170643 3.170643 

SiO2 260nm 2.990620 2.990603 2.422069 2.422068 

 300nm 3.076448 3.076433 2.660336 2.660335 

 500nm 3.297048 3.297041 3.182658 3.182658 

 

Table 4.1. Numerical comparison of analytical results with FEM results. 

 

Figure 4.1 shows the variations of the neff of TE and TM modes with the 

waveguide H. It is also shown in Fig. 4.1 that as the thickness of the Si slab increases 

the neff of both TE and TM modes (in both air and SiO2 clad waveguides) also 

increases.  The neff of the TE mode was observed to be higher than the TM mode.  
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However the difference of TE and TM modes neff will narrow as the thickness of the 

Si slab increases. 

 

The FEM results obtained and the calculated analytical results are also shown 

in Table. 4.1 for both air clad and SiO2 clad planar waveguide.  Both results shown 

an excellent agreement up to the fifth significant decimal of the neff values. 

 

 

4.3 ANALYSIS OF STRIP WAVEGUIDE 

 

 Fig. 4.2.  Schematic cross-section of the Si strip waveguide. 

 

The structure considered here for a thorough investigation is a conventional silicon 

strip optical waveguide or Si photonic wire waveguide.  Figure 4.2 shows the 

schematic cross-section this waveguide.  Generally, these waveguides consist of a Si 

core with small rectangular cross-section, surrounded by either SiO2 or air as a 

cladding layer.  The structure can be fabricated by using a SOI (Silicon-On-Insulator) 

wafer on a Si substrate.  A resist mask can be used on the surface of the Si layer and 

the Si waveguide core can be formed by etching down to the SiO2 buffer layer by use 

of an Inductively Coupled Plasma (ICP) dry etcher.  The Si core can then either be 

buried under a thick SiO2 over-layer or surrounded with air.  In this study, the 

thicknesses of the core waveguide is 260 nm (H) and that of the lower SiO2 buffer 

layer (Hb) as 1.50 μm.  The refractive index of the rectangular Si core at 1.55 μm 

wavelength is taken as 3.50.  The refractive indices for the SiO2 cladding or air 

cladding are set as 1.50 and 1.0, respectively. 
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4.4 MODAL FIELDS ANALYSIS 

 

To begin with, simulations were carried out to determine the effect of the neff as a 

function of W with different H for Air clad waveguide. In this study, the H-field 

based VFEM is used to obtain the modal solutions of such a waveguide.  For this 

study, due to the availability of  one-fold symmetry of the waveguide structure, only 

a half of the structure is considered and computational discretised using more than 

80,000 irregular sized first order triangular elements.  It is found that such simulation 

would take about 2 minutes CPU time on a dual-core Pentium processor computer 

running a Solaris platform. 

 

 Fig.  4.3. Variations of the neff with W, for different quasi-TE modes. 

 

Figure 4.3 shows the neff variation as W is varied from 1.5 μm to nano-

dimensions for various Si core heights.  It is clearly seen that as H = 200 nm and that 

W is reducing, its corresponding neff is reducing also.  It can also be noted that when 

H = 200 nm, it reaches its cut-off condition for the fundamental mode earlier than 

the other heights and that the cut-off width is at between 240 nm to 260 nm.  As the 

behaviour of neff with W is determined, the thickness of 260 nm will be chosen to use 

as the Si core height for further analysis.  The accuracy of the solution for the Hy
11

 

mode was identified by using Aitken extrapolation [Rahman and Davies, 1985] to be 

better than 0.065%, when W = 500 nm and H = 260 nm. 
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4.4.1   MODAL H-FIELD PROFILES 
 

In the analysis of modal H-field profiles, for the SiO2 clad quasi-TE mode, the Hy 

field component is dominant, and Hx and Hz are the non-dominant components.  The 

dominant Hy field component of the Hy
11

 mode is shown as an inset in Fig. 4.4 (a) for 

W = 300 nm and H = 260 nm. 

 

(a)                                                 (b) 

 Fig. 4.4.  (a) Variations of Hy for the Hy
11

 mode and (b) variations of Hx for the  

Hx
11

 mode along X-axis and Y-axis. 

 

The field profile shown in Fig. 4.4 (a) clearly identifies the maximum 

intensity occurring at the center of the core.  It is also shown that there is symmetry 

along the vertical and horizontal axes, and the mode extends considerably more into 

the top and bottom SiO2 cladding region.  To illustrate its variation more clearly, the 

variation of the Hy field along the Y-axis is also shown by a dashed line in Fig. 4.4 

(a).  In this case, the Hy field is monotonically decreasing along the Y-axis and when 

Y = 0.13 μm (as H = 260 nm), at the boundary between the Si and SiO2, the 

magnitude of the Hy field is 60% of its maximum value.  The variations of the Hy 

field along the X-axis is also shown by a solid line, which also decreases 

monotonically but with a rapid reduction inside the Si core until at the boundary 

interface, following which its slope reduces in the SiO2 cladding region. At the 

interface, (at X = 0.15 μm, as W = 300 nm) the magnitude of the Hy field is only 

about 16% of its maximum value, which is significantly lower than field values at the 

upper and lower interfaces.  In its contour plot it is clearly visible that the modal 

confinement in the horizontal direction is much stronger.  The neff, of the Hy
11

 mode 

was found to be 2.00711 when W = 300 nm.   
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 Similarly, for the quasi-TM mode, Hx field component is dominant and that 

Hy and Hz are non-dominant components.  It is found that when W = 300 nm and H = 

260 nm, its neff is lower than the quasi-TE mode and that the neff of the Hx
11

 mode 

was found to be 1.873450.  In its contour plot shown in Fig. 4.4 (b), it is clearly 

visible that the modal confinement in the vertical direction is much stronger. It is 

shown in Fig. 4.4 (b) that the variation of the Hx field along the X-axis is shown by a 

solid line and the Hx field is monotonically decreasing along the X-axis.  It can be 

noted that when X = 0.15 μm (W = 300 nm), the magnitude of the Hx field is 60% of 

its maximum value at the boundary between the Si and SiO2.  The variations of the 

Hx field along the Y-axis is also shown by a dashed line, which also decreases 

monotonically but with a rapid reduction inside the Si core until at the boundary 

interface, following which its slope reduces in the SiO2 region.   

 

4.4.2   ANALYSIS OF MODAL E-FIELD PROFILES 

 

Once all the three components of the vector H-field are obtained, Maxwell’s 𝛻× H 

equation is used to calculate the three components of the E-field vector.  The 

fundamental quasi-TE Hy
11

 mode contains all the three components of the electric 

field, Ex, Ey and Ez : the Ex field is dominant, and the Ey and Ez field components are 

non-dominant. (The correlation between the E and H fields components were 

previously shown in Chapter 2) 

 

 Variations of the dominant Ex field along the X and Y-axes for the 

fundamental Hy
11 

mode are shown in Fig. 4.5 (a) for W = 300 nm and H = 260 nm.  

The variation of the Ex field along the Y-axis, shown here as a dashed-line, reduces 

monotonically from the center of the waveguide core and is continuous at the 

interface between Si/SiO2, as required by the boundary condition.  The SiO2 and Si 

interfaces are shown by two vertical dashed lines.  However, the Ex field along the 

X-axis, shown here as a solid line, reduces more quickly in the core and at the 

Si/SiO2 interface increases abruptly with a step change in the ratio of (3.5/1.5)
2
 =  

5.44 in the SiO2 region.  Therefore the magnitude of the Ex field in the SiO2 region 

can be significantly higher than that in the core region and this behaviour is also 

shown in the 3D-contour of Ex field, this being shown as an inset in Fig. 4.5 (a). 
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(a)                                                 (b) 

 Fig.  4.5 . (a) Variations of the Ex field for the Hy
11

 mode and (b) variations of the  

Ey field for the Hx
11

 mode along the X and Y-axes. 

 

 For quasi-TM mode the Ey field is dominant, and that the Ex and Ez field 

components are non-dominant components.  It is shown in Fig. 4.5 (b) that when W = 

300 nm and H = 260 nm, the variation of the Ey field along the X-axis reduces 

monotonically from the center of the waveguide core and with the boundary 

condition, it is continuous at the interface between Si/SiO2 (when X = 0.15 µm).  

However, for the Ey field along the Y-axis as shown here as a dashed line, the 

magnitude of Ey at the Si/SiO2 interface increases abruptly with a step change in the 

ratio of (3.5/1.5)
2
 =  5.44 in the SiO2 region which is similar to the dominant of Ex of 

quasi-TE mode.  It is shown in here that such behaviour has higher magnitude of Ey 

field at the Si/SiO2 interface than the core region along the Y-axis as this is also 

demonstrated in the 3D-contour of Ey field in Fig. 4.5 (b). 

 

 4.4.3  POYNTING VECTOR PROFILES ANALYSIS 

 

From the full vectorial E and H fields, the Poynting Vector (Sz) may be calculated.  

The contour of the Sz intensity distribution profile for the quasi-TE Hy
11

 mode is 

shown as an inset in Fig. 4.6 (a), where the core of the rectangular Si waveguide is 

also outlined by dashed lines.  The variations of Sz along the X and Y-axes are also 

shown here. Variations of the Sz along the Y-axis are shown by a dashed-line, which 

clearly shows continuous power distribution at the interface.  However, the variation 

of the Sz (along the X-axis is shown by solid line) reveals a small discontinuity step 

at the Si/SiO2 interface which also decays more quickly in the Si core.  It was 
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observed (but not shown here) that for a smaller W, the Sz discontinuity step can be 

even larger with a significant extension of the power intensity into the SiO2 cladding 

along the X-direction.  

 

(a)                                                 (b) 

 Fig. 4.6.  (a) Variations of the Sz intensity for the Hy
11

 mode and (b) variations of  

the Sz intensity for the Hx
11

 mode along the X and Y-axes. 

 

 The variations of Sz along the X and Y-axes of the quasi-TM Hx
11

 mode is 

shown in Fig. 4.6 (b).  Variations of the Sz along the Y-axis are shown by a dashed-

line,  which shows that there is a discontinuity step at the Si/SiO2 interface.  It can be 

noted in here that Sz has a maximum magnitude of 48 inside the Si core which then 

decays sharply inside the core than in the SiO2 layer. 

 

 

4.5 EFFECTIVE INDEX ANALYSIS 

 

To begin with, simulations were carried out to determine the single-mode-to-

multimode-transition of the strip waveguide by keeping H constant at 260 nm, while 

the W was decreased slowly from 3 µm to nano-dimensions.  In Fig. 4.7, variations 

of the neff as a function of W for the fundamental Hy
11

 and higher order Hy
21

, Hy
31

 and 

Hy
41

 quasi-TE modes are presented for the SiO2-cladding. 
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 Fig. 4.7.  The variations of neff with W for the Hy

11
, Hy

21
, Hy

31
 and Hy

41
 modes. 

 

It can be observed that when W is large in comparison to H, the waveguide 

supports many modes and neff is closer to the neff of a slab guide with H = 260 nm.  

