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ABSTRACT
Objective: To describe (1) the relationship between
nutrition and the preterm-at-term infant phenotype, (2)
phenotypic differences between preterm-at-term infants
and healthy term born infants and (3) relationships
between somatic and brain MRI outcomes.
Design: Prospective observational study.
Setting: UK tertiary neonatal unit.
Participants: Preterm infants (<32 weeks gestation)
(n=22) and healthy term infants (n=39)
Main outcome measures: Preterm nutrient intake;
total and regional adipose tissue (AT) depot volumes;
brain volume and proximal cerebral arterial vessel
tortuosity (CAVT) in preterm infants and in term
infants.
Results: Preterm nutrition was deficient in protein and
high in carbohydrate and fat. Preterm nutrition was not
related to AT volumes, brain volume or proximal CAVT
score; a positive association was noted between
human milk intake and proximal CAVT score (r=0.44,
p=0.05). In comparison to term infants, preterm
infants had increased total adiposity, comparable brain
volumes and reduced proximal CAVT scores. There was
a significant negative correlation between deep
subcutaneous abdominal AT volume and brain volume
in preterm infants (r=−0.58, p=0.01).
Conclusions: Though there are significant phenotypic
differences between preterm infants at term and term
infants, preterm macronutrient intake does not appear
to be a determinant. Our preliminary data suggest that
(1) human milk may exert a beneficial effect on
cerebral arterial vessel tortuosity and (2) there is a
negative correlation between adiposity and brain
volume in preterm infants at term. Further work is
warranted to see if our findings can be replicated and
to understand the causal mechanisms.

INTRODUCTION
Preterm nutritional guidelines are based on
consensus expert opinion1 2 rather than
compelling evidence and the ‘optimal’ diet
for long-term health remains unknown.3

Though there is now greater clinical
emphasis on preterm nutrition, protein

deficiency remains a significant risk and our
previously published data in 18 preterm
infants from a single centre indicate that the
preterm diet is low in protein while being
high in carbohydrate and fat.4 Our data also
suggest that preterm macronutrition may
affect later health by demonstrating a positive
association between first week lipid intake in
preterm infants and elevated intrahepatocel-
lular lipid, which in adults is associated with
the cardiometabolic syndrome.5

The preterm phenotype at term is charac-
terised by aberrant adipose tissue (AT) parti-
tioning,6 reduced proximal cerebral arterial
vessel tortuosity (CAVT),7 reduced deep grey
matter volumes8 and reduced cerebral cor-
tical folding.9 The somatic phenotype
observed is a matter of concern as adiposity
is associated with inflammation and reduced
brain volume in the adult population.10

Here, we present prospective observational
data designed to (1) assess the influence of
nutrition on the preterm phenotype at term
age, (2) describe phenotypic differences
between preterm infants at term and term
healthy infants and (3) examine relation-
ships between somatic and brain MRI mea-
surements. The a priori hypotheses of our
study were that (1) preterm macronutrient
intake would be positively associated with
central nervous system phenotype (brain

Strengths and limitations of this study

▪ There have been no previously published studies
regarding the relationship between preterm nutri-
tional intake and MRI outcomes at term age.

▪ This study provides comprehensive ascertain-
ment of preterm nutritional data in parallel with
somatic and brain MRI.

▪ Another strength of this study is the use of term
born infants as comparator for MRI outcomes.

▪ Weaknesses included limited sample size and
the prospective observational nature of the study.
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volume and cerebral vessel tortuosity) and (2) preterm
macronutrient intake would be negatively associated
with internal abdominal (visceral) adiposity. The rela-
tionship between somatic and brain MRI outcomes
represents a post hoc exploratory analysis.

PATIENTS AND METHODS
Following research ethics approval (REC 07/Q0403/46)
and informed parental consent, preterm infants admit-
ted to the Chelsea and Westminster Hospital Neonatal
Unit, London, UK (<32 weeks of gestation) and term
infants (37–42 weeks gestation) on the postnatal ward
were recruited ( January 2007–July 2008). Infants with
congenital anomalies were excluded.

