IT City Research Online
UNIVEREIST%(]OggLfNDON

City, University of London Institutional Repository

Citation: Procopiou, A., Komninos, N. & Douligeris, C. (2019). ForChaos: Real Time
Application DDoS detection using Forecasting and Chaos Theory in Smart Home loT
Network. Wireless Communications and Mobile Computing, 2019, pp. 1-14. doi:
10.1155/2019/8469410

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21379/

Link to published version: https://doi.org/10.1155/2019/8469410

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Hindawi

Wireless Communications and Mobile Computing
Volume 2019, Article ID 8469410, 14 pages
https://doi.org/10.1155/2019/8469410

WILEY

Hindawi

Research Article

ForChaos: Real Time Application DDoS Detection Using
Forecasting and Chaos Theory in Smart Home IoT Network

Andria Procopiou ,! Nikos Komninos (,' and Christos Douligeris2

! Centre for Software Reliability, Department of Computer Science, City, University of London, UK
“Department of Informatics, University of Piraeus, Greece

Correspondence should be addressed to Andria Procopiou; andria.procopiou.l@city.ac.uk
Received 19 September 2018; Revised 1 January 2019; Accepted 10 January 2019; Published 3 February 2019
Academic Editor: Yu Chen

Copyright © 2019 Andria Procopiou et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Recently, D/DoS attacks have been launched by zombie IoT devices in smart home networks. They pose a great threat to network
systems with Application Layer DDoS attacks being especially hard to detect due to their stealth and seemingly legitimacy. In this
paper, we propose ForChaos, a lightweight detection algorithm for IoT devices, which is based on forecasting and chaos theory
to identify flooding and DDoS attacks. For every time-series behaviour collected, a forecasting-technique prediction is generated,
based on a number of features, and the error between the two values is calculated. In order to assess the error of the forecasting
from the actual value, the Lyapunov exponent is used to detect potential malicious behaviour. In NS-3 we evaluate our detection
algorithm through a series of experiments in flooding and slow-rate DDoS attacks. The results are presented and discussed in detail

and compared with related studies, demonstrating its effectiveness and robustness.

1. Introduction

Smart Homes consist of a great number of different devices,
all deployed in a single network monitoring the environ-
ment, collecting and sharing important data and information
with the owners and other smart IoT devices and external
services through internal and external networks. The node
responsible for this communication is the Energy Services
Interface (ESI). It acts as a bidirectional interface where
information can be exchanged between the Smart Home and
external domains. Furthermore, it protects internal energy
resources from security failures and ensures secure internal
communication between the devices deployed in the Smart
Home. ESI's importance to the Smart Home and in the
outside domains makes it an excellent target for cyberattacks.

DDoS attacks can be conducted across all the layers of
the TCP/IP model. Application layer DDoS attacks are much
harder to be detected efficiently and accurately than their
perspective ones in lower layers as they do not violate any
protocol rules or make usage of malicious behaviour. The
TCP connections are established successfully and normal
requests are sent to the target, in contrast to DDoS attacks

in lower layer such as the TCP Flooding which sends a
burst amount of SYN packets without acknowledging the
SYN,ACK packets sent from the server. The Application
Layer Flooding instead sends a burst amount of legitimate
requests to the server, which the server cannot refuse but
to reply. As a result, it becomes unresponsive due to great
amount of incoming requests.

On the contrary, Slow-Rate Application Layer DDoS
attack exploits a server’s ability to wait for connections to
be completed in a range of time, if the incoming connection
is legitimately slow. As long as the client manages to send a
subsequent packet in an attempt to complete the request the
server is obliged to keep the connection open. Based on that,
the slow-rate attack opens a great number of connections and
initiates requests that never complete them. As time is passing
by, more and more connections are open and that results in
the target becoming once again unresponsive.

Such attacks can be changed in their form of conduc-
tion as there is no fixed behaviour. As a result, traditional
signature-based Detection Techniques should fail. Anomaly
detection is the obvious solution for detecting Applica-
tion Layer DDoS attacks, both flooding and slow-rate, in

http://orcid.org/0000-0003-1427-7935
http://orcid.org/0000-0003-2776-1283
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8469410

heterogeneous networks such as the Smart Home network.
The potential security system must be able to identify large
deviations in the traffic behaviour from the normal behaviour
that it is expected but also being robust against temporary
normal spikes.

One way of detecting such attacks is to have a holistic
behaviour of the attack in terms of time. “Time” is what
differentiates this malicious behaviour from normal and can
classify it as an attack. The anomaly-detection solution must
be able to detect changes in behaviour of the network by
monitoring its behaviour over a set of time-series.

Due to the nature of the attacks described above, it is
evident that the detection algorithm must monitor closely
the present short-term traffic and not base its knowledge on
long-term previous behaviour of the system. The reason for
this is that due to time being such a volatile entity and the
traffic being heterogeneous the network traffic generated can
differentiate from to its past history but appear legitimate
nevertheless.

Therefore, we must predict what the future short-time-
interval traffic is based on present or short-time-interval pre-
vious behaviour of the system and not just classify the present
network traffic monitoring based on long-term previous fixed
behaviour of the system. It is important to avoid incorrectly
classifying a behaviour as malicious simply because it is not
similar to the history of the network. Our detection algorithm
makes use of forecasting techniques to make short-term
predictions and identify the attacks through the construction
of Lyapunov exponents for every time-series interval.

The remainder of this paper is organized as follows:
Section 2 presents the related studies. Section 3 describes the
proposed detection algorithm with the appropriate explana-
tion of it. Section 4 explains the simulation testbed imple-
mented for conducting the experiments. Section 5 presents
and discusses the experimental results. Finally, a conclusion
and future directions are provided in Section 6.

2. Related Studies

Various forecasting techniques have been proposed and used
in the past for the effective detection of DDoS attacks. The
most popular are Moving Average (MA), Weighted Moving
Average (WMA), Simple Exponential Smoothing (SES), also
called Exponential Weighted Moving Average (EWMA),
Double Exponential Smoothing (DES), and Triple Exponen-
tial Smoothing (TES) also called Holt's Winter Smoothing.
MA and WMA make a forecast solely based on previous
observations only while the rest of the techniques consider
both past observations and past forecasts.

The authors in [6] used the Box-] Cox Jekings ARIMA
model to detect DDoS attacks by monitoring the ip addresses
and the packets. They use the Lyapunov exponents to measure
the error generated. They have constructed their algorithm to
make predictions every 5 minutes with a training time of 100
minutes. They report their algorithm to have generated a TP
rate of 94.4%, a FP of 0.1%, and FN of 5.6%.

The authors in [1] used simple exponential smoothing and
wavelet analysis in monitoring incoming bytes, number of

Wireless Communications and Mobile Computing

packets, and the proportion between incoming and outgoing
packets to detect UDP Flooding DDoS attacks. They choose
window sizes 600 and seconds with an overlap of 10%.

Their algorithm after a series of experiments and adjust-
ments (window size of 100 seconds with an overlap of either
50% of 80%) generates no false positives and manages to
detect 10 different types of attack scenarios. However, they
do not discuss whether their algorithm generates any FNs in
the scenarios, which is quite important, especially since in
previous experiments their algorithm was not able to detect
the attack at its start time but 200 seconds after initiated.

In [3], the authors proposed linear exponential smooth-
ing to detect Flooding and Scanning DDoS attacks using
bytes, flows, and packets per minutes. They report a 24-
hour training time and a window size of 5 minutes to
accurately detect deviations in traffic. The a value is set to 0.05
and the deviation is measured using entropy. Through their
experiments, their algorithm can detect the attack, which lasts
for 11 minutes and 13 hours after the algorithm has started
being trained. However, it misclassified instances both before
and after the actual attack. In total, 11 predictions misclassify
normal behaviour as attack out of 288. This gives a FP 3.82%.

