

City, University of London Institutional Repository

Citation: Ter-Sarkisov, A. (2012). Computational complexity of elitist population-based

evolutionary algorithms: a thesis presented in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Computer Science at Massey University, Palmerston
North, New Zealand. (Unpublished Doctoral thesis, Massey University, Palmerston North,
New Zealand.)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/21445/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Copyright is owned by the Author of the thesis. Permission is given for
a copy to be downloaded by an individual for the purpose of research and
private study only. The thesis may not be reproduced elsewhere without
the permission of the Author.

COMPUTATIONAL COMPLEXITY OF

ELITIST POPULATION-BASED

EVOLUTIONARY ALGORITHMS

A thesis presented in partial fulfilment of the requirements for

the degree of

Doctor of Philosophy

in

Computer Science

at Massey University, Palmerston North,

New Zealand.

Aram Ter-Sarkisov

2012

Contents

Acknowledgements xi

Abstract xii

List of Publications xiv

Notation xvi

1 Introduction 1

1.1 Introduction to Evolutionary Computation 1

1.2 Motivation . 3

1.3 Main results . 3

1.4 Outline of the thesis . 5

2 Related Work 7

2.1 Schemata Theorem . 7

2.1.1 Criticism of Schemata Theorem 9

2.1.2 Alternative explanation of EA efficiency 9

2.2 Convergence Analysis . 10

2.3 Runtime Analysis . 12

2.3.1 Runtime analysis of (μ+ 1) and (1 + λ) EAs 14

2.3.2 Runtime analysis of (μ+ λ) EAs 15

2.4 Review of tools used for analyzing EAs 16

2.4.1 Fitness-Based Partition and Artificial Fitness Levels 17

2.4.2 Gambler’s Ruin and Coupon Collector’s Problem 17

2.4.3 Potential/Auxiliary Functions 19

ii

2.4.4 Analysis of Typical runs . 20

2.4.5 Structure of individuals in the population 20

2.5 Asymptotic notation . 21

2.6 The No Free Lunch theorem and Analysis of computer algorithms . 22

2.7 Parallel computers . 23

3 The K-Bit-Swap Genetic Operator 24

3.1 Explanation of the K-Bit-Swap Genetic Operator 24

3.2 Algorithms and Experimental setup 26

3.2.1 Problems selected for testing 27

3.3 Setup and Analysis of Statistical Tests 33

3.3.1 Statistical Analysis . 37

3.4 Conclusions . 38

4 Lower Bounds on the Runtime 40

4.1 Main results . 40

4.2 Structure of the population and the recombination pool 41

4.3 Algorithms . 43

4.4 Problems . 44

4.4.1 OneMax . 45

4.4.2 Royal Roads . 45

4.5 Population-Based Evolutionary Algorithms and Distribution of Species 47

4.6 Runtime analysis of (1 + 2)EA1BS solving OneMax Problem 49

4.7 Main model of the (μ+ λ) Algorithm on the OneMax Test Function 51

4.7.1 Runtime analysis of (μ+ λ)EA1BS on the OneMax problem 52

4.7.2 Asymptotic runtime of (μ + λ)EA1BS on the OneMax Test

function . 56

4.7.3 Runtime analysis of (μ+λ)RLS on the OneMax Test Function 57

4.7.4 Asymptotic runtime of (μ + λ)RLS on the OneMax Test

function . 58

4.8 Main model of the (μ + λ) Algorithm on the Royal Roads Test

Function . 59

4.8.1 Runtime analysis of (μ+ λ)EA1BS on the RR Test Function 60

iii

4.8.2 Asymptotic runtime of (μ+λ) EA1BS on the RR Test Function 62

4.8.3 Runtime analysis of (μ+ λ)RLS on the RR Test Function . 64

4.8.4 Asymptotic runtime of (μ+ λ)RLS on the RR Test Function 65

4.9 Numerical results . 66

4.10 Conclusions . 84

5 Upper Bounds on the Runtime 86

5.1 Main results . 87

5.2 The Elitism Levels Traverse Mechanism 88

5.3 Upper bounds on the OneMax test function 91

5.3.1 Simple upper bound on OneMax 92

5.3.2 Refined upper bounds on OneMax 96

5.3.3 Use of < α, α > pair . 101

5.3.4 Generations vs Function evaluations 101

5.3.5 Comparison to earlier results 102

5.4 Upper Bounds on the Royal Roads test function 102

5.4.1 The birth-and-death Markov Chain for Royal Roads 104

5.4.2 Upper bounds on the Royal Roads problem 106

5.4.3 Proof of the lower bound on the probability of advancing to

the next artificial auxiliary level 116

5.4.4 Lower bounds on the probabilities involving η species in

Phase 2 . 119

5.5 Approximation of the quasi-stationary distribution of super-elite

species in Phase 1 . 121

5.5.1 Slow progress rate (Poisson approximation) 123

5.5.2 Fast progress rate (Normal approximation) 123

5.6 Conclusions . 125

6 Summary, Conclusions and Future Work 128

A Results of Numerical Experiments 133

B Concepts from Probability Theory 147

iv

List of Tables

1.1 Canonical Genetic Algorithm . 2

3.1 The K-Bit-Swap Genetic Operator 25

3.2 Pseudocode of EAs in Chapter 3 . 27

3.3 Parameter settings for the problem set. 32

3.4 Benchmark settings . 32

3.5 Estimate of the probability of failure, Equation 3.3 36

3.6 Estimate of the conditional probability of success, Equation 3.4 . . 36

3.7 Estimate of the conditional expectation, Equation 3.5 37

4.1 (μ+ λ)EA1BS . 44

4.2 (μ+ λ)RLS . 44

4.3 Selection Function . 45

4.4 Set of parameters used for OneMax test function 66

4.5 Set of parameters used for the RR test function 67

v

List of Figures

3.1 Comparison of K-Bit-Swap to simple (segment) crossover, 2-point

simple (segment) crossover and Uniform crossover 25

3.2 The global solution for the trivial k-means problem. Darker points

are data, lighter are centroids . 33

4.1 Distribution of the elite species in the population of (μ+ λ) EA1BS

solving OneMax Test Function for μ = λ = 500 and stopped at the

achievement of the global optimum 67

4.2 Distribution of the elite species in the population of (μ + λ)RLS

solving OneMax Test Function for μ = λ = 500 and stopped at the

achievement of the global optimum 68

4.3 Probability of success of (μ+ λ)RLS solving OneMax Test Function. 69

4.4 Numerical runtime estimate for (μ+λ)EA1BS solving OneMax Test

Function for different population sizes. 70

4.5 Numerical runtime estimate for (μ + λ)RLS solving OneMax Test

Function for different population sizes. 71

4.6 Theoretical and numerical estimate for (μ+ λ)EA1BS solving One-

Max Test Function . 72

4.7 Theoretical and numerical estimate for (μ+λ)RLS solving OneMax

Test Function . 73

4.8 Distribution of the elite species in the population of (μ+ λ) EA1BS

solving Royal Roads Test Function for μ = λ = 500 and stopped at

the achievement of the global optimum 74

vi

4.9 Distribution of the elite species in the population of (μ + λ)RLS

solving Royal Roads Test Function for μ = λ = 500 and stopped at

the achievement of the global optimum 75

4.10 Probability of success of (μ + λ) EA1BS solving Royal Roads Test

Function. For n = 32, 64 it is always almost 1 76

4.11 Probability of success of (μ+λ)RLS solving Royal Roads Test Func-

tion.For n = 32, 64 it is always almost 1 77

4.12 Numerical runtime estimate for (μ+ λ)EA1BS solving Royal Roads

Test Function for different population sizes. The positive effect of

the population size measured in the number of generations is obvious. 78

4.13 Numerical runtime estimate for (μ + λ)RLS solving Royal Roads

Test Function for different population sizes. The positive effect of

the population size measured in the number of generations is obvious. 79

4.14 Theoretical and numerical bounds for (μ+ λ)EA1BS solving Royal

Roads Test Function . 80

4.15 Theoretical and numerical bounds for (μ + λ)RLS solving Royal

Roads Test Function . 81

A.1 Conditional probability of success and runtime of (μ+λ)EAKBS vs

(μ+ λ)EA−KBS on the Rosenbrock test function 133

A.2 Conditional probability of success and runtime of (μ+λ)EAKBS vs

(μ+ λ)EA−KBS on the Rastrigin test function 134

A.3 Conditional probability of success and runtime of (μ+λ)EAKBS vs

(μ+ λ)EA−KBS on the Ackley test function 134

A.4 Conditional probability of success and runtime (μ + λ)EAKBS on

the Royal Roads test function. Algorithms with other parameter

settings do not solve the problem in the set number of generations. 135

A.5 Conditional probability of success and runtime of (μ+λ)EAKBS vs

(μ+ λ)EA−KBS on the Four Peaks test function 135

A.6 Conditional probability of success and runtime of (μ+λ)EAKBS vs

(μ+ λ)EA−KBS on the trivial TSP 136

vii

A.7 Conditional probability of success and runtime of (μ + λ)EA−KBS

on the TSP on US Capital Cities. Algorithms with KBS do not

solve the problem in the set number of generations 136

A.8 Probability of success (μ+λ)EAKBS vs (μ+λ)EA−KBS on the trivial

k-means clustering problem . 137

A.9 Probability of success (μ + λ)EAKBS vs (μ + λ)EA−KBS on the

random k-means clustering problem 137

A.10 Histograms of bootstrap estimate of the difference in means for the

Rosenbrock function: probability of failure, conditional probability

of success, runtime . 138

A.11 Histograms of bootstrap estimate of the difference in means for the

Rastrigin function: probability of failure, conditional probability of

success, runtime . 139

A.12 Histograms of bootstrap estimate of the difference in means for the

Ackley function: probability of failure, conditional probability of

success, runtime . 140

A.13 Histograms of bootstrap estimate of the difference in means for the

Royal Roads function: probability of failure, and conditional prob-

ability of success . 141

A.14 Histograms of bootstrap estimate of the difference in means for the

Four Peaks function: probability of failure, conditional probability

of success, runtime . 142

A.15 Histograms of bootstrap estimate of the difference in means for the

TSP on a circle: probability of failure, conditional probability of

success, runtime . 143

A.16 Histograms of bootstrap estimate of the difference in means for the

TSP on US Cities: probability of failure and conditional probability

of success . 144

A.17 Histograms of bootstrap estimate of the difference in means for the

trivial k-means clustering problem: probability of failure, condi-

tional probability of success, runtime 145

viii

A.18 Histograms of bootstrap estimate of the difference in means for the

random k-means clustering problem: probability of failure, condi-

tional probability of success, runtime 146

ix

Für meine Großeltern, Bertha und Edward

x

Acknowledgements

I would like to thank first of all my supervisors, Associate Professor Stephen Mars-

land, Professor Chin-Diew Lai and Doctor Barbara Holland. Without their guid-

ance and support this thesis would never be possible. I would like to thank ev-

eryone who was helping me in many ways throughout more than three past years,

especially my parents, my girlfriend, my girlfriend’s parents and grandparents.

