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Theorems and Unawareness

1

Spyros Galanis
Department of Economics
University of Rochester
Rochester, NY 14627

Abstract

This paper provides a set-theoretic model
of knowledge and unawareness, in which
reasoning through theorems is employed.
A new property called Awareness Leads to
Knowledge shows that unawareness of the-
orems not only constrains an agent’s knowl-
edge, but also, can impair his reasoning
about what other agents know. For exam-
ple, in contrast to Li (2006), Heifetz, Meier,
and Schipper (2006) and the standard model
of knowledge, it is possible that two agents
disagree on whether another agent knows a
particular event.

INTRODUCTION

tion structures. However, Dekel, Lipman, and Rusti-
chini (1998) propose three intuitive properties for un-
awareness and show that they are incompatible with
the use of a standard state spad@n the other hand,
Fagin and Halpern (1988), Halpern (2001), Modica
and Rustichini (1994, 1999) and Halpern and Régo
(2005) construct syntactic models. Two papers that try
to circumvent the problem and provide a set-theoretic
generalization of the standard model are Li (2006)
and Heifetz, Meier, and Schipper (2006). They de-
part from the standard model in that they use multiple
state spaces, one for each state of awareness. Fein-
berg (2004, 2005), Sadzik (2005), Copic and Gale-
otti (2006), Li (2006b), Heifetz, Meier, and Schip-
per (2007), Filiz (2006) and Ozbay (2006) model un-
awareness in the context of games.

This paper provides a model of knowledge and aware-
ness, using multiple state spaces. In order to illustrate
its main difference with the models of Heifetz, Meier,

A common assumption in economics is that agent@ind Schipper (2006) and Li (2006), consider the fol-
who participate in a model perceive the “world” the Jowing example, depicted in the figure below. There
same way the analyst does. This means that they urre two agents, Holmes and Watson, and two relevant
derstand how the model works, they know all the reledimensions or questions: “Did the dog bark?” and
vant theorems and they do not miss any dimension of\was there an intruder?”. Holmes is always aware of
the problem they are facing. In essence, agents are @gth questions, so his subjective state space is the full
educated and as intelligent as the analyst and they cajtate space, containing the four states, wy, ws, wy)
make the best decision, given their information andon the plane. At state,; which specifies that there
preferences. Modeling unawareness aims at relaxingas no intruder and no barking, Holmes knows that
this assumption, so that agents may perceive a mof@ere is no intruder because he knows that the dog
simplified version of the world. did not bark and he is also aware of and knows the

The standard model of knowledge without unaware-

ness was introduced into economics by Aumann 'Ely (1998) argues against one of these properties and sug-

(1976). Its simplicity and the fact that it was purely gests a one-agent model which employs a standard state. space
set-theoretic led to many economic applications. Oneiong (2007) proposes using the “knowing whether” rathenth

f the first att ts t del . bthe “knowing that” operator and suggests two different vsraw
Y € Tirst attempts 10 model unawareness IS DY eqq operators that circumvent the impossibility resulbDekel,

Geanakoplos (1989), using non-partitional informa-Lipman, and Rustichini (1998).



theorem “no barking implies no intrudet’. Hence, The example shows that unawareness can restrict Wat-
P (wy) = wy. son’s reasoning about Holmes’ knowledge about an
event that both are aware of. This is not captured
in other papers that model unawareness. Moreover,
Watson formally makes no mistake. It is true that
with Watson’s awareness, Holmes would not know
that there is no intruder and Watson can reason only

dog barking?

W, W> up to his awareness. Essentially, there are two dif-

yes O ferent views of Holmes’ knowledge. This is formally
captured in this model by creating one knowledge op-
W, w, erator fqr each state gf awareness. If Watson is aware

no P - PH(w4) of questions; then his view of Holmes’ knowledge

is Ky,. But Holmes is aware of more questions,
so his view of Holmes’ knowledge i&y,.* The re-
lationship between the two is given by the property

w, Y P (w)

yes \mj intruder? Awareness Leads to Knowledge which states the if
containsl; then Ky, will contain (even strictly)Ky,
Figure 1 when both are projected to the same state space. That

is, higher states of awareness give a more complete
Watson is aware only of the question “Was there ardescription of one’s knowledge. Heifetz, Meier, and
intruder?” and he is unaware of the theorem “noSchipper (2006) specify one knowledge operakor
barking implies no intruder”. His subjective state so that there is always one objective view of Holmes’
space consists of stataeg, and wg on the horizon- knowledge.