As W, decreases, neff also decreases and gets closer to the refractive index of SiO2 

where all the modes reach their cut-off.  It is shown here that the cut-off widths for 

the Hy
41

, Hy
31

, Hy
21

 and Hy
11

 modes are 1000 nm, 700 nm, 400 nm and 200 nm, 

respectively.  This simulation data generated suggests that the single-mode operation 

occurs when the waveguide width lies approximately between 200 nm to 400 nm for 

the operating wavelength, λ of 1550 nm with a height of 260 nm. 

 

(a)                                                 (b) 

 Fig. 4.8.  The variations of neff, (a) with W for quasi-TE modes with different H, 

   (b) with H for quasi-TE and TM modes. 

 

 The heights of H = 200 nm, 260 nm and 300 nm are used to investigate the 

effect of W on the strip waveguide.  It is shown in Fig. 4.8 (a) that H = 200 nm, the 
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neff decreases as W decreases until it reaches its cut-off point.  It can also be seen that 

when H = 200 nm, it reaches its cut-off condition quickly than when H = 260 nm 

and 300 nm. 

 

The characteristics of the H is as important as the waveguide W, as H also 

dictates the cut-off condition of the mode.  Figure 4.8 (b) shows the neff with H for 

quasi-TE and TM mode.  It can be noticed in here that as W is smaller than H, the neff 

of the quasi-TM mode is higher than that of the quasi-TE mode. This can be 

observed as H is adjusted. As the Hx mode is the dominant mode of the waveguide, a 

larger waveguide H results in a significant overlap of  the Hx
11

 field spreading 

vertically.  

 

 

4.6 HYBRIDNESS ANALYSIS 

 

Modes in optical waveguides with two-dimensional confinement are not truly TE or 

TM, but are hybrid in nature, which means that all the six components of the vector 

magnetic and electric fields are always present.  For the quasi-TE Hy
11

 mode, the Hy 

component is the dominant and Hx and Hz each are non-dominant.  The variations of 

the modal hybridness with W for the Hy
11

, Hy
21

, Hy
31

 and Hy
41

 modes are shown in 

Fig. 4.12. The modal hybridness in this case is defined as the ratio of the maximum 

value of non-dominant Hx field to the maximum value of dominant Hy field.  This is 

an important parameter to calculate polarization cross-talk [Somasiri and Rahman, 

2003] [Little et al., 2005] and also in the design of polarization rotators [Rahman et 

al., 2001]. 

 

 The modal hybridness of the Hy
11

 mode is shown by a solid line in Fig. 4.9.  

A low hybridness can be observed for a wider waveguide, however as W is reduced, 

the hybridness reaches a maximum value, then slowly reduces as the fundamental 

Hy
11

 mode approaches its cut-off region.  The maximum hybridness for the 

fundamental quasi-TE Hy
11

 mode is found to be 0.19 at W = 320 nm.  Furthermore, 

the hybridness variation of the higher order modes (Hy
21

, Hy
31

 and Hy
41

) are also 

similar to that of the fundamental mode. 
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Fig. 4.9.  The variations of hybridness with W for the Hy
11

, Hy
21

, Hy
31

 and Hy
41

 

  modes. 

 

 The variations of hybridness as a function of W for the TE mode of 3 

different H is shown in Fig. 4.10 (a).  It is shown in here that when W is small, 

hybridness will reach a higher maximum value as in the case when H = 200 nm. It is 

also shown that as W reduces, the hybridness increases until it reaches its maximum 

value then starts to reduce as it approaches to its cut-off. 

 

(a)                                                 (b) 

 Fig. 4.10. The variations of hybridness, (a) with W for quasi-TE modes with 

   different H, (b) with H for quasi-TE and TM modes. 

 

 The variation of the hybridness with the waveguide height, H, is shown in 

Fig. 4.10 (b).  It can be seen that by reducing H, the hybridness can be further 

enhanced.  An important aspect is that the hybridness of the Hx
11

 mode, shown by the 

dashed line is slightly higher than that of the Hy
11

 mode. 
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4.7 ANALYSIS OF EFFECTIVE AREA 

 

Mode size area or effective area is an important design parameter for various 

applications and Fig. 4.11 shows the variation of the effective area (Aeff) with the 

waveguide width for different quasi-TE modes.  Following the second moment of 

intensity distribution (recommended by ISO Standard 11146), the definition of Aeff 

[ISO 11146, 2005] can be given by: 

 
2

2

4

t

eff

t

E dxdy
A

E dxdy









       (4.1) 

where Et is the transverse electric field vector and the integration is carried out over 

the whole cross-section of the waveguide, Ω. 

 

 Fig. 4.11. Variations of the Aeff with W for the Hy
11

, Hy
21

, Hy
31

 and Hy
41

 modes. 

 

 It can be observed that as W reduces, Aeff reduces to a minimum value and 

any further reduction of W, results in the sudden rise in the Aeff as the mode 

approaches its cut-off.    The minimum Amin, for the Hy
11

 mode is obtained as 0.0956 

μm
2
 when the value of W = 320 nm, which means that the mode is more confined 

when the effective area is a minimum.  Further rigorous simulations were carried out 

for the quasi-TE Hy
21

, Hy
31

 and Hy
41

 modes.  It was found that the widths for the 

minimum Aeff values for the Hy
21

, Hy
31

 and Hy
41

 modes are 650 nm, 1000 nm and 

1300 nm, respectively.  It can be noted that all the Aeff values are very similar when 

W is large but it is only slightly higher for the higher order modes. 
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Figure 4.12 (a) shows the evolutions of Aeff with W for different height,H.   It 

was observed that as W decreases, its Aeff decreases until it reaches its minimum 

value and then starts to increases as it approaches its cut-off region.  It can be noticed 

that for H = 300 nm, its minimum Aeff is at 0.096 μm
2
 at W around 300 nm.  It was 

recorded that for H = 260 nm and 200 nm the minimum Aeff was at W = 320 nm and 

400 nm, indicating that when the width is small, the respective H for the minimum 

Aeff will be large as the waveguide will reach its cut-off condition. 

 

(a)                                                 (b) 

 Fig. 4.12. Variations of the Aeff, (a) with W, for quasi-TE modes with different 

H, (b) with H for quasi-TE and TM modes. 

  

 The variations of Aeff with H for the fundamental quasi-TE and TM modes are 

shown in Fig. 4.12 (b).  It can be clearly seen that for quasi-TM mode, the Aeff is 

higher than that of quasi-TE mode.  It also shown that the Aeff for quasi-TM mode 

decreases to its minimum value when the waveguide height decreases and when H 

reduces further, it reaches its cut-off condition.  The quasi-TE mode also follows the 

similar behaviour.  In the case when H = 3.0 μm, the Aeff for the quasi-TM mode is 

0.66 μm
2
 and that it is 0.47 μm

2
 for quasi-TE mode.  It is a further evidence that the 

fundamental quasi-TM mode is more dominant than the quasi-TE mode when H is 

large. 
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4.8 CALCULATION OF POWER CONFINEMENTS 

 

The variations of the ΓSi with W, are shown in Fig. 4.13 for the Hy
11

, Hy
21

, Hy
31

 and 

Hy
41

 modes.  The confinement factor in any particular area normalized to the total 

power, which is obtained by integrating the Poynting vector, from the H-and E-fields 

as given below:  

 *
E Hz

z
S dxdy


         (4.2) 

 

 Fig. 4.13. Variations of ΓSi with W for the Hy
11

, Hy
21

, Hy
31

 and Hy
41

 modes. 

 

 It is expected that as the waveguide dimension becomes large, most of the 

power would be confined in the Si core and that, ΓSi would be close to 1.0.  However, 

it can be noted that, the maximum ΓSi in this case is closer to 0.85, because H was 

restricted to 260 nm.  If the H of the core also becomes larger, then ΓSi could 

approach 1.0.  It can be observed here that as W is reduced, the ΓSi also reduces.  It 

can be also observed that although, for a wider waveguide, the ΓSi for all the four 

modes shown here are similar, but for a narrower waveguide, the ΓSi for the higher 

order modes are smaller. 

 

 Next the variations of the ΓSi with the W for different heights are shown in 

Fig. 4.14 (a).  It can be expected that if the H is large and the W starts to increase, the 

ΓSi would be closer to 1.0.  In the case of H = 300 nm, the maximum ΓSi is around 

0.89 and it can also be assumed that the remaining normalized power (power 

confinement factor in SiO2), ΓSiO2 = 0.11, would be contained in the SiO2 cladding.  
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For H = 200 nm (thinner waveguide), the ΓSi has dropped when compared to H = 300 

nm, and that only about 0.77 power confinement factor would be in the Si core and 

0.23 in the SiO2 cladding. 

 

(a)                                                 (b) 

 Fig. 4.14. Variations of the ΓSi, (a) with W, for quasi-TE modes with different 

H, (b) with H for quasi-TE and TM modes. 

 

 The investigation of the ΓSi shown in Fig. 4.14 (b), yields that for the quasi-

TM mode, most of the power would be confined in the Si core and for W = 260 nm, 

the maximum ΓSi is close to 0.85.  If W also becomes large than the ΓSi would be 

closer to 1.0.  It can be observed in here that, power is more confined in quasi-TM 

mode as the H is increased, hence ΓSi in quasi-TM is higher than the ΓSi in quasi-TE 

mode. 

 



 Silicon photonics waveguides 

 121 

4.9 BIREFRINGENCE ANALYSIS  
 

The next study in this work is to investigate the modal birefringence of such strip 

waveguide.  For the design of optical photonics integrated circuits (PIC), light waves 

travelling inside the optical waveguide will have different propagation properties and 

will propagate at different velocities, and therefore suffers different losses.  Thus it is 

essential to design PIC based on optical strip waveguide for it to be polarization 

independent.  In this section, it will be shown that in a strip waveguide, it is possible 

to achieve zero birefringence with different waveguide dimension. 

 

 Fig. 4.15 Variations of the neff of quasi-TE and TM modes and the birefrigence  

with W for an air-clad Si strip waveguide with H = 300 nm. 

 

 In the design of PIC, some Si guided-wave components may not be 

surrounded by SiO2 cladding but be in air, in here the Si strip structure waveguide is 

surrounded with air, therefore, for the modal solutions, a one-fold symmetry with 

only a half of the structure is considered to apply into the vectorial simulations. 

Figure 4.15 shows the effect of birefringence and neff of quasi-TE and TM modes 

when the W is varied.  Here, the modal birefringence is defined as the difference 

between the neff of the fundamental quasi-TE and TM modes. It can be observed in 

here by increasing W, the neff of the guided modes also increases.  For W = 320 nm, 

the neff of quasi-TE and TM mode is the same in which zero birefringence (shown as 

a dash-blue line) is achieved.  It should be noted that with air-cladding, the 

waveguide is not symmetric along the y-axis.  Hence for zero birefringence, the 

waveguide's W and H are different. The quasi-TM mode becomes more dominant as 
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the W decreases below the zero birefringence threshold of W = 300 nm.  Both the 

quasi-TE and TM modes were noticed to approach their respective cut-off conditions 

at W = 160 nm. 

 

  Fig.  4.16 Variations of  the modal birefringence with W for different H 

   for an air-clad Si strip waveguide. 