xi

Abstract

Evolutionary Algorithms (EAs) are a modern heuristic algorithm that have proven

efficiency on a large number of real-life problems. Despite the rich history of appli-

cations understanding of both how and why EAs work is lagging far behind. This

is especially true for one of the main components of EAs, that is hypothesized by

many to underlie their efficiency: population.

The first problem considered in this thesis is the introduction of a recombina-

tion operator, K-Bit-Swap (KBS) and its comparison to mainstream operators,

such as mutation and different types of crossover. A vast amount of statistical ev-

idence is presented that shows that EAs using KBS outperform other algorithms

on a whole range of problems. Two problems are selected for a deep theoretical

analysis: OneMax and Royal Roads.

The main problem of modeling EAs that use both population and a pool of par-

ents is the complexity of the structures that arise from the process of evolution. In

most cases either one type of species is considered or certain simple assumptions

are made about fitness of the species.

The main contribution of this thesis is the development of a new approach to

modeling of EAs that is based on approximating the structure of the population

and the evolution of subsets thereof. This approach lies at the core of the new tool

presented here, the Elitism Levels Traverse Mechanism that was used to derive

upper bounds on the runtime of EAs. In addition, lower bounds were found us-

ing simpler assumptions of the underlying distribution of species in the population.

xii

The second important result of the approach is the derivation of limiting dis-

tributions of a subset of the population, a problem well-known in areas such as

epidemiology. To the best of the author’s knowledge, no such findings have been

published in the EA community so far.

xiii

List of Publications

A. Ter-Sarkisov, S. Marsland, and B. Holland. The k-Bit-Swap: A New Genetic Al-

gorithm Operator. In Genetic and Evolutionary Computing Conference (GECCO)

2010, pages 815–816, 2010

A. Ter-Sarkisov and S. Marsland. Convergence Properties of (μ+λ) Evolutionary

Algorithms. In 25th AAAI Conference on Artificial Intelligence, pages 1816–1817,

2011. Special Student Poster Session

A. Ter-Sarkisov and S. Marsland. Convergence Properties of Two (μ + λ) Evolu-

tionary Algorithms on OneMax and Royal Roads Test Functions. In International

Conference on Evolutionary Computation Theorey and Applications (ECTA), pages

196–202, 2011

A. Ter-Sarkisov and S. Marsland. Convergence of a Recombination-Based Elitist

Evolutionary Algorithm on the Royal Roads Test Function. In 24th Australasian

Joint Conference on Artificial Intelligence, pages 361–371, 2011

A. Ter-Sarkisov. Elitism Levels Traverse Mechanism For The Derivation of Upper

Bounds on Unimodal Functions. In WCCI 2012 IEEE World Congress on Com-

putational Intelligence, pages 2161–2168, 2012

A. Ter-Sarkisov and S. Marsland. Derivation of Upper Bounds on Optimization

Time of Population-Based Evolutionary Algorithm on a Function with Fitness

Plateaus Using Elitism Levels Traverse Mechanism. 2012. arXiv:1204.2321. To be

submitted

xiv

xv

Notation

The notation for species, α∗ . . . η is used to denote both the type and the size of

the type, i.e. instead of |α∗| . . . |η|.

α Elite species

α∗ Super-elite species

β Non-elite species with the next-best fitness to α

β∗ Elite species with the next-best auxiliary value to α∗

γ Non-elite species other than β

γ∗ Elite species other than α∗ and β∗

δ Proportion of elite species in the population

δ∗ Proportion of super-elite species in the population

η All non-elite species in the population (both β and γ)

ϕ Probability to swap bits between two parents in the recombination pool

xvi

λ Size of the recombination pool

μ Size of the population

K Number of bins (plateaus of fitness) in a string

M Size of the bin (length of the plateau of fitness)

M Total number of types of infections in the population (only in Section 5.2)

mj Number of species with infection type j (only in Section 5.2)

m1,δ∗α Mean first hitting time of the absorbing state δ∗α

in a Markov Chain

n Length of the string (total number of bits in the string)

N Population size (only in Section 2.3.2)

(μ, λ) Evolutionary Algorithm with population size μ and recombination pool

size λ, no elitism

(μ+ λ) Evolutionary Algorithm with population size μ and recombination pool

size λ using some form of elitism

P (Hj) Probability to select j pairs of elite parents (1BS) or j elite parents (RLS)

into the recombination pool

P (Gk) Probability to evolve at least one higher-ranked offspring given k

improvements so far

P (G0k) Probability to fail to evolve a higher-ranked offspring given k

improvements so far

xvii

P (α) Probability to observe α elite parents in the population (Uniform)

Psel,α Probability to select an elite pair (1BS) or species (RLS)

into the recombination pool given α elite species in the population

Pswap Probability to swap bits between parents using the KBS operator

Pflip Probability to flip bits in a parent using RLS

rv Random variable

S11 The first expression in Phase 1

S11(α
∗) The summand in the first expression in Phase 1

S12 The second expression in Phase 1

S21 The first expression in Phase 2

S22 The second expression in Phase 2

Eτ Mean first hitting time in a Markov Chain

sk kth bin in the string

s whole string

V (sk) Auxiliary value of kth bin in the string (also Vk)

V (s) Auxiliary value of the whole string (also Vs)

xviii

Chapter 1

Introduction

In this chapter, the motivation behind the thesis, its main results and outline are

presented. In addition to this, a short introduction to Evolutionary Computation

gives a quick overview of the area.

1.1 Introduction to Evolutionary Computation

Genetic Algorithms (GAs) were first introduced in 1975 book ‘Adaptation in Nat-

ural and Artificial Systems’ by J. Holland (see [Hol75]) and over time they grew

to become some of the most popular heuristic optimization tools. Although since

then a large number of new evolution-inspired tools has evolved, some of the most

important features are still present in some form. A very general GA exhibits

the routine detailed in Table 1.1. Hereinafter ‘condition fulfilled’ means that a

pre-specified condition, e.g. the number of generations without improvement of

fitness has bee fulfilled.

From now on the term Evolutionary Algorithms (EAs) instead of Genetic Al-

gorithms (GAs) is used. EAs are a more general term that include, besides GA,

Genetic Programming, Evolutionary Strategies (ES), Particle Swarm Optimiza-

tion, Differential Evolution, Estimation of Distribution Algorithms, Covariance of

Matrix Adaptation, Memetic Algorithms.

1

CHAPTER 1. INTRODUCTION 2

1 Generate starting population uniformly at random by producing a set of binary
strings length n, {0, 1}n
loop until condition fulfilled

2 Assign each species a problem-specific fitness value
3 Use a fitness-proportional selection function to select a subset of strings

(not necessarily unique) into a recombination pool
4 Apply a recombination and mutation operators to each (or some) pair of

parents in the recombination pool
5 Replace the old population with a new population of offsprings

end loop

Table 1.1: Canonical Genetic Algorithm

As computational capacity grew, so did EAs’ efficiency, especially on problems

with complicated, poorly-understood landscapes, such as combinatorial problems

that cannot be solved using deterministic approach based on deriving second-order

derivatives. Problems such as Traveling salesman, knapsack, assignment, arise fre-

quently in many areas: transport, biology, chemistry, manufacturing, etc. Also

EAs are used frequently in data mining/machine learning in combination with

classifiers (e.g. to optimize weights in the neural networks).

Gradually, alongside applications, theoretical investigation into efficiency of EAs

on various functions evolved mainly along two lines: convergence (see Section 2.2)

and runtime (see Section 2.3). The former concerns itself mostly with the proba-

bility that the algorithm finds the solution eventually and the rate of search. The

latter studies the expected time, i.e. asymptotic bounds of time until the algo-

rithm finds the solution.

So far all functions considered in the theoretical EA literature are test problems,

i.e. they are either trivial or specially constructed to compare the working of dif-

ferent algorithms. Very generally, the set of problems considered can be divided

into three subsets: ‘easy’ linear problems (e.g. OneMax), problems with plateaus

(e.g. Royal Roads) and trap functions (e.g. TwoMax), i.e. functions with local

optima. A number of toy combinatorial problems, such as vertex-cover, maximum

matching, spanning trees are also frequently considered. Nevertheless, in-depth

CHAPTER 1. INTRODUCTION 3

theoretical analysis of ‘real-life’ problems still seems intractable.

