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Theorems and Unawareness

Spyros Galanis
Department of Economics
University of Rochester
Rochester, NY 14627

Abstract

This paper provides a set-theoretic model
of knowledge and unawareness, in which
reasoning through theorems is employed.
A new property called Awareness Leads to
Knowledge shows that unawareness of the-
orems not only constrains an agent’s knowl-
edge, but also, can impair his reasoning
about what other agents know. For exam-
ple, in contrast to Li (2006), Heifetz, Meier,
and Schipper (2006) and the standard model
of knowledge, it is possible that two agents
disagree on whether another agent knows a
particular event.

1 INTRODUCTION

A common assumption in economics is that agents
who participate in a model perceive the “world” the
same way the analyst does. This means that they un-
derstand how the model works, they know all the rele-
vant theorems and they do not miss any dimension of
the problem they are facing. In essence, agents are as
educated and as intelligent as the analyst and they can
make the best decision, given their information and
preferences. Modeling unawareness aims at relaxing
this assumption, so that agents may perceive a more
simplified version of the world.

The standard model of knowledge without unaware-
ness was introduced into economics by Aumann
(1976). Its simplicity and the fact that it was purely
set-theoretic led to many economic applications. One
of the first attempts to model unawareness is by
Geanakoplos (1989), using non-partitional informa-

tion structures. However, Dekel, Lipman, and Rusti-
chini (1998) propose three intuitive properties for un-
awareness and show that they are incompatible with
the use of a standard state space.1 On the other hand,
Fagin and Halpern (1988), Halpern (2001), Modica
and Rustichini (1994, 1999) and Halpern and Rêgo
(2005) construct syntactic models. Two papers that try
to circumvent the problem and provide a set-theoretic
generalization of the standard model are Li (2006)
and Heifetz, Meier, and Schipper (2006). They de-
part from the standard model in that they use multiple
state spaces, one for each state of awareness. Fein-
berg (2004, 2005), Sadzik (2005), Copic and Gale-
otti (2006), Li (2006b), Heifetz, Meier, and Schip-
per (2007), Filiz (2006) and Ozbay (2006) model un-
awareness in the context of games.

This paper provides a model of knowledge and aware-
ness, using multiple state spaces. In order to illustrate
its main difference with the models of Heifetz, Meier,
and Schipper (2006) and Li (2006), consider the fol-
lowing example, depicted in the figure below. There
are two agents, Holmes and Watson, and two relevant
dimensions or questions: “Did the dog bark?” and
“Was there an intruder?”. Holmes is always aware of
both questions, so his subjective state space is the full
state space, containing the four states(ω1, ω2, ω3, ω4)
on the plane. At stateω4 which specifies that there
was no intruder and no barking, Holmes knows that
there is no intruder because he knows that the dog
did not bark and he is also aware of and knows the

1Ely (1998) argues against one of these properties and sug-
gests a one-agent model which employs a standard state space.
Xiong (2007) proposes using the “knowing whether” rather than
the “knowing that” operator and suggests two different unaware-
ness operators that circumvent the impossibility result ofDekel,
Lipman, and Rustichini (1998).



theorem “no barking implies no intruder”.2 Hence,
PH(ω4) = ω4.

Figure 1

Watson is aware only of the question “Was there an
intruder?” and he is unaware of the theorem “no
barking implies no intruder”. His subjective state
space consists of statesω5 and ω6 on the horizon-
tal axis. The property “Projections Preserve Knowl-
edge” in Heifetz, Meier, and Schipper (2006) and the
construction in Li (2006) prescribe that when Watson
reasons atω6 about Holmes’ knowledge, he projects
PH(ω4) = ω4 to his state space. Therefore, he rea-
sons thatPH(ω6) = ω6 and that Holmes knows atω6

that there is no intruder. We argue that this is restric-
tive. Since Watson is unaware of any theorem that
could lead someone to know whether there is an in-
truder, he should not be able to correctly deduce that
Holmes knows atω6.

In order to accommodate the example so that Watson
reasons that Holmes does not know whether there is
an intruder, we have to abandon projections. Mod-
eling reasoning through theorems does exactly that.
When Watson reasons about Holmes atω6, he is un-
aware of the theorem “no barking implies no intruder”
and therefore he cannot reason that Holmes is aware
of it. As a result,PH(ω6) = {ω5, ω6} and Watson
reasons that Holmes does not know.3

2That is, he considersω3 to be impossible. Specifying
P H(ω3) = {ω3} is irrelevant for the example since this state
never occurs.