tal axis. The property “Projections Preserve Knowl-One can argue that another way of accommodating

edge” in Heifetz, Meier, and Schipper (2006) and thethe example is with a model that allows false be-

construction in Li (2006) prescribe that when Watson”efs_ Such a (syntactic) model is provided by Halpern

re;'f}sons e about. Holmes’ knowledge, he projects and Régo (2005), who extend that of Heifetz, Meier,
P7(wi) = wy 10 his state space. Therefore, he rea-, Schipper (2006). However, allowing false be-
sons thatP? (wg) = we and that Holmes knows at ’

liefs would have stronger implications - that agents

that there is no intruder. We argue that this is restnc—may make mistakes about any event, not just events

ive. Since Watson is unaware of any theorem tha%hich describe other agents’ knowledge. In order to

could lead someone to know whether there is an "Nallow for unawareness of theorems without allowing
truder, he should not be able to correctly deduce th

Hol K o aTIor agents to have false beliefs in general, we retain
OIMES KNOWS avg. the truth property but index knowledgé&;y,, with a
In order to accommodate the example so that Watsoset of question¥’.

reasons that Holmes does not know whether there I‘?he paper proceeds as follows. Section 2 introduces

an intruder, we have to abandon projections. Mod-, . o .
. . the basic single-agent model, while its main results are
eling reasoning through theorems does exactly that,

. presented in Section 3. We conclude in Section 4. The
When Watson reasons about Holmesvgt he is un- : . .
o L . ,Appendix contains the proofs and the construction of
aware of the theorem “no barking implies no intruder

and therefore he cannot reason that Holmes is awa@€sts that Watson can never be certain that Holmes does owt kn
an event. The reason is that Watson can always think that &olm

of it. As a result,P”(ws) = {ws,ws} and Watson g smarter, more aware and therefomld know. But this sug-
reasons that Holmes does not krow. gests that in an environment with unawareness an agent gan ne
- be certain that another agent does not know an event, which is
2That is, he considerss; to be impossible. Specifying clearly not true.
PH(w3) = {ws} is irrelevant for the example since this state  “In other words, Watson is only aware of the formula “Holmes,
never occurs. up to awarenes:, knows that there is no intruder”. He is un-
30ne argument against this reasoning is that Watson could baware of the respective formula whé is substituted for/;.
aware that Holmes is smarter than him, so that he could alwayMore importantly, the formula “Holmes knows that there ismo
think that Holmes could know, even though Watson cannot detruder” is not expressed in this model because knowlefige, is
scribe exactly how this can happen. But this argument alge su always indexed with a set of questions



the state space for the multi-agent model. 2.2 THE FULL STATE SPACE

For a subset of questiods C g, whereQ)q is the
set of basic questions, the resulting Cartesian prod-

2 THE MODEL uct of their answers isx A,.> DefinemV to be the
qeV

question “What subjective states ix A, does the
qeVv

agent consider impossible?”. The collection of possi-
ble answers for questiomV’ is the collection of all

proper subsets ofx A,. The questionsnV capture
qeVv

Consider a set of question and F’e”Ote byd, the the agent’'s knowledge of theorems, as shown in Sec-
set of possible answers for questigre ). The set tion 2.4.

A, can contain one, two, or more answers. The notion

of awareness that will be defined in the following sec-For each question, whereq € Qo, or¢ = mV,
tions requires that if an agent is aware of a questionfor V- € Qo, defineaqg to be the question “Is the
then he is aware of all possible answers. Tiilestate ~ agent aware of question q?”. This question captures

space)* is a subset of the Cartesian produst A,. the agent’s awareness of questions, as shown in Sec-
q€Q tion 2.3. In a multi-agent model, it will also capture

In the example, the full state space consists of the fo“lrhe agent's knowledge about each agent's awareness.

states on the planey, ws, ws andwy. Given any set 1 jossible answers for this type of questions are just
of questions” C @), asubjective state spade is the two: “yes” and “no”. Questions of the typeug, aaaq,

projection of2" to the Cartesian produc;,gqu For e aq are not defined. Justification for this restric-

instance, Watson’s subjective state space consists &bn will be given in Section 2.3, where awareness of
ws andwg. It is the projection of the full state space questions will be defined.
to the question he is aware of. AgventFE is a sub-