1.2 Motivation

The main motivation and objective of this thesis is to study population-based EAs,

that are often used in the real world applications, and extend numerous findings for

EAs with trivial populations or recombination pools to certain more complicated

algorithms. The evolution of the structure of the population and recombination

pool on various problems is a matter of great interest, and one of the least-studied

problems in the EA community, see e.g. [CHS+09, CTCY12].

Lack of this analysis comes from the fact that the results for simpler algorithms

cannot be directly extended to more complicated ones, because they require a sub-

stantially different approach (see Section 2.3.2).

As a consequence, there is a lack of tools for the analysis of EAs that use both

non-trivial population and recombination pool. One such tool, the Elitism Levels

Traverse Mechanism is presented and applied to two test problems.

Another motivation is to study the performance of the K-Bit-Swap (KBS) opera-

tor, which combines features of both crossover and mutation. Analysis is restricted

to 1BS (i.e. K = 1) in order to compare it to the mainstream Randomized Local

Search (RLS) operator. Since most analysis in EA community is focused on mu-

tation operators, this is a valuable extension.

1.3 Main results

The main results of this thesis can be subdivided into three parts:

• The introduction of a recombination operator K-Bit-Swap that is shown to

have efficiency on various binary-encoded test functions,

CHAPTER 1. INTRODUCTION 4

• Analysis of dynamics and approximation of the structure of the population

of EAs,

• Derivation of upper and lower bounds on the runtime of EAs

Although relevant results are summarized in their respective chapters, some of the

most important ones are listed here:

1. The Elitism Levels Traverse Mechanism is a new tool that is designed to

derive tight upper bounds on elitist EAs solving problems with and without

plateaus. It was applied to the OneMax and Royal Roads, a test problem

with plateaus. The following results evolved from this analysis:

• proof that sub-elite species influence the performance of the algorithm

• measured in the number of generations the order of convergence on

OneMax is O(μn logn
λ

) so the performance is improved if run on parallel

computers.

• derivation of the upper bound on an arbitrary plateau function with K

plateaus of the same length M . For a specific case of a Royal Road-type

function with K = M =
√
n this bound turns out to be O(μn

3
2 log2 n
λ

),

which is a big improvement from the previous results. This is a strong

argument in favor of using population-based algorithms for such func-

tions.

• when solving functions with plateaus, the probability of adding a super-

elite species (the meaning of this term is explained in the Chapter 5) is

lower-bounded by 1− e−
c
8 + o(1), c is a small constant.

2. In addition to the Elitism Levels Traverse Mechanism, the following prop-

erties of population-based EAs solving functions with plateaus have been

derived:

CHAPTER 1. INTRODUCTION 5

• a birth-and-death Markov chain for the worst case, when no more than

one (super-)elite species can be added or removed from the population

• an infinite-population approximation of the stationary distribution of

(super-)elite species. It turns out to be distributed as Poisson for small

improvement rates and Normal for large improvements rates.

3. Assuming Uniform distribution of elite species in the population one can

derive lower bounds on runtime.

• for (μ+ λ)EA with 1BS solving OneMax problem it is of Ω(n logn
λ

), for

(μ+ λ) Randomized Local Search (RLS) it is also Ω(n logn
λ

)

• for (μ+λ)EA with 1BS solving Royal Roads problem it is of Ω(n
3
2 log2 n

λ
),

for (μ+ λ) Randomized Local Search (RLS) it is Ω(n
3
2 logn
λ

)

• bounds for (μ+λ)EA with 1BS are asymptotically tight up to the order

of μ

• numerical results confirm the Uniform distribution assumption of the

upper-bound on the probability of sampling of the elite species for Royal

Roads, and reject it for OneMax

4. The results of computational experiments show the benefit of the K-Bit-Swap

operator on various binary-encoded function compared to mainstream ge-

netic operators, such as crossover, mutation, RLS, especially on Royal Roads,

OneMax, k-means clustering, Rosenbrock, Ackley, Rastrigin test functions.

Relevant statistical models are presented to prove this.

1.4 Outline of the thesis

In Chapter 2 past research relevant to this thesis is presented. It focuses mostly

on results for population-based EAs in the past ten years. Also a quick review of

mathematical tools used in this thesis is given.

CHAPTER 1. INTRODUCTION 6

In Chapter 3 the K-Bit-Swap operator is presented together with a large num-

ber of numerical results and statistical analysis. The results confirm the benefit of

using KBS on a large number of functions.

In Chapter 4 the first attempt to analyze two algorithms is made (one using 1-

Bit-Swap (1BS), the other RLS) on OneMax and Royal Roads test functions by

making assumptions about the population structure. It is shown, both theoreti-

cally and numerically, that this approach yields the lower bound on the runtime of

the algorithms. A large number of numerical results and some statistical analysis

are presented that prove the validity of the models, distribution of elite species

and the gap between theoretical and numerical results.

Chapter 5 presents a number of important results coming from the population

partitioning approach. The Elitism Levels Traverse Mechanism is presented and

a lower bound on the probability to add a (super-)elite species is derived. Using

this tool, an upper bound on the runtime of the (μ+ λ)EA1BS algorithm on One-

Max function is derived. A birth-and-death Markov chain is developed to use the

Elitism Levels Traverse Mechanism to study a function with plateaus and derive

the upper bound on the runtime. Additionally, approximations of stationary dis-

tributions of super-elite species are derived, perhaps for the first time in theoretical

EA community.

The thesis concludes with the discussion of the results and possible extensions

to them.

Chapter 2

Related Work

This chapter gives an in-depth review of past work in the analysis of EAs, focusing

on runtime analysis.

2.1 Schemata Theorem

Most of this thesis is dedicated to answering the question ‘how’, i.e. how the EA

works on some function. The earliest theoretical results on binary-encoded algo-

rithms are aimed more at answering the question ‘why’, i.e. why EAs work. Some

of the earliest findings in [Hol75, Gol89, MFH92, Mit96] that were summarized in

[RR03], are dedicated to schemata theorem and building block hypothesis (BBH).

A schema H is a section of a string (substring) of type H = x ∗ ∗ ∗ ∗y (in this case

length 6) where defining bits x, y ∈ {0, 1}, ∗ means ‘don’t care’, so e.g. substring

111111 would be an instance of H if x = y = 1. That is, a schema can be seen as

a type of a template of genetic data.

Quite obviously, not all schemata are the same, since some templates have a

higher-than-average fitness. Early theory states that EAs that use genetic op-

erators such as biased selection, crossover and mutation implicitly estimate fitness

of schemata (this phenomena is known as ‘implicit parallelism’, since schemata

are processed in parallel) by explicitly recombining genetic information between

7

CHAPTER 2. RELATED WORK 8

parents (see [Mit96], Chapter 1). To estimate the dynamics of schemata in the

population, the following expression known as schemata theorem was derived. If

H is a schema as defined above and N(H, t) is the number of instances of schema

H, then the change in the expectation of the number of instances over 1 time unit

is (see in [RR03], Chapter 3.2 and [Gol89], Chapter 2)

E[N(H, t+ 1)] = N(H, t)r(H, t)

where r(H, t) is the ratio of fitness of the schema (measured as the average fitness

of all strings containing H to the average fitness of the population, denoted f(H)

f̄
).

If a certain schema H has some above-average fitness f(H) = f̄ + cf̄ = (1 + c)f̄

for some constant c, this expression can be solved recursively:

E[N(H, t+ 1)] = N(H, 0)rt(H, t) = N(H, 0)(1 + c)t+1

that is, the number of instances grows geometrically (see [Gol89], Chapter 2). If

two other operators, crossover and mutation, are added, the following expression

is obtained:

E[N(H, t+ 1)] ≥ N(H, t)r(H, t)

(
1− δ(H)

l − 1
Pc − o(H)Pm

)

= N(H, 0)(1 + c)t+1

(
1− δ(H)

l − 1
Pc − o(H)Pm

)

The expression in the brackets is the probability of survival of the schema, which

is intuitively inverse-proportional to its length. Pc is the probability of crossover

(Pc = 1 means it is applied to every pair of parents in the recombination pool),

δ(H) is the defining length (distance, measured in bits, between the defining bits,

in the example above δ(H) = 6 − 1 = 5), l is the length of the string. Pm is the

probability of flipping a bit, o(H) is the order of schema (the number of defining

bits, in the example above o(H) = 2).

CHAPTER 2. RELATED WORK 9

2.1.1 Criticism of Schemata Theorem

A number of counterexamples to the schemata theorem have been suggested, e.g.

a deceptive function (see [Gol89], Chapter 2 and [Mit96], Chapter 4). In [RR03]

both numerical and analytical evidence was presented, as well as a compilation of

counterexamples to the schemata theorem and implicit parallelism. For example,

they argue that the focus on the number of instances of schemata are misplaced

and in fact the theorem extends to arbitrary subsets of fitness landscape. This

suggestion was made already in [Vos93, Vos99]. In addition to that, in [Vos99]

it was shown that changing the mutation rate by a tiny value leads to a serious

change in EA’s trajectory.

In the next subsection a brief introduction to alternative theories of EA efficiency

is provided, focusing on the idea of Markov chains.

2.1.2 Alternative explanation of EA efficiency

As an alternative to schemata theorem and BBH a number of theories have been

suggested, among them Statistical mechanics (see [PB94, RS96]) and generative

fixation hypothesis (see [Bur09]). In the remainder of the Section the focus is on

the Markov Chains-based explanation, as it is the closest to the ideas discussed in

this thesis.

Instead of analyzing the string structure, in [NV92] it was suggested to use a

function G(x), a sampling distribution from current population x to determine the

expected drift or direction of the population in the next generation. That is, G(x)
is a probabilistic model that shows the drift of the population. The next task was

to express the probability to obtain the population j from the current population

i:

Qi,j = n!
r−1∏
y=0

{
M
(

Fφi

|Fφi|

)
y

}zy,j

zy,j!