3One argument against this reasoning is that Watson could be
aware that Holmes is smarter than him, so that he could always
think that Holmes could know, even though Watson cannot de-
scribe exactly how this can happen. But this argument also sug-

The example shows that unawareness can restrict Wat-
son’s reasoning about Holmes’ knowledge about an
event that both are aware of. This is not captured
in other papers that model unawareness. Moreover,
Watson formally makes no mistake. It is true that
with Watson’s awareness, Holmes would not know
that there is no intruder and Watson can reason only
up to his awareness. Essentially, there are two dif-
ferent views of Holmes’ knowledge. This is formally
captured in this model by creating one knowledge op-
erator for each state of awareness. If Watson is aware
of questionsV1 then his view of Holmes’ knowledge
is KV1 . But Holmes is aware of more questions,V2,
so his view of Holmes’ knowledge isKV2 .4 The re-
lationship between the two is given by the property
Awareness Leads to Knowledge which states that ifV2

containsV1 thenKV2 will contain (even strictly)KV1

when both are projected to the same state space. That
is, higher states of awareness give a more complete
description of one’s knowledge. Heifetz, Meier, and
Schipper (2006) specify one knowledge operatorK
so that there is always one objective view of Holmes’
knowledge.

One can argue that another way of accommodating
the example is with a model that allows false be-
liefs. Such a (syntactic) model is provided by Halpern
and Rêgo (2005), who extend that of Heifetz, Meier,
and Schipper (2006). However, allowing false be-
liefs would have stronger implications - that agents
may make mistakes about any event, not just events
which describe other agents’ knowledge. In order to
allow for unawareness of theorems without allowing
for agents to have false beliefs in general, we retain
the truth property but index knowledge,KV , with a
set of questionsV .

The paper proceeds as follows. Section 2 introduces
the basic single-agent model, while its main results are
presented in Section 3. We conclude in Section 4. The
Appendix contains the proofs and the construction of

gests that Watson can never be certain that Holmes does not know
an event. The reason is that Watson can always think that Holmes
is smarter, more aware and thereforecould know. But this sug-
gests that in an environment with unawareness an agent can never
be certain that another agent does not know an event, which is
clearly not true.

4In other words, Watson is only aware of the formula “Holmes,
up to awarenessV1, knows that there is no intruder”. He is un-
aware of the respective formula whenV2 is substituted forV1.
More importantly, the formula “Holmes knows that there is noin-
truder” is not expressed in this model because knowledge,KV , is
always indexed with a set of questionsV .



the state space for the multi-agent model.

2 THE MODEL

2.1 PRELIMINARIES

Consider a set of questionsQ and denote byAq the
set of possible answers for questionq ∈ Q. The set
Aq can contain one, two, or more answers. The notion
of awareness that will be defined in the following sec-
tions requires that if an agent is aware of a question,
then he is aware of all possible answers. Thefull state
spaceΩ∗ is a subset of the Cartesian product×

q∈Q
Aq.

In the example, the full state space consists of the four
states on the plane,ω1, ω2, ω3 andω4. Given any set
of questionsV ⊆ Q, asubjective state spaceΩ is the
projection ofΩ∗ to the Cartesian product×

q∈V
Aq. For

instance, Watson’s subjective state space consists of
ω5 andω6. It is the projection of the full state space
to the question he is aware of. AneventE is a sub-
set of a subjective state spaceΩ (and givenΩ∗, there
is a unique subjective state spaceΩ satisfying this in-
clusion). DefineVE to be the unique set of questions
such thatE ⊆ Ω ⊆ ×

q∈VE

Aq. If the event is{ω5}, then

V{ω5} is the question “Was there an intruder?”. Define
thenegation ofE to be the complement ofE with re-
spect to the subjective state spaceΩ of which it is a
subset. Denote the complement ofΩ by the empty set
associated with it,∅VΩ

.

Take two sets of questions,V ′ ⊆ V ⊆ Q, and letΩ to
be the subjective state space generated byV , andΩ′ to
be the subjective state space generated byV ′. There
exists a surjective projectionΠV

V ′ : Ω → Ω′. For any
subjective stateω ∈ Ω, ΠV

V ′(ω) is therestriction ofω
to the smaller set of questionsV ′. For instance, the
restriction ofω2 to Watson’s state space isω6. For an
eventE ⊆ Ω, its restriction toV ′ is ΠV

V ′(E). Its en-
largement to the bigger set of questionsV ′′ is denoted
by (ΠV ′′

V )−1(E). The restriction of{ω2, ω3} is the
event{ω5, ω6} while the enlargement of{ω5, ω6} is
{ω1, ω2, ω3, ω4}. To save on notation and only when
it is unambiguous of which state spaceE is a subset,
we abbreviate restrictions and enlargements byEV ′

andEV ′′ , respectively.

2.2 THE FULL STATE SPACE

For a subset of questionsV ⊆ Q0, whereQ0 is the
set of basic questions, the resulting Cartesian prod-
uct of their answers is×

q∈V
Aq.5 DefinemV to be the

question “What subjective states in×
q∈V

Aq does the

agent consider impossible?”. The collection of possi-
ble answers for questionmV is the collection of all
proper subsets of×

q∈V
Aq. The questionsmV capture

the agent’s knowledge of theorems, as shown in Sec-
tion 2.4.