In [4] the authors used the triple exponential smoothing
to detect TCP SYN Flooding DDoS and Slammer Worm by
analysing each packets source ip, destination ip, source port,
and destination port. They used a window size of 900 seconds.
To assess the error they used of the relative entropy. They
detect the attacks inserted in real-traffic from the Brazilian
National Research and Education Network which consisted
of 5 days of traffic. With a 24-hour training time and a 5-
minute window size, the algorithm is able to detect a 1.5 hour
TCP SYN-Flooding attack but no further information is given
on the time the algorithm detected the deviation.

In [2], the authors used a number of forecasting algo-
rithms, including Moving Average, Weighted Moving Aver-
age, Exponential Smoothing, and Linear Regression to pre-
dict the intensity and size of DDoS attacks in the TCP
protocol such as SYN Flooding, DNS Flooding, and ICMP
Flooding. They used a window of 60 seconds between
predictions to monitor the number of packets. The two-thirds
of the attack, from a total of 53 minutes, were used for training
and the remaining one-third was used for testing. To asses
which forecasting algorithm has the less error rate they made
use of the Absolute Prediction Error metric. For the TCP
SYN Flooding 563 packets were generated at each second, for
DNS Flooding 8 packets, and for ICMP 1 packet per second.
Through the three types of attacks, Exponential Smoothing
was the best in detecting the intensity of the attack and size
of DNS TCP and ICMP Flooding, while Linear Regression
was the most successful in detecting the size of the TCP SYN
Flooding. Overall, the algorithm reports to generate an error
rate of 1%.

Besides entropy and error to assess the error of forecasts
another way to measure error is chaos theory and the
Lyapunov Exponents. Chaos theory is an area of mathematics
that aims to study nonlinear phenomena that are hard or
nearly impossible to predict. More specifically, chaos theory
studies dynamic complex systems that are sensitive to initial
conditions. A small change in the initial conditions can cause

Wireless Communications and Mobile Computing

TABLE 1: List of features.

Feature Name Description

Requests No Total number of requests in a time-series interval

Packets No Total number of packets in a time-series interval

Data Rate Average data rate in Megabits in a time-series interval

Avg Packet Size Average packet size in a time-series interval

Avg Time Betw Requests Average time between two requests in a time-series interval

Avg Time Betw Response & Request

Average time between the response and the first requests encountered in a time-series interval

Avg Time Betw Responses

Average time between two responses in a time-series interval

Parallel Requests

Total number of parallel requests in a time-series interval

crucial changes in the outcome of the dynamic system. This is
also known as the butterfly effect. This highlights that even in
deterministic systems, which are entirely dependent on their
initial conditions without any random elements involved,
their future cannot be predicted. This is described as chaotic
behaviour or simply chaos.

In [5], the authors have designed a DDoS detection
system which uses self-similarity theory to monitor the
traffic and local Lyapunov exponents to distinguish between
normal behaviour and DDoS attack. In addition, they use the
Lyapunov exponents to train neural networks; they achieve
a detection rate of 88-94 % with a false positive of 0.45-0.05
%. Similarly in [8], the authors have once again used chaos
theory and Lyapunov exponents in a combination with neural
networks to detect DDoS attacks, inspired by [5], achieving a
better result with a 98.4% detection rate.

The authors in [7] conduct preprocessing on the network
traffic by calculating the simple cumulative average of time
series values at every time interval. The local Lyapunov
exponent is used to detect a DDoS attack from the DARPA
Dataset by using packets flow information. Then they make
use of a neural network to improve the DDoS detection
accuracy. They report a detection rate of 93.75%.

As discussed in the studies mentioned above, there are
multiple ways of assessing the error forecasting algorithms
produced on each forecast with the most popular being mean
square error, entropy, and Lyapunov exponents. However,
there is a major difference between the Lyapunov exponents
and the mean square error and entropy. By using either square
error or entropy measures, a threshold is assumed, while
positive Lyapunov exponents indicate chaos. In forecasting,
a positive Lyapunov exponent indicates that the distance
between the actual value and the forecasting one is high. The
network traffic orbit is both chaotic and unstable. This means
that the nearby points diverge to any arbitrary separation, so
the change of traffic is due to an attack. A negative Lyapunov
exponent shows that the error is not chaotic because the
difference between the forecast and the actual observation is
small.

A nonchaotic error indicates normal behaviour. The
network traffic orbits are attracted to a stable fixed point from
when they diverge due to new legitimate traffic, entering the
system. Hence, the change of traffic is not due an attack. On
the contrary, in case of an attack, the network traffic orbits are
not attracted to a stable fixed point.

3. ForChaos Detection Algorithm

Below we explain the basic mathematical concepts that have
been used in the structure of ForChaos Algorithm.

3.1. Feature Selection. Most of the studies using forecasting
techniques against DDoS§ attacks mentioned in the previous
section usually make use of a single feature for prediction and
detect the possible deviations in the number of packets, the
number of packets per IP, the packet flags and so on. However,
these studies focus on detecting DDoS attacks on lower
layers and not on the application layer. The adoption of one
single feature on the application layer is likely not to produce
satisfactory results since Application DDoS attacks do not
violate any protocol rules and do not produce malformed
packets. Therefore we have designed a new set of features
to detect Application Layer Flooding and slow-rate DDoS
attacks. All of the features (Table 1) are heavily dependent on
time and form ideal features for forecasting-based algorithms
and presented in Table 1.

(1) Requests Number. In a flooding scenario the number of
requests over a period of time will be much greater compared
to normal traffic request rates. In a slow-rate attack scenario
the number of requests over two consecutive periods of time
will have large difference. Since slow-rate opens connections
to send requests after an amount of minutes there will be
a pattern of low number of requests, then high number of
requests, then low, and so on.

(2) Packets Number. In a flooding attack the number of
packets on application layer is rapidly increased over a short
period of time. In a slow-rate attack the number of packets
is lower due to the packets being sent slowly, just before a
request can be rejected. Hence, the request stays alive but very
few packets are sent.

(3) Data Rate. In a flooding attack the data rate on application
layer is rapidly increased over a short period of time. In a
slow-rate attack the data rate is lower due to the slow data
rate of the malicious requests.

(4) Average Packet Size. In a flooding attack the average packet
size is decreased due to the requests being simply a get request
that features no payload. In a slow-rate attack the average
size packet is decreased since a great series of connections

sends small incomplete packets over the attack period of
time.

(5) Average Time between Requests. In a flooding attack the
average time between each request is vastly decreased due
to an outburst of requests being sent over a short period of
time simultaneously. In a slow-rate attack the average time
between each request is decreased compared to the same
value in a normal scenario. Instead, there are spikes of the
number of requests being sent. When the attack is at the stage
of opening new requests, the rate of them is increased. When
the attack is at the stage of maintaining the connections open,
normal subsequent packets are sent; therefore, the rate of the
requests is less than the previous stage.

(6) Average Time between Response and Request. In a flooding
attack the average time between a response and the next
request is vastly decreased. In a slow-rate attack the average
time between a response and the next request the slow-rate
attack malicious requests cause.

(7) Average Time between Responses. In a flooding attack,
the average time between two consecutive responses is vastly
decreased since a burst of requests is being sent to the server;
therefore a great number of responses have to be generated.
In a slow-rate attack, the same feature is increased since the
slow-rate attack’s requests are initiated but never completed.