Preterm nutrition and growth
Preterm nutritional practice during the study period has
been previously described.4 In brief, enteral feeds were
started on day 1 with either maternal expressed breast
milk or donor expressed breast milk prior to consider-
ation of the use of formula. Human milk fed infants
received Nutriprem breast milk fortifier (Cow & Gate)
once 150 mL/kg/day of feed volume was reached.
Parenteral nutrition was started on the day of birth.
Weight and head circumference data for the preterm

group are expressed as SD scores (SDS) at birth and at
the time of MRI. Birth length was not routinely mea-
sured during the study period. Macronutrient and
human milk intake was recorded between birth and 34+6

weeks postmenstrual age (PMA) using a nutritional data
capture system designed in-house (Nutcracker, Imperial
College, London, UK). Macronutrient data were
expressed as the difference between recommended daily
intake (RDI) from Tsang et al1 and actual daily intake in
grams or kilocalories/kilogram for the period of either
early (first week of life) or total nutrition (birth and
34+6 PMA).4 Human milk intake is expressed as mL/kg/
day and as percentage of enteral feeds given as human
milk.

MRI
MRI was performed at the Robert Steiner Unit,
Hammersmith Hospital shortly after discharge from the
neonatal unit as previously described4 using a Philips
Achieva system (Best, the Netherlands).

Total and regional AT
Imaging parameters are shown in table 1. Regional AT
depots were classified as total superficial subcutaneous,
total deep subcutaneous and total internal and subdivided
into abdominal or non-abdominal (figures 1 and 2). AT
volumes were calculated as previously described.6 Non-AT
mass was calculated by conversion of AT volume to AT
mass (density of AT of 0.9 g/cm3) and subtraction of the
result from weight at the time of MRI.

Brain volume
T2-weighted images were acquired using a dynamic
sequence of six separate loops of single shot images which
were then registered and reconstructed to produce volu-
metric datasets to eliminate the effects of motion arte-
fact.11 Imaging parameters are shown in table 1. Images
were corrected for radiofrequency inhomogeneity
(http://mipav.cit.nih.gov). BET Brain extraction tool FSL
V.3 (http://www.fmrib.ox.ac.uk/fsl/)12 was then used to
delete non-brain tissue and create binary brain masks
representing intracranial volume.13 A mask of ventricular
and cerebrospinal fluid (CSF) spaces was created using
the thresholding feature of Image J, a java-based image
processing program.14 Brain volume was calculated by sub-
traction of the volume of the ventricular and CSF masks
from the volume of the intracranial mask using ImageJ
(figure 3). Brain MRIs were reported by MR for clinical
purposes and given a score (0–13) adapted from Dyet
et al15 so that, if necessary, pathological findings could be
accounted for.

Proximal CAVT measurement and analysis
An optimised neonatal three-dimensional time of flight
MR angiography sequence was used to assess the anter-
ior, middle and posterior cerebral arteries.7 Imaging
parameters are shown in table 1. Vessel tortuosity was
assessed using a previously validated measurement, dis-
tance factor16 (figure 4), and a CAVT score was deter-
mined as a global measure of tortuosity for each
participant by calculating the mean of the anterior cere-
bral artery, middle cerebral artery and posterior cerebral
artery distance factor.