CHAPTER 2. RELATED WORK 10

This equation is an exact transition matrix between populations i, j: if there exists

a string length l, the total number of all possible strings is r, the populations size

n, the total number of populations is N =
(
n+r−1
r−1

)
. The number of occurrences of

string y in population Pj is zy,j, M is a set of crossover and mutation operators,

φi is an incidence vector of population i (number of strings y in population i), Fφi

|Fφi|
is the probability of selection of y for recombination.

To apply Q, if there exists probability measure at generation k πk over the set

of populations, then

πk = π0Q
k

and

lim
k→∞

πk = π

jth element of the vector π is the limiting proportion of time the algorithm has

population Pj. Due to ergodicity of Q, no entries in this vector are equal to

0. Nevertheless, if the population size is infinite (n → ∞), there exists a fixed

collection of states (populations) π∗ such that

π∗ = lim
n→∞

πn

Details of the derivation of these equations as well as properties of π∗ can be found

on [NV92, Vos93, Vos99], and an overview of approaches is in [RR03].

2.2 Convergence Analysis

Since the early 90s, attempts have been made to apply Markov chains and other

probabilistic tools to model EAs, i.e. to find how they work (rather than why).

Some of the earliest results can be found in [Rud94b, Rud94a, Rud96, Rud98],

where a number of convergence rates were derived. In [Rud94a] it was proven that

a canonical GA (see Table 1.1) with fitness-proportional selection, crossover and

mutation does not converge asymptotically to the global optimum of a binary-

encoded fitness function due to the ergodicity of the underlying Markov Chain,

but the elitist one does (although later in [DJW02] it was proved that the upper

CHAPTER 2. RELATED WORK 11

bound of runtime on any binary-encoded problem is O(nn), for the explanation of

big-O notation see Section 2.5).

Test problems used in these proofs include a parabolic Sphere function ([Rud94b])

or some very generally defined functions, such as bounded from below([Rud96]) or

convex functions ([Rud97]). Some of the important results from these publications

are presented below.

In [Rud94a] the framework for analyzing EA convergence was presented. It is

based on the transition matrix P, defined on all possible populations (exactly like

in [NV92]), which is a matrix product of three stochastic matrices:

P = C ·M · S

where C is the one-step transition of EA population using crossover, M - muta-

tion operator and S - selection. The author argues that P is ergodic, therefore

regardless of the initial distribution all states (populations) have a nonzero limiting

probability. Thus, an EA without elitism never converges to the global optimum

(it finds and loses it an infinite number of times).

This argument is extended to EAs that maintain the best solution (elitism), and

it is proven they are guaranteed to converge to the global solution. The question

that naturally arises is the convergence rate, i.e. the rate at which the algorithm

converges to the solution.

In [Rud94b] a non-elitist (1, λ) algorithm (i.e. the one that does not keep the

best solution found so far) solving a Sphere function was considered. First, con-

ditions are derived under which it converges to the global optimum. Secondly,

expression for the expectation of the maximal relative improvement (V (λ)):

E[V (λ)] =

(
λ− 1

λ+ 1

)2

(2.1)

CHAPTER 2. RELATED WORK 12

The results are true for functions with convex region around the global optimum.

Also in [Rud96] it was proven for general search spaces (both binary-encoded and

Euclidean) that if there exists Aε, the set of ε− optimal states and the transition

kernel from non-optimal to optimal states in 1 generation K(x,Aε) ≥ δ > 0, then

regardless of initialization an EA converges as t → ∞ almost surely since

Kt+1(x,Aε) = 1− (1− δ)t+1 (2.2)

P (Xt+1 ∈ Aε) → 1 (2.3)

(by the Borel-Cantelli Lemma)

A large number of these and other important results (e.g. [Suz95, HK99]), con-

cerning mainly convergence rates on general functions, convergence probabilities

and selection of parameters were summarized in [Rud98, Rud99].

The remainder of this Chapter is dedicated to the overview of EA runtime anal-

ysis, which is more relevant to this thesis, and is an answer to the question ‘how

long it takes EAs to find solutions to different problems’.

2.3 Runtime Analysis

This area of EA analysis evolved in the late 90s. It concerns itself predominantly

with the asymptotic properties of EAs (this term and its benefit is explained in

great detail in Section 2.5), first of all upper and lower bounds on the expected

runtime of the algorithm, understood in the same sense as the mean first hitting

time in a Markov chain (see Appendix B). Tools and approaches in this area are

summarized in [OHY07], some of them are:

1. (1+1) EA with mutation or Randomized Local Search Algorithm (the former

flips each bit in the string with some probability, the latter an exact number

of bits),

2. mutation rate 1
n
is the predominant genetic operator (or flipping exactly 1

bit if RLS is used),

CHAPTER 2. RELATED WORK 13

3. binary-encoded problems: OneMax, Leading Ones, Binary Value and gener-

alizations to linear functions (see [DJW02, DJW10b, DJW10a, DFW11]),

4. also some combinatorial problems and trap functions are analyzed: Vertex

cover ([OHY08]), Minimum Spanning Tree ([NW04, DJW10b]), Shortest-

Path ([DHK11]), Maximum Matching ([OW11]), Mincut ([Sud08a])

5. mathematical tools include limit theorems from probability theory (Markov,

Chebyshev, Chernoff inequalities, etc) and Drift analysis (see [HY01, DJW10b]),

which is an adaptation of martingale theory from stochastic processes.

Using Landau notation (see e.g. in Section 2.1. in [Sud08a]) many results have

been derived (some of them were mentioned already in [Rud98] and referenced to

early papers), mostly for (1 + 1) EA:

1. the bounds on (1 + 1) with mutation rate 1
n
and RLS are Θ(n log n), see

[DJW02],

2. recently the result for OneMax has been refined up to 0.982n log n in [DFW11]

using probability generating functions (PGFs),

3. for all linear functions, the expected optimization time is Θ(n log n), see

[DJW10a],

4. for LeadingOnes the expected optimization time is Θ(n2)

and many others. In [Wit04] problems that have runtime of (1 + 1)EA ω(n log n)

are referred to as ‘difficult’.

In [HY03] an analytic framework based on Markov chains was presented to analyze

optimization time of EAs. This included:

1. definition of the absorbing MC (elitist EA) with the number of states corre-

sponding to the number of artificial fitness levels (for this term see Subsection

2.4.1)

2. probabilistic nature of solution: the runtime is expressed through an ex-

pected time (upper bound on the expectation is the worst-case approach)

CHAPTER 2. RELATED WORK 14

3. model of EA includes all mainstream genetic operators: fitness evaluation,

selection, mutation and crossover

4. classification of problem complexity based on the expected time of solving

the problem: polynomial and exponential

In [HY03] a whole range of algorithms using different genetic operators were ana-

lyzed. Expressions for some mean first hitting runtimes are found, but not solved,

i.e. bounds are not expressed in the closed form or approximated.

2.3.1 Runtime analysis of (μ+ 1) and (1 + λ) EAs

Recently analysis of EAs that use some population and recombination operators

has evolved. It is focused on the role of population in the evolution and effect of

different sizes of population and offsprings. Some of the main results in this area

are outlined below.

For a (μ + 1) EAs with the mutation operator in [Wit04] the upper bound on

OneMax function was found to be O(μn+n log n) and lower bound Ω(μn+n log n)

for the same algorithm on any function with a unique global optimum. The latter

was done using a family tree tool described in [Wit04] in great detail.

A (1 + λ) EA with bitwise mutation operator and elitist selection function was

found to solve OneMax in O(n logn
λ

+ n) generations or O(n log n + nλ) function

evaluations (population size × order of runtime) in [JDJW05]. If measured in

terms of function evaluations an increase in the offspring size degrades perfor-

mance past a cut-off point O(logn log logn
log log logn

). Small deviations from O(log n) can

improve performance though.

In [He10] this result was generalized to all linear functions: for λ < ee expected

runtime (measured in the number of function evaluations) is of the same order as

(1 + 1)EA, O(n log n). Larger offspring size degrades performance.

CHAPTER 2. RELATED WORK 15

An important consequence from this is that, since the term λ is in the denom-

inator, if run on parallel computers, the increase in the offspring size actually

improves performance (see [He10] for details).

2.3.2 Runtime analysis of (μ+ λ) EAs

This area of research is the most relevant to this thesis. Its complexity arises,

among other things, from the fact that results for (μ+ 1) and (1 + λ) algorithms

are not directly extendible to the (μ + λ) one. This is easy to see by combining

results for the bounds in [Wit04] for the (μ + 1) and in [JDJW05] for (1 + λ).

There is no way these yield the O(n log n + nN logN) in [CHS+09] (see below).

This explains the demand in the development of a different approach to analyze

(μ+ λ) algorithms.

Some of the earliest publications in this area are [HY01, HY02, HY03, HY04].

Specifically, in [HY02] it was shown that for different (N +N) EAs (N is the pop-

ulation size) with variants of tournament selections population effect is problem-

specific. It was also shown that positive effect from the population tends to level

out, although it is measured in the number of generations rather than function

evaluations, so the result is true only for parallel computers. Tested on a number

of trap-type functions, speed-ups in terms of time-complexity and increased conver-

gence probability have been determined, as well as cases that reduce exponential-

time complexity to polynomial time.

Later in [CHS+09, CTCY12] the work of the (N+N)EA with mutation and fitness-

proportional selection was modeled by tracking the progress of locally-optimal in-

dividuals (LOI), i.e. the currently elite species. The expected runtime of the

OneMax problem (measured in the number of generations) is

Eτ = O

(
n logN +

n log n

N

)

CHAPTER 2. RELATED WORK 16

Compared to (1+ 1) EA with mutation or RLS no advantage of population-based

algorithms measured in the number of function evaluations was determined. Ad-

ditionally, it is hard to tell the effect of the population from the recombination

pool, since both are of the same size N .