(8) Parallel Requests. In a flooding attack the average concur-
rent requests are decreased since the attackers send multiple
requests that are very quickly finished. In a slow-rate attack,
many requests are initiated and stay open over a period of
time and the average number of parallel open requests is large.

3.2. Our Approach to Forecasting. We choose to exclude MA
and WMA because we believe that in order for a forecasting
model to make effective and accurate forecasts it must have a
balance between past forecasting and observations. Our argu-
ment is supported by [9] which makes an evaluation study
between MA, WMA, and SES. It concludes that SES is the
most effective forecasting algorithm as opposed to the other
two against DDoS attacks. Between the three ARIMA-based
forecasting models there is one basic difference between each
other that assists us into making our final decision. SES has
no way of considering trend if there is present in observations
while DES considers the potential trend in the formula.
TES also considers trend in data and seasonality. Although
such assumptions and additional elements are useful in other
applications, such as making stock market predictions, there
is no need to adopt any of these techniques due to the network
traffic being unaffected by any trend or seasonality as the
authors in [3] claim. The formula of SES is shown in

Fi,i=aA;+(1-a)F, (1)

In an observed time series consisting of observations
A, A, A, .., for an event, the SES formula F,,, is defined
as the next forecast at time t. A, is the previous actual
observation, F, is the previous forecast, and a is defined as
the smoothing constant. The smoothing constant a can take

Wireless Communications and Mobile Computing

the values 0 < a < 1. As it can be observed by (1), the
choice of a value plays an important role in having a balance
between the forecast and the actual observation. By having
the a constant value towards 1, more weight is given to the
actual observation. If the a constant value is going towards 0,
more weight is given to the past observations. Since we have
a set of F features at every time interval ¢, a forecast for each
of the features is made based on history.

3.3. Chaos Approach for Analysing Error. To measure a
system’s sensitivity to initial conditions, Lyapunov exponents
are used. A Lyapunov exponent of a dynamical system is a
metric that describes incredibly small trajectories that are
close. Lyapunov exponent is calculated using (4).

It is inevitable that every forecasting system will pro-
duce a series of errors between their prediction and the
observed values. The error at every time interval ¢; is defined

by
e; = |F - A (2)

At every time interval we will have one forecast for each
of the features and therefore an equivalent amount of errors.
We define the total error from all the features as

1 n
Etotal = ;Zei (3)
i=1

e; is the error value for every of the # features. In ForChaos
n = 8, as 8 is the total number of features used.

It is important for these errors to be correctly analysed so
malicious behaviour can be accurately and quickly identified.
When an error occurs between the actual observer value and
the perspective forecast it means that either there is an attack
or there is just a temporary unexpected value that is still
legitimate. We choose the Lyapunov exponent as the mean to
analyse the errors encountered and classify them as chaotic
and nonchaotic. The local Lyapunov exponent is calculated
as shown

1

A =—In
¢

1

AX,

AX, (4)

A positive Lyapunov exponent indicates a chaotic
behaviour at time instant t;., which means the forecast
prediction p; has large distance to the normal observed value
x;. The network traffic orbit is both chaotic and unstable.
This means that the nearby points diverge to any arbitrary
separation, so the change of traffic is due to an attack.
On the contrary, a negative Lyapunov exponent shows that
the error is not chaotic because the difference between the
forecast and the actual observation is small. A nonchaotic
error indicates normal behaviour since the network traffic
orbits are attracted to a stable fixed point from when they
diverge due to new legitimate traffic, or bursty legitimate
traffic, entering the system. Hence, the rate of traffic change
is not due to attack.

>0, DDoS attack.
Ai = (5)
<0, Legitimate Traffic.

Wireless Communications and Mobile Computing

2: Output: alert, not-alert
3:for t =1ton do
4. for f=1to8do

5: F, =aA, +(1-a)F_,
6: e, = |F,— Al
1 n
7: etomlt = etomlt + gzei
i=1
1. [Ae,
8 A, = In|—2
t Ae,
9 IfA >0

10: return alert
11: else return not — alert

1: Input: Set of 8 Features f, Time Series t, o, Window Size w Traffic State A,_,

ArLGoriTHM I: ForChaos detection algorithm.

TABLE 2: NS-3 protocols used.

TCP/IP Layer Protocols
Physical/MAC Layer SH: 802.11
Network Layer SH: IPv4
Transport Layer SH: TCP,UDP

Application Layer SH: HTTP, CoAP, MQTT, XMPP, AMQP

3.4. ForChaos Algorithm Pseudocode. Based on the previous
mathematical concepts described above, we have constructed
the ForChaos Algorithm 1 for detecting Application Layer
Flooding and Slow-Rate DDoS attacks in the IoT Smart
Home Networks. A specific amount of time is defined as the
training procedure. During that time the forecasts are not
taken into consideration. Instead, they are used to build the
detection model and to make correct predictions. A window
size N is chosen at the start. ForChaos Algorithm accepts a
continuous t time Series, where ¢ belongs to T as an input.
Every tisa x. of N window size, where x’s value ranges from 1
to infinity. Specifically, if the window size is set to 30, then the
T range of values is 30, 60, 90, 120, and so on. At every end
of the window size, the values for the eight features discussed
in Section 2 are calculated. Based on previous observations,
a forecast is made for the value for each feature, according
to smooth exponential smoothing. This forecast is compared
to the actual value for every feature and an error value is
generated. The error is the absolute value of subtracting the
actual value from the forecast. The total error is calculated
as the summation of errors for all features divided by the
errors standard deviation. For that Lyapunov exponent error
at that specific Time Series t is calculated, based on (3). If it
is positive, then we have a DDoS attack and, if it is negative,
then the behaviour is legitimate.

4. NS3 Simulation Testbed

4.1. Smart Home IoT Network Simulation. For the simulation
of the Smart Home network, Network Simulator 3 (NS3) was
used. Network Simulator 3 (NS3) is an open-source discrete-
event simulator developed in C++. A summary of the
networks’ parameters and protocols used is given in Table 2.

@ ATTACKER
© NORMAL

FIGURE 1: Smart Home architecture in NS3.

A graphical representation of a typical Smart Home is
illustrated in Figure 1. Various IoT devices are deployed in the
Home Area Network that connect to the gateway, called ESI,
to exchange data with the Smart City infrastructures.

Figure 1 forms the representation of the IoT Smart Home
simulation in NS-3. 10 nodes were simulated. 9 of them rep-
resent IoT devices and Smart Appliances and the final node
forms the Smart Home gateway, called ESI. All simulated
nodes were static, with no mobility. In the physical layer,
all the connections were wireless and the 802.11 protocol
was used. The structure was set to ad hoc, using AODV
routing protocol. In the network layer IPv4 was used and
in the transport layer both UDP and TCP were used. In the
application layer a wide variety of application layer protocols
were simulated including CoAP, MQTT, XMPP and AMQP,
and HTTP.

Our simulation has been constructed to represent real-
istic Smart Home traffic as much as possible. This has been
achieved by using the Smart Home traffic dataset generated
by [10]. In [10] they have deployed 30 different Smart Home
devices, including smart camers, blood pressure meters,

NEST protect smoke alarm, smart sleep sensors, smart bulb,
android/iphone devices, laptops and so on. The maximum
amount of packets generated per second was 58.7. Our
simulation which consisted of 7 nodes generated an average
of 13.7 packets per second.

4.2. Simulation of Application DDoS Attacks. Our simulation
was designed and implemented based on the specifications
found in current smart homes. Smart Homes have currently
maximum of 100 Mbps bandwidth. To flood such a line, only
10000 compromised machines will be needed, each capable
of sending 1IMbps of upstream. These compromised machines
are most likely part of a botnet. The target when attacked will
immediately start losing its packets and, with such upstream
speed data, it will be unavailable after a minute.