For each questionq, whereq ∈ Q0, or q = mV ,
for V ⊆ Q0, defineaq to be the question “Is the
agent aware of question q?”. This question captures
the agent’s awareness of questions, as shown in Sec-
tion 2.3. In a multi-agent model, it will also capture
the agent’s knowledge about each agent’s awareness.
The possible answers for this type of questions are just
two: “yes” and “no”. Questions of the typeaaq, aaaq,
aa . . . aq are not defined. Justification for this restric-
tion will be given in Section 2.3, where awareness of
questions will be defined.

The set of all questionsQ contains the basic questions
Q0, together with theepistemicquestions of the type
mV , whereV ⊆ Q0, and of the typeaq, whereq ∈
Q0, or q = mV , for V ⊆ Q0. The full state space
Ω∗ is a subset of the Cartesian product of the answers
of all questions inQ: Ω∗ ⊆ ×

q∈Q
Aq. DefineS to be

the union of all state spaces:S =
⋃

{ΠQ
V (Ω∗) : ∅ 6=

V ⊆ Q}. The construction of the full state space in
the multi-agent case is more complicated, as an agent
has to reason about other agents’ reasoning as well.
The details are given in the appendix.

2.3 AWARENESS

The awareness of an agent is given byW , which is
a mapping fromS to sets of questions. For any state
ω ∈ S,

W (ω) =
⋃

{

{q, aq} ⊆ V{ω} : ωaq = “yes”
}

denotes the questions, of which the agent is aware if
ω ∈ S occurs. Ifω specifies “yes” to questionaq,
then the agent is aware of questionq atω. We then as-
sume that he is also aware of questionaq. Questions

5The basic questions describe the physical world but not the
agents’ knowledge or awareness.



of the typeaaq, aaaq, aa . . . aq are not permitted by
the model. The first reason for this restriction stems
for the definition ofW , which specifies that the agent
is aware ofq andaq if ω specifies “yes” to question
aq. Therefore, questionaaq, which would also spec-
ify whether the agent is aware of questionaq, is not
needed. Another reason why these higher orders of
questions would seem necessary is to express that if an
agent is aware of something, then he is aware that he is
aware of it. One of the results of Theorem 2 is exactly
this property and it does not require these higher order
questions. In the multi-agent case however, questions
of the typeaiajakq wherei 6= j andj 6= k arise nat-
urally when common knowledge is defined and thus
will be included in the formal model. The agent’s sub-
jective state space atω ∈ S is Ω(ω) = Ω∗

W (ω), which
is the projection of the full state spaceΩ∗ to the set of
questions he is aware of atω.6

Take an eventE and defineU(E) to be the set of states
ω ∈ S that describe that the agent is unaware of it:

U(E) = {ω ∈ S : VE * W (ω)} .

The agent is unaware of eventE if he is not aware of
all questionsVE that generate this event.

Given a set of questionsV that generate the state space
Ω∗

V , we defineUV (E) = Ω∗
V ∩ U(E) to be the states

of that particular state space, which describe that the
agent is unaware ofE. Hence,UV (E) ⊆ Ω∗

V is an
event. Denote the complement ofUV (E) by AV (E).
It is natural to require thatV be big enough so that
the generated state spaceΩ∗

V can adequately express
E and the agent’s awareness of it. Hence, we first re-
quire thatV should contain all questions inVE . Sec-
ondly, we require that for each questionq ∈ VE, V
contains its respective counterpartaq. Denote this set
of questions byα(VE).7 Then, the condition is that
VE ∪ α(VE) ⊆ V .

2.4 THEOREMS AND IMPOSSIBLE STATES

A theorem of the form “A implies B” can equivalently
be expressed as the impossibility of the state that spec-
ifies “A is true but B is false”. The agent’s knowledge

6If W (ω) = ∅, then defineΩ(ω) = ∅. In that case,Ω(ω) is
not an event and carries no awareness.

7The respective counterpart ofaq is aq itself, since question
aaq is not allowed in the model. Formally, for anyV ⊆ Q,
α(V ) = {aq : q ∈ V, q 6= aq′ for all q′ ∈ Q}

S

{q ∈ V :
q = aq′, q′ ∈ Q}.

of theorems is given by the functionM , which maps
S to subsets ofS. For anyω ∈ S,

M(ω) = {ω′ ∈ Ω(ω) :

{ω′}V ∈ ωmV , {mV } ∪ V ⊆ W (ω)}

denotes the set of subjective states that the agent con-
siders impossible atω, and expresses what theorems
he knows at that state. An elementω′ ∈ Ω(ω) of
the agent’s state space atω is considered impossible
if two conditions are met. Firstly, atω the agent is
aware of questionmV and all questions inV . That
is, he can formulate the Cartesian product×

q∈V
Aq and

ask the questionmV : “What states in×
q∈V

Aq does the

agent consider impossible?”. Secondly, the projection
of ω′ to the set of questionsV is contained inωmV ,
which is the answer thatω specifies for questionmV .
This answer,ωmV , is an event, a subset of the Carte-
sian product×

q∈V
Aq.