In [CTCY12] on a TrapZeros test function, which is harder to optimize than

OneMax or similar linear functions due to a basin of attraction that reduces the

probability of finding the global optimum, a (1 + 1)EA outperformed two other

algorithms both with population and recombination pool size ω(1): the first one

N = O(log n), the second N = O(n
logn

). Although the runtime of the first algo-

rithm is the same as the (1+1) one, O(n2), the probability to find the optimum is
1

poly(n)
(some polynomial function of n) in the former case and 1

4
in the latter case.

For the algorithm with the largest population size convergence time is superpoly-

nomial.

Obviously it is of great interest to find out, for what problems the solution bene-

fits from the increase in population size, both in terms of expected runtime, and

the success probability and what are the cut-off points of this. Another question

that, to the best of my knowledge, has only been touched upon in [CHS+09], is the

structure of the population. Quite obviously the distribution of species in the pop-

ulation affects greatly the evolution. Structures arising from this process are both

interesting and very complicated. These questions are the main areas of research

in Chapters 4 and 5. Specifically, in Section 4.2 it is explained, why analyzing

(μ + λ) algorithms is both interesting and complicated, and why the approach in

this thesis is useful.

2.4 Review of tools used for analyzing EAs

In this section a comprehensive overview of approaches to EA analysis is presented.

CHAPTER 2. RELATED WORK 17

2.4.1 Fitness-Based Partition and Artificial Fitness Levels

This is one of the earliest and most intuitive tools. It is closely related to the

Coupon Collector’s Problem (see below). The main idea is quite clear: ∃ a par-

tition of the full set of possible binary strings size 2n : L0, L1, . . . , Ln such that

Li ⊆ {0, 1}n, Li ∩ Lj = ∅ and ∪n
i=1Li = {0, 1}n. For many binary-encoded func-

tions though the actual location of bits in the string is not important, therefore

instead of having 2n fitness levels, one can have m < 2n artificial fitness levels,

where each string a, b are fully defined by their fitness, i.e. if f(a) = f(b), they

are on the same artificial fitness level (and vice versa).

The idea of artificial fitness levels easily extends to populations, which is very

helpful for the purpose of this thesis. All sets of populations size μ are fully de-

fined by the fitness of the best individual, thus reducing the search space from N

defined above to n, the length of the binary string, in case this approach is used

for functions that depend on the number of 1-bits in the string.

2.4.2 Gambler’s Ruin and Coupon Collector’s Problem

This is a pretty simple and intuitive approach to modeling EA or any stochastic

algorithm that maintains the best solution (elitism). A good review of both can

be found in [Weg03, DJW02, OHY07]. Approach here is based on probability

theory and Markov chain. A good introduction to Markov chain theory is in

[Ios80, Ros06, Shi07a, Shi07b].

Gambler’s Ruin

A random process Xn is a sequence of independent and identically distributed

random variables Zi : Xn =
∑n

i=0 Zi such that P(Zi = +1) = p and P(Zi =

−1) = q = 1− p (Z0 = a > 0). This can be viewed as a wealth of a gambler. One

is interested in the limiting probability and expected time that the gambler loses

all his money (if he is allowed to gamble forever). If αn(x) = P(Xn = 0), then

lim
n→∞

αn(x) = α(x)

CHAPTER 2. RELATED WORK 18

A more realistic and complicated variant of this game is when success and failure

probabilities are state-dependent (i.e. pi
= pi+1, qi
= qi−1 ∀ i with some boundary

conditions).

This approach is applied extensively in Chapter 5. The main idea is that the

fitness function does not distinguish between species on a plateau, and therefore

EA performs a random walk rather than biased search.

Coupon Collector’s Problem

Assume X ∼ Geom(p). Then, using characteristic function of the Geometric

random variable (rv) with parameter p:

φt(X) = lim
n→∞

n−1∑
k=1

eitk(1− p)k−1p =
p

1− p

1

1− eit(1− p)

dφt(X)

dt
=

p

1− p
· i(1− p)eit

(1− eit(1− p))2

EX =
dφt(X)

idt

∣∣∣∣
t=0

=
p

1− p
· 1− p

p2
=

1

p

Applying this idea to EAs, if the algorithm starts with the string all set to 0 and

flips exactly one bit randomly, as in the Randomized Local Search, the probability

to select a 0-bit for flipping is p = n−i
n

(where i is the number of 1-bits so far).

Since bits are selected randomly each generation, this can be seen as a sum of

independent (but not identically distributed) Geometric rvs with expectation 1
p
=

n
n−i

. Therefore, since there are n bits to be flipped, the mean first hitting time

becomes

EY = E
n−1∑
i=0

Xi =
n−1∑
i=0

n

n− i
= nHn = O(n log n)

where Hn is nth Harmonic number. By the integral test, its value lies between

log n and log n+ 1 (see [GKP95], Chapter 6).

CHAPTER 2. RELATED WORK 19

2.4.3 Potential/Auxiliary Functions

This type of functions is closely associated with the drift analysis (a type of a

martingale) extensively used in EA community. It was first introduced in [Haj82]

and then in [HY01, HY03] for the first time in the EA community. Some recent

use includes [DJW10b, DJW11, OW11] etc. The main idea of a potential function

is to complement fitness, if the fitness-proportional selection function alone fails to

capture certain important steps in the evolution. It has to posses some properties

of the fitness function, but be easier to work with. For example, for a linear

functions with weights:

f(x) =
n∑

k=1

wkxk s.t.

xk ∈ {0, 1}, wk > 0, wk < wk+1 ∀k

the potential function is (c being a constant)

g(x) = log

(
1 +

�n
2
�∑

j=1

xj +
n∑

j=�n
2
�+1

cxj

)

which allows to bound the drift. In [Jag08] OneMax was selected as a potential

function for all linear functions in order to recover the Θ(n log n) bounds on all

linear functions.

In this thesis the idea of potential/auxiliary function is used extensively in Chap-

ters 4 and 5 to study convergence on functions with plateaus (Royal Roads). The

main problem with this type of functions is that the fitness does not differen-

tiate between species on the plateau with different distances to the next fitness

level (plateau). In order to track the evolution of the population on each plateau,

OneMax as a simple auxiliary function is used.

CHAPTER 2. RELATED WORK 20

2.4.4 Analysis of Typical runs

Although much of EA analysis is focused on the derivation of upper bounds, i.e.

worst-case scenario, it is sensible to study typical behavior of the algorithm, i.e.

break down its work into phases that hold ‘with high probability’. However, it

seems that this definition is somewhat vague, since in [OHY07, Wit12] it is de-

fined as 1− o(1), but in [Sud08a] it is merely some ‘high’ probability, often as low

as 1
2
.

For example, in [DJW02] the lower bound of Ω(n log n) on (1 + 1)EA solving

any linear function holds with probability at least 1
2
· (1 − e−

1
2) ≈ 0.1976, where

1
2
is the probability that algorithm initializes with n

2
1-bits. In [Sud08a] the same

algorithm was found to solve OneMax with probability 1 − e−1 − e−
n
36 ≈ 0.6321

within (n − 1) log n
3
generations. By Chernoff bounds, the probability that the

algorithm initializes with less than n
3
0-bits is less than e−

n
36 . Only in [Wit12]

the upper bound on linear functions with mutation rate O(1
n
) was shown to be

O(n log n) with probability at least 1− 1
n
= 1− o(1). Also in [Sud08b] high prob-

ability was defined as 1− n−ε for ε > 0 and overwhelming probability 1− 2−Ω(nε).

In fact, in most papers exponential (or just converging to 1) probability has been

shown either only for the initialization stage (using Central Limit theorem or

other limit theorems), e.g. for OneMax function in [Sud08a] or Needle function in

[OW11] or for pretty rough bounds, e.g. for (1 + 1) EA on Prefix Ones/Leading

Suffix Ones (PO/LSO) problem in [Wit04] the probability of finding a solution

within 2Ω
(√

n
logn

)
generations was found to be at least 1− 2−Ω

(√
n

logn

)
.

2.4.5 Structure of individuals in the population

This approach was mentioned in [Sud08a], but was mainly developed and applied in

[CHS+09, CTCY12] to the runtime of (μ+λ) EAs. Some results in this thesis were

inspired by findings in these articles. One of the main ideas is the accumulation

of locally-optimal (currently elite) individuals (LOIs) of (N + N) EAs that use

some form of mutation. The optimization time is broken down into consecutive

CHAPTER 2. RELATED WORK 21

phases. In the first phase the population accumulates LOIs until εN of it consists

only of LOIs ((k, ε)-takeover time η̄, k is the fitness level, ε > 0). The probability

to improve fitness in this phase is 0. In the next phase the probability to improve

fitness (evolve at least 1 advanced LOI, better individual) is defined as pk
u, 1

2

. Mean

first hitting time till the next fitness level given current population ξk(t) is

Eτk =
∑
Y ∈Ek

E[τk|ξtk = Y]μtk(Y)

where μ(·) is the distribution of population Y at time tk. The upper bound on the

expected optimization time of the algorithm is therefore

Eτ = O

(
n∑

k=1

(
η̄max, 1

2
+

1

pk
u, 1

2

))

Applying this equation to OneMax and LeadingOnes test function, upper bounds

of respectively O(nN logN + n log n) and O(nN logN + n2) are derived.