NS-3 simulations are not conducted in real-time. From
our experiments, we have estimated that one minute in
simulation time is about eight to ten minutes of real-time.
Therefore, based on these findings, for the 100 Mbps line to
be saturated in simulation it will need only 6-7.5 seconds for
a flooding attack. This is evident in our simulation traffic
generated. Packets start being dropped after about the 6th
second. For a slow-rate attack which is not volumetrically
high it needs about 10-12.5 of simulation time for packets
to start being dropped. Hence, ForChaos is able to detect
the malicious behaviour fast. Furthermore, the attacks are
considered inside attacks. Hence, the attackers’ capabilities
are going to be lighter. The devices compromised are con-
strained in resources such as memory, processing power, and
bandwidth. As a result, an inside attack on the Smart Home
will not be able to produce a 1.5 Tbps overhead to the Smart
Home network.

Our proposed algorithm’s accuracy is evaluated through
experiments. Related DDoS detection studies make usage of
popular datasets such as the KDD-99, DARPA, or NSL-KDD
Datasets. However, we cannot use these datasets as they do
not have IoT traffic nor they contain application layer DDoS
attacks. In IoT networks the traffic is highly heterogeneous
and therefore harder to detect any malicious behaviour.
Hence, we had to create our own synthetic traffic using NS-
3. A series of traflic containing normal and attack traffic
files was generated. Both flooding and slow-rate attacks were
simulated. In every scenario, seven nodes from the Smart
Home were generating normal traffic and the remaining two
were generating malicious traffic.

In order for both normal and attack traffic to be simu-
lated, degree of randomness was added in the network packet
generation from the nodes. Randomness was introduced
through Poisson Distribution in the following metrics, at the
time a packet was created and sent from the client to the
server, at the size of the packet generated from both the
client and the server, and at the time the server needed to
respond. Different speeds were also applied in IoT nodes to
service application layer requests. Hence, we can simulate
slow connections that are legitimate.

Most of the DDoS attacks, Flooding types in particular,
can be classified as constant rate. In constant rate attacks the
attackers generate a high steady rate of traffic towards the
target [11]. The impact of such an attack is fast, but it can easily

Wireless Communications and Mobile Computing

be detected due to its obvious intensity. Hence, attackers have
moved towards more sophisticated ways of conducting DDoS
attacks. One way to evade any security measures installed is
to slowly but steadily flood the target in an increasing-rate
attack, where the maximum impact of the attack is reached
gradually over the attack period. To simulate increased-rate
attacks in NS-3, we used open random connections after
random time-intervals.

To assess the results on ForChaos algorithm’s effective-
ness we have calculated the most popular metrics used
when assessing a detection algorithm’s accuracy. These are
Detection Rate(DR), Error Rate (ER), True Positives (TP),
False Positives (FP), False Negatives (FN), and Precision.
In intrusion detection positives instances are attacks and
negative instances are normal. DR measures the algorithm’s
proportion in correctly classifying incoming instances and
ER measures the algorithm’s proportion errors in incorrectly
classifying incoming instances. DR and ER’s sum equals one.
TP measures the proportion of positive instances that are
correctly identified as such. FP measures the proportion of
negative instances to have been misclassified as positive.
FN measures the proportion of positive instances that have
been misclassified as negative. Lastly, precision measures
the proportion of relevant instances among the retrieved
instances. In other words, precision measures the rate of
true positives divided by all the positives, both correctly and
incorrectly classified.

5. Results Analysis

Experiments are divided according to the type of the attack
and the training time. For every scenario, we have examined
out different window sizes and alpha, a, constant values from
(1). Our main objective was to find the most optimal a and
window size with the least training time.

The window size parameter is the time interval at which
the detection algorithm generates a new prediction. So, if the
window size is 20 seconds, then the algorithm will calculate a
new prediction after every 20 seconds. For alpha we tested
values from 0.1 to 0.9 with an interval of 0.1 and multiple
window sizes between 10 and 60 seconds at an interval of 10
seconds.

After a series of experiments it was observed that the
optimal window size is 30 seconds and a is 0.1, as it has
generated the least false alarms. Most of the studies using
forecasting algorithms take a the value of 0.5, which means
that equal weight is given between recent and past obser-
vations. However, our integration of chaos with forecasting
resulted in a different optimal value of a so that Lyapunov
exponents could be calculated correctly.

The training time in all of the attack scenarios was
selected to 1000 seconds to accurately detect malicious activ-
ities. In total, eight types of attacks have been constructed
and the scenarios were divided into flooding and slow-rate
attacks.

In the flooding attacks, the parameters differentiated were
the number of applications used and the time the applications
was initiated. Firstly, 5 applications and then 10 applications
were used on each attacker. If the time the applications

Wireless Communications and Mobile Computing 7
TaBLE 3: DDoS flooding experiments results.

Parameters Attack Start DR TP FP FN Prec.
(sec) (%) (%) (%) (%) (%)
5 apps Const. 1000 100 100 0 0 100
5 apps Const. 2000 100 100 0 0 100
5 apps Const. 4000 100 100 0 0 100
5 apps Incr. 1000 100 100 0 0 100
5 apps Incr. 2000 98.6 87.50 0 12.5 100
5 apps Incr. 4000 100 100 0 0 100
10 apps Const. 1000 100 100 0 0 100
10 apps Const. 2000 100 100 0 0 100
10 apps Const. 4000 100 100 0 0 100
10 apps Incr. 1000 100 100 0 0 100
10 apps Incr. 2000 98.6 87.50 0 12.5 100
10 apps Incr. 4000 100 100 0 0 100

TABLE 4: Slow-rate attacks results.

Parameters Attack Start DR TP FP EN Prec.
(sec) (%) (%) (%) (%) (%)
20 apps(NoSlow) 1000 100 100 0 0 100
20 apps(NoSlow) 2000 98.6 875 0 0 100
20 apps(NoSlow) 4000 100 100 0 0 100
20 apps(Slow) 1000 100 100 0 0 100
20 apps(Slow) 2000 98.6 87.5 0 12.5 100

20 apps(Slow) 4000 98.6 100 1.53 0 81.82
40 apps(NoSlow) 1000 100 100 0 0 100

40 apps(NoSlow) 2000 972 100 3.13 0 83.33

40 apps(NoSlow) 4000 94.9 100 5.34 0 66.67
40 apps(Slow) 1000 100 100 0 0 100
40 apps(Slow) 2000 100 100 0 0 100
40 apps(Slow) 4000 100 100 0 0 100

were initiated was set to “constant”, then all of the attackers’
applications were initiated at the start. If the parameter was
set to “increasing,” then the attackers’ applications were
gradually initiated. Through this differentiation, we aimed
to test if our detection mechanism was able to identify the
attack, even when the peak time of the attack was not visible.

In the slow-rate attacks, the numbers of applications and
slow-legitimate connections were integrated in the network
traffic as part of its normal behaviour. The number of
applications was differentiated from 20 to 40. Through slow
legitimate connections, we could evaluate if the algorithm is
able to identify malicious or normal activity. In real-traffic,
not all connections are fast and completed at once, especially
in a Smart Home IoT environment where there are various
physical obstacles (e.g., walls). According to [9], there is
26% probability that a connection is slow in a typical home.
Furthermore, the study indicates that the more connected
devices a home has, the greater the probability there is for
the consumers to experience a slow connection. In detail,
they report a 47.5% probability of a slow-connection if seven
or more nodes are connected to the Home Area Network.