2.1 PRELIMINARIES

The set of all question§ contains the basic questions

§et of a subject_ive _state spaggand 9“’6_”9*’ t_he_re Qo, together with theepistemicguestions of the type
is a unigue subjective state spdeeatisfying this in- mV, whereV C Qq, and of the typeig, whereq €

clusion). DefineVr to be the unique set of questions Qo, 0r ¢ = mV, for V. C Qy. The full state space

such thatts C 2 © qgf,EAq' If the eventis{ws}, then Q* is a subset of the Cartesian product of the answers
V(s Is the question “Was there an intruder?”. Defineof all questions inQ: Q* C x A,. DefineS to be
thenegation ofE to be the complement df with re- _ 9€Q 9

spect to the subjective state spazef which it is a the union of all state spaces: = U{ILy(€2") : 0 #

subset. Denote the complementbby the empty set vV C Q}_' The constrgctlon of the fFJ" state space In
associated with it)y, . the multi-agent case is more complicated, as an agent

has to reason about other agents’ reasoning as well.
Take two sets of questions C V' C @, and et 10 The details are given in the appendix.

be the subjective state space generatet jgnd)’ to

be the subjective state space generate@byThere 53 ANARENESS

exists a surjective projectioily,, : Q — . For any

subjective stater € Q, TIV,, (w) is therestriction ofw ~ The awareness of an agent is given by, which is

to the smaller set of questios’. For instance, the a mapping fromS to sets of questions. For any state
restriction ofw, to Watson'’s state spacedg. Foran w € S,

eventE C (), its restriction toV’ is IV, (F). Its en- .
largement to the bigger set ofquestigﬁgé is) denoted Wiw) = U {{a: 00} € Viy 2 wag = "yes"}

by (II}")~'(E). The restriction of{ws,ws} is the  denotes the questions, of which the agent is aware if
event{ws,ws} while the enlargement ofws,ws} is w € S occurs. Ifw specifies “yes” to questiong,
{w1,wq,ws,ws}. To save on notation and only when then the agent is aware of questipatw. We then as-

it is unambiguous of which state spaEkis a subset, sume that he is also aware of questian Questions

we abbreviate re_strlctlons and enlargementsERy 5The basic questions describe the physical world but not the
and Ey», respectively. agents’ knowledge or awareness.



of the typeaaq, aaaq, aa ... aq are not permitted by

of theorems is given by the functialf, which maps

the model. The first reason for this restriction stemsS to subsets of. For anyw € S,

for the definition ofi//, which specifies that the agent
is aware ofq andagq if w specifies “yes” to question
aq. Therefore, questionag, which would also spec-
ify whether the agent is aware of questioq, is not

M(w) ={w € Q) :

{W Yy € wny, MVIUV CW(w)}

needed. Another reason why these higher orders @fenotes the set of subjective states that the agent con-
questions would seem necessary is to express that if ajiders impossible at, and expresses what theorems

agent is aware of something, then he is aware that he

lfe knows at that state. An element € Q(w) of

aware of it. One of the results of Theorem 2 is exactlythe agent’s state space atis considered impossib|e
this property and it does not require these higher ordejf two conditions are met. Firstly, at the agent is
questions. In the multi-agent case however, questiongware of questiomnV and all questions ifV/. That

of the typea’a’ a*q wherei # j and;j # k arise nat-

urally when common knowledge is defined and thus

will be included in the formal model. The agent’s sub-
jective state space ate Sis Q(w) = 0y (.)» Which

is the projection of the full state spaf¥ to the set of
questions he is aware of at®

Take an evenk and defind/ (E) to be the set of states
w € S that describe that the agent is unaware of it:

UE)={weS: Vg W(w)}.