2.5 IMMEDIATE PERCEPTION

It is assumed that for some questionsq ∈ Q that the
agent is aware of, he always knows the answer. For
example, questions that describe what the agent sees
or hears. Denote byX the set of all such questions.
The following axiom is assumed throughout the paper.
DefineE to be the set that contains all epistemic ques-
tionsaq ∈ Q for q ∈ Q and anymV ∈ Q, for V ⊆ Q:
E = {aq ∈ Q : q ∈ Q} ∪ {mV ∈ Q : V ⊆ Q}.

Axiom 1. E ⊆ X.

The axiom states thatX contains at least all the epis-
temic questions that belong toQ.

2.6 POSSIBILITY AND KNOWLEDGE

For anyω ∈ S,

P (ω) = {ω′ ∈ Ω(ω) :

ω′
q = ωq, q ∈ W (ω) ∩ X} \ M(ω)

denotes the subjective states the agent considers pos-
sible if ω occurs. More specifically, atω the agent is
aware of questions that belong toW (ω) and his sub-
jective state space isΩ(ω). For the questions inW (ω)
that also belong toX, he knows the answer. This is the
answer thatω specifies for that question. For all other



questions inW (ω) he does not know the answer, but
he can utilize his knowledge of theorems by exclud-
ing the impossible statesM(ω). The following axiom
states that the agent never excludes the true state.

Axiom 2. For all ω∗ ∈ Ω∗, {ω∗}W (ω∗) ∈ P (ω∗).

Axiom 2 implies that for allω ∈ S such thatW (ω) 6=
∅, {ω}W (ω) ∈ P (ω).

Take an eventE and defineK(E) to be the set of
statesω ∈ S that describe that the agent knowsE:

K(E) = {ω ∈ S : VE ⊆ W (ω) and(P (ω))VE
⊆ E} .

The agent knowsE if he is aware of it and in all the
states he considers possible, it obtains. Given a set of
questionsV that generate state spaceΩ∗

V , we define
KV (E) = Ω∗

V ∩ K(E) to be the event of that partic-
ular state space, which describes that the agent knows
E.8

3 RESULTS

The following Theorem generalizes properties
P1, P2 and P3 of the standard model without
unawareness. All the results of this section are valid
for the multi-agent case as well.

Theorem 1.

1. {ω}W (ω) /∈ M(ω) ⇐⇒ {ω}W (ω) ∈ P (ω).9

2. ω′ ∈ P (ω) impliesP (ω′) = P (ω).

The next property is the most important departure
from other models dealing with unawareness, and
stems from the explicit use of reasoning through the-
orems in the construction.

Property 1. Awareness Leads to Knowledge
Suppose axiom 2 holds. For any eventE, if VE ∪
α(VE) ⊆ V2 ⊆ V1, then

• KV2(E) ⊆ (KV1(E))V2 and

• KV2(E) ⊇ (KV1(E))V2 is not necessarily true.

8As with the unawareness operatorUV (E), we impose the
restrictionVE ∪ α(VE) ⊆ V .

9 The following property is also true. SupposeM ⊆ Ω∗

V is
a set of impossible states,ω ∈ Ω∗

V , ω /∈ M andM(ω)V ⊆ M .
Then{ω}W (ω) ∈ P (ω).

The conditionVE ∪ α(VE) ⊆ V2, V1 ensures that the
state spaces generated byV1 andV2 are rich enough to
describe the agent’s knowledge ofE, so thatKV2(E),
KV1(E) are well defined, as explained in Section 2.6.
The conditionV2 ⊆ V1 says that the state space gen-
erated by questionsV1 is richer than that generated
by questionsV2. The property then states that state
spaces which are generated by more questions give a
more complete description of the agent’s knowledge
of an eventE. In other words, if a more complete
description of the worldω specifies that the agent
knows eventE, (ω ∈ KV1(E)), the less complete de-
scription{ω}V2 may specify that he does not know it
({ω}V2 /∈ KV2(E)).

The next theorem verifies properties that have been
proposed in the literature, or are generalizations of
properties of the standard model.

Theorem 2. SupposeVE ∪ α(VE) ∪ VF ∪ α(VF ) ∪
α(V ) ⊆ V . Then:

1. Subjective Necessitation Suppose axiom 2
holds. Then, for allω ∈ Ω∗

V , ω ∈ KV (Ω(ω)).

2. Generalized Monotonicity EVE∪VF
⊆

FVE∪VF
, VF ⊆ VE =⇒ KV (E) ⊆ KV (F ).

3. Conjunction KV (E) ∩ KV (F ) =
KV (EVE∪VF

∩ FVE∪VF
).