Therefore, according to these metrics we have simulated
the same percentage as slow-connections being initiated
randomly before the actual attack is initiated.

In all scenarios, the attack duration lasted for 200 seconds.
For every scenario, the attack is initiated either at the 1000th
second, 2000th second or 4000th second. Hence, in total
twenty-four experiments were conducted. A summary of the
flooding experiments with their parameters and the results
are found in Table 3 and for the slow-rate experiments in
Table 4.

In our attack scenarios, the target of the attack was the
ESL as it is considered the most important node in a Smart
Home.

5.1 Flash Crowd Scenarios. Application Layer Flooding
DDoS attacks are very similar to Flash Crowd traffic. Flash
Crowd denotes the entrance of sudden burst of legitimate
traffic in the network that is legitimate. It is hard to distinguish
flash crowd events from Application Layer DDoS attacks
because both of them generate a high amount of requests
in a relatively short amount of time. We wanted to evaluate

8 Wireless Communications and Mobile Computing
TaBLE 5: Flash crowd false positive results.
False
Scenario Positives Start of Window Size ¢ Interval
(%)

FlashCrowd
40 apps 14.29 1110
1200sec
FlashCrowd
40 apps 12.5 1380,1860, 1950,1980, 2160
1200sec

990, 1020, 1110,1170 1260,1380, 1440, 1470, 1500, 1560,
FlashCrowd 1590, 1620, 1770, 1800, 1830, 1860,1950, 1980, 2040, 2070,
40 apps 41.12 2100,2160, 2190, 2250, 2460, 2490, 2550, 2640, 2730,
4200sec 2760, 3090, 3210, 3240, 3330, 3390, 3420, 3480,

3690,3750, 3810, 3930, 4020,4110, 4140
FlashCrowd
45 apps 85.71 990,1020, 1050,1080,1110,1140
1200sec
FlashCrowd 990, 1020,1050, 1080, 1110, 1140, 1170, 1200, 1230,1290,
45 apDs 825 1320, 1380, 1410, 1440,1470,1500, 1560, 1590, 1620, 1650,
zzogsl’ec : 1680, 1710, 1740, 1770, 1800, 1830, 1860,1890, 1920,1980),

2040, 2070, 2100
FlashCrowd 990, 1020, 1080, 1170 1380,1410, 1500, 1650, 1740, 1770,
45 apps 24.30 1830, 1860, 1890, 2100, 2400, 2460, 2550, 2760, 3240,
2200sec 3420, 3510, 3720, 3840,3900, 4080, 4110

ForChaos algorithm through a series of Flash Crowd sce-
narios. To simulate random FlashCrowd behaviour we used
Poisson Distribution. However, the rate of sending packet was
increased from the normal behaviour but it is not equal to or
exceeding the metrics of the Flooding attack mentioned in
Section 5.1. Specifically, we have increased the apps created
from 35 to 40 and 45 in the two series of experiments. In the
first series of experiments, 40 apps have been used in total in
all three experiments which lasted for 1200, 2200 and 4200
seconds prospectively. In the second series of experiments,
the same durations have been used but with 45 apps in total in
all of them. The results are presented below and summarised
in Table 5.

From the results of Table 5, we can observe that ForChaos
has difficulty in identifying FlashCrowd events, as it generates
a high number of missed alarms. For the experiments that
lasted for 1200 and 2200 seconds, ForChaos generates more
false alarms in the 45 apps than the 40 apps. This was expected
as a larger burst of traffic is likely to confuse the algorithm
into misclassifying the behaviour as malicious. Interestingly,
in the 4200 seconds scenarios, ForChaos performed better
in the 45 apps case than in the 40 apps case. This may have
occurred due to ForChaos having calculated more forecasts,
therefore becoming more robust in its future predictions.

5.2. ForChaos Feature Reduction. As described in Section 3,
a total of eight features were used for the detection of
Application Layer DDoS attacks. Although the complexity of
ForChaos is not high, we have experimented with reducing
the features to check whether we can achieve the same
detection rate. Instead of randomly reducing the features we

have used feature reduction algorithms in our experiments.
Nature-inspired algorithms form the most popular feature
reduction techniques. Such algorithms followed models from
nature, biology, social systems, and life sciences. Some exam-
ples include genetic algorithms, swarm intelligence, artificial
immune systems, evolutionary algorithms, artificial neural
networks, fractal geometry, and chaos theory.

Nature inspired algorithms have an advantage against tra-
ditional machine learning algorithms, they focus on optimi-
sation. In detail, nature acts as a method of making something
as perfect as possible or choosing the most fitted samples
from a population. In practice, this family of algorithms
applies these principles in the form of optimisation and
finding the best solution to the problem assigned. In anomaly
detection, the main objective is to identify the malicious
behaviour so these algorithms use their best-fit mechanisms
to detect malicious abnormalities. Another beneficial usage
of nature/bioinspired algorithms is to optimise the potential
features used in attacks detection. In that way, an optimal set
of features will be selected for efficient malware detection but
also for reducing the complexity and computational burden.
Additionally, nature/bioinspired algorithms are highly flexi-
ble as they can accept a mixture of variables in terms of type
and continuity. This gives us the opportunity to give a variety
of different features to the algorithms.

For finding an optimal set of features, we have used the
available nature-inspired algorithms provided from Weka
toolkit. Specifically, we used evolutionary search, ant and
bee search, genetic search, and particle swarm optimisation
search algorithms. All of the algorithms used have identified
Parallel Requests, Average Data Rate, Average Packet Size,
and Packet Number as the optimal features needed. The

Wireless Communications and Mobile Computing 9
TABLE 6: ForChaos reduced flooding and slow-rate attacks results.
Parameters Attack Start DR TP FP FN Prec.
(sec) (%) (%) (%) (%)

20 apps NoSlow 1000 100 100 0 0 100
20 apps NoSlow 2000 98.6 87.5 0 0 100
20 apps NoSlow 4000 100 0 100 0 100
20 apps Slow 1000 100 100 0 0 100
20 apps Slow 2000 98.6 875 0 12.5 100
20 apps Slow 4000 98.6 100 1.53 0 81.82
40 apps NoSlow 1000 100 100 0 0 100
40 apps NoSlow 2000 97.2 100 3.13 0 83.33
40 apps NoSlow 4000 94.9 100 5.34 0 66.67
40 apps Slow 1000 100 100 0 0 100
40 apps Slow 2000 100 100 0 0 100
40 apps Slow 4000 100 100 0 0 100
20 apps NoSlow 1000 100 100 0 0 100
20 apps NoSlow 2000 98.6 875 0 0 100
20 apps NoSlow 4000 100 0 100 0 100
20 apps Slow 1000 100 100 0 0 100
20 apps Slow 2000 98.6 87.5 0 12.5 100
20 apps Slow 4000 98.6 100 1.53 0 81.82
40 apps NoSlow 1000 100 100 0 0 100
40 apps NoSlow 2000 97.2 100 3.13 0 83.33
40 apps NoSlow 4000 90 100 1.2 0 33.33
40 apps Slow 1000 100 100 0 0 100
40 apps Slow 2000 100 100 0 0 100
40 apps Slow 4000 99.3 100 0.75 0 875

results of the reduced ForChaos algorithm across all the
scenarios are presented in Table 6.