The agent is unaware of evehtif he is not aware of
all questions), that generate this event.

is, he can formulate the Cartesian product A, and
qeVv

ask the questiomV': “What states in x A, does the
qeVv

agent consider impossible?”. Secondly, the projection
of ' to the set of question¥’ is contained inv,,y,
which is the answer that specifies for questiomV'.
This answerw,,y, is an event, a subset of the Carte-

sian product x A,.
qeVv

2.5 IMMEDIATE PERCEPTION

It is assumed that for some questiong @ that the
agent is aware of, he always knows the answer. For

Given a set of questioris that generate the state spaceexample, questions that describe what the agent sees

QF, we definely (E) = Qf, N U(E) to be the states

or hears. Denote by the set of all such questions.

of that particular state space, which describe that thdhe following axiom is assumed throughout the paper.

agent is unaware of. Hence,Uy (E) C (), is an
event. Denote the complement©@{; (E) by Ay (E).
It is natural to require that” be big enough so that
the generated state spag¢ can adequately express

DefineE to be the set that contains all epistemic ques-
tionsaq € Qforq € QandanynV € Q, forV C Q:
E={ag€Q:qeQ}u{mV cQ:V CQ}

Axiom 1. E C X.

FE and the agent’s awareness of it. Hence, we first re-

quire thatV” should contain all questions Wg. Sec-
ondly, we require that for each questione Vg, V
contains its respective counterpatt Denote this set
of questions byx(Vg).” Then, the condition is that
Ve U a(VE) cV.

2.4 THEOREMS AND IMPOSSIBLE STATES

A theorem of the form “A implies B” can equivalently

be expressed as the impossibility of the state that spec-

ifies “A is true but B is false”. The agent’'s knowledge

®If W (w) = 0, then defineQ(w) = 0. In that case(w) is
not an event and carries no awareness.

"The respective counterpart af is aq itself, since question
aaq is not allowed in the model. Formally, for afy C Q,
a(V) = {aq : ¢ € V,q # ag' forallq € QY J{qg € V :
g=aq,q € Q}.

The axiom states that’ contains at least all the epis-
temic questions that belong €.

2.6 POSSIBILITY AND KNOWLEDGE
For anyw € S,

P(w) ={w' € Q) :

[

Wq

g € W(w) N X\ M(w)

denotes the subjective states the agent considers pos-
sible if w occurs. More specifically, at the agent is
aware of questions that belong 6 (w) and his sub-
jective state space {3(w). For the questions i/ (w)

that also belong t&, he knows the answer. This is the
answer that specifies for that question. For all other



questions i (w) he does not know the answer, but The conditionVr U a(Vg) C V2, Vi ensures that the
he can utilize his knowledge of theorems by exclud-state spaces generatediyandV; are rich enough to
ing the impossible state® (w). The following axiom  describe the agent’'s knowledge Bf so thatKy, (E),
states that the agent never excludes the true state. Ky, (F) are well defined, as explained in Section 2.6.
Axiom 2. For all w* € 2%, {w* }yy(u) € P(w"). The conditionV, C V; says that the state space gen-
erated by question¥®; is richer than that generated
Axiom 2 implies that for allv € S such thatV (w) # by questionsl,. The property then states that state
0, {wiww) € P(w). spaces which are generated by more questions give a
more complete description of the agent’'s knowledge
of an eventE. In other words, if a more complete
description of the worldv specifies that the agent

knows eventF, (w € Ky, (E)), the less complete de-
K(F)= S: cw and(P CFE}. 1
(E) = fw e Ve € W(w) and(PW))vs < E} scription{w}y, may specify that he does not know it

. . . . ({W}Vz ¢ KVQ(E))'
The agent knowd if he is aware of it and in all the N )
states he considers possible, it obtains. Given a set df'€ next theorem verifies properties that have been
questionsV” that generate state spag,, we define proposed in the literature, or are generalizations of
Ky(E) = QN K(E) to be the event of that partic- Properties of the standard model.
ular state space, which describes that the agent knowiheorem 2. Suppos&/’p U a(Vg) U Vr U a(Vp) U
ES a(V) C V. Then:

Take an eventz and defineK (FE) to be the set of
statesv € S that describe that the agent knows

3 RESULTS 1. Subjective Necessitation Suppose axiom 2
holds. Then, for allv € Q},, w € Ky (Q(w)).

The following Theorem generalizes properties . .

P1,P2 and P3 of the standard model without 2. Generalized ~ Monotonicity  Ey,uy,. <

unawareness. All the results of this section are valid ~ £Vewves VP & Ve = Kv(E) C Kv(F).

for the multi-agent case as well. 3. Conjunction Ky (E) N Ky (F) _
Theorem 1. Ky (Evyuve N Foguvy)-
4. The Axiom of Knowledge Suppose axiom 2
1 {whww) ¢ M) <= {whyw) € PW)?° ge >tpp

holds. ThenKy (E) C Ey.
2. W' € P(w) impliesP(u') = P(w).
' € P(w) implies P (') (@) 5. The Axiom of Transparencyw € Ky (F) <

€ Ky (Kw () (E)).