4. The Axiom of Knowledge Suppose axiom 2
holds. Then,KV (E) ⊆ EV .

5. The Axiom of Transparencyω ∈ KV (E) ⇐⇒
ω ∈ KV (KW (ω)(E)).

6. The Axiom of Wisdom Suppose axiom 2 holds.
Then, ω ∈ AV (E) ∩ ¬KV (E) ⇐⇒ ω ∈
KV (AW (ω)(E) ∩ ¬KW (ω)(E)).

7. Plausibility UV (E) ⊆ ¬KV (E) ∩
¬KV (¬KV (E)).

8. Strong Plausibility UV (E) ⊆
¬KV (E) ∩ ¬KV (¬KV (E)) ∩ . . . ∩
¬KV (¬KV (. . .¬KV (E))).

9. AU Introspection UV (E) ⊆ UV (UV (E)).

10. KU Introspection KV (UV (E)) = ∅V .

11. Symmetry UV (E) = UV (¬E).



12. AA-Self Reflection ω ∈ AV (E) ⇐⇒ ω ∈
AV (AW (ω)(E)).

13. AK-Self Reflection ω ∈ AV (E) ⇐⇒ ω ∈
AV (KW (ω)(E)).

14. A-Introspection Suppose axiom 2 holds. Then,
ω ∈ AV (E) ⇐⇒ ω ∈ KV (AW (ω)(E)).

The conditionVE∪α(VE)∪VF ∪α(VF )∪α(V ) ⊆ V
only ensures that the eventsUV (E), KV (E), UV (F ),
KV (F ), andUV (UV (E)) are well defined. The first
six properties are generalizations of the six proper-
ties of the standard model. Some of these generaliza-
tions are proposed by Li (2006). Plausibility, Strong
Plausibility, AU Introspection and KU Introspection
are the properties used by Dekel, Lipman, and Rusti-
chini (1998) to show that unawareness precludes the
use of a standard state space. Symmetry, AA-Self Re-
flection, AK-Self Reflection and A-Introspection have
been proposed by Modica and Rustichini (1999) and
Halpern (2001).

4 CONCLUDING REMARKS

In this paper we argue that with unawareness of theo-
rems it is possible that two agents disagree on whether
a third agent knows a particular event. This disagree-
ment does not arise because agents make logical mis-
takes or have false beliefs but because they have dif-
ferent awareness, which implies that they reason dif-
ferently about the knowledge of others. The idea
that differences in awareness may specify different
views of one’s knowledge is captured by formulating,
for each state of awarenessV , a knowledge operator
KV . The relation between knowledge expressed with
awarenessV and knowledge expressed with aware-
nessV ′ is captured by the property Awareness Leads
to Knowledge. These connections between aware-
ness and knowledge are not accommodated in Heifetz,
Meier, and Schipper (2006) and Li (2006). In particu-
lar, Heifetz, Meier, and Schipper (2006) specify an ob-
jective knowledge operatorK, so that there can never
be two different views of one’s knowledge, because of
differences in awareness.

In a companion work we show that unawareness of
theorems has interesting implications. In particular,
one of the results of the standard model of knowledge
is that asymmetric information alone cannot explain

trade. Using the multi-agent version of this model
we show that asymmetric information due to asym-
metric awarenesscan allow for trade. The literature
on no-trade theorems stems from the result of Au-
mann (1976) that if agents have common priors and
their posteriors about an event are common knowl-
edge, then these posteriors must be identical. It is
shown that in an environment with unawareness the
same result is true only for common priors and poste-
riors which are defined on a “common” state space,
which is the state space that not only everyone is
aware of, but it is also common knowledge that ev-
eryone is aware of. However, as the property Aware-
ness Leads to Knowledge suggests, state spaces which
carry more awareness give a more complete descrip-
tion of one’s knowledge and posteriors. In an example
with two agents we show that although the posteriors
defined on this “common” state space are common
knowledge and therefore identical, there still can be
trade because one agent’s higher awareness implies
that his actual posterior is different and beyond the
other agent’s reasoning. Heifetz, Meier, and Schipper
(2006, 2007) also provide examples where trade takes
place. Comparison between the different approaches
is provided in the companion work.

A Appendix

Proof of Theorem 1.

1(a). The proof is immediate from the definition of
P (ω).

1(b). For footnote 9 we have thatω /∈ M =⇒
ω /∈ (ΠV

W (ω))
−1(M(ω)) =⇒ ΠV

W (ω)(ω) /∈

M(ω) =⇒ ΠV
W (ω)(ω) ∈ P (ω).

2. First, we prove the following proposition.

Proposition 1. ω ∈ P (ω1) implies

i) W (ω1) = W (ω).

ii) M(ω1) = M(ω).