As it can be seen from Table 6, the reduced ForChaos
is able to successfully detect both the Flooding and slow-
rate attacks across all different time intervals in all their
duration of attack conduction. As it was expected, the
reduced ForChaos algorithm was bound to produce a higher
level of FP in some scenarios. This occurs in the slow-rate
attack scenarios without slow legitimate connections in the
2000 and 4000 seconds. This could occur for the following
reason: the reduction of features has made the ForChaos
algorithm more sensitive towards changes in the network that
are not necessarily malicious.

6. Discussion of Results

Throughout the experiments, we proved that our proposed
ForChaos algorithm is able to detect malicious activity, with
small training time using eight features. However in some
experiments, false negatives were identified from our algo-
rithm. Also, certain false alarms were raised under certain
experiments.

Detection Rate. ForChaos algorithm had the best overall
detection rate in the Flooding experiments as opposed to
the Slow-Rate experiments. This is due to the nature of the

attack itself. Flooding attacks make more “noise” and their
behaviour is more obvious than the slow-rate attacks and
that is reflected in the features. For example, in a flooding
scenario, the request number, average time between each
request, and average time between responses and requests are
vastly changed in a very short period of time. In Flooding
experiments the lowest detection rate is 98.61% while in Slow-
Rate experiments the lowest detection rate is 94.93% as shown
in Tables 3 and 4.

False Positives. Interestingly the ForChaos algorithm gener-
ated the most false alarms in the Slow-Rate 40 apps with
No-Slow legitimate connections as the overall simulation
time was increased. This possibly highlights the weakness of
forecasting algorithms in general, of incorrectly predicting
values, if too much weight is put into the recent observations.
As our a value is set to 0.1, then more weight is put into
recent observations, rather than the history. As explained
at the beginning of Section 5, through our experiments, the
best a value for the Lyapunov exponents correct behaviour
was 0.1 though as it generated the least false alarms. For the
Slow-Rate 20 apps with No-Slow Legitimate connections no
false alarms were raised at all. In general, for the slow-rate
attacks the highest number of false positives rate was 5.34%
as it is shown in Table 4. The ForChaos algorithm did not
generate any false positives after the training time in any of

10 Wireless Communications and Mobile Computing
TABLE 7: Related studies results.
Study Train (sec) Wnd Size (sec) Results (DR) Attack Features
Inc. bytes,
1 3200 600 100 UDP Flood pekts No,
in & out
pckts
SYN Flood,
[2] 3194 60 99 DNS Flood, pckts No
ICMP Flood
Bytes
[3] 86400 300 100 KDD99 flows
pckts
per min.
packet
src ip,
[4] 86400 900 100 SYN Flood dst ip,
src port,
dst port
5] : - 94 KDD99 pekts No
ip adr.
6] 6000 60 99.5 KDD99 pekts No
ip adr
7] - - 93.75 DARPA packets
8] ; ; 98.4 KDD99 pekts No
ip adr.
98.61-100
(Flood) App. Flood
For Chaos 1000 30 94.93-100 Slow-Rate Table 1.
(Slow-Rt)

the Flooding experiments regardless of the attack time. This
is due to the nature of the attack itself. Flooding attacks make
“noise” and their behaviour is more obvious than the Slow-
Rate attacks and that is reflected in the features.

False Negatives. In the 5 apps and 10 apps increasing experi-
ments when the attack occurs at the 2000th second, it is not
detected in the first t;, where i is the first time series t when the
attack is present. However, as the attack progresses the attack
is detected in the next t; + 1. Also, in the Slow-Rate 20 apps
experiments with or without slow-legitimate connections, the
attack could not be initially detected. The reason is that this
time only a small number of apps are initiated. Once again as
the attack progresses, ForChaos is able to detect that anomaly.
The false negative rate was the same across all experiments at
12.5%.

6.1. Discussion of ForChaos Algorithm Results with Related
Studies. Related studies have been briefly discussed in
Section 2 that attempt to perform DDoS detection using
forecasting and/or chaos theory and lyapunov exponents with
other techniques is summarised in Table 7. We observe that
none of them study application layer DDoS attacks but they
instead aim to detect their transport layer equivalents.
ForChaos algorithm combines multiple mathematical
concepts together to perform detection. To the best of
our knowledge, no other study has considered the simple

exponential smoothing algorithm and lyapunov exponents to
detect DDoS attacks. Therefore, we compare our results with
notable studies that make usage of forecasting algorithms or
Lyapunov Exponents.

Detection Rate. Comparing ForChaos algorithm to the related
forecasting algorithms studies we have drawn some inter-
esting results. Regarding training time and window sizes,
ForChaos algorithm managed to get a DR of at least 94.3%
with just 1000 seconds of Training Time and a 30-second
window size as opposed to all the forecasting related studies
[1-4, 6] that reported needing a training time varying
between 3200 seconds ans 86400 seconds and a window size
60 to 600 seconds to make correct predictions. Therefore,
with larger training time and larger window size, the related
studies nearly achieve perfect detection rate but ForChaos
algorithm follows close enough with 94.93-100%.

In chaos theory, lyapunov exponents are used in combi-
nation with neural networks as a replacement to forecasting.
The detection rates from the related studies were between
94.05% and 99.5% against DDoS attacks from DARPA and/or
KDD-99 dataset. Our various experiments proved our algo-
rithm to have better detection rates across both application
layer attack scenarios. Our algorithm has a 94.93-100 %
detection rate.

We strongly believe that the main reason for our algo-
rithm’s high detection rate with less training time and smaller

Wireless Communications and Mobile Computing

window-size is the higher number of features used. The
studies presented use between one and four features while
we use a total of eight features. This of course increases the
complexity of our solution, but we have considered two types
of DDoS attacks that are not by any means similar to each
other. On the contrary, other studies achieve the same result,
making a server unavailable to legitimate requests, by having
a vastly differentiated behaviour. All the proposals presented
in Section 2 are against mainly flooding attacks and not slow-
rate attacks on any network layer. Additionally, the traffic
generated from the Smart Home environment is considered
heterogeneous both in its normal and in its attacking state.

Therefore, we need to monitor more metrics in order to
make accurate classifications about the state of the network,
whether it is under attack or not. Application Layer DDoS
attacks can have vastly differentiated behaviour, always with
respect to time. Therefore, even a large dataset that is going
to be used to train the neural network might not be effective
when detecting a new type of attack in terms of time. It
is essential for the IDS system to be fast and lightweight
so it will not constrain the network. Also it is important
for the IDS System to be trained with a small dataset fast
so it can construct a detection model fast based on the
current behaviour of the system and not just its history as
the application layer attacks exploit the variable of time and
not any protocol rules. Additionally, our algorithm does not
need any attack-based dataset to make correct predictions, it
just needs a small amount of normal behaviour to be able to
detect malicious behaviour as it was illustrated in our results
section.

False Positives. ForChaos algorithm generates FPs only in
slow-rate attacks with the greatest percentage being 5.34%.
The other studies which reported FP rates test their algorithm
against Flooding types of DDoS only, in which our algorithm
does not generate any FPs.

False Negatives. ForChaos algorithm generates a FN rate 12.5
% while the only study to report any FN results is [6], with
only a 5.6%.

Complexity. All of the studies except [1, 3] make use of
ARIMA models or the triple exponential smoothing which
are heavier in memory and process resources than our own
simple exponential smoothing. It is important to take into
consideration that most of the devices deployed in a Smart
Home IoT environment are resource-constrained, so our
detection algorithm is very efficient in comparison to other
proposals. Furthermore, neural networks are known to be
computationally heavy and require a large dataset to be
trained in order to make correct classifications. Artificial
Neural Networks need a large dataset for training so they
can construct their model consisting of inputs, hidden layers
and the outputs, and their connections with each other. In
intrusion detection, the most popular dataset used, which is
KDD99, consists of 4000000 instances. In the simplest ver-
sion of an Artificial Neural Network, which is the Multilayer
Perceptron, the complexity of classification is roughly O(n?)
with only one hidden layer constructed. However, nearly all

1

constructed models of neural networks have more than one
hidden layers so the complexity is increased.