The next property is the most important departure “ v Ewe) (E)

from other models dealing with unawareness, and 6. The Axiom of Wisdom Suppose axiom 2 holds.
stems from the explicit use of reasoning through the- Then,w € Ay(E)N-Ky(E) <= w €

orems in the construction. KV(AW(w)(E) N =Ky () (E)).
Property 1. Awareness Leads to Knowledge

Suppose axiom 2 holds. For any evéntif Vg U
a(VE) C V, C V4, then

7. Plausibility Uy (E) C -Ky(E) N
-Ky(-Ky(E)).

8. Strong Plausibility Uy (E)
e Ky, (E) C (Kv,(E))y, and -Ky(E) N —-Ky(-Ky(E)) N
Ky (=Ky (...~ Ky(E))).

DN

o Ky, (F) D (Ky, (F))v, is not necessarily true.

8As with the unawareness operati (E), we impose the 9. AU Introspection Uy (E) € Uy (Uy (E)).
restrictionVe U a(Vg) C V.

® The following property is also true. Supposé C Q3 is
a set of impossible states, € Qf,, w ¢ M andM (w)y C M.
Then{w}w(.) € P(w). 11. Symmetry Uy (E) = Uy (—E).

10. KU Introspection Ky (Uy (E)) = Dy .



12. AA-Self Reflectionw € Ay (F) <= w € trade. Using the multi-agent version of this model
Av (Aw () (E)). we show that asymmetric information due to asym-
metric awarenesesan allow for trade. The literature
13. AK-Self Reflectionw € Ay(E) <= w €  on no-trade theorems stems from the result of Au-
Av (Kw () (E))- mann (1976) that if agents have common priors and
their posteriors about an event are common knowl-
edge, then these posteriors must be identical. It is
shown that in an environment with unawareness the
same result is true only for common priors and poste-

riors which are defined on a “common” state space,
only ensures that the everifs (E), Kv (E), Uv(F),  \hich is the state space that not only everyone is

Ky (F), andUy (Uv(E)) are well defined. The first o are of, but it is also common knowledge that ev-

six properties are generalizations of the six prOper'eryone is aware of. However, as the property Aware-

ties of the standard model. Some of these generalizgjosq | eads to Knowledge suggests, state spaces which
tions are proposed by Li (2006). Plausibility, Srong .4y more awareness give a more complete descrip-
Plausibility, AU Introspection and KU Introspection tion of one’s knowledge and posteriors. In an example

are the properties used by Dekel, Lipman, and Rustiy;ii, to agents we show that although the posteriors
chini (1998) to show that unawareness precludes thgafined on this “common” state space are common

use of a standard state space. Symmetry, AA-Self Rz jedge and therefore identical, there still can be
flection, AK-Self Reflection and A-Introspection have ;. ya because one agent's higher awareness implies
been proposed by Modica and Rustichini (1999) andy4; his actual posterior is different and beyond the

Halpern (2001). other agent’s reasoning. Heifetz, Meier, and Schipper
(2006, 2007) also provide examples where trade takes
4 CONCLUDING REMARKS place. Comparison between the different approaches

is provided in the companion work.
In this paper we argue that with unawareness of theo-

rems it is possible that two agents disagree on whetheg Appendix

a third agent knows a particular event. This disagree-

ment does not arise because agents make logical Misyoof of Theorem 1.

takes or have false beliefs but because they have dif-

ferent awareness, which implies that they reason dii’(a). The proof is immediate from the definition of
ferently about the knowledge of others. The idea P(w).

that differences in awareness may specify different

views of one’s knowledge is captured by formulatingl(b). For footnote 9 we have that ¢ M —
for each state of awareness a knowledge operator w ¢ (HL’V(M))‘l(M(w)) = HL’V(M)(w) ¢
Ky. The relation between knowledge expressed with 7)) — Hg/(w) (w) € P(w).

awarenesd’ and knowledge expressed with aware-

nessV’ is captured by the property Awareness Leads 2. First, we prove the following proposition.

to Knowledge. These connections between aware-
ness and knowledge are not accommodated in Heifetz,
Meier, and Schipper (2006) and Li (2006). In particu- ) W(wy) =W (w).
lar, Heifetz, Meier, and Schipper (2006) specify an ob- i) M(w) = M(w).
jective knowledge operatdk’, so that there can never

be two different views of one’s knowledge, because of Proof.

differences in awareness.