 

 Figure 4.16 shows the variation of the modal birefringence caused by varying 

the W, at different values of the waveguide H. A negative modal birefringence can be 

observed for a narrow waveguide. However the birefringence increase with a wider 

waveguide.  For example, for a waveguide with H = 200 nm, the corresponding W to 

achieve zero birefringence is 280 nm.  It was found that the widths for zero 

birefringence for H = 260 nm, 300 nm and 400 nm are 290 nm, 320 nm and 420 nm, 

respectively. It can be described that for width beyond 500 nm, modal birefringence 

will be large when H is reduced but the width for zero birefringence will be small.  

Therefore it is possible to design a strip optical waveguide to eliminate the modal 

birefringence by optimising the waveguide geometries, in order to achieve 

polarization independence for various applications of PIC. 

 

 As described previously some Si guided-wave components may be 

surrounded by SiO2 cladding and as well as be in air.  Here the variations of their neff 

and the Aeff of the guided modes in these waveguides as a function of W are 

investigated.  Figure 4.17 shows the variations of neff and Aeff for the fundamental 

Hy
11

 mode with W for both air and SiO2 cladding.  It can be observed that when the 
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waveguide is covered with SiO2 both the neff and the Aeff are slightly higher than that 

with the air-cladding. 

 

 Fig.  4.17 Variations of the neff and Aeff  with the W for SiO2 or Air cladding for the 

   Hy
11

 mode. 

 

 Fig  4.18 Variations of the modal birefringence with the W for the fundamental 

    modes with SiO2 or air cladding. 

 

 Finally, the variations of modal birefringence are shown in Fig. 4.18, for 

waveguide H of 200 nm and 260 nm.  It is shown here that modal birefringence 

increases as W increases and then saturates.  In an air-cladding waveguide, the modal 

birefringence is higher compared to a SiO2 cladding waveguide.  This is due to a 

stronger refractive index contrast between the Si core and the upper cladding 

material.  It is important to note that the modal birefringence difference is larger 

when H is smaller.  When the dimensions of the waveguide are the same, zero 

birefringence can be achieved with SiO2 cladding. 
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4.10 SUMMARY 

 

There is an impetus to develop low-cost photonic devices that can be furthered by 

exploiting the well-developed, low-cost CMOS technology. The higher index 

contrast, ∆n, of Si also allows for smaller waveguides and compact bend designs 

which will allow more reliable PIC to be developed, with increased functionality.  It 

is shown in this Chapter that for a Si waveguide with a strong index contrast, the 

single mode operation region is 200 nm to 400 nm, when the waveguide height is 

260 nm and the operating wavelength is 1550 nm.  Initially, accuracy of the FEM 

used here is benchmarked and convergence of solutions is discussed. 

 

It is also discussed here that non-dominant field components are significantly 

higher, (often more than 50%), in which case the simpler scalar approaches often 

considered would be totally inadequate.  It is also shown that, for this case (H = 260 

nm), the effective area not only is minimum, when W = 320 nm, but also these 

values are similar for both the polarizations.  In this case, the modal birefringence is 

also small and spot-size is near circular and could be a suitable dimension for many 

applications.  However, it was also noted that, the modal hybridness was nearly its 

maximum value for this case. 

 

 In this study, the spatial variations of the components of the E and H-fields 

are shown, together with the Sz profile.  The modal hybridness, the power 

confinement and the modal birefringence for silica and air-clad Si nanowires are also 

shown here.  It should be noted that the performance of these highly birefringence 

guided-wave devices are polarization dependent.  However, in the presence of 

slanted side walls and bends, there may be additional polarization conversion that 

occurs due to the presence of higher magnitude of the non-dominant field 

components and this can only be studied by using a rigorous full-vectorial approach, 

as was carried out in this work. 
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5 
 

Silicon 
Polarization 
Rotators 
 

 

5.1 INTRODUCTION 

 

As the telecommunication industry embraces higher optical transmission networks, 

the importance of minimizing the unexpected polarization rotation or polarization 

crosstalk to compensate the polarization mode dispersion (PMD) [Liu et al., 1996] in 

an optical transmission network is of great interest in the design of polarization 

diversity photonics devices and PIC [Hilbk et al., 1995].  It is also important to 

design such systems in integrated optics format rather than using separate fibre optics 

based components.  Nowadays, PICs can improve reliability and reduce the size of 

complex devices by using fewer isolated components.  However, so far there has not 

been a large-scale PIC commercially deployed [Yoo, 2009] because of the high 

development cost and poor flexibility associated with the fabrication processes of 

monolithically integrated subsystems.  Recently, it has been suggested [Lipson, 

2005] that Si with SOI technology can be considered to be a material choice for 

designing and integrating dense PIC and optoelectronic integrated circuit (OEIC) 

devices. 

 



Chapter 5  

 

 126 

Si has already been well adapted to the complimentary-metal-oxide-

semiconductor (CMOS) fabrication processes used commonly in the semiconductor 

industry.  It is also found that when building optoelectronic devices,  Si waveguides 

based on the SOI platform can also be used as building blocks in many Si PIC 

systems, such as nano-waveguides, compact bends, directional couplers, power 

splitters, ring resonators, arrayed waveguide filters, modulators, lasers and 

polarization rotators.  Polarization rotators and polarization splitters can be used 

together to design polarization diversity OEICs.  In this paper, the optimization of the 

design of a compact Si polarization rotator based on SOI technology is presented.  

This Si polarization rotator reported here has a relatively small footprint and has very 

low losses compared with the other polarization rotators so far reported, such as the 

single-section passive polarization rotator [Little and Chu, 2000]. 

 

 In Si nanowire, the modal hybridness becomes more prominent as there is a 

high index contrast between the constituting materials.  For the hybrid modes in a 

complex OEIC system, polarization is also a major issue because power can be 

exchanged between the polarization states in the presence of junctions, tapers, 

slanted side wall [Somasiri et al., 2002], bends or other discontinuities.  Therefore 

sometimes it is necessary to have a fixed degree of polarization state, such as a TE or 

a TM polarization state and it may also be necessary to rotate an incoming 

polarization state.  It was reported that polarization rotation can be achieved by 

applying the electro-optic effect in LiNbO3 [Alferness and Buhl, 1982] and InP 

[Schlak et al., 1991].  However, it has also been suggested that a passive polarization 

converter [Mertens et al., 1998] would be much preferred for use, because it would 

be much simpler to fabricate and to process.  In particular, a passive polarization 

converter based on the use of asymmetrically periodic loaded rib waveguides had 

also been reported [Shani et al., 1991], but such a converter has a relatively large 

device length.  Therefore to minimize the device length and to reduce the excess loss, 

a single-section passive polarization rotator [Little and Chu, 2000] has been 

suggested, however, it required a complicated fabrication process, often due to its 

tilted [Deng et al., 2005] or slanted sidewalls [Rahman et al., 2001; Brooks et al., 

2006].  The Si polarization rotator proposed here shows a very compact design 

without a slanted side wall and it requires a less complex fabrication process.  It is 

also compatible with more mature CMOS technology which is backed by the well-
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established semiconductor industry.  However, with the index contrast being high, 

the modes are hybrid in nature with all the six components of the E and H-fields, 

which requires a full-vectorial treatment. 

 

 The asymmetry of the Si nano-scale waveguide which consists of a trench 

section in the Si strip core waveguide is therefore been rigorously investigated in this 

work by using a H-field VFEM [Rahman and Davies, 1984c] to calculate the 

propagation constant and the modal field profiles of the proposed waveguide 

structure and a Si strip waveguide.  A Beam Propagation Method (BPM) [Obayya et 

al., 2000a] can be used to calculate the power conversion between the two 

polarization states; however, the proposed structure consisting of only two discrete 

interfaces, the Least Squares Boundary Residual (LSBR) [Rahman and Davies, 

1988] method would be more efficient to use to calculate the coefficients of the 

excited modes at the butt-coupled junctions and also to find the resulting polarization 

rotation.  The half-beat length and polarization crosstalk along with the power loss in 

the proposed polarization rotator are presented in this chapter.  Finally, different 

lateral offsets between the butt-coupled sections are also considered to further 

improve the design. 
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5.2 NUMERICAL APPROACH 

 

The accurate calculation of the magnitudes of the non-dominant field components 

and their profiles for the fundamental quasi-TE and TM polarized modes are of great 

importance when designing a polarization rotator.  In the design of a compact optical 

polarization rotator, a full VFEM is used to obtain the modal field profiles of the 

constituent waveguides.  The VFEM is used because the modes in optical waveguide 

with a very strong index contrast are hybrid in nature.  In this formulation, all the H-

field components are continuous across the dielectric interface.  On the other hand, 

since the normal component of the E-field is discontinuous around the interface, an 

equivalent E-field based approach would be less satisfactory.  As for the hybrid 

modes, a significant non-dominant field component exists around the dielectric 

interfaces and hence, the H-field formulation can be used to treat such waveguides 

more rigorously.  In the design process, it is necessary not only to increase the 

magnitude of the non-dominant field components but also for its profile to be 

optimized so that its overlap with the dominant field components can be enhanced to 

achieve the maximum polarization rotation.  The full-vectorial formulation with 

penalty function used here was shown in Chapter 2.  This full-vectorial FEM modal 

solution is also used to determine the polarization beat length between the quasi-TE 

and TM polarized fundamental modes. 

 

 A junction analysis approach is also used, as the proposed polarization rotator 

structure is composed of two butt-coupled uniform waveguide sections with only two 

discrete interfaces between them.  A powerful numerical approach, LSBR method 

[Rahman and Davies, 1988] has been used, which rigorously satisfies the continuity 

of the tangential electric and magnetic fields at the junction interface in a least 

squares sense, and the modal coefficients of the transmitted and reflected modes at 

the discontinuity interface can be obtained.  This particular LSBR method is used to 

look for a stationary solution to satisfy the continuity conditions by minimizing the 

error energy functional, J, and the detail explanations of such error energy functional 

has been given previously in Chapter 2.  The integration is carried out over the 

junction interface, Ω, between the straight and the asymmetric Si waveguides. 
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5.3 SINGLE SECTION POLARIZATION ROTATOR 

 

Fig. 5.1.  Schematic diagram of the asymmetric polarization rotator butt-coupled to 

input and output of a SOI strip waveguide with waveguide dimensions. 

 

Figure 5.1 shows a single-stage polarization rotator, which consists of two Si strip 

waveguides with straight side-walls, where both are butt coupled to a Si asymmetric 

strip polarization rotator waveguide in the middle.  In the design of a polarization 

rotator, an asymmetric section which supports the highly hybrid modes of quasi-TE 

and TM, is sandwiched between two standard Si waveguides where the hybridness is 

small.  When a quasi-TE (or quasi-TM) mode from a standard Si waveguide with its 

polarization angle at nearly zero degrees (or 90°) is launched into the asymmetric 

section (which supports highly hybrid modes, e.g. M1 and M2, with polarization 

direction ± 45°) then both of them are excited almost equally to satisfy the continuity 

of the Et and Ht fields at that interface, and travels along the asymmetric sections. 

 

Fig. 5.2.  Illustration of Polarization Rotation. 