Our algorithm is less complex, as it can be seen from the
algorithm pseudocode in Section 2, with a O(ctf), where ¢
is the time series and ¢ is a constant because the number
of features is pre-determined, eight. Finally, f denotes the
function, in which the forecasting, errors calculation and
lyapunox exponenet takes place. It also does not require
either a large dataset or a long time to be trained in order
to distinguish correctly between legitimate and malicious
behaviour. The training time for it is limited to 1000 seconds.
Given that it receives a new instance for training at every 30
seconds, it needs roughly 33 instances to start making correct
predictions.

To make accurate classification, Artificial Neural Net-
works need to be trained with both normal and abnormal
behaviour in order to distinguish between the two. In
addition, our system, as it has been illustrated throughout
the diverse experiments, is able to detect various intensities
and sizes Application Layer Flooding and Slow-Rate DDoS
attacks. On the other hand, Forecasting algorithms do not
need both normal and abnormal behaviour to detect mali-
cious behaviour. However, the related studies need much
more time than ForChaos. It can be observed from Table 7
that the minimum training time is 3194 seconds and the
maximum training time is 86400 seconds (24 hours).

6.2. Discussion of ForChaos Algorithm Results with Machine
Learning Algorithms. In Intrusion Detection machine learn-
ing algorithms form a popular set of techniques, since
they can discover patterns in data without any sort of
predefined monitored behaviour. Hence, they can perform
anomaly detection of unseen attacks without any type of
signature. However, no studies have been conducted against
Application Layer DDoS attacks in IoT using any Machine
Learning Algorithms. Therefore, we have created a dataset of
Application Layer DDoS attacks in IoT to evaluate a set of
Machine Learning algorithms provided by Weka. The dataset
was consisted of the scenarios we have used for the ForChaos
algorithm’s evaluation. Each raw data scenario was split in 30-
second instances and was labelled according to its behaviour
(either as malicious or benign). All instances were processed
through a feature extraction algorithm to create the dataset.
The final dataset file was fed into Weka with the following
machine learning algorithms used: Bayesian Networks (BN),
Naive Bayesian (NB), Support Vector Machine (SVM), Deci-
sion Tree (DT), Random Forest (RF), and Artificial Neural
Networks with the Multilayer Perceptron architecture (MLP).
Two series of experiments were conducted. In the first series
the dataset was randomised, using the “randomisation” filter
provided by Weka, before being split into training and test
set, with 138 attack instances and 365 normal instances. In
the second series of experiments, duplicated instances were
removed, through removing “duplicates filter” and then it was
randomised through the “randomisation” filter. The dataset
consisted of 125 attack instances and 182 normal instances
after the duplicates removal. For the training process, in both
of the series of experiments, half of the data were used for
training the algorithms to construct the models. The results

12 Wireless Communications and Mobile Computing
TABLE 8: Machine learning algorithms results against application layer DDoS attacks IoT dataset.

Alg (Dataset) DR(%) TP(%) FP(%) FN(%) Prec.(%)
BN(1) 95.6 86.7 1.6 13.3 94.5
NB(1) 92.4 85 5.2 15 83.6
SVM(1) 95.2 76.7 0 13.3 100
MLP(1) 98.4 96.7 3.2 96.7
DT(1) 98.8 96.7 0.5 3.2 98.3
REF(1) 98.8 96.7 0.6 3.2 98.3
BN(2) 92.8 80.7 0 19.3 100
NB(2) 87.6 76.7 5.4 13.3 90.2
SVM(2) 87.6 68.3 0 23.7 100
MLP(2) 96.7 95 2.2 5 96.6
DT(2) 90.2 86.7 7.5 13.3 88.1
RF(2) 94.1 88.3 2.2 11.7 96.4
ForChaos 94.3 875 5.34 12.5 81.82

are presented in Table 8 and discussed below. The dataset
constructed can be made available upon researchers request.

As expected, machine learning algorithms” accuracy was
decreased against Application Layer DDoS attacks as opposed
to DDoS attacks in lower layers. This is due to the attacks’
great similarity to legitimate behaviour and the exploitation
of time factor.

Detection Rate. MLP has performed best in the second series
of experiments while RF performed best in the first series of
experiments. Hence, MLP is more effective against unseen
behaviour than RF is. Since the duplicates were removed
some instances are assessed for the first time. Therefore, MLP
is effective in classifying them correctly with a DR 96.7% as
opposed to RF’s 94.1%. This was expected as neural networks
in general are a very accurate and robust classification
algorithm. Hence, it was preferred in the related studies.
The algorithm that performed worse in terms of detection
rate was Naive Bayesian which was expected. NB assumes
independence of features which especially in our dataset is
not valid.

True Positives. For the TP rates, in the first series of experi-
ments RE, DT, and MLP did best as they had the same rate,
96.7%. They were followed by BN, 86.7% and NB, 85%, and
SVM 76.7%.

In the second series of experiments, MLP performed best
with 95% followed by RF, 88.3%, and DT, 86.7%. MLP is
proved to be robust with its TP rate being dropped by only
1.7% while DT and RF had a higher drop rate. RF performed
better than DT as expected due to RF’s being an “improved”
DT version. Also, this difference in the TP rate across the two
datasets highlights that the tree or forest being constructed is
not as effective as understanding the various types of attack
behaviour and their versatility Hence, they fail in correctly
classifying them.

For the second series of experiments, the BN and NB
methods follow with 80.7% and 76.7% prospectively. From
both series of experiments it is evident that probabilistic
approaches fail to identify the attack instances. This occurs

because probabilistic models need a large dataset to construct
accurate and robust probabilities. Also, the removal of dupli-
cates greatly affects their performance as well.

The worst algorithm for TP was SVM with 68.3%. SVM
performs worse in both of the experiments. This is due to the
small dataset being not enough for the SVM to construct an
effective hyperplane.

False Positives. In both series of experiments the FP rate was
not very high, with the maximum being 75%. Specifically,
for the first series of experiments SVM did not generate any
EPs, followed by DT and RF with only 0.5%. Then MLP
generated a 1% of FP rates followed closely from BN with
1.6%. Lastly, NB generated a 5.2% FP rate. In the second
series of experiments BN and SVM generated no FP rates,
followed by MLP and RF with a 2.2%, NB with 5.4%, and
DT with7.5%. In general, all of the algorithms are quite robust
against generating FP instances. In fact, they were effectively
in understanding when a behaviour is “odd” but still normal.
This is evident through the Flash Crowd Scenarios and the
slow-rate scenarios where slow legitimate connections are
present in the network.

False Negatives. In both series of experiments the FN rate
was relatively high compared to other studies that used ML
algorithms for DDoS attacks in lower layers. Once again, this
highlights the nature of the DDoS attacks in the application
layer which is an exploitation of time makes them hard to
actually detect them.

In the first series of experiments MLP, DT, and RF
performed best with 3.3% FN rate. They were followed by
BN with 13.3%, NB with 15%, and SVM 23.3%. In the second
series of experiments MLP performed best with 5% FN,
followed by RF with 11.7%, DT with 13.3%, BN with 19.3%,
NB with 13.3%, and SVM with 21.7%.