14. A-Introspection Suppose axiom 2 holds. Then,
w e Av(E) — wE KV(AW(w)(E))

The conditionVgUa(Ve)UVrUa(Vr)Ua(V) CV

Proposition 1. w € P(w;) implies

i) Suppose; € W(wy). There are two cases.

In a companion work we show that unawareness of Eitherq # aq’ foranyq € Q, orq = aq
theorems has interesting implications. In particular, for someq’ € Q. In the first case, we
one of the results of the standard model of knowledge have thatv;,, = “yes” andag € W(wy).

is that asymmetric information alone cannot explain In the second caseyi,, = “yes” and



aq € W(wy1). The proof is identical in

both cases, so we justillustrate the first casepose thatw’ € M({w}y,).

From axiom 1,a¢g € X N W(w;). Since
w € P(wy), we havew,, = “yes”, which,

together with{q, aq} C W(w;) =V, im-

plies{q,aq} C W(w). The other direction
is immediate sinc®’,, = W (wy).

i) Supposewy; € M(wi). Then, there exist
{mV}, V such that{fmV} UV C W(w)
andﬂy(wl)(wg) € Wiy Fromi) we have

W(wi) = W(w), which implies{mV} U

V C W(w). Moreover, from axiom 1 we

have thatnV € X N W(wy). Thus,w €

P(w) impliesw,,y = w1,y and therefore

wo € M(w). The other direction is identi-

cal.

O

SetsP(w;) and P(w) are repeated below:
P(wl) = {wg € Q(wl) :

Woq = W1q,q € W(wl) N X} \ M(wl),
P(w) = {w2 € Q(w) :
wag =wq,q € W(w)NX}\ M(w).

From Proposition 1 we havl/ (w;) = W(w)
and M (w1) = M(w). Sincew € P(w;) implies
thatw, = wiy forallg € W(wi)NX =W (w)N
X, we have thaf(w;) = P(w).

Proof of Property 1.

First we prove that if; C Vi, then(Ky,(E))y, C
KVl (E) Supposev € (KV2(E))V1' Theni{w}\/b €
Ky,(E), which implies that) # P({w}y,) C
Ew ({w}y,) @dVe C© W({w}y,). We have to show
thatVg C W(w) and() # P(w) C Eyy(.. Firstly,
sinceV, C V) we also haveV ({w}y,) € W(w).
Therefore,Vg C W(w). Non emptiness oP(w) is
guaranteed by axiom 2.

We next show thalP(w))w ({w}y,) S P{w}s).
Suppose that' € (P(w))w ({w}y,)- Then, there ex-
istswy € P(w) such thatfw: by ((u1y,) = w'. More-
over,w; € P(w) implies thatw, = w, for all ¢ €
W(w)NX, hencev, = w, forallg € W({w}y,)NX.

Next, we need to show that’ ¢ M ({w}y,). Sup-
Then, there exist/

and mV such thatV U {mV} C W({w}y,) and
{w'}v € wpyy. Since {wl}w({w}v2) = ' and
Vu{mV} C W{w}ly) € W(w), we have that
{w1}v € wmy, which implies thatv; € M(w) and
wy ¢ P(w), a contradiction. Hencey' ¢ M ({w},)

andw’ € P({M}VQ).

We have shown thdtP(w))w ({w}y,) © PHw},) C
EW({w}V2)v and Vg C W({w V2) - W(w)
Therefore, P(w) C Ew (), which implies that
(Kv,(E))v, € Ky, (E). Finally, sincel, C Vi, we
also have thak(y, (E) C (Ky,(E))y,. For the second
bullet, a counter example is provided in the Holmes
and Watson example.

O
Proof of Theorem 2.

1. Subjective  Necessitation First, note
that Ky (Q(w)) is well defined becasue
W(w) U a(W(w)) C V. Subjective necessi-
tation then follows fromVq,) = W(w) and
) # P(w) C Qw).