 

The half-beat length (Lπ) is a key parameter used in order to identify the 

optimum length of this asymmetrical section to achieve the maximum polarization 

rotation.  The half-beat length is defined as Lπ = π / Δβ, where Δβ is the difference 

between the propagation constants of the Hy
11

 and the Hx
11

 modes.  After propagating 

a distance, L = Lπ, the original phase condition between the highly polarized modes, 
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M1 and M2 would be reversed and the polarization state of the superimposed modes 

would be rotated by 90° as shown in Fig. 5.2.  If a standard Si waveguide (with 

smaller modal hybridness) is placed at this position, this quasi-TM (or TE) mode 

would propagate in this waveguide without any further polarization rotation. 

 

5.3.1   WAVEGUIDE STRUCTURE 

 

Fig. 5.3.  Schematic diagram of the Si asymmetric strip rotator. 

 

 The structure under rigorous analysis is a Si asymmetric strip polarization rotator 

waveguide; the cross-section of this particular waveguide is also shown in Fig. 5.3.  

Such waveguide structure consists of a single-trench in the waveguide core and it can 

easily be fabricated by using a SOI wafer on a Si substrate.  A single-trench photo-

resist mask can be used on the surface of the Si core and then etched down to the 

desire depth in the Si core waveguide.  The Si core waveguide then either can be 

buried under a thick silica (SiO2) or covered by air or other polymers. 

 

 In the numerical simulations used, the structure is surrounded by air and 

initially, W, is varied in order to study its effect on modal field profiles and 

particularly the effect of polarization degeneration.  In this analysis, the operating 

wavelength is considered to be 1.55 µm and at this λ, the refractive index of the Si 

core is set as 3.5 and that of the SiO2 cladding and the SiO2 buffer layer is set as 1.5.  

The thickness of the Si core waveguide, H, is fixed as 600 nm and that 1.50 µm of 

the lower SiO2 buffer layer is used.  If a lower H was considered for the Si layer then 

the W required to bring polarization degeneration would have been also smaller and 

such that the waveguide would be more lossy.  Hence, in this study, a greater H is 

deliberately considered, although if required alternative designs can also be 
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optimised.  The thickness, th, and the width, tw, of the trench waveguide section and 

the width, a, of the rotator waveguide section are varied to optimize the design, while 

the width, b, of the rotator waveguide section is set as 100 nm. 

 

5.3.2  MODAL H-FIELD ANALYSIS 

 

A full-vectorial Finite Element Method (FEM) is used in this study to obtain the 

modal solutions of the single-trench Si waveguide.  In this analysis, due to the 

waveguide structure is asymmetric, therefore a full waveguide structure will be 

investigated and that more than 20,000 first order triangular elements have been 

employed to represent the waveguide structure.  In this particular waveguide, for the 

quasi-TE (Hy
11

) mode, the Hy field component is dominant, and Hx and Hz are the 

non-dominant components.  Similarly, Hx is the dominant field component of the 

quasi-TM (Hx
11

) mode and that Hy and Hz are the non-dominant field components. 

 

(a)                                                 (b) 

Fig. 5.4.  Field profile of the (a) dominant Hy and (b) non-dominant Hx of the 

 Hy
11

mode with W=800nm, H=600nm, tw=100nm and th=400nm. 

 

 The spatial profile of the dominant Hy field component of the quasi-TE mode 

is shown in Fig. 5.4 (a) for a larger guide as W = 800 nm.  The trench, tw, of the 

structure is taken as 100 nm and the th, is taken as 400 nm and the overall Si core 

waveguide is surrounded with air, but if necessary, other materials such as SiO2 or 

polymer can also be considered.  In this case, the modal hybridness was relatively 

small and the Hy field profile shows that the maximum optical intensity occurs near 

the geometrical-centre of the larger Si core region.  However, due to the asymmetry 
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of the waveguide, the field profile is slightly asymmetric and it shows that the field 

extends more to the lower SiO2 substrate region and also by a smaller amount into 

the air region.  

 

 The non-dominant Hx field component of the quasi-TE mode is shown in Fig. 

5.4 (b), and it is nearly similar in shape like that of the dominant Hy mode.  In this 

case, the maximum magnitude of the Hx field profile is found to be about 25% of the 

maximum value of the dominant Hy field.  It should be noted that the non-dominant 

Hx field profile for a Si strip without the trench section has a very small magnitude 

with the odd-like symmetry along the y-axis, however this is not shown here.  

However, this non-dominant Hx field was observed previously for dimensions W = 

300 nm and H = 260 nm, and this was shown earlier in Fig. 4.4 in Chapter 4. 
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5.4 ROTATOR SIMULATION RESULTS 
 

In this section, the asymmetric polarization rotator with a trench is rigorously 

investigated.  The width, W is an important parameter when designing a polarization 

rotator with the optimum performance for a specific height, H. The dimension of W 

is varied from 900 nm to 500 nm to analyse the effect on effective index, modal 

hybridness, effective area, power confinement in silicon or silica, modal 

birefringence and the polarization beat length. 

 

5.4.1   CHARACTERISTIC OF POLARIZATION ROTATOR 

 

(a)                                                 (b) 

Fig. 5.5.  (a) Variations of the neff and (b) variations of the hybridness with W for  

  the quasi-TE and TM modes. 

 

It is important however, in the design of a polarization rotator, to further enhance the 

modal hybridness of the asymmetric structure.  In Fig. 5.5 (a), the variations of the 

neff, with W for the fundamental quasi-TE (Hy
11

) and TM (Hx
11

) modes are presented 

for the air cladding structure.  In this case, as W is reduced, both tw and b were kept 

constant at 100 nm.  It can be observed that when W is large, neff is closer to the 

refractive index of the Si.  As W decreases, neff also decreases and gets closer to the 

refractive index of SiO2 where a mode reaches its cut-off.  However, it is shown here 

that the neff of the Hy
11

 mode crosses that of the Hx
11

 mode when W is between 730 

nm and 740 nm, when the equivalent W is comparable to its H and these two 

polarized modes become degenerate.  In fact, their neff values do not actually cross 

each other, but the modes rather transform from one dominant polarization state to 

the other in this region. 
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 The effect of W on the modal hybridness is shown in Fig. 5.5 (b).  In the case 

of the Hy
11

 mode, the modal hybridness is given by the ratio of the non-dominant Hx 

field (the maximum value) to the dominant Hy field (its maximum value) and it is 

shown here by a solid line.  The modal hybridness of the Hx
11

 mode, calculated from 

the ratio of the maximum value of the Hy field to its Hx field, is also shown as a 

dashed line.  It can be seen here that for both polarized modes, when W is reduced 

from 900 nm to 730 nm, the hybridness is increased.  At W equal to 730 nm, their 

hybridness values reach their maximum of about one in which it indicates that 

magnitude of both the transverse field components are identical.  Under this 

condition, the polarization directions are ± 45° with respect to the x and y-axes for 

the two polarized modes.  For both the polarized modes it is also shown that as W 

reduces further, the hybridness decreases.  The modal hybridness of the Hx
11

 mode 

also follows a similar trend to that of the Hy
11

 mode and its maximum hybridness 

also occurs at W=730 nm. 

 

(a)                                                 (b) 

Fig. 5.6.  (a) Variations of neff and Aeff with W and (b) variations of ΓSi and ΓSiO2  

  with W for the fundamental TE mode. 

 

 The variations of the Aeff, with the change of W is shown in Fig. 5.6 (a) along 

with the neff for the quasi-TE mode.  It can be observed that as W increases, the Aeff 

also increases.  It is also shown in here that the neff for a quasi-TE mode follows a 

similar trend to that of the Aeff.  It can be seen that there is a slight discontinuity in its 

neff and Aeff variations near W ~ 730 nm where TE and TM modes were degenerate.  

It can be noted that at W = 730 nm where the hybridness is at its highest, the neff and 

Aeff are found to be 3.03999 and 0.80 μm
2
, respectively.  For W = 740 nm, the neff for 

quasi-TE mode is found to be 3.04857 and its respective Aeff is found to be 0.83 μm
2
.  
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It can be observed that in between W = 730 nm and 740 nm, minimum modal 

birefringence is possible for such polarization rotator waveguide where the neff of 

quasi-TE mode and TM mode are close to each other. 

 

  The variations of the ΓSi and the ΓSiO2 with the change of W are shown in Fig. 

5.6 (b) for the quasi-TE mode.  It is shown in here that as W increases, most of the 

power would be confined in Si core and only a small amount of power would be 

remain in the SiO2 buffer layer.  Here, for W = 730 nm where the hybridness is the 

highest, the ΓSi is of 0.96 and the ΓSiO2 is about 0.01 and the rest would be in the air-

clad including the air-slot region.  It can be noticed that as W increases from 730 nm 

to 740 nm, there is a small step change of ΓSi where the modes transform from one 

dominant polarization state to the other in this region.  It can be observed that for 

such asymmetric polarization rotator, there is a strong confinement of light in the 

core waveguide as shown in Fig. 5.6 (b) and also demonstrated in the contour plot of 

the Hy dominant field mode in Fig. 5.4 (a). 

 

Fig. 5.7.  Variations of Lπ, and birefrigence with W for the fundamental TE mode. 

 

 The half-beat length (Lπ) is a key parameter used in order to identify the 

optimum length of the asymmetrical section to achieve the maximum polarization 

rotation.  At the Lπ, the phase mismatch between the two polarized modes, Hy
11

 and 

Hx
11

, is also at its minimum.  Figure 5.7 shows the variations of the Lπ with the W.  In 

Fig. 5.7, it is shown in here that Lπ starts to increase when W increases until it 

reaches its maximum value, and then the Lπ gradually reduces as W further increases. 

Therefore in this study, when the two modes are degenerate, their hybridness is about 
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1.0, their polarization angles are ± 45° and that Lπ also reaches the maximum value 

of 48 µm.  Hence, the length of the central asymmetric section of the waveguide with 

the trench needs to be 48 µm, which is reasonably short, compared to other designs 

reported so far [Kim et al., 2009; Deng et al., 2006].  It is also shown in Fig. 5.7 that 

the variations of the modal birefringence with the change of W, the minimum modal 

birefringence is found to be 0.01624 at W = 740 nm.  

 

5.4.2   POLARIZATION CONVERSION AND CROSS-TALK  

 

Fig. 5.8.  Schematic diagram of the asymmetric polarization rotator butt-coupled to 

input and output of a SOI strip waveguide. 

 

In this section, the power conversion and the cross-talk is rigorously studied.  It was 

shown in the previous section that the modes obtained from the polarization rotator 

waveguide are not pure TE or TM, but hybrid in nature.  Moreover due to the 

asymmetric of the rotator waveguide, it is possible to achieve polarization 

conversion, where if a TE or TM is incident in from the input waveguide, it will 

excite both the hybrid modes at the junction between the input and rotator 

waveguides.  Therefore, to understand the polarization conversion further, an input 

strip-waveguide is butt-coupled to the asymmetric polarization rotator waveguide as 

shown in Fig. 5.8. 

 

 As mentioned previously, the incoming TE (or TM) x- (or y-) polarized wave 

of a standard guide would excite two highly hybrid, ± 45° polarized modes in the 

asymmetric section.  To quantify further in the analysis, the scattering coefficients 

(the excited modal coefficients), Cy and Cx of the two quasi-TE and TM modes, 

respectively, at the junction need to be obtained.  In this study, a rigorous numerical 
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approach using the LSBR has been employed to obtain the modal coefficients at the 

discontinuity interface by enforcing the boundary conditions in a least squares sense.   