Illness severity
CRIB II Score was calculated in preterm infants.17

Sample size calculation and analyses
Based on previous work,6 we estimated that recruitment
of 60 preterm and 60 term infants allowed detection of
a 0.5 SD difference between the groups for AT volume
(power 80%, significance 5%). As this was an explora-
tory hypothesis-generating prospective observational
study and given the uncertainty as to what differences
were of clinical importance, additional sample size calcu-
lations were not considered. Data were adjusted for rele-
vant confounding variables where appropriate and are
presented for each of the MR outcomes with a compari-
son of outcomes between the groups. Data were analysed
by comparison of means and tested for normality.
Parametric or non-parametric methods were then
applied accordingly. Within the preterm group, Pearson
correlation was used to investigate the relationship
between nutrition and MR outcomes at term age and
these were limited to the patients in whom both nutri-
tional data and the MRI outcome were successfully
acquired. For a multivariate analysis, a minimum of 10n
participants is considered appropriate, where n is the
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number of covariates. Data are presented as mean (SD)
or mean (95% CI).

RESULTS
Sixty-one infants were recruited during the study (preterm
22, term 39). MR images without motion artefact were
acquired as follows: AT volume (preterm 22, term 39),
brain volume (preterm 19, term 19) and CAVT measure-
ment (preterm 20, term 13). In preterm infants, mean
(SD) CRIB II score was 7.6 (4.2). Twenty-five per cent had
chronic lung disease of prematurity (defined as an oxygen
requirement at 36 weeks PMA), 20% had a patent ductus
arteriosus requiring pharmacological therapy, 5% had ret-
inopathy of prematurity requiring laser therapy and 5%
had a large intraventricular haemorrhage (grade III/IV

Figure 2 T1-weighted axial MRI (abdominal level)

demonstrating the deep and superficial subcutaneous adipose

tissue depots. A clear fascial plane is noted between the

superficial and deep subcutaneous layers (arrows).

Figure 1 Classification of adipose tissue depots into

internal, superficial subcutaneous and deep subcutaneous

depots and further subclassification according to abdominal or

non-abdominal position.
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Papile classification). 0% had necrotising enterocolitis
requiring surgery. Table 2 summarises the baseline and
imaging characteristics and the MR outcomes of the
preterm and term groups.

Preterm nutrition and growth
Growth and nutrition data for the preterm cohort
have been previously published.4 In brief, the mean
(SD) for birth weight and birth head circumference
SDS were: −0.13 (0.78) and −0.64 (1.12). At the time
of MRI, the respective values were −1.39 (0.93) and
−0.86 (1.33). Weight gain was mean (SD) 9.48 (1.73)
g/kg/day between birth and 34+6 weeks. Preterm
macronutrient intakes for both the first week after
birth and for the period from birth until 34+6 weeks
PMA revealed a mean protein deficit (first week:
−1.6 g/kg/day; birth until 34+6 weeks −0.4 g/kg/day)

in the context of excessive carbohydrate and fat
intake. Mean (SD) human milk intakes for these
periods were 36.6 (29.7) and 108.9 (46.6) mL/kg/day,
respectively.

Preterm nutrition and MRI outcomes
Human milk and MRI outcomes
After adjustment for weight at MRI, there was no correl-
ation between early or total human milk intake and
either regional AT volumes or brain volume at term age.
There was no correlation between early human milk
intake and overall CAVT score (r=0.31, p=0.18); however,
there was a weak positive relationship between total
human milk intake and overall CAVT score (r=0.44,
p=0.05) (figure 5). This relationship was also apparent
when total human milk intake was expressed as a per-
centage of total milk intake (r=0.45, p=0.04).

Figure 3 (A) T2-weighted MRI

undergoes RF inhomogeneity

correction and subsequent

creation of a binary brain mask of

intracranial volume (BET brain

extraction tool FSL V.3).

(B) Creation of a mask of the

ventricular and cerebrospinal fluid

spaces using the thresholding

feature of ImageJ V.1.38.

(C) Calculation of actual brain

volume by subtraction of

ventricular and cerebrospinal

volume from intracranial volume.