Proof.

i) Supposeq ∈ W (ω1). There are two cases.
Either q 6= aq′ for any q′ ∈ Q, or q = aq′

for someq′ ∈ Q. In the first case, we
have thatω1aq = “yes” andaq ∈ W (ω1).
In the second case,ω1aq′ = “yes” and



aq′ ∈ W (ω1). The proof is identical in
both cases, so we just illustrate the first case.
From axiom 1,aq ∈ X ∩ W (ω1). Since
ω ∈ P (ω1), we haveωaq = “yes”, which,
together with{q, aq} ⊆ W (ω1) = Vω im-
plies{q, aq} ⊆ W (ω). The other direction
is immediate sinceVω = W (ω1).

ii) Supposeω2 ∈ M(ω1). Then, there exist
{mV }, V such that{mV } ∪ V ⊆ W (ω1)

andΠ
W (ω1)
V (ω2) ∈ ω1mV . Fromi) we have

W (ω1) = W (ω), which implies{mV } ∪
V ⊆ W (ω). Moreover, from axiom 1 we
have thatmV ∈ X ∩ W (ω1). Thus,ω ∈
P (ω1) impliesωmV = ω1mV and therefore
ω2 ∈ M(ω). The other direction is identi-
cal.

SetsP (ω1) andP (ω) are repeated below:

P (ω1) = {ω2 ∈ Ω(ω1) :

ω2q = ω1q, q ∈ W (ω1) ∩ X} \ M(ω1),

P (ω) = {ω2 ∈ Ω(ω) :

ω2q = ωq, q ∈ W (ω) ∩ X} \ M(ω).

From Proposition 1 we haveW (ω1) = W (ω)
andM(ω1) = M(ω). Sinceω ∈ P (ω1) implies
thatωq = ω1q for all q ∈ W (ω1)∩X = W (ω)∩
X, we have thatP (ω1) = P (ω).

Proof of Property 1.

First we prove that ifV2 ⊆ V1, then(KV2(E))V1 ⊆
KV1(E). Supposeω ∈ (KV2(E))V1 . Then,{ω}V2 ∈
KV2(E), which implies that∅ 6= P ({ω}V2) ⊆
EW ({ω}V2

) andVE ⊆ W ({ω}V2). We have to show
thatVE ⊆ W (ω) and∅ 6= P (ω) ⊆ EW (ω). Firstly,
sinceV2 ⊆ V1 we also haveW ({ω}V2) ⊆ W (ω).
Therefore,VE ⊆ W (ω). Non emptiness ofP (ω) is
guaranteed by axiom 2.

We next show that(P (ω))W ({ω}V2
) ⊆ P ({ω}V2).

Suppose thatω′ ∈ (P (ω))W ({ω}V2
). Then, there ex-

istsω1 ∈ P (ω) such that{ω1}W ({ω}V2
) = ω′. More-

over, ω1 ∈ P (ω) implies thatω1q = ωq for all q ∈
W (ω)∩X, henceω′

q = ωq for all q ∈ W ({ω}V2)∩X.

Next, we need to show thatω′ /∈ M({ω}V2). Sup-
pose thatω′ ∈ M({ω}V2). Then, there existV
and mV such thatV ∪ {mV } ⊆ W ({ω}V2) and
{ω′}V ∈ ωmV . Since {ω1}W ({ω}V2

) = ω′ and
V ∪ {mV } ⊆ W ({ω}V2) ⊆ W (ω), we have that
{ω1}V ∈ ωmV , which implies thatω1 ∈ M(ω) and
ω1 /∈ P (ω), a contradiction. Hence,ω′ /∈ M({ω}V2)
andω′ ∈ P ({ω}V2).

We have shown that(P (ω))W ({ω}V2
) ⊆ P ({ω}V2) ⊆

EW ({ω}V2
), and VE ⊆ W ({ω}V2) ⊆ W (ω).

Therefore, P (ω) ⊆ EW (ω), which implies that
(KV2(E))V1 ⊆ KV1(E). Finally, sinceV2 ⊆ V1, we
also have thatKV2(E) ⊆ (KV1(E))V2 . For the second
bullet, a counter example is provided in the Holmes
and Watson example.

Proof of Theorem 2.

1. Subjective Necessitation First, note
that KV (Ω(ω)) is well defined becasue
W (ω) ∪ α(W (ω)) ⊆ V . Subjective necessi-
tation then follows fromVΩ(ω) = W (ω) and
∅ 6= P (ω) ⊆ Ω(ω).

2. Generalized Monotonicity Suppose ω ∈
KV (E). Then,VE ⊆ W (ω) and∅ 6= P (ω) ⊆
EW (ω). Also, VF ⊆ W (ω) which implies that
EW (ω) ⊆ FW (ω). Therefore,ω ∈ KV (F ).

3. Conjunction We have thatVE ⊆ W (ω) and
VF ⊆ W (ω) if and only if VE ∪ VF ⊆ W (ω).
Also, ∅ 6= P (ω) ⊆ EW (ω) and ∅ 6= P (ω) ⊆
FW (ω) if and only if ∅ 6= P (ω) ⊆ EW (ω) ∩
FW (ω) = (EVE∪VF

∩ FVE∪VF
)W (ω). The lat-

ter equality follows becauseω1 ∈ (EVE∪VF
∩

FVE∪VF
)W (ω) ⇐⇒ {ω1}VE∪VF

∈ EVE∪VF
∩

FVE∪VF
⇐⇒ ω1 ∈ EW (ω) ∩ FW (ω).