 

In this example, the Hy
11

 mode of the vertical side-wall waveguide (without 

the trench section), where the modal hybridness is very small (but it was not 

neglected), is launched into the single-trench waveguide section which excites two 

highly hybrid modes to satisfy the necessary boundary conditions.   

 

Fig. 5.9.  Variations of the transmitted modal coefficients Cx and Cy, with W, for 

the TE mode. 

 

 The transmitted modal coefficients, Cy and Cx of the Hy
11

 and Hx
11

 modes, 

respectively, were calculated and the variations of these two modal coefficients with 

W, are shown in Fig. 5.9.  It can be seen that as W reduces, the modal coefficient of 

the transmitted Hx
11

 polarized fundamental mode, Cx, reaches a maximum value of 

0.6236 at W = 730 nm and then reduces to 0.198 at W = 600 nm where the 

hybridness is low.  It is also shown that the modal coefficient of the transmitted 

quasi-TE polarized fundamental mode, Cy, reaches its minimum value of 0.6234 as 

W reduces to 730 nm where the hybridness is at its highest.  For a system where 

100% polarization rotation can be achieved without any power loss, these two values 

are expected to be equal to 1/√2, indicating that each mode is carrying equal and half 

of the total power (50% of the total input optical power).  Hence in this case, at the 

mode degeneracy condition, since the modal coefficient of both the modes are 

similar, the power carried by each of them is also similar and here the total power 
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loss is found to be only 1.09 dB, which is very small.  Reflections from both the butt-

coupled interfaces were small, with the reflection coefficient less than 2%.  

 

 As these two polarized modes travel along the single trench section 

waveguide, the polarization states of these two modes will be continuously rotated 

due to the phase difference between them.  From the modal coefficients and their full 

vectorial field profiles, the polarization conversion can be calculated.  At a distance 

Lπ, the polarization state will be fully rotated, i.e. an incident TE mode will transform 

to a TM mode and this can be further guided unchanged in a butt-coupled standard Si 

waveguide with vertical side walls.  The variations of the polarization conversion 

with W, is shown in Fig. 5.10 (a).  The fraction of TE power converted to TM (Px) is 

shown by a solid line. The amount of TE power remain unconverted (Py) is shown by 

a dashed line. It can be clearly seen that, as W increases from 600 nm, the normalized 

power conversion of TE (Py), to TM (Px), reaches a maximum value of 0.9947 

(almost 100% of the TE power is converted into TM power) at W = 730 nm and then 

reduces as W increases further.  With ± 10 nm tolerance from the maximum power 

conversion at the optimum width, the power conversion is found to be 0.9467 when 

W = 720 nm and 0.9557 when W = 740 nm and this shows that the polarization 

conversion only decreases by about 5% for a derivation of ± 10 nm from the desired 

optimum width. 

 

(a)                                                 (b) 

Fig. 5.10. (a) Variations of the polarization conversion and (b) variations of  

polarization cross-talk and polarization conversion with W. 

 

   Along the polarization rotator, the power Py of the TE polarized mode is 

incident at the junction between two interfaces and most of the power will be 
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converted into TM polarized mode Px at the end of this section.  However there may 

remain some power from Py: here this normalized residual power Py is referred to as 

the polarization crosstalk.  In this study, the polarization crosstalk is defined as the 

unwanted polarized power (in this case Py), normalized to the total input power, 

which remains at the end of the single-trench waveguide.  The variation of the 

polarization crosstalk with W is shown in Fig, 5.10 (b), for W > 600 nm.  It can be 

observed in here that as W increases from 660 nm, polarization cross-talk starts to 

decreases and reaches a minimum value, as W starts to deviate away from W of the 

minimum cross-talk value, cross-talk starts to increase until it reaches a value of -

1.275 dB at W = 800 nm.  It is again shown here that at this 730 nm optimum width, 

the crosstalk reaches a minimum value of -22.82 dB, a very low value.  It can be 

observed that with ±10 nm derivation from the optimum width, only 80% of 

polarization conversion (TE to TM) will occur and that the crosstalk values are found 

to be -13.54 dB and -12.73 dB when the widths are at 740 nm and 720 nm 

respectively. 

 

Fig. 5.11. Variations of the hybridness with W, from 710 nm to 750 nm for the 

 fundamental TE and TM modes. 

 

 However with ± 10 nm derivation from the optimum width as shown in Fig. 

5.11 for the variation of the hybridness with W for the quasi-TE mode.  Its 

hybridness at the ± 10 nm derivation from the optimum width, are found to be 0.80 

and 0.83 when the widths are at 720 nm and 740 nm respectively. 
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(a)                                                 (b) 

Fig. 5.12. (a) Variations of neff, and hybridness and (b) variations of Aeff, and ΓSi  

  with λ for quasi-TE mode. 

 

 The Lπ and the modal hybridness are also depend on the operating 

wavelength.  The variations of the neff and the hybridness with λ for the quasi-TE 

mode with W = 730 nm are shown in Fig. 5.12 (a).  It can be observed that for the 

neff, it slowly reduces as λ increases.  It can also be seen that hybridness increases as 

wavelength increases until the hybridness reaches its maximum value of 0.995 with 

the neff = 3.08215 at λ = 1.50 μm.  At this wavelength, 99 % of TE power is 

converted into TM power, however as λ increases further, the power conversion will 

then be reduced. 

 

 The variations of the Aeff, and ΓSi with the λ are shown in Fig. 5.12 (b).  It is 

shown in here that as λ increases, the power intensity of the waveguide contained in 

the Si core decreases.  However, it is not the case for the Aeff, it can be seen that as λ 

increases, the Aeff of the waveguide also increases.  It can be observed that there is a 

small step change in the λ region of 1.50 μm and 1.55 μm, it is found that at this 

region, the polarization state of the modes transform from one dominant polarization 

state to the other in which TE mode will be converted into TM mode.   

 

 When the operating length is changed from 1550 nm to 1450 nm, the 

resulting modal hybridness, Lπ, polarization conversion and polarization cross-talk 

are found to be 0.94, 54 μm, 94% and -11.83 dB, respectively and for λ = 1650 nm, 

these values were 0.92, 39 μm, 92% and -10.80 dB, respectively. 
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5.4.3   LATERAL OFFSET ANALYSIS 

 

It was evident that the spatial field profiles of the straight section waveguide and the 

single trench polarization rotator waveguide are different; in particular the field 

profile of the single trench polarization rotator had a smaller width and was off-

centre due to the presence of the trench.   It has often been assumed by others (and 

also so far in the above section) that the input strip waveguide is of the same width as 

that of the polarization rotator waveguide section and their two vertical end side-

walls are exactly aligned.   However, it does not need to be, rather, by employing an 

offset, the fields in both sides of the junction can be matched even better.  Therefore, 

the different lateral shifts between the guides are introduced to study the effect on the 

polarization rotation and also on the insertion loss.   

 

Fig. 5.13. Illustrations of the performance of the straight-to-polarization rotator  

  coupled waveguide with offsets, ∆x  = 100 nm. 

 

 To do so, first, an offset (∆x) is introduced where the input straight side-wall 

waveguide is shifted to the left when coupling to the single-trench waveguide to 

enhance the field matching.  In this example, W is taken as 770 nm, ∆x is taken as 

100 nm and it is shown in Fig. 5.13 how this ∆x can be introduced.  It can be 

observed that the location of the field maximum of the straight waveguide is now 

better aligned with that of the single-trench waveguide when ∆x is introduced.  In this 

case, the transmitted modal coefficients of the Hy
11

 and Hx
11

 modes were found to be 

0.703 and 0.634, respectively, which yield 98.47% conversion with the polarization 

crosstalk value slightly deteriorated to reach a value of around -18.16 dB.  However, 
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the loss in this case was found to be 0.47 dB, which represents a reduction of almost 

50% in the power loss, when compared to the original design without ∆x. 

 

 Fig. 5.14.  Illustrations of the performance of the straight-to-polarization rotator 

   coupled waveguide with offsets, ∆w = 200 nm. 

 

 An alternative offset (∆w) method has also been studied, where the W of the 

input straight side-wall waveguide is reduced to improve the mode matching.  Figure 

5.18 shows how this particular ∆w can be achieved.  The width of the straight side-

wall waveguide is reduced by ∆w, with the single-trench waveguide width kept at 

730 nm.  It can be observed in Fig. 5.14 that although the straight side-wall is 

reduced by 200 nm to 530 nm, overall their field profiles match much better.  Using 

the LSBR method, the transmitted modal coefficients of the Hy
11

 and Hx
11

 modes 

were found to be 0.698 and 0.681, respectively.  The maximum polarization 

conversion of the TE to TM was found to be 99.42% (again a very high value) but 

the loss was found to be only 0.21 dB, a significantly smaller value when compared 

to the loss without ∆w and with equal width at 730 nm.  The crosstalk in this case 

was also found to be similar to the value of crosstalk when no lateral offset was 

applied, with its value at -22.38 dB. 
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5.5   SUMMARY 
 

In this chapter, a compact polarization rotator based on an asymmetric Si nanowire 

has been presented.  The rigorous full VFEM was used to characterize such 

structures with very strong modal hybridness.  Such a compact asymmetric 

waveguide with its vertical side wall is easy to fabricate when compared to the other 

asymmetric polarization rotators with slanting side walls.  It was found that more 

than 99% of polarization conversion can be obtained for a device length of 48 µm in 

such a design with the power loss as 1.09 dB.  However, such loss did not include the 

scattering loss described previously in Chapter 4 [Vlasov and McNab, 2004], 

therefore, an additional 0.02 dB loss have to be added (assuming 5 dB/cm loss on the 

waveguide) into this loss found for the polarization rotator.  Therefore the power loss 

would be 1.11 dB.  It is also shown that the power loss is only 0.21 dB by optimizing 

the offset between the sections, in which total power loss would be 0.23 dB. 

 

 This design compares favourably with the resent polarization rotator designs 

reported recently [Correia, et. al., 2003] [Watts and Haus, 2005] [Deng, et. al, 2006] 

[Holmes and Hutchings, 2006] [Augustin, et. al., 2007] [Feng, et. al, 2007] [Fukuda, 

et. al, 2008] [Wang and Dai, 2008].  In this case slightly larger Si dimensions are 

considered, in which most of the power was confined in the Si core for their 

conversion process and the propagation loss near the degeneration point would be 

reduced and also when a 100 nm slot is introduced, the slot mode would be avoided.  

The design approach used here avoids the slanted side wall and curved waveguide, 

such approach is more suitable to fabricate by using conventional CMOS technique 

but additional double etching steps would be required in the fabrication process.  

However, more specific system requirements may be obtained and optimized, 

including the effects of fabrication tolerances as required. 
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6 
 

Silicon Slot 
Waveguides 
 

 

6.1 INTRODUCTION 

 

In recent years, there has been a gradual increase of investment into the research of 

Si photonic technology based on SOI platform.  With SOI technology, it is possible 

to develop Si based PIC systems that includes ring resonators, arrayed waveguide 

filters, hybrid silicon lasers, Mach-Zehnder interferometer silicon modulators, 

detectors and biosensors.  There is the potential to reduce power consumption, size, 

and cost; also it can increase the functionality and reliability of the PIC.  SOI is also 

said to be 100% compatible with complementary metal-oxide-semiconductor 

(CMOS) technology, which is already widely employed in the electronic industry.  