Figure 4 (A) Axial MR angiogram demonstrating the tracing of a contour along the left middle cerebral artery for 30 mm (black

line) along with a straight line measurement between the start point and the end point of the traced contour (red line). (B) Sagittal

MR angiogram demonstrating the tracing of a contour along the anterior cerebral artery for 30 mm (black line) along with a

straight line measurement between the start point and the end point of the traced contour (red line).
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Macronutrient intake and MRI outcomes
There were no correlations between macronutrient
intake (protein, carbohydrate, fat) and total adiposity
(n=22). After adjustment for PMA, neither early nor
total preterm macronutrient intake was correlated with
brain volume at term age (n=19). There were no rela-
tionships noted between early or total macronutrient
intake and proximal CAVT score (n=20), a summary
measure of tortuosity.

Preterm at term versus term group comparison
Anthropometry
Anthropometric data were adjusted for PMA at the time
of MRI. Preterm infants were smaller, shorter and had
smaller head circumferences than term infants (table 2).

Adiposity
Adipose tissue data were adjusted for PMA at the time of
MRI. Preterm infants had more AT than term infants

Table 2 Birth characteristics, imaging characteristics and MRI outcomes in preterm-at-term and term infants

Preterm-at-term n Term n 95% CI for difference

Birth characteristics

Gestation at birth (weeks) 28.9 (2.8) 22 40.2 (1.20) 39 N/A

Birth weight (kg) 1.26 (0.41) 22 3.40 (0.45) 39 N/A

Gestation at MRI (weeks) 40.2 (3.10) 22 41.4 (1.40) 39 N/A

Anthropometry at the time of MRI

Weight at MRI (kg) 3.01 (2.83–3.19) 22 3.30 (3.17–3.44) 39 0.30 (0.66 to 0.53)*

Length at MRI (cm) 47.9 (46.9–48.9) 22 51.3 (50.5–52.1) 39 3.4 (2.1 to 4.7)**

Head circumference at MRI (cm) 34.2 (33.6–34.7) 22 35.2 (34.8–35.6) 39 1.1 (0.4 to 1.7)**

Somatic MRI outcomes

Total AT (L) 0.782 (0.735–0.829) 22 0.657 (0.623–692) 39 0.125 (0.064 to 0.186)**

Total deep subcutaneous AT (L) 0.033 (0.029–0.036) 22 0.024 (0.021–0.027) 39 0.009 (0.004 to 0.013)**

Total superficial subcutaneous

AT (L)

0.673 (0.631–0.715) 22 0.568 (0.538–0.599) 39 0.105 (0.051 to 0.159)**

Total internal AT (L) 0.076 (0.069–0.083) 22 0.065 (0.060–0.070) 39 0.011 (0.002 to 0.020)*

Deep subcutaneous adipose

abdominal AT (L)

0.017 (0.014–0.019) 22 0.012 (0.011–0.014) 39 0.004 (0.001 to 0.005)**

Deep subcutaneous adipose

non-abdominal AT (L)

0.016 (0.014–0.018) 22 0.012 (0.010–0.013) 39 0.004 (0.002 to 0.007)**

Superficial subcutaneous

adipose abdominal AT (L)

0.133 (0.122–0.145) 22 0.091 (0.083–0.100) 39 0.042 (0.027 to 0.057)**

Superficial subcutaneous

adipose non-abdominal AT (L)

0.540 (0.506–0.574) 22 0.477 (0.452–0.502) 39 0.063 (0.019 to 0.107)**

Internal abdominal AT (L) 0.022 (0.019–0.025) 22 0.018 (0.016–0.021) 39 0.004 (0 to 0.007)

Internal non abdominal AT (L) 0.054 (0.049–0.060) 22 0.047 (0.043–0.051) 39 0.008 (0.001 to 0.005)*

Non-AT mass (kg) 2.49 (2.45–2.54) 22 2.61 (2.57–2.64) 39 0.12 (0.06 to 0.170)**

Brain MRI outcomes

Brain volume (mL) 481.46 (462.29–498.63) 19 474.02 (456.85–491.20) 19 7.44 (18.53 to 33.40)