4. The Axiom of Knowledgeω ∈ KV (E) implies
VE ⊆ W (ω) and∅ 6= P (ω) ⊆ EW (ω). Axiom
2 implies{ω}W (ω) ∈ P (ω). Hence,{ω}W (ω) ∈
EW (ω), which impliesω ∈ EV .

5. The Axiom of Transparency Supposeω ∈
KV (E). Then, VE ∪ α(VE) ⊆ W (ω) and
∅ 6= P (ω) ⊆ EW (ω). We have to show that
∅ 6= P (ω) ⊆ KW (ω)(E), or thatω1 ∈ P (ω) im-
pliesVE ⊆ W (ω1) and∅ 6= P (ω1) ⊆ EW (ω1).



From Proposition 1, we have thatω1 ∈ P (ω) im-
pliesW (ω1) = W (ω). Hence,VE ⊆ W (ω1) =
W (ω). From Theorem 1 we have thatω1 ∈
P (ω) implies P (ω) = P (ω1). Thus, ∅ 6=
P (ω1) ⊆ EW (ω) = EW (ω1).

Supposeω ∈ KV KW (ω)(E), which implies that
∅ 6= P (ω) ⊆ KW (ω)(E). Hence, for allω1 ∈
P (ω), we have thatω1 ∈ KW (ω)(E), W (ω) =
W (ω1), P (ω) = P (ω1) and ∅ 6= P (ω1) ⊆
EW (ω). Therefore,∅ 6= P (ω) ⊆ EW (ω) and
ω ∈ KV (E).

6. The Axiom of Wisdom Supposeω ∈ AV (E) ∩
¬KV (E). Then,VE ∪ α(VE) ⊆ W (ω) and ei-
ther P (ω) = ∅ or ∅ 6= P (ω) * EW (ω). Ax-
iom 2 implies thatP (ω) 6= ∅, so we just have to
show thatP (ω) ⊆ AW (ω)(E) ∩ ¬KW (ω)(E).
Supposeω1 ∈ P (ω). Proposition 1 implies
that W (ω1) = W (ω). Hence,VE ⊆ W (ω1)
and ω1 ∈ AW (ω)(E). Theorem 1 implies that
P (ω) = P (ω1). Thus P (ω1) * EW (ω) =
EW (ω1) andω1 ∈ ¬KW (ω)(E).

Supposeω ∈ KV (AW (ω) ∩¬KW (ω)(E)). Then,
∅ 6= P (ω) ⊆ AW (ω) ∩ ¬KW (ω)(E). Since
AW (ω)(E) is defined only ifVE ∪ α(VE) ⊆
W (ω), we have thatω ∈ AV (E). It remains
to show thatω ∈ ¬KV (E), or that P (ω) *
EW (ω). We know that for allω1 ∈ P (ω),
ω1 ∈ ¬KW (ω)(E), which implies thatP (ω1) *
EW (ω). SinceP (ω) = P (ω1), we have that
P (ω) * EW (ω).

8. Strong Plausibility By assumption, VE ⊆
V = V¬KV (E) = V¬KV (¬KV (E)) =
V¬KV (¬KV (...¬KV (E))). Supposeω ∈ UV (E).
Then,VE * W (ω) and thereforeV * W (ω).
Hence,ω ∈ ¬KV (E)∩¬KV (¬KV (E))∩ . . .∩
¬KV (¬KV (. . .¬KV (E))).

9. AU Introspection Supposeω ∈ UV (E), Then,
VE * W (ω) and sinceVE ⊆ V = VUV (E),
we haveVUV (E) * W (ω), which impliesω ∈
UV (UV (E)).

10. KU Introspection Supposeω ∈ KV (UV (E)).
Then, W (ω) = V and there existsω1 ∈
P (ω) ⊆ UV (E). From Proposition 1 we have
thatW (ω1) = W (ω) = V . Moreover, the def-
inition of UV (E) implies thatVE ⊆ V . There-

fore, VE ⊆ W (ω1). But ω1 ∈ UV (E) implies
thatVE * W (ω1), a contradiction.

11. Symmetry Follows fromVE = V¬E.

12. AA-Self Reflectionω ∈ AV (E) impliesW (ω)∪
α(W (ω)) ⊆ V and VE ∪ α(VE) ⊆ W (ω).
Therefore,AV (AW (ω)(E)) is well defined and
ω ∈ AV (AW (ω)(E)). For the other direc-
tion, suppose thatω ∈ AV (AW (ω)(E)). Since
AW (ω)(E) is defined only ifVE ∪ α(VE) ⊆
W (ω), we have thatω ∈ AV (E).