For SOI technology, PICs fabricated in Si can take the advantage of CMOS 

technology to develop and create next generation of low cost and high performance 

optoelectronic devices for both photonics and electronics.  In Si photonics, most 

conventional waveguides are of strip and rib structures.  In these waveguides, light is 

strongly concentrated in the high-index material, which can be the Si core, in which, 

light can confine in the cross-section of the Si core with dimensions of around 200 

nm x 260 nm and with similar optical mode sizes.  

 

  Lately, one variant of such silicon waveguide, the slot-waveguides [Almeida 

et al., 2004] has attracted considerable attention because of its ability to enhance the 

optical intensity in a low refractive index area.  The slot-waveguide structure can 
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guide and confine light in a nano-scale low refractive index material (or in air) which 

is situated between the two strips of Si or similar high index material, at a scale that 

cannot be achieved by conventional strip or rib waveguides.  The boundary condition 

at the dielectric interfaces demands tangential electric and magnetic fields to be 

continuous across the interface.  It also demands normal component of B to be 

continuous, but as permeability was considered to be constant (equal to 1) for all the 

dielectric materials, this component is also continuous. However, as permittivity is 

different across the dielectric interface, the continuity of the Dn would increase the 

En, the normal component of the electric-field (E-field) in the low refractive index 

slot region than The En field in the high refractive index Si cores.  As a result, ultra 

high optical power density can also be achieved in the slot region. Such high power 

intensity can be exploited for designing various non-linear devices such as the four 

wave mixing (FWM) in silicon waveguides.  If the slots are placed vertically, Ex 

field would be normal to the interface and being the dominant component for the 

quasi-TE mode, this polarization would carry higher power in the slot region.  On the 

other hand, if the slot is placed horizontally, the Ey field would be normal to the 

dielectric interfaces, and this being the dominant component of the quasi-TM mode, 

a higher power would be confined in the slot region for this polarization.  Both the 

horizontal [Sun et al., 2007] and vertical [Vivien et al., 2008] type of slots 

waveguide have been reported, including the use of electro-optic [Ding et al., 2010] 

or gain medium [Robinson et al., 2008] in the slot area.  It was also reported that, 

such waveguide's structure can be used for designing optical sensors [Dell'Olio et al., 

2007], in which the high power density in slot region can be exploited to get 

maximum interaction from the sensing medium.  More recently electro-optic 

polymers were also used in a slot waveguide to design high speed electro-optic 

modulator [Leuthold et al., 2009 and Preston et al., 2009]. 

 

 In this chapter, the characteristics of a Si slot waveguide with nano-scale 

cross section are thoroughly investigated.  For analysing such a waveguide, an 

accurate and efficient VFEM is employed here to calculate the propagation constant 

and the full-vectorial electric and magnetic modal field profiles of the waveguide.  

Optimization of the power confinement and the power density in the slot area have 

also been carried out and presented here. 
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6.2 ANALYSIS OF THE VERTICAL SLOT 

 WAVEGUIDE 

 

 

 Fig. 6.1.  2D Schematic cross-section of Si vertical slot nano-waveguide. 

 

The structure being considered here is a conventional Si slot optical waveguide.  The 

2D schematic cross-section of the Si slot nano-waveguide is shown in Fig. 6.1.  This 

single slot waveguide is based on a low refractive index slot region between two 

high-index Si strip guides.  The slot can be generally formed of low-index air or 

porous Si, nonlinear organic material, electro-optic polymer material or SiO2 and the 

whole structure is then be covered by either SiO2 or polymer if necessary.  This 

waveguide can be fabricated by using a SOI wafer on a Si substrate.  A resist mask 

with a slot can be used on the surface of the Si guiding layer and the selected surface 

Si layer may then be etched down to the SiO2 layer (buffer layer) by inductively 

coupled plasma (ICP) dry etcher to form the two Si strip waveguides and the slot 

region simultaneously.  Then the waveguide can either be buried under a thick SiO2 

or polymer layer or left surrounded with air.  Such waveguide will be rigorously 

study in the later sections. 

 

6.2.1   MODAL SOLUTION OF VERTICAL SLOT 
   WAVEGUIDE 
 

To the study of modal field profile of the Si slot waveguide (SSW) shown in Fig. 6.1, 

the H-field based VFEM has been used. For this study, the symmetric geometry of 

the structure has been exploited and only half of the structure is considered for 

simulation. The structure was discretized using more than 80,000 first order 

triangular elements.  
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For the quasi-TE mode, the Hy field component is dominant, and Hx and Hz 

are the non-dominant components.  The dominant Hy field component of the Hy
11

 

mode is shown in Fig. 6.2 (a) for a waveguide with width, W = 225 nm and height, H 

= 220 nm with the slot width, Ws = 50 nm.  The 3D contour plot of the Hy-field with 

one half of the structure is also shown in Fig. 6.2 (a) as an inset.  The dashed-line 

showed in Fig. 6.2 (a) represents the boundary of the Si core. 

 

(a)                                                 (b) 

 Fig. 6.2.  (a) The dominant Hy field profile and (b) variations of the Ex field along 

 the X axis for the Hy
11

 mode. 

 

It can be seen in the figure that the field profile shows that the maximum 

intensity is not located exactly at the centre of the Si core.  It is shown in here that 

the maximum intensity occurs close to the boundary between the Si waveguide and 

the SiO2 slot, and when the separation is small, a strong Hy field exists in the low-

index slot region.  It can be observed that the field extends more into the SiO2 buffer 

layer underneath when compared to the upper air cladding region with a low index.  

In the contour field plot, it can be seen that the main peak is in the Si core with a 

pronounced field magnitude in the slot area.  It was noted that as W, increases, the 

mode gets better confined in the isolated strip waveguide, the coupling between the 

strips reduces and the dominant Hy field component is shifted toward to the center of 

the Si strip waveguide, similar to that of an isolated guide.  When the width of the Si 

waveguide becomes very large, the field in the slot region will decrease, and 

particularly when width of the slot is also large, its maximum intensity will be 

concentrated at the centre of the two constituent Si strip waveguides. 
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The contour field profile for the Ex field of the quasi-TE mode is shown in 

Fig. 6.2 (b), where the Si core waveguide is also outlined by the dashed-lines.  The 

Ex field along the X-axis, shows that at the Si/SiO2 interface the field increases 

abruptly in the SiO2 region.  Therefore Fig. 6.2 (b) shows that there is a very strong 

E-field in the slot-separation region, compared to that in the Si strip regions. 

 

 Fig. 6.3.  Variations of the Sz field along the X axis for the Hy
11

 mode. 

 

From the full vectorial E and H fields, the Poynting Vector (Sz) may be 

calculated and Fig. 6.3 shows the contour of the Sz intensity profile.  It is shown that 

the Sz intensity is primarily concentrated in the low index SiO2 slot-separation region 

and it is much higher than that in the high index Si strips region.  Such a high power 

in low-index cladding region, outside the high-index strip will allow access to a 

higher evanescent field, suitable for compact optical sensor design.  It also shown 

that there is a small discontinuity step at the Si/SiO2 interface and it decays more 

quickly in the Si core.  The slot area can also be filled up by nonlinear or electro-

optic materials to exploit the high power density in this area. 

 

For a compact PIC design, it is necessary to reduce the height of the SSW to 

its acceptable minimum value.  It was widely suggested that a silicon slab with 220 

nm thickness would be able to guide light and that in industry, SOI with the height of 

220 nm is already fabricated to use as industry standard for various devices.  

Subsequently in the this study, a SSW with height, H = 220 nm is concentrated for a 

rigorous analysis 
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6.2.2  EFFECTS OF EFFECTIVE INDEX 
  

 

(a)                                                 (b) 

 Fig. 6.4.  (a) Variations of neff, with W for different Ws for quasi-TE and TM  

   modes. (b) Variations of neff, with Ws for different structure dimension 

   for TE modes 

 

Figure 6.4 (a) shows the variations of the effective index, neff  with the width (W) for 

the fundamental quasi-TE and TM modes for the air-cladding of the Si slot 

waveguides, with slot separation widths (Ws) of 50 nm and 100 nm shown by solid 

and dashed-line, respectively.  It is shown here that as the core width increases, the 

neff  increases for both quasi-TE and TM modes.  It can also be observed that for 

quasi-TE modes, the neff  for both Ws are significantly higher than the quasi-TM 

modes.  In which, for H = 220 nm, both Ws wide waveguides are very much 

polarization dependence, therefore to eliminate the polarization dependence, a very 

wide core has to be used.  It can be noted in here that for H = 220 nm, quasi-TM 

modes reaches the cut-off condition for the core width much earlier than when H = 

300 nm shown in Fig. 6.4 (b).   
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6.2.3  POWER CONFINEMENT AND DENSITY VARIATIONS 
 

 

 

 Fig. 6.5.  Variations of confinement factor in slot, ΓSlot_SiO2, and power density,  

DSlot_SiO2, with different scenarios for the vertical slot waveguide . 

 

The power confinement in silica slot is an important parameter to optimize for the 

design of various device applications when the slot area is completely filled with 
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electro-optic, non-linear or active materials.  Therefore the variations of the power 

confinement in the silica slot region, ΓSlot_SiO2, with the width, W, are shown in Fig. 

6.5 (a) for quasi-TE modes for three different slot waveguide parameters.  When the 

width of the Si strip, W, is large, the Si core is wide enough to confine the light in 

isolated Si waveguides.  It can be observed that as the width, W, is reduced, the 

power confinement in the slot region increases, however, for a very smaller 

waveguide core, the ΓSlot_SiO2 reduces very rapidly.  It is shown in here that maximum 

ΓSlot_SiO2can be realized by using a thicker waveguide as this is shown by a solid line. 

 

The variations of the confinement factor in the silica slot region, ΓSlot_SiO2, for 

three different slot waveguide scenarios are shown in Fig. 6.5 (c).  It is shown that as 

the core height, H of the waveguide increases; the ΓSlot_SiO2 also increases.  For a 

narrow waveguide with a small Ws (as W = 180 nm,Ws = 50 nm) its reaches its cut-

off height at H = 220 nm faster than the other waveguide parameters.   

 

Figure 6.5 (e) shows the variations of the ΓSlot_SiO2  with the slot width, Ws.  It 

can be clearly seen in here that ΓSlot_SiO2 reaches a maximum value with Ws.for a 

narrow and thicker waveguide (W = 180 nm, H = 300 nm) 

 

The variations of the normalized power density, DSlot_SiO2 in the slot region 

with the width, W, for different slot waveguide parameters for the quasi-TE mode are 

shown in Fig. 6.5 (b).  It is sgested that DSlot_SiO2 can be a very important parameter to 

optimize when designing a sensor application, in particular when the localized high 

power density is exploited, such as by applying a thin sensing layer in the slot region.  