Cerebrospinal fluid volume (mL) 63.78 (55.06–72.50) 19 31.44 (22.72–40.16) 19 32.34 (19.15 to 45.53)**

Anterior cerebral artery DF 1.38 (1.30–1.46) 20 1.25 (1.19–1.32) 13 0.13 (0.03 to 0.23)*

Middle cerebral artery DF 1.38 (1.32–1.44) 20 1.26 (1.21–1.31) 13 0.12 (0.04 to 0.19)**

Posterior cerebral artery DF 1.46 (1.41–1.50) 20 1.27 (1.24–1.30) 13 0.19 (0.14 to 0.24)**

Proximal CAVT score 1.41 (1.36–1.45) 20 1.26 (1.23–1.29) 13 0.14 (0.09 to 0.20)**

Results are mean (SD) or mean (95% CI).
*p<0.05, **p<0.01.
AT, adipose tissue; CAVT, cerebral arterial vessel tortuosity; DF, distance factor; L, litres; n, sample size.

Figure 5 Relationship between proximal cerebral arterial

vessel tortuosity (CAVT) score at term and total human milk

intake (birth to 34+6 weeks PMA) in preterm infants.
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with expansion of the superficial subcutaneous, deep
subcutaneous and internal AT depots. There was a paral-
lel reduction in non-AT mass (table 2).

Brain volume
Brain MRI scores in the cohort of preterm infants were
mean (SD) 3.6 (2.1). There was no correlation between
brain MRI score and brain volume (r=0.31, p=0.20). At
term age, preterm brain volumes were smaller than
those for term infants (PT 461.74 (436.16–487.32) mL vs
493.74 (476.43–511.05) mL, p=0.05). However, after
adjustment for weight at the time of MRI, a significant
confounding factor, there was no difference between the
groups. Preterm-at-term infants had significantly
increased CSF volume (table 2).

Distance factor and proximal CAVT score
In comparison to term born infants, preterm-at-term
infants had a significant reduction in CAVT (table 2).

Relationships between somatic and central nervous
system MRI phenotype
After adjustment for weight at MRI, there was a signifi-
cant negative correlation noted in preterm-at-term
infants but not in term infants, between deep subcutane-
ous AT volume and brain volume (r=−0.58, p=0.01)
(table 3). There were no statistically significant correla-
tions between regional AT and CAVT score.

DISCUSSION
We identify novel findings of interest including a positive
association between human milk intake and proximal
CAVT, a marker of cerebrovascular development and a
negative correlation between regional adipose tissue
volume and brain volume in preterm infants. The study
also comprehensively characterises the somatic and
brain phenotypes of a cohort of preterm infants at term
in comparison to term born healthy infants and demon-
strates (1) reduced anthropometric measures, (2)
increased total and regional adiposity, (3) reduced non-
adipose tissue mass, (4) comparable brain volumes, (5)
increased CSF volume and (6) reduced proximal cere-
bral arterial vessel tortuosity. We have shown no

relationship with either body composition or brain
volume at term age within the range of macronutritional
intakes received by the preterm infants in this study.
Key study strengths include the comprehensive ascer-

tainment of preterm nutritional data and the assessment
of a number of MR outcomes. Limitations include the
prospective observational design of the study that pre-
clude any inferences regarding causality, and the ‘sub-
optimal’ preterm nutritional intake, a potential
determinant of the observed phenotype. Successful
acquisition of a number of different MR outcomes
without use of sedation was challenging and the motion
artefact meant that not all recruited infants had data of
sufficient quality for analysis. We were unable to recruit
the desired number of infants and recognise that the
study may be underpowered. The preterm infants
studied were relatively healthy, as evidenced by low
illness severity (CRIB II scores), low incidences of
serious neonatal morbidity and low brain MR scores,
factors that may have attenuated any associations with
nutritional intake.
The finding of increased adiposity in preterm infants