13. AK-Self Reflection The proof is similar.

14. A-Introspection Supposeω ∈ AV (E). Then,
VE ∪ α(VE) ⊆ W (ω) ⊆ V and W (ω) =
VAW (ω)(E), so we just have to show that∅ 6=

P (ω) ⊆ AW (ω)(E). That P (ω) is non empty
follows from axiom 2. Suppose thatω1 ∈
P (ω). From Proposition 1, we haveW (ω) =
W (ω1) which impliesVE ⊆ W (ω1) andω1 ∈
AW (ω)(E). For the other direction, suppose that
ω ∈ KV (AW (ω)(E)). This implies thatω ∈
AV (AW (ω)(E)) andω ∈ AV (E) follows from
AA-Self Reflection.

A.1 THE FULL STATE SPACE

This section gives a detailed construction of the full
state space, which is the state space of the analyst or
of a fully aware agent. The construction is similar to
that of a beliefs space: starting from an initial state
spaceS, define each player’s first order beliefs onS,
then each player’s second order beliefs onS and all
other players first order beliefs, and so on. The dif-
ference with this formulation is that instead of beliefs
we have the epistemic questionsaiq and miV , that
describe the awareness of questions and knowledge of
theorems for each agenti.

For any state spaceΩ = ×
q∈V

Aq, let E i(Ω) be the set

of epistemic questions of agenti aboutΩ. This set
will consist of questions of the typeaiq andmiV . In
particular, supposeΩ = ×

q∈V
Aq is generated from a

set of questionsV . The set of all questions of the type
miV1, for all nonempty subsetsV1 of V is

{

miV1 : ∅ 6= V1 ⊆ V
}

. (1)



These questions represent all the theorems that agent
i can potentially have about state spaceΩ.

The set
{

aiq : q ∈ V ∪
{

miV1 : ∅ 6= V1 ⊆ V
}}

(2)

contains all theaiq questions, for all questions inV
and in {miV1 : ∅ 6= V1 ⊆ V }. Denote the union
of the two sets of questions in (1) and (2) byE i(Ω).
An element that gives an answer to all questions in
E i(Ω) describes agenti’s awareness of questions and
knowledge of theorems, about state spaceΩ.

To construct the full state spaceΩ∗, we begin with an
initial state spaceS = ×

q∈Q0

Aq, which is generated

from a finite or countably infinite set of basic ques-
tionsQ0. A state of natures ∈ S gives a detailed de-
scription of the world, but not what agents are aware
of or know. LetΩi

1 = S be agenti’s first order state
space. Questions inE i(Ωi

1) describe agenti’s aware-
ness of questions and knowledge of theorems about
state spaceΩi

1. Define the set of all combinations of
answers for these questions to beT i

1:

T i
1 = ×

q∈Ei(Ω1)
Aq,

which we interpret as the first order type of agenti.
The second order state space for agenti is

Ωi
2 = S ×

j 6=i
T j

1 .

An element inΩi
2 describes the state of natures ∈ S,

together with the awareness of questions and knowl-
edge of theorems aboutS, for all agents besidesi.
The setE i(Ωi

2) contains all the epistemic questions of
agenti about state spaceΩi

2. Note that there are some
questions inE i(Ωi

2) that also belong toE i(Ωi
1). For

example, ifq is a basic question and belongs toQ0,
thenaiq belongs toE i(Ωi

1) ∩ E i(Ωi
2). To avoid any

duplication of questions, we define the second order
type of agenti to be

T i
2 = ×

q∈Ei(Ωi
2)\Ei(Ωi

1)
Aq.

An element inT i
1×T i

2 specifies the questions the agent
is aware of and the theorems he knows in state space
Ωi

2. Accordingly, the third order state space of agenti
is

Ωi
3 = Ωi

2 ×
j 6=i

T j
2 .

Continuing inductively, we define for allk ≥ 1,

Ωi
k+1 = Ωi

k ×
j 6=i

T j
k ,

T i
k+1 = ×

q∈Ei(Ωi

k+1)\Ei(Ωi

k
)
Aq.

Note thatT i
k+1 is non-empty for allk, as new epis-

temic questions are created in each step. DefineT i

to be the Cartesian product
∞
×

n=1
T i

n. An element inT i

contains an answer for all epistemic questions about
agenti. In particular, it gives an answer to only ques-
tions of the typeaiq, or of the typemiV , whereq
can be either a basic question or an epistemic ques-
tion about another agent (e.g.q = ajakaiq′), while
V can contain both basic and epistemic questions
for all other agents. Note that questions of the type
aiai . . . aiq are not created. Summarizing, an element
in T i describes agenti’s awareness of questions and
knowledge of theorems for each successively bigger
state spaceΩk, wherek ≥ 1.

InterpretingT i as the set of all types for agenti, we
can define a full state to specify a state of natures ∈
S, together with a type for each playeri ∈ I. The full
state spaceΩ∗ is then a subset of the Cartesian product
S ×

i∈I
T i:

Ω∗ ⊆ S ×
i∈I

T i.

The set of all questions that generate the full state
spaceΩ∗ is denoted byQ. Formally,VΩ∗ = Q and
Ω∗ ⊆ ×

q∈Q
Aq.
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