A high FN rate is a major disadvantage for any IDS system
as it means it is unable to identify when an actual attack
occurs. The only algorithm that has an “acceptable” FN rate
in both series of experiments was MLP. In the first series of
experiments RF and DT did well in the first series but their FN

Wireless Communications and Mobile Computing

rate was vastly increased in the second series. This indicates
that their tree and forest is unable to identify the versatility
of the attacks when duplicates are removed. Also, due to the
versatility of the attacks and possibly the dataset not being
large enough, probabilistic approaches (BN and NB) fail to
detect the attacks. Lastly, SVM performs worse as it is unable
to construct an optimal hyperplane between the attack and
the normal class.

Comparison with ForChaos. Through the multiple experi-
ments conducted using ForChaos, the detection rate was
varied at 94.93-100 % depending on the attack scenario. At
its lowest DR rate, ForChaos manages to pass all of the
ML algorithms across the two series of experiments except
MLP. Regarding FP and FN rates ForChaos lacks in terms of
accuracy as it has a highest 5.34% FP rate while the highest FP
rate in ML algorithms was generated by DT, with 75% and
NB with 5.4%. Regarding FN rates, although ForChaos FN
rate (12.5%) is not considered low in general it still is much
lower compared to the BN, NB, and SVM in both series of
experiments. We also have to point out that the ForChaos
algorithm was “trained” using only 33 instances of training
while th ML algorithms needed 252 and 154 instances for the
two experiments. Also, the ML algorithms to be trained need
both attack and normal data while ForChaos only requires
normal data to be trained and effectively distinguish between
legitimate and malicious traffic. In Table 8, we present the
ForChaos minimum values.

7. Conclusion

In this paper, we have presented a novel Application Layer
DDoS attacks detection algorithm using simple exponen-
tial smoothing and chaos theory. Our approach is able to
detect both Flooding and Slow-Rate Application Layer DDoS
attacks in the Smart Home IoT network. Our proposal is fast
and accurate in detecting the attack (10 to 40 seconds after
the attack has started), generating a very low number of false
positives and it does not require a large dataset to construct
the model.

Although, our algorithm proved to have good results
there is always room for improvement. Future directions
include on attempting to reduce the complexity of our
detection method. As already stated, a Smart Home IoT
network, or any IoT network for that matter, is low in memory
and power so the more lightweight the solution the better.
Furthermore, the most false positives generated from our
detection engine were under the slow-rate attack scenarios. In
particular, a possible future direction is to add more features
that have to do more with detecting the slow-rate attack.

Smart Home communicates with many networks and
critical infrastructures such as the Smart Grid and VANETS.
Each network produces its own heterogeneous traffic so
malicious behaviour is going to be different depending on
the type, size, and intensity of the attack and what the
target is. Hence, cross-network attacks are a likely scenario
since so many networks are interconnected together and
communicate with each other on a constant and continuous
way. Therefore, the Smart Home can be a target of attacks

13

from other networks but it can also participate in large-scale
attacks against a Smart City’s critical infrastructure, the Smart
City itself, or even another country’s important assets.

In the future, we aim to protect the communication
between the Smart Home and the Smart Grid. It is essential
for the Smart Home to be protected from external threats
but also from internal threats that aim to abuse its normal
functioning and force it to participate in large-scale DDoS
attacks that aim to threaten the target critical infrastructure
and the Smart City in general.

Data Availability

The data for constructing the Application Layer DDoS
attacks dataset have been generated through simulation tools
techniques, specifically NS3. More details on the actual
implementation of our simulated environment have been
given in Section 4 “NS3 SIMULATION TESTBED.” Thus,
the data generated are purely synthetic and do not put any
individuals’ privacy at risk. Relevant parameters regarding
the data generation as well as the actual parameters used in
simulation have been provided in Section 4. The dataset can
be available upon request from the corresponding author.

Conflicts of Interest

There is no conflict of interest.

References

[1] P. Shinde and S. Guntupalli, “Early DoS attack detection using
smoothened time-series and wavelet analysis,” in Proceedings of
the 3rd Internationl Symposium on Information Assurance and
Security, IAS 2007, pp. 215-220, UK, 2007.

[2] C. Fachkha, E. Bou-Harb, and M. Debbabi, “Towards a Fore-
casting Model for Distributed Denial of Service Activities;”
in Proceedings of the 2013 IEEE 12th International Symposium
on Network Computing and Applications (NCA), pp. 110-117,
Cambridge, MA, USA, August 2013.

[3] P. Winter, H. Lampesberger, M. Zeilinger, and E. Hermann,
“On detecting abrupt changes in network entropy time series;”
in Communication and Multimedia Security lecture Notes in
Computer Science, vol. 7025 of Lecture Notes in Comput. Sci., pp.
194-205, Springer, Heidelberg, Germany, 2011.

[4] A.S. De Moura, “Anomaly detection using Holt-Winters fore-
cast model,” in Proceedings of the IADIS International Confer-
ence WWW/Internet 2011, ICWI 2011, pp. 349-356, Brazil, 2011.

[5] A. Chonka, J. Singh, and W. Zhou, “Chaos theory based
detection against network mimicking DDoS attacks,” IEEE
Communications Letters, vol. 13, no. 9, pp. 717-719, 2009.

[6] S. M. T. Nezhad, M. Nazari, and E. A. Gharavol, “A Novel DoS
and DDoS Attacks Detection Algorithm Using ARIMA Time
Series Model and Chaotic System in Computer Networks,” IEEE
Communications Letters, vol. 20, no. 4, pp. 700-703, 2016.

[7] Y. Chen, X. Ma, and X. Wu, “DDoS detection algorithm based
on preprocessing network traffic predicted method and chaos
theory,” IEEE Communications Letters, vol. 17, no. 5, pp. 1052—
1054, 2013.

14 Wireless Communications and Mobile Computing

[8] X. Wu and Y. Chen, “Validation of chaos hypothesis in NADA
and improved DDoS detection algorithm,” IEEE Communica-
tions Letters, vol. 17, no. 12, pp. 2396-2399, 2013.

[9] Cisco, Bandwidth Consumption and Broadband Reliability
Studying Speed, Performance, and Bandwidth Use in the Con-
nected Home White Paper, 2012.

[10] A. Sivanathan, D. Sherratt, H. H. Gharakheili et al., “Character-
izing and classifying IoT traffic in smart cities and campuses,” in
Proceedings of the 2017 IEEE Conference on Computer Commu-
nications Workshops, INFOCOM WKSHPS 2017, pp. 559-564,
Atlanta, GA, USA, 2017.

[11] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and
DDoS defense mechanisms,” Computer Communication Review,
vol. 34, no. 2, pp. 39-53, 2004.

International Journal of

Rotating

Machinery

The Scientific . 35
WorldJournal —— Sensors BRI~

Journal of
Control Science
and Engineering

sin

Civil Ehgineering

Hindawi

Submit your manuscripts at
www.hindawi.com

2 1 Journal of
Journal of Electrical and Computer
Robotics Engineering

Advances in
OptoElectronics

International Journal of

Modelling & Aerospace

\r‘\tf}m_at\'g;wla\ Journal of Simulation q o
Navigation and in Engineering Engmeerlng

Observation

International Journal of) :
International Journal of Antennas and Active and Passive T
Chemical Engineering Propagation Flectronic Components Shock and Vibration A and Vibration

https://www.hindawi.com/journals/ijae/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/apec/
https://www.hindawi.com/journals/vlsi/
https://www.hindawi.com/journals/sv/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/aav/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/aoe/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/jcse/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/js/
https://www.hindawi.com/journals/ijrm/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/ijce/
https://www.hindawi.com/journals/ijap/
https://www.hindawi.com/journals/ijno/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/
https://www.hindawi.com/