2. Generalized Monotonicity Suppose w €
Ky(E). Then,Vg C W(w) and) # P(w) C
Eyw () Also, Ve C W(w) which implies that
EW(w) - FW(w) Thereforew € Kv(F)

3. Conjunction We have thatVy C W(w) and
Vr C W(w) if and only if Vg U Vp C W(w).
Also, ) # P(w) C Ew(, and # P(w) C
Fy () ifand only if § # P(w) € Ewe) N
Fyw)y = (Bvguve N Fopuve)wi(w)- The lat-
ter equality follows because; € (Ey,uy, N
Fyoove)ww) <= {wihpuve € Evgove N
FVEUVF — wip € EW(w) N FW(w)

4. The Axiom of Knowledgew € Ky (E) implies
Ve € W(w) and) # P(w) € Ey(,). Axiom
2 implies{w}y () € P(w). Hence{w}w () €
Eyw (), Which impliesw € Ey .

5. The Axiom of Transparency Supposew €
Ky(E). Then, Vg U o(Vg) € W(w) and
0 # P(w) C Ew(,). We have to show that
0 # P(w) € Ky () (E), or thatw; € P(w) im-
pliesVp C W(wr) andd # P(w1) C Ey(y,)-
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From Proposition 1, we have that € P(w) im-
pliesW(wi) = W(w). Hence Vg C W(w;) =
W(w). From Theorem 1 we have that; €
P(w) implies P(w) P(wy). Thus, 0 #
P(wl) - EW(w) = EW(w1)'

Supposev € Ky Ky () (£), which implies that
0 # P(w) € Ky, (E). Hence, for allw, €

P(w), we have thatv, € Ky () (E), W(w) =

W(w1), Plw) = P(wy) and) # P(wy) C

Eyw (.- Therefore,) # P(w) C Ey,, and
w e Kv(E)

. The Axiom of Wisdom Supposev € Ay (E) N

-Ky(FE). Then,Vg U a(VE) C W(w) and ei-
ther P(w) = D or) # P(w) € Ew(). Ax-
iom 2 implies thatP(w) # @) so Wejust have to
show thatP(w) C AW(w) (E) N ﬁKW(w)(E)
Supposew; € P(w). Proposition 1 implies
that W(w1) = W(w). Hence,Vg C W(w;)
andw; € Ay (,)(£). Theorem 1 implies that
P(w) = P(wi). ThusP(w1) € Ew(,
EW(o.q) andw; € ﬁKW(w)( )

Supposey € Ky (A () N =Ky () (E)). Then,
0 # Pw) C Aw(w) N ﬂKW(w)(E) Since
Aw () (E) is defined only ifVg U a(VE) C
W(w), we have thatv € Ay (E). It remains
to show thatw € —Ky(FE), or that P(w) ¢
Ew (- We know that for allw; € P(w),
w1 € =Ky () (E), which implies thatP(w;) ¢

Ew (.. Since P(w) = P(w1), we have that
w) € Ew (v
. Strong Plausibility By assumption, Vg

-

4 Vorky(B) Voky (~Ky (B))

VﬁKv(ﬁKv(___ﬁKv(E))). Supposev € U\/(E)
Then, Vg ¢ W(w) and thereford” ¢ W ( w)
Hencew € - Ky (E)N—-Ky(-Ky(E))N...N

Ky (=Ky (... Ky(E))).

. AU Introspection Supposev € Uy (FE), Then,

Vi ,@ W(w) and sinceVy C V = VUV(E)’
we haveVy,, gy € W(w), which impliesw €
Uy (Uy (E)).

KU Introspection Supposev € Ky (Uy (F)).
Then, W (w) V and there existsv; €
P(w) € Uy(E). From Proposition 1 we have
thatW(w1) = W(w) = V. Moreover, the def-
inition of Uy (F) implies thatVy C V. There-

fore, Vg C W(w;). Butw; € Uy (F) implies
thatVy ¢ W (w1 ), a contradiction.

. Symmetry Follows fromVg = V_g.

12. AA-Self Reflectionw € Ay (E) impliesW (w)U

a(W(w)) € VandVg U a(Vg) C W(w).

Therefore, Ay (Ay () (E)) is well defined and
w € Ay(Aw(,)(E)). For the other direc-
tion, suppose that € Ay (Ay () (£)). Since
Aw () (E) is defined only ifVg U a(VE) C

W(w), we have thab € Ay (FE).

. AK-Self Reflection The proof is similar.