2.5 Asymptotic notation

This Section is quite important, since the terms defined here are extensively ap-

plied throughout this thesis, e.g. Eτ = O(·), Ω(·). The main reason for this

approach is that very often the obtained expression is either very complicated or

does not exist in the closed form at all. The use of big-Oh notation, i.e. ‘up to a

normalizing constant’ vastly reduces the efforts necessary to derive bounds on the

runtime. It is expressed only through the arguments of the function (i.e. parame-

ters of the algorithm)

Formally, for two functions, f(n) and g(n) ∃N s.t. ∀n >> N f(n) ≤ Cg(n),

or

lim
n→∞

f(n)

g(n)
= C > 0

In case the inequality above holds from below: f(n) ≥ Cg(n), then f(n) =

Ω(g(n)). In case O(g(n)) = Ω(g(n)), then f(n) = Θ(g(n)).

CHAPTER 2. RELATED WORK 22

The second case is when

lim
n→∞

f(n)

g(n)
= 0

then the asymptotic order is f(n) = o(g(n)) and o(1) denotes convergence to 0.

The reciprocal is

lim
n→∞

f(n)

g(n)
= ∞

that is, f(n) = ω(g(n)).

2.6 The No Free Lunch theorem and Analysis of

computer algorithms

In this section a brief overview of this very important theorem is given that justifies

interest in the analysis of computer algorithms. One of the practical results of the

ideas developed in this thesis (which follows from The No Free Lunch Theorem,

or NFL) is the choice of the relevant algorithm that has a higher probability of

finding the global optimum in shorter runtime.

In [WM97] NFL was presented for stochastic optimization algorithms, which nat-

urally includes EAs. It levels out the efficiency of algorithms: if an algorithm

is efficient on a class of problems, its performance is counterbalanced on another

class. More formally, if the history of distinct function evaluations is denoted by

d, the number of function evaluations m on a cost function f solved by algorithm

ak and P (·) performance of the algorithm then

∑
f

P (d|f,m, a1) =
∑
f

P (d|f,m, a2)

that is, the performance of the algorithm is independent of ak. This justifies search

for such subsets of a class of cost functions on which algorithms a1 and a2 outper-

form each other. The proof of this is in Appendix A in [WM97].

CHAPTER 2. RELATED WORK 23

There are three main ways to compare performance of the algorithms on a mini-

mization problem:

• average probability of failure (best search point lies above some value ε),

• the fraction of algorithms which for a specific f and m have failed to find

the global optimum,

• expression of the failure probability for a random algorithm that does not

use information from dm (past information)

The first criteria is widely used in EA community to estimate the efficiency. In

the next Chapter is used too. In Chapters 4 and 5 though the main benchmark is

the mean first hitting time (as in the MC, see Appendix B).

2.7 Parallel computers

Throughout the thesis the expression ‘run on parallel computers’ is often used.

This means the following: if the runtime of the algorithm is O
(

g(n)
λ

)
, and the

algorithm is run in parallel on O(λ) computers, so the fitness values for the parents

selected into the pool are found simultaneously, thus the performance is vastly

improved if measured both in the number of generations and function evaluations.

In a different situation, if the same algorithm is run on the same computer, this

operation (unless parallelized) has to be repeated O(λ) times. This means, that if

measured in the number of function evaluations, performance has to be multiplied

by O(λ), and the runtime increases to O(g(n)).

Chapter 3

The K-Bit-Swap Genetic

Operator

This chapter introduces the K-Bit-Swap (KBS) operator and tests it on a number

of different functions. According to the No Free Lunch Theorem, if an algorithm

overperforms on a class of functions, it underperforms elsewhere. This is an at-

tempt to identify functions on which an EA using some form of KBS performs

better than that without any form of it. In Section 3.3.1 the main benefit of the

analysis based on these statistical results is presented: it allows one to understand

which parameter settings to use to maximize the probability of solving the problem

and reduce the runtime.

3.1 Explanation of the K-Bit-Swap Genetic Op-

erator

This operator was first introduced in [TSMH10]. The motivation was to develop

an operator that combines features of both uniform crossover and mutation or

local search, but without some of their drawbacks. This adds greater flexibility

to the search for the bits to be flipped. Its work is presented in Table 3.1 and,

in order to compare to similar operators, in Figure 3.1. Operators that resemble

KBS were proposed before (see e.g. in [SC99]).

24

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 25

Figure 3.1: Comparison of K-Bit-Swap to simple (segment) crossover, 2-point
simple (segment) crossover and Uniform crossover

loop over the number of pairs in the recombination pool
1 select k bits in the first parent uniformly at random
2 select k bits in the second parent uniformly at random
3 swap (exchange) values in these bits

end loop

Table 3.1: The K-Bit-Swap Genetic Operator

KBS resembles both Uniform crossover in the way that it selects bits in both

parents uniformly at random and RLS/mutation, because it swaps an exact num-

ber of bits between them. This allows KBS to select the second bit independently

(unlike uniform crossover), but it recombines information between two parents,

unlike RLS/mutation. The main objective of this Chapter is to show its efficiency

on a range of functions compared to mainstream genetic operators: crossover and

mutation.

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 26

The author hypothesizes that KBS is likely to be more effective on problems where

linkage between the neighbouring bits is not important, e.g. binary-encoded, multi-

modal or monotone problems. On the other hand, combinatorial integer-encoded

problems, such as the Travelling Salesman Problem, are problems with a large

number of local solutions, where the linkage between neighbouring solutions can

be quite important, since a minor change in the fitness (trips between two cities)

can bring about a substantial change in the value of the fitness function.

Since KBS, unlike mutation, is not ergodic, i.e. it recombines existing information

and cannot evolve solutions that cannot be constructed from the set of current

solutions, it may under certain conditions impair the diversity in the population.

For example, if the recombination pool contains only strings with 1-bits, it cannot

evolve an offspring that has a 0-bit anywhere.

This hypothesis directly implies that in the real world it is probably best to com-

bine KBS with other operators to maintain diversity and improve performance.

3.2 Algorithms and Experimental setup

The pseudocode of the algorithms compared in this chapter are presented in Table

3.2. They are the same as the canonical EA in Table 1.1, except adding KBS.

Rates for all genetic operators as well as other parameters are specified in Table

3.3 (values in columns 3,4 are the number of bits crossed over/swapped, values in

column 5 are probabilities to select a bit for mutation). As a fitness-proportional

selection function, instead of linear (Equation 3.1) softmax function (Equation

3.2) is used to increase the probability of sampling species with higher fitness (for

minimization problems the f(xi) in the exponential becomes −f(xi)). All genetic

operators have a 100% rate, i.e. they are applied to each string or pair of strings

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 27

in the recombination pool.

Psel(xi) =
f(xi)∑μ
i=1 f(xi)

(3.1)

P ∗
sel(xi) =

ef(xi)∑μ
i=1 e

f(xi)
(3.2)

1 Initialize population of size μ
loop over the number of generations

2 select λ
2
pairs of parents into the recombination pool using softmax selection function

3 apply crossover to each pair of parents
4 apply KBS to each pair of parents
5 apply mutation to each offspring
6 keep the specified number of the best species in the population,

remove the same number of offsprings from the pool randomly,
replace the rest of the population with the remaining offsprings

end loop

Table 3.2: Pseudocode of EAs in Chapter 3

3.2.1 Problems selected for testing

Before analyzing the results, the details of each problem solved by the algorithm

are presented.

Functional optimization (FuncOpt)

In all functional optimization problems, the number of dimensions is limited to

two (i.e. they are functions of two arguments). The problems are binary-encoded,

with each chromosome being 42 bits long, 20 bits for each value and 2 for the sign

of the value, because all of the problems have support over negative values as well

and standardized to keep the values within the designated bounds. Therefore, for

example, for the Rastrigin function, 1111...111 (42 ones) stands for [-5.12,-5.12],

0111...0...11 (2 zeroes and 40 ones) stands for [5.12, 5.12], 000...000 (42 zeroes)

stands for [0,0].

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 28

Rosenbrock, also known as a banana function (since the basin around the optima

resembles a banana), is one of the most popular test problems for the verification of

the efficiency of numerical and stochastic algorithms. This is due to the large num-

ber of local optima that are supposed to mislead the optimization algorithm and

prevent it from finding the global solution. In the two variables case its equation

is

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2

where −32 ≤ x1, x2 ≤ 32 and the global solution is [1, 1].

One of the most complicated local optima is the point [0, 0] and many algorithms

get stuck in it.

Another function with multiple local optima is Ackley function. For two vari-

ables its equation is

f(x1, x2) = 20 + e− 20e
−0.2

√
(x21+x22)

2 − e
(cos(2πx1)+cos(2πx2))

2

where −32 ≤ x1, x2 ≤ 32 and the global solution is the point [0, 0].

Rastrigin is also a minimization problem with a large number of local optima.

f(x1, x2) = 20 + x2
1 + x2

2 − 10(cos(2πx1) + cos(2πx2))

where −5.12 ≤ x1, x2 ≤ 5.12 with the global solution in the same point as Ackley:

[0, 0].

EA-specific problems

These problems have been developed specifically to test EAs’ ability to avoid

premature convergence (Four peaks) or their capacity to detect and recombine

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 29

good schemata, and also traverse plateaus of fitness (Royal Roads). A large number

of good heuristic solutions exist for both of them (including Hill Climbing and

PBIL [Mit96, BC95, DBIJV97]).

Royal Roads

This problem (sometimes abbreviated as RR) is described in Section 4.4.2 in great

detail. All that is needed to say here is that this is a function with plateaus of

fitness that many EAs find hard to cross. The fitness is

f(x) =
K−1∑
k=0

ck

M−1∏
j=0

xkj

xkj ∈ {0, 1}, ck = M ∀ k

For the purpose of numerical analysis here M = 8, the same value as in [Mit96].