confirms our previous work.6 We have previously shown
expansion of the internal abdominal AT compartment in
preterm-at-term infants in comparison to term born
infants in a cohort of preterm infants recruited in 2002–
2003,6 a time at which neonatal nutrition was possibly not
as carefully considered as it is today. This contrasts with
our present data which demonstrate a global expansion of
all AT depots. Whether the differences observed in AT par-
titioning between these studies relate to changes in nutri-
tional practices and the provision of a more calorie dense
diet is a plausible but as yet unproven hypothesis. Other
potential mechanisms, which we have not explored, that
might explain the increased adiposity seen in preterm
infants include weight cycling and inflammation. It is
known that cycling between high-calorie diets and low-
calorie diets (weight cycling)18 results in the preferential
deposition of AT over non-AT mass19 and this phenom-
enon often occurs in preterm infants when enteral feeds
are discontinued because of concerns regarding feed
intolerance and then restarted. Inflammation is also a
known determinant of adiposity20 and it is possible that
the proinflammatory milieu often present in the perinatal
period (maternal chorioamnionitis, use of intravenous
lipid formulations high in omega-6 fatty acids and post-
natal infection/ inflammation) may be relevant to the
observed phenotype.
The nutritional intake received by this cohort of

preterm infants was imbalanced (low in protein and
high in fat and carbohydrate) and suboptimal in relation
to expert consensus recommendations.1 2) In animal
models, protein deficiency is associated with a number
of adverse health outcomes including a reduction in life-
span,21 cardiovascular dysfunction,22 reduced dendritic
spine density23 reduced brain weight24 and reduced cor-
tical blood vessel density25 Human adult data indicate
that dietary protein is an important factor in body

Table 3 Pearson correlations between regional AT

depots and brain volume in preterm-at-term and term

infants adjusted for weight at imaging

Regional AT

depot

Preterm-at-term

(n=19) Term (n=19)

Total AT −0.23, p=0.38 −0.23, p=0.35
Total DSC AT −0.58, p=0.01* −0.05, p=0.85
Total SSC AT −0.22, p=0.39 −0.24, p=0.34
Total I AT −0.09, p=0.73 −0.13, p=0.96
AT, total adipose tissue; IA AT, internal abdominal adipose tissue;
Total DSC AT, total deep subcutaneous adipose tissue, Total I AT,
total internal adipose tissue; Total SSC AT, total superficial
subcutaneous adipose tissue.
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weight regulation.26 Recent data in human ex-preterm
infants suggest an association between early growth pat-
terns and fractional anisotropy, a measure of brain
microstructure.27 Our group has previously shown that
preterm-at-term AT deposition can be attenuated by use
of fortified human milk.28 Whether this translates into a
longer term benefit is unknown.
The negative correlation we show between adiposity in

preterm-at-term infants and brain volume is consistent
with the findings in adults and children10 29 30. This, not-
withstanding preterm-at-term brain volume, was compar-
able to that of term born healthy infants, which is also in
keeping with previously published work.31 This, together
with the finding of maintained head circumference SDS
between birth and time of imaging, may be indicative of
‘brain sparing’ in nutritionally compromised infants.
We have confirmed the finding of reduced proximal

CAVT in preterm infants.7 Though the natural history
and long-term neurodevelopmental sequelae of reduced
CAVT are unknown, epidemiological data indicate that
advancing gestation confers a significant reduction in
risk of fatal adult cerebrovascular disease (occlusive
stroke).32 Our observation that human milk may be pro-
tective despite low macronutrient density suggests that
non-nutritive factors, such as vascular endothelial growth
factor, may play an important role in cerebrovascular
development.
In conclusion, we have extended the characterisation

of the preterm-at-term phenotype. Our data do not
support an association between macronutrient intake
and body composition or brain volume. Other plausible
determinants that remain to be explored are the roles of
micronutrient deficiency, weight cycling, disease severity
and chronic inflammation.
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