. A-Introspection Supposev € Ay (E). Then,
Vg U a(VE) C W(w) € V and W(w)
Viy ) (E), SO We just have to show théit £
P(w) € Aw(,)(E). That P(w) is non empty
follows from axiom 2. Suppose that; €
P(w). From Proposition 1, we havd/ (w) =
W (w1) which impliesVg C W(w;) andw; €
Aw (w)(E). For the other direction, suppose that
w € Ky(Aw(E)). This implies thatw €
Ay (Aw()(E)) andw € Ay (E) follows from
AA-Self Reflection.

O

A.1 THE FULL STATE SPACE

This section gives a detailed construction of the full
state space, which is the state space of the analyst or
of a fully aware agent. The construction is similar to
that of a beliefs space: starting from an initial state
spaceS, define each player’s first order beliefs Sn
then each player’s second order beliefs$mand all
other players first order beliefs, and so on. The dif-
ference with this formulation is that instead of beliefs
we have the epistemic questiong; and m'V, that
describe the awareness of questions and knowledge of
theorems for each agent

For any state spac@ = x A, let £1(Q) be the set
qeVv

of epistemic questions of agehtabout(). This set
will consist of questions of the typ&€q andm’V. In
particular, suppos€ = >< A, is generated from a

set of question¥". The set of all questions of the type
miV;, for all nonempty subsefs; of V is

{m'Vi:0£WV CV}. 1)



These questions represent all the theorems that age@bntinuing inductively, we define for all > 1,

1 can potentially have about state spé&te
The set

{aiq:qGVU{miVlz(Z)yéVlgV}} 2

contains all thex’q questions, for all questions i
and in{m‘V;, : ) # Vi C V}. Denote the union
of the two sets of questions in (1) and (2) BY2).

i _ O J
o1 = QO x T,
J#i

A,.

T,i 1=
" NE(L)

X
q€E (Q

Note thatT,iJrl is non-empty for allk, as new epis-

An element that gives an answer to all questions irfémic questions are created in each step. Defihe

EY(Q) describes agenits awareness of questions and
knowledge of theorems, about state sp@ce

To construct the full state spa€k, we begin with an

initial state spaceS = x A,, which is generated
q€Qo
from a finite or countably infinite set of basic ques-

tions Qy. A state of naturg € S gives a detailed de-
scription of the world, but not what agents are awar
of or know. LetQ = S be agent’s first order state
space. Questions ifi'(Q2}) describe agents aware-
ness of questions and knowledge of theorems abo
state spac€)i. Define the set of all combinations of
answers for these questions toe

T) =

X

Ag,
qeE () I

which we interpret as the first order type of agent
The second order state space for agest

b =8 x TV,
2Tt

An element in2}, describes the state of natures S,

to be the Cartesian produck T7. An element inZ"
=1

contains an answer for aIT epistemic questions about
agenti. In particular, it gives an answer to only ques-
tions of the typeaq, or of the typem'V, whereq

can be either a basic question or an epistemic ques-
tion about another agent (e.g. = a’a*a’q’), while

V' can contain both basic and epistemic questions

efor all other agents. Note that questions of the type

a‘a’...a'q are not created. Summarizing, an element
irtl T" describes agents awareness of questions and
nowledge of theorems for each successively bigger

state spac€, wherek > 1.

InterpretingT™ as the set of all types for ageitwe
can define a full state to specify a state of nature

S, together with a type for each playee 1. The full
state spac* is then a subset of the Cartesian product
S x T

i€l
O CSxT.
i€l

The set of all questions that generate the full state

together with the awareness of questions and know(SPace" is denoted byQ. Formally, V. = @ and

edge of theorems abouf, for all agents besides
The setg?(2%) contains all the epistemic questions of
agenti about state spade),. Note that there are some
questions in€*(2%) that also belong t&*(Q¢). For
example, ifq is a basic question and belongs@g,
thena’q belongs tag%(Q%) N £4(Q%). To avoid any

duplication of questions, we define the second ordeF

type of agent to be

Ty =

X Ay
geE (2)\E1 ()

An element inT x T% specifies the questions the agent

is aware of and the theorems he knows in state Spaﬁ\ﬁary Rochester
Q5. Accordingly, the third order state space of agent the 2'006 NBER/I\’IS

is
3=105 x Tj.
J#i

Q" C x A,
qeQ
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