Four peaks

This is another EA-hard test problem. It is specifically designed to trick the EA

into converging to a local minimum (see [DBIJV97]). The bonus (R) is set to

100 and the threshold (T) is set to 10. The main idea is that a certain ratio of

0-bits and 1-bits (threshold) has to be maintained in the string for the algorithm to

achieve the global maximum (bonus). This is the objective function for Four peaks:

f(s) = max{head(0, s), tail(1, s)}+R(s, T)

where

R(s, T) =

⎧⎨
⎩100 if head(0, s) and tail(1, s) > 10

0 otherwise

Head(0,s) means that the first s bits of the string have value 0, while tail(1,s)

means that the last s bits have value 1.

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 30

Combinatorial optimization

This group of problems for the purpose of this thesis involves only one instance,

the Traveling salesman problem (TSP), which is presented both as a trivial prob-

lem (cities on a circle) and a non-trivial one, on 48 US Capital cities. TSP is one

of the best known problems in combinatorial computing, with a large number of

applications (e.g. see [LK73]).

This is an unconstrained problem, so the fitness function for n cities is

D =
n−1∑
i=1

d(xi, xi+1) + d(xn, x1)

where xi is the ith city of the tour, and d(x, y) is the Euclidean distance between

two cities.

All solutions considered by the EA are valid tours, i.e. every city appears in

the string exactly once, except for the starting city, which is also the last one (this

is reflected in the fitness function). The mutation operator can be applied in two

different ways:

1. 2-p-opt. For this mutation type two cities are randomly selected and swapped

to get a new solution. The order of cities between them is inverted.

2. 1-shift. A city in the tour is randomly selected and inserted anywhere in the

tour, shifting the cities between the old and new position left or right. This

approach has been found in [BKB05] to be more efficient for TSP and it is

used here instead of 2-p-opt.

TSP on a circle is a trivial problem, since the global solution (circle) is obvious.

For an EA it is a hard problem, especially as the number of cities gets large. The

locations of the cities are restricted to the unit circle, so the shortest path for 26

cities is 6.2669 (this value converges to 2π as the number of cities tends to infin-

ity). All solutions with D < 7 are considered to be within the vicinity of the global

minimum.

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 31

TSP on 48 US cities is a non-trivial combinatorial problem for which the best

solution has been found in [PR91, Ber].

This result is used as a benchmark against which findings here can be compared.

Given the complexity of the problem, any tour with D < 40, 000, which is more

than 20% away from the global minimum, is within its vicinity.

k-means Clustering Problem

This sort of problem may arise in a large number of applications. This approach

is a hybrid algorithm, with a k-means (here k ≡ 4) classifier and an EA optimizer.

There are two variants of this problem: trivial (see Figure 3.2) and random. For

the purpose of standardizing, the coordinates of data points lie in the [0,1] interval.

The objective function is

D =
n∑

i=1

d(xi, y)

where

xi is the ith observation,

y is the nearest centroid for the ith observation, and

d(x, y) is the Euclidean distance between two points.

n number of data points (observations)

Trivial k-means problem Exactly as with the TSP, a trivial instance of the

k-means problem is presented, with a set of observations located in the four ‘cor-

ners’ (see Figure 3.2).

Random k-means problem In this problem a set of 16 data points is gener-

ated randomly and the EA minimizes D by approximating the optimal locations

for 4 centroids. To obtain comparable results, the randomly generated set of data

points is fixed for the whole run of the algorithm.

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 32

Function PopSize Crossover KBS Mutation Chrom Elitism
Type Rate Rate Length

FuncOpt 50,100 0,simple, 0,1,10,20 0, 0.025, 40 1,50%
1,10,20 0.25, 0.5

Royal roads 50,100 0,simple, 0, 1, 0, 1/n, 800 none
1,100,400 100, 400 100/n, 400/n

Four peaks 50,100 0,simple, 0,1,25,50 0, 0.01, 100 1,50 %
1,25,50 0.02,0.05

TSP 50,100 0,simple, 0,1,2,3 0, 1/n, 26,48 1,50 %
1,2,3 2/n, 3/n

k-means 50,100 0,simple, 0,1,5,10 0, 0.0125, 160 1, 50 %
1,5,10 0.025, 0.05

Table 3.3: Parameter settings for the problem set.

Function Global Optimum Global optimum threshold
Type

FuncOpt 0 < 0.005

RoyalRoads 800 > 760
Four Peaks 189 > 122

TSP (trivial) 6.2669 (≈ 2π) < 7.00
TSP (US Cities) 33524 < 40000

k-means (trivial) 1.1314 < 1.1880
k-means (random) unknown < 2.18

Table 3.4: Benchmark settings

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 33

Figure 3.2: The global solution for the trivial k-means problem. Darker points are
data, lighter are centroids

3.3 Setup and Analysis of Statistical Tests

The obtained datasets have to be analyzed and the results explained. To compare

the efficiency of the algorithms and isolate the effect of KBS three test variables

are introduced. The number of runs for each parameter setting is J , the number

of parameter settings for each algorithm is R.

Estimate of the Probability of Failure. The indicator variable is defined as

Ijr =

{
1 if fTj ∈ Xε using parameter setting r

0 otherwise

where fTj is the fitness of the best species in the population in jtextnormalth run after

a predefined number of generations (T) and Xε the vicinity of the global solution

defined in Table 3.4. For each parameter setting r another indicator variable is

Fr =

{
1 if

∑J
j=1 Ijr

J
= 0

0 if otherwise

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 34

Therefore, the probability of failure of algorithm A on problem P is defined as

PF (AP) =
FR

R
=

∑R
r=1 Fr

R
(3.3)

Literally this means what proportion of parameter settings is completely useless

(i.e. never finds Aε). This value is found in the second and third columns of Table

3.5.

Estimate of the Conditional Probability of Success. Next thing one needs

to know, is what algorithm performs best given that these bad parameter settings

have been accounted for. Subset R′ ⊂ R is the set of all parameter settings such

that Fr′ = 0 for r′ ∈ R′ (at least one successful run for this parameter setting).

Hence the conditional probability of success is used:

PS(AP |FR′) =

∑R′
r′=1

∑J
j=1 Ijr′

JR′ (3.4)

By estimating the probability of success one gets the measure of how efficient

‘good’ parameter settings of the algorithm on some type of function are. These

are the values in the second and third columns of Table 3.6, tested using bootstrap

resampling technique. Boxplots of the conditional probabilities are on the left in

Figures A.1 - A.9.

Estimate of the Conditional Expectation. Finally, one wants to know how

long on the average it takes the algorithm to solve the problem. For this purpose

another variable is introduced:

T̃jr′ = min{t : f(t)jr′ ∈ Xε}

which immediately implies that T̃jr′ ≤ T , the runtime of the algorithm (here

f(t)jr′ is used for the fitness of the best species at generation t on jth run using r′

parameter setting). From this the estimate of the runtime of the algorithm A on

problem P is defined:

E[AP] =

∑R′
r′=1

∑J
j=1 T̃jr′

JR′ (3.5)

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 35

This variable are the second and third columns in Table 3.7 + bootstrap estimate of

difference between algorithms with and without KBS. This parameter is of interest

if one wants to find out which algorithm is the fastest on some problem. Boxplots

of the estimates of conditional expectations are on the right in Figures A.1 - A.9.

Statistical Testing. The subset of algorithms that uses some form of KBS is

denoted (μ + λ)EAKBS or simply EAKBS, the complement would be the subset

without any KBS, (μ + λ)EA−KBS to simply EA−KBS. They are compared by

using nonparametric bootstrap resampling. The main reasons for this are:

1. Violation of t-test assumptions, such as an underlying normal distribution

2. There is not enough information on how EA operators affect each other, so

it can be expect that the assumption of independence are violated.

3. Unequal sample sizes, e.g. the sets of parameters where KBS=0 and KBS>0

are of size 80 and 240 respectively.

Nonparametric bootstrap sampling works the following way:

• for each function, divide the dataset into two segments: results for algorithm

with KBS and without:

1. repeat the resampling 5000 times:

(a) from each segment S1 and S2 sample with replacement S∗
1 and S∗

2 ,

each size 5000

(b) compute θ∗1 and θ∗2 for each sample

(c) compute d∗ = θ∗1 − θ∗2

2. find mean(d∗)-bootstrap mean and its 95% confidence interval

where θ∗1 and θ∗2 are parameters of interest for each sample(mean). If 0 is not in

confidence interval, then the test is significant at 5% level of significance.