It is shown in here that as W decreases, initially, the power density in the slot 

increases, reaches their maximum values and then rapidly decreases.  It can be 

observed in Fig. 6.5 (b) that a high power confinement in the slot area can be 

achieved by utilizing a thicker waveguide 

 

 The variation of the DSlot_SiO2 with the core height is shown in Fig. 6.5 (d).  It 

can be observed that for W = 180 nm and Ws = 50 nm, shown by a solid curve, 

initially DSlot_SiO2 increases as the height, H decreases and reaches a maximum value, 

however as the thickness of the waveguide is further reduced, the DSlot_SiO2  

decreases.  It can be seen that for a wider waveguide, as shown by a dashed-line for 
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the case of W = 225 nm and Ws = 50 nm, the DSlot_SiO2 in the slot region reaches its 

peak value at a lower waveguide thickness.  However on the other hand, when the 

slot width, Ws is increased, DSlot_SiO2 is much lower, which is due to the increase of 

the slot area. 

 

Finally the variations of the DSlot_SiO2 with the slot-separation, Ws, for the 

quasi-TE modes are shown in Fig. 6.5 (f).  It is found that the mode is closer to the 

cut-off mode when the Ws become large.  This is due to the fact that as the isolated 

mode gets weakly confined in the Si core in which the field mode spreads more 

outward of the Si core, and as a consequence, the power confinement in the slot 

region reaches its lowest value.  However it can be observed that when Ws is 

reduced, more power is confined in the slot region, along with that, as the slot area is 

reduced, the DSlot_SiO2 increases exponentially.  Maximization of the DSlot_SiO2 is 

important for sensing applications, where a thin layer of sensing medium would have 

a stronger effect.  However, fabrication of a slot width below 100 nm is often not so 

easy and present fabrication process may also yield slant side wall angle, which can 

enhance the polarization cross-talk [Somasiri et al., 2003]. 
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6.3  ANALYSIS OF THE HORIZONTAL SLOT  
WAVEGUIDE 
 

 

 Fig. 6.6.  2D Schematic cross-section of Si horizontal slot nano-waveguide. 

 

 A single slot horizontal waveguide has also been investigated and reported 

here.  The schematic for the single slot waveguide is shown in Fig. 6.6.  In here, the 

dimensions of such waveguide are of widths, W = 350 nm and SiO2 buffer layer of 

Hb = 1.5 μm.  Initially, a height, H = 190 nm are set for the two silicon cores (H1 and 

H2) with a fixed slot height, Hs = 100 nm is considered.  This single slot horizontal 

waveguide is based on a low refractive index, SiO2 slot sandwiched between two 

symmetric high-index Si core guides.  The overall waveguide is then can be 

surrounded by either SiO2 or air.  This particular waveguide can be fabricated by 

using a SOI wafer on a Si substrate.  The horizontal low index slot can be fabricated 

by layered deposition or thermal oxidation [Almeida et al., 2004].  It is described 

earlier that due to the high index contrast at the interface, the normal component of 

the E field undergoes large discontinuity therefore enhancing the field in the slot 

region.  By optimising the dimension of the waveguide structure, the maximum field 

confinement in the slot area can be achieved in which applications such as chemical 

and biochemical sensor can be designed to use with such structure.  
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6.3.1  MODAL ANALYSIS FOR QUASI-TM MODE 
 

In the case of a horizontal slot waveguide, the Ey field is dominant.  Therefore the 

contour plot of the Ey field for the Hx
11

mode is shown in Fig. 6.7 (a), where the Si 

horizontal waveguide is also outlined.  It is clearly shown that due to the large index 

contrast at interfaces, the normal electric field undergoes a large discontinuity, which 

results in a field enhancement in the low-index region (which in this case it is in the 

silica slot region), where the Ey field is located. 

 

In this case, heights of the two Si layers were taken to be equal.  For air-clad 

horizontal slot waveguide, the field profile is not symmetric along the vertical 

direction due to the structural asymmetry.  However, if needed, the heights of the two 

Si layer can be unequal and optimized for any particular application. 

 

 

(a)                                                 (b) 

 Fig. 6.7.  Variations of Ey field along (a) X-axis or (b) Y-axis for the Hx
11

 mode. 

 

The variations of the Ey field along the X-axis are shown in Fig. 6.7 (a), it can 

be observed that the Ey field is continuous at the interface between Si/Air along the 

centre of the Si core.  It is also shown in here that the magnitude of Ey field (shown 

by a solid line) is the highest in the silica slot region which suggests that most of the 

Ey field is confined in this area.  For the Ey field along the Y-axis as shown in Fig. 

6.7 (b), it can be observed that the magnitude of Ey at the Si/SiO2 interface increases 

abruptly with a step change in the ratio of (3.5/1.5)
2
 =  5.44 in the SiO2 region.   
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 The Poynting Vector (Sz) intensity field profie is shown in Fig. 6.8.  It is 

shown that the Sz intensity is primarily concentrated in the low index SiO2 slot-

separation region and it is much higher than that in the high index Si core region.  It 

is also shown that there is a discontinuity step at the Si/SiO2 interface.  

 

(a)                                                 (b) 

 Fig. 6.8.  Variations of Sz field profile along (a) X-axis or (b) Y-axis. 

 

 It can be seen in Fig. 6.8 (a) that most of the field intensity is inside the SiO2 

slot area as show in the graph of the variations of the Sz intensity along the X-axis.  It 

can also be observed that Fig. 6.8 (b) shows the Sz intensity along the Y-axis and it 

shows that the Sz is at its maximum inside the slot area.  It can be noted that Sz has a 

normalised magnitude value of 20 inside the slot region. 
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6.3.2  EFFECTS OF POWER CONFINEMENT AND DENSITY 

 

 

 Fig. 6.9.  Variations of confinement factor in slot, ΓS, and power density, DS, with  

   different scenarios for the horizontal slot waveguide. 

 

It is found that for the TM mode, the field is strongly coupled when the slot is small, 

therefore, power confinement in the slot region can be very high.  The power 

confinement of the waveguide slot filled with SiO2 is shown in Fig. 6.9 (a) when the 

core height is varied.  It is shown that the field will be better confined when 
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waveguide is wide and larger than its height.  The power confinement in slot with the 

variations of core height, H, with different widths and slot heights are also shown in 

Fig. 6.9 (a).  In here it is shown that when the thickness of the waveguide is small but 

with a larger width, as in the case of W = 350 nm and Hs = 50 nm (shown by a solid 

line), the power confinement in the slot is high.   

 

Figure 6.9 (c) shows the variation of power confinement in the SiO2 slot area 

with the core width for three different parameters.  It can be observed that for H = 

200 nm and Hs = 100 nm (shown by a dashed-line), it shows that as W increases, the 

power confinement in the slot increases.  As the height of the waveguide is increased 

to 300 nm (shown by a solid line), power confinement will increases as W increases, 

at W = 200 nm, power confinement in the slot area will remain constant as W is 

increased further, similar observation can be made for H = 300 nm and Hs = 50 nm 

(shown by a dotted line). 

 

Figure 6.9 (e) shows the variation of power confinement in the SiO2 slot area 

with the slot height for three different parameters.  It can be observed that initially 

power confinement increases as the slot height, hs increases and reaches a maximum 

value, however as the Hs is further increased, the power confinement in the slot area 

decreases.  It can be seen that for a wider core waveguide with smaller H as in the 

case of W = 500 nm and H = 200 nm (shown by a solid line).  It has a higher power 

confinement in the slot area, when the waveguide W is reduced to 350 nm (shown by 

a dashed-line), power confinement in the slot area is reduced.  However for a 

narrower waveguide with a larger thickness as in the case of when W = 350 nm and 

H = 300 nm (shown by a dotted line), the power confinement in the slot area has 

reduced substantially. 

 

The variation of power density in the SiO2 slot area with the core height is 

shown in Fig. 6.9 (b).  For core width, W = 350 nm and slot height, Hs = 50 nm 

(shown by a dashed-line) in particular, it will have a high power density in the slot 

region when the core height, H, is in the region between 150 nm to 200 nm, as H 

increases, the power density in the slot decreases, this can be exploited in the design 

of optical sensors or modulators (by incorporating electro-optic material inside the 

slot area). 
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 The variation of power density in the SiO2 slot area with the core width is 

shown in Fig. 6.9 (d).  It can be observed that power density increases as the W 

decreases.  For the core height, H = 300 nm and slot height, Hs = 50 nm (shown by a 

dotted line), it will have a high power density in the slot region when the core width, 

W, is at 150 nm.  As the core is reduced, a sudden drop of power density can be 

noticed as the core width is approaching to the cut-off width for this fundamental 

quasi-TM mode.  It can also be observed that, when the slot height is increased to 

100 nm (shown by a solid line), the maximum power density is reduced 

approximately 40% of the from the maximum power density achieved by the 

waveguide with slot height as 50 nm (shown by a dotted line). 

 

Figure 6.9 (f) shows the variation of power density in the SiO2 slot area with 

the slot height.  It can be seen that for a narrower Si core waveguide with a thinner 

height as in the case of Si core width, W = 350 nm and height, H = 200 nm (shown 

by a dashed-line), it will have a high power density in the slot region when the slot 

height, Hs, is below 50 nm, as H increases (shown by a dotted line), the power 

density in the slot decreases.  It is also shown that for a wider Si core waveguide with 

a smaller height (shown by a solid line), power density will not be as high as the 

narrower Si core waveguide with a thinner height (shown by a dashed-line) 
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6.4  SUMMARY 
 

The H-field and E-field components of both vertical and horizontal slot waveguides 

along with their Poynting vector profile are shown in this Chapter.  It is showed here 

that slot area with a lower refractive index, normal component of E-field increases 

significantly and as a consequence, the power density will be high.  By introducing 

different geometry dimensions of the silicon waveguide, the performances on power 

confinement and power density in the slot area can be improved and optimized.   

Such a slot waveguide can be used to design very compact directional coupler and 

Mach-Zehnder based system or for polarization splitters or polarization rotators.  

Design of modulators or optical switches or second harmonic generation can also be 

considered by introducing a nonlinear material in the slot region. 
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7 
 

Conclusion  
and further work 
 

 

This chapter draws conclusion from previous chapter and presents a proposal for 

further research.  

 

7.1 CONCLUSION 

 

This research focuses on designing and characterising the waveguides used for 

silicon photonics devices. The objectives set out at the beginning of the study have 

been successfully met and presented in this research.  The fundamental of this 

research was based on using accurate and efficient numerical methods to rigorously 

characterise different types of optical waveguides for use in silicon photonics devices 

and study their propagation properties. 

 

 Firstly, Chapter 2 presented the basic and fundamental background of the 

numerical methods those were used in this research work.  The numerical methods 

described here are the vector H-field Finite Element Method (VFEM), the Finite 

Element based Beam Propagation Method (BPM) and the Least Square Boundary 

Method (LSBR).  Initially, the VFEM was described.  This technique has been 

established as one of the most accurate and efficient numerically efficient approaches 

to obtain the modal field profiles and propagation constants of the fundamental and 

higher order quasi-TE and TM modes.  It has been described in this chapter that for  
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optical waveguide analysis, the magnetic field vector H is naturally continuous 

across the dielectric interfaces and the associated natural boundary condition is that 

of an electric wall, which is very convenient to implement in many practical 

waveguide problems.  For this H-field formulation, the domain discretization, shape 

functions, natural boundary conditions and the formation of the element and global 

matrices are also evaluated in this chapter. With this H-field formulation, the 

appearance of spurious (non-physical) modes along with the real physical modes 

cannot not be avoided.  Therefore in order to eliminate the non-physical or spurious 

solution, the penalty function method is employed into the formulation by imposing a 

constraint ( H = 0 ).  Such a modal solution method can also be applied to 

determine the initial field distribution profile for the analysis of the waveguide 

discontinuities by using the LSBR method or the BPM.  The BPM based on the finite 

element technique has also been presented in this chapter.  The incorporation of the 

perfectly matched layer boundary condition into the vectorial wave equations, in 

which the vectorial propagation algorithm can account for the polarisation 

dependence and coupling has also been shown.  Such vectorial BPM is based on the 

transverse magnetic field components, which were used to simulate the evolution of 

a given initial field profile and to calculate the propagation power and propagation 

loss.  Finally the LSBR method is described for use to analyse the discontinuities in 

optical waveguides.  It is described in this chapter that by using the scattering 

coefficients, the power transfer between two waveguides can be calculated in which 

the insertion loss is found by using the LSBR method.  

 

 In the design of photonics integrated circuit (PIC), multiple optical 

components such as ring resonators, arrayed waveguide filters or laser are integrated 

into one single chip.  In order to interconnect all the individual optical components, 

straight or/and bent waveguides have to be used.  Chapter 3 looked at these straight 

and bent waveguides based on Indium Gallium Arsenide Phosphide (InGaAsP) on 

top of the Indium Phosphide (InP) substrate in detail.  The study of the bending, 

insertion and bent propagation losses and polarization conversion in a high index 

contrast semiconductor optical waveguide was presented in this chapter. Initially, a 

typical rib waveguide with InP cap layer was analysed.  It has been found in this 

chapter that for a rib waveguide with height of 1.3 μm, zero birefringence is possible 

when the waveguide's width and height are almost the same.  For curved optical 
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waveguides, the conformal transformation method has been employed to represent 

bent waveguides by converting a curved dielectric waveguide to its equivalent 

straight waveguide with a modified index profile.  It has been shown that at the 

junction of a straight and bent waveguides, higher order modes and mode beating 

have been generated.  By using the BPM, leakage loss of a bent waveguide can be 

found, it has been described in this chapter that the average loss value for the bent 

waveguide is about 0.74 dB/mm between the axial distances of 4000 μm to 5000 μm.  

It has been found that power do exchange between the two polarization states, 

therefore the polarization conversion, the power losses and the bending losses have 

been investigated.  It has been shown that a reduction in the bending radius increases 

the modal loss and the associated transition loss also increases as the mode shape 

modifies significantly in the bent waveguide.  By using both a narrower input guide 

and by introducing an appropriate offset, the transition losses and polarization 

conversion of the waveguide can be reduced. 

 

 Currently most large scaled PICs are fabricated using materials such as 

Gallium Arsenide (GaAs), Lithium Niobate (LiNbO3) and Indium Phosphide (InP).  

For optical system design, the cross-section of optical waveguide devices built by 

these materials are often in the micron dimensions.  Nowadays, with the advances in 

technology and fabrication technique. It is possible to design and develop low-cost 

photonic devices that allowed for the waveguide core to be shrunk down to a 

submicron cross-section and such technology exists in the form of silicon (Si) 

photonics.  Chapter 4 was devoted to a Si strip waveguide based on the silicon-on-

insulator (SOI) platform. It has been described that Si strip waveguide is the most 

basic important building blocks used in many PIC systems.  It has also been 

described that Si strip waveguide can be referred as Si nanowire.  The aim of this 

chapter was to provide a novel comprehensive analysis defining the modal 

characteristics of a Si strip waveguide with a nanoscale cross-section, and in doing 

so, the effects of the critical size of such waveguide were also presented.  In this 

chapter, the spatial variations of all the six components of the E and H fields were 

shown, together with the poynting vector profile.  It has been shown that for a Si 

strip waveguide with a height of 260 nm, the single mode operation occurred when 

the waveguide width lied between the region of 200 nm to 400 nm for the 

wavelength of 1550 nm.  The modal hybridness, the power confinement and the 
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modal birefringence for silica and air-clad Si nanowires were also shown here.  It has 

also been shown that non-dominant field components are significantly higher, (often 

more than 50%), in which case the simpler scalar approaches would be totally 

inadequate.  It was found that when H = 260 nm, the effective area not only is 

minimum, when W = 320 nm, but also these values are similar for both the 

polarizations. 

 

 In Chapter 5, a novel compact polarization rotator based on an asymmetric Si 

nanowire has been presented.  The Si polarization rotator proposed here shown a 

very compact design which does not need a slanted side wall or a curved waveguide, 

and thus require a less complex fabrication process and compatible with mature 

CMOS technology which was backed by the well-established semiconductor 

industry.  It has been described that modes in optical waveguides with two-

dimensional confinement are hybrid in nature, with all the components of their E and 

H fields being present.  It has been shown that this modal hybridness becomes more 

prominent as the index contrast increases, as in a Si nanowire.  At the beginning of 

the chapter, the VFEM has been used to find the modal solutions followed by the 

LSBR method to calculate the scattering coefficients at the junction.  The Si 

polarization rotator considered was based on the use of a single section asymmetrical 

silicon waveguide with a trench section butt-coupled between two standard 

input/output Si strip waveguides.  It has been shown that it was important to design a 

polarization rotator waveguide that can rotate an incoming TE wave to the polarized 

TM wave.  It was found that more than 99% of polarization conversion can be 

obtained for a compact device length of 48 µm with a low power loss (which include 

an assume scattering loss) of 1.11 dB in such a design can be realised.  It has also 

been shown that the total power loss was only 0.23 dB by optimizing the offset 

between the sections. 

 

 Chapter 6 focuses on the vertical and horizontal slot waveguides.  The 

foundation of the Si slot waveguide was based on a strip waveguide and the basic 

fundamental of the Si strip waveguide was described in Chapter 4.  In Chapter 6, the 

H-field and E-field components of both vertical and horizontal slot waveguides 

along with their Poynting vector profile are presented in this Chapter.  It has been 

shown that slot area with a lower refractive index, |E| increases significantly and that 
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power density will be high.  It has been shown that for vertical slot waveguide, quasi-

TE mode will yield higher power confinement and power density in the slot area.  It 

has also been shown that for horizontal slot waveguide, quasi-TM was found to have 

higher power density and power confinement than the quasi-TE mode.  By 

introducing different geometry dimensions of the Si waveguide, the performances on 

power confinement and power density in the slot area can be improved and 

optimized. 

 

 

7.1 SUGGESTIONS FOR FURTHER WORK 

 

The Si slot waveguide (presented in Chapter 6) can be used as a compact directional 

coupler or Mach-Zehnder based systems or for polarization splitters or polarization 

rotators.  By introducing a nonlinear material in the slot region of the waveguide 

(shown in Fig 6.1 or 6.27), modulators, optical switches and second or third 

harmonic generators can also be realised using this structure.  It was reported that by 

employing erbium-doped low-index material in the optical fibre, amplification of 

light can be achieved at the telecommunication wavelength.  A similar approach can 

be adopted for Si slot waveguide, in which using the doped material such as Er 

doped SiO2 in the slot region, an amplifier based on Si slot waveguide can be 

designed.  

 

 Coupling a nano Si waveguide to an another PIC device or to a single mode 

fibre remains one of the major challenges in building nano-Si photonics devices.  

This is due to the mismatch of the core dimensions, for example, coupling to and 

from optical fibres that have a core dimension of typically around 8 μm.  It was 

shown in Chapter 4 that for a Si strip waveguide with a single mode operation 

condition, a cross-sectional dimension was found to be around 320 nm x 260 nm, 

therefore high coupling losses will exists with direct coupling of Si strip waveguide 

with the optical fibre.  Various solutions have been proposed and demonstrated, one 

of which that can be considered for future work is the design of a spot-size converter 

incorporating a tapered Si core or an inverted tapered section.  Another approach is 

to use Bragg gratings based couplers with Si waveguides, whereby exploiting the 

high index contrast of a Si waveguide, optical modes under the Bragg conditions in 
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Si waveguides can be strongly coupled.  However such a technique is strongly 

polarisation sensitive and can only be applicable to polarisation dependent 

applications such as interconnects and sensors.  A 2-dimensional Bragg grating can 

be considered to couple both TE and TM modes.  The beam profile generated by 

Bragg grating coupler is not exactly a Guassian mode therefore it is necessary to 

improve the beam shape.  Apodized grating can be considered to improve the beam 

profile for better coupling but this requires multiple masking steps in the fabrication 

process.  In order to reduce the masking steps, segment core waveguide section with 

different effective indices can be designed to be used so that fabrication of such 

grating can be made by using only one masking step. 

 

 Design of a PIC with a polarization diversity system that consists of 

polarization rotator and polarization splitter with Bragg grating spot-size converter 

for coupling input or output optical fibre can be considered.  The polarization rotator 

can be bases on the Si asymmetric strip polarization rotator with a single trench 

section presented in Chapter 5 and the polarization splitter can be based on the 

vertical slot waveguide described in Chapter 6 designed as a directional coupler.  

Both of these devices can be fabricated by using the CMOS technology with 

monolithic integration.  So a polarization diversity system with improved coupling 

and any functional devices, such as amplifier, modulator or sensor can be considered 

for further detailed investigation. 
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Appendix A 
 

Calculation of the Element Matrices in 
FEM 
 

The elements matrices of [A]e and [B]e from equations 2.51 and 2.52 are evaluated 

here: 

 

 Equation 2.51 shown that: 
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 Equation 2.52 shown that 
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 The integration of the shape functions in equations A1.1 and A1.2 can be 

evaluated for a triangular element using the following relation: 

1 2 3

! ! !2!

( 2)!

i j k

e

i j k
N N N A

i j k


 
       (A1.3) 

where Ae is the area of the triangular element. 

 

 Hence the following integrals can be obtained: 
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 Therefore from equation A1.1, some of the 9 x 9 [A]e elements matrix can be 

given as: 
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 From equation A1.2, some of the 9 x 9 [B]e elements matrix can also be given 

as: 
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Appendix B 
 

 

Calculation of the Element Matrices in 
BPM 
 

 

The elements matrices of [M]e and [K]e from equations 2.79 and 2.80 are evaluated 

here: 

 

 Equation 2.79 shown that: 
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 Therefore matrices [Mxx] and [Myy] have the same forms as: 
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 Equation 2.80 shown that: 
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 Also the matrices [Kxx] and [Kyy] can be arranged in the form as: 
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where 
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where Nix and Niy denotes the x and y derivatives of the shape function Ni, 

respectively. 

 

 The matrices [Kxx]Γe and [Kyy]Γe are related to the line integrals and can be 

expressed as: 
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The matrices [Kxy] and [Kyx] can also be expressed: 
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where 
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 The shape functions integrals included in the calculation of the element 

matrices  [M]e and [K]e  can be evaluated using the following relation: 
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where Ae is the area of the triangular element related to the nodal coordinates of the 

element, and Γ12 and l12 are the part and length of the element boundary connecting 

the nodes 1 and 2, respectively. 
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