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 36

Function (μ+ λ)EAKBS (μ+ λ)EA−KBS Bootstrap 95 % Bootstrap
mean

Rosenbrock 0 0.2777 -0.2667 [-0.2790, -0.2542]
Rastrigin 0.5417 0.5750 -0.0332 [-0.0582, -0.0138]
Ackley 0.6792 0.6850 -0.096 [-0.1148, -0.074]
RR 0.6850 1 -0.3084 [-0.3212, -0.2958]

4Peaks 0.9542 0.8875 0.0666 [0.0562, 0.0771]
TSP (trivial) 0.9670 0.5375 0.4291 [0.4143, 0.4436]

TSP (US cities) 1 0.9125 0.0877 [0.0798, 0.0955]
k-means 0 0.2500 -0.2501 [-0.2626, -0.2382]
(trivial)
k-means 0.0208 0.2375 -0.2166 [-0.2292, -0.2044]
(random)

Table 3.5: Estimate of the probability of failure, Equation 3.3

Function (μ+ λ)EAKBS (μ+ λ)EA−KBS Bootstrap 95 % Bootstrap
mean CI

Rosenbrock 0.6228 0.3677 0.251 [0.2442, 0.2558]
Rastrigin 0.7547 0.3003 0.4544 [0.4452, 0.4662]
Ackley 0.9326 0.6281 0.3043 [0.2909, 0.3176]
RR 0.5530 0 0.5530 [0.5399, 0.5633]

4Peaks 0.08 0.3111 -0.2311 [-0.2395, -2231]
TSP (trivial) 0.03 0.1368 -0.1068 [-0.1090, -0.1046]

TSP (US cities) 0 0.0268 -0.0286 [-0.0290, -0.0282]
k-means 0.7208 0.8920 -0.1713 [-0.1798, -0.1625]
(trivial)
k-means 0.4205 0.5169 -0.0964 [-0.1049, -0.0878]
(random)

Table 3.6: Estimate of the conditional probability of success, Equation 3.4

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 37

Function (μ+ λ)EAKBS (μ+ λ)EA−KBS Bootstrap 95 % Bootstrap
mean CI

Rosenbrock 309.62 322.36 -12.6571 [-16.1195, -9.2113]
Rastrigin 176.62 200.40 -23.7983 [-28.5835,-18.9621]
Ackley 170.09 185.80 -15.6787 [-20.1500, -11.2800]
RR 115.81 NaN NaN [NaN, NaN]

4Peaks 465.69 480.26 -14.5716 [-15.0498,-14.0931]
TSP (trivial) 428.62 407.56 21.0330 [18.5931, 23.5135]

TSP (US cities) NaN 488.04 NaN [NaN, NaN]
k-means 459.46 478.43 -18.9777 [-19.8190, -18.1151]
(trivial)
k-means 459.54 471.95 -12.4229 [-14.0340, -10.7501]
(random)

Table 3.7: Estimate of the conditional expectation, Equation 3.5

3.3.1 Statistical Analysis

The selected test suite is quite diverse, so according to the No Free Lunch the-

orem, the probability that KBS performs equally well on all function is unlikely

to be high. Since the results in the tables come from samples with violations of

assumptions for standard statistical tests (size, distribution, independence), boot-

strap resampling was used to determine the true difference between these values

following the parameter-free bootstrap sampling detailed above. It is known that

the empirical cumulative bootstrap distribution function F̂n converges to the true

CDF F almost surely: supn |F̂n − F | → 0 as n → ∞.

Results of the bootstrap test for all three tables are presented in Figures A.10

- A.18.

In Tables 3.5 - 3.7 the columns are (left to right): test function, measured results

(probability of failure, estimate of conditional probability of success, estimate of

conditional expected runtime) for both EA with any form of KBS and EA without

any KBS, bootstrap estimate of the mean of differences of results and 95 % confi-

dence interval of the bootstrap estimate. All results are statistically significant at

the 5 % level of significance.

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 38

The results in the tables can be interpreted in the following way (note all three

parameters are mere estimates of the corresponding random variables):

Table 3.5 (Probability of failure): For all functions except TSP and 4Peaks

an algorithm that uses some form of KBS (and anything else) is less likely to fail

(i.e. never find a solution) than algorithms that do not use any form of KBS. The

results are statistically significant, since 95% bootstrap confidence interval does

not include 0. In fact on the trivial k-means clustering and Rosenbrock functions

EA with KBS never fails at all, but this is counter-balanced by very high failure

rates on Four Peaks and TSP. EAKBS outperforms EA−KBS strongly on Royal

Roads (never solved by EA−KBS), Rosenbrock and both instances of the k-means

clustering problem (>20 percentage points fewer useless parameter settings)

Table 3.6 (Conditional probability of success): EAKBS has an overwhelm-

ing probability of finding the solution on Royal Roads, which other algorithms fail

at all. At the same time, in addition to 4Peaks and TSP, conditional probability

of success using KBS is lower than without KBS in both k-means problems, espe-

cially for the trivial one. Nevertheless, many parameter settings of EAKBS have a

very high success rate (close to 1).

Table 3.7 (Conditional expectation): This last estimate demonstrates the

best property of KBS so far: fast convergence. On all functions except TSP

EAKBS outperformed EA−KBS. The advantage is especially clear on functions

like Rastrigin and trivial k-means clustering. In combination with the results for

the other two estimates, this gives very good information for applying KBS in real

life, by selecting the set of parameters that both yield a high probability of success

and competitive runtime.

3.4 Conclusions

In this chapter a number of important concepts was introduced that will be ex-

tensively used in the rest of the thesis (KBS, algorithms and test functions). A

CHAPTER 3. THE K-BIT-SWAP GENETIC OPERATOR 39

large number of computational experiments showed that an algorithm using KBS

has an advantage over other algorithms on many problems. Among other things,

this allows one to select the optimal set of parameters, both for faster and more

likely convergence, in the appropriate situation.

Using the terminology introduced here, the analysis will be focused on E[Ap],

i.e. conditional expectation, albeit for a specific parameter setting. This estimate

can be treated as a mean first hitting time in an absorbing MC, where the absorb-

ing state is the artificial fitness level of the global solution (i.e. all populations

that contain at least one species with the best solution).

Analysis will be focused on the algorithm that uses some form of KBS compared

to the algorithm with some form of RLS. Test problems are Royal Roads and

OneMax (not covered in this chapter, but explained in detail in Section 4.4.1).

Chapter 4

Lower Bounds on the Runtime

In this chapter the first attempt is made to analyze an EA with population and

recombination pool by considering the population structure. The population is

divided into two subsets, elite species and the rest of the population with an

addition of a simple assumption about the distribution of elite species (probability

to observe a certain number of them). The approach is applied to two algorithms

solving two test problems. The result is the derivation of lower bounds on the

runtime.

4.1 Main results

Some of the main results of this chapter are:

1. Lower bound of (μ+ λ)EA1BS on the OneMax test function is Ω
(

n logn
λ

)
,

2. Lower bound of (μ+λ)RLS on the OneMax test function is Ω
(

n logn
λ

)
, which

coincides with the previous result,

3. Lower bound of (μ+λ)EA1BS on the Royal Roads test function with K bins

length M each is Ω
(

n2 logM log(KM
K+M

)

λM

)
4. Lower bound of (μ + λ)RLS on the Royal Roads test function with K bins

length M each is Ω
(

nK logM
λ

)

40

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 41

Results for OneMax confirm many previous findings in the EA community, and

the results for the Royal Roads are an improvement.

4.2 Structure of the population and the recom-

bination pool

Before going into detail on the approach in this chapter, a few words have to be

said about population-based EAs and why they have seen less attention in EA

community than they deserve. A brief history of (μ + λ)EAs’ analysis was given

in Section 2.3.2. Here, certain important properties of these algorithms will be

discussed.

It may seem strange that (μ + λ) algorithms (both μ and λ > 1), despite their

widespread application in real life, are less popular in EA theory than (1+1). The

main reason is the complexity of the evolutionary process arising in connection

with them. The main reason of this complexity is the structure of the population.

Throughout the run of the algorithm both population and recombination pool con-

sist of different types of species with different fitnesses. If a genetic operator that

recombines information between parents is used (e.g. KBS), then pairs of parents

have to be considered rather than single species. Quite obviously, the structure and

prevalence of certain types of species in the population affect greatly the breeding

process, and therefore, the probability of evolving a higher-ranked offspring.

It makes sense to give the overview of complexity arising from the population

structure of (μ+ λ)EAs:

1. Distribution of species of different types in the population. This is probably

the most obvious consequence of using μ > 1, and one that is extensively

applied in Sections 4.5- 4.8 and Chapter 5. Regardless of the problem consid-

ered (even with traps and/or local minima), species with different fitness do

not have equal representation in the population. Among other things, it is

important to distinguish species with the currently best fitness (elite) and the

rest, especially for functions with plateaus. To the best of my knowledge, this

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 42

quite obvious and important feature has never attracted much interest in EA

community, most likely due to the complexity of the dynamics of the struc-

ture of these subsets. This feature though is certainly well-known and widely

studied in areas such as biology and epidemiology, see e.g. [Nas96, Nas99].

2. Fitness-proportional selection. Selection is one of the most important fea-

tures of EAs. Obviously, it defines the structure of the recombination pool,

and depends on the structure of the population. If a certain type of species

dominates the population, there is a high probability that it would dominate

the recombination pool too. At the same time, currently best (or next-best)

species, even though they need not be abundant in the population, have

a high probability of expanding their presence in the recombination pool

and generate a higher-ranked offspring. This issue was touched upon in

[CHS+09], where the number of elite species in the recombination pool was

found to exceed that in the population by at least 25%, although the selec-

tion process for any selection type is simplified to the proportion of LOI in

the population and ignoring the upgrade of non-LOI to LOI, see also Section

2.3.2 in this thesis. One can also suspect that different selection functions

may lead to different structures of recombination pools.

3. Pairing of parents. This point is valid for algorithms with recombination op-

erators, e.g. crossover or KBS. The number of types of pairs greatly affects

the structure of offsprings and the probability of evolving a higher-ranked

one. If the algorithm uses recombination pool of size λ, there are λ
2
pairs

of parents. Even for a simple case when the population has only two types

of species, α and β, there are three types of pairs: < α, α >,< α, β > or

< β, α > and < β, β >, each with its own properties and evolution probabili-

ties that can differ to a greater degree than an order of a constant. For exam-

ple, it can be p1 =
1
n
(1− 1

n
) = O(1

n
) and p2 =

1
n2 = O(1

n2). Even in this simple

case, using multinomial coefficients there are
∑λ

2
j=0

∑λ
2
−j

r=0

(λ
2
j

)(λ
2
−j
r

)
= 3

λ
2 pos-

sible combinations of pairs of parents in the recombination pool.

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 43

4. Exchange of genetic information between parents in the recombination pool.

This point is also valid for algorithms with recombination operators. The ma-

jority of publications that consider populations with crossover (e.g. [OHY08])

find a simple bound on the probability of improvement using crossover (i.e.
i
n
> 1

n
). It is sensible to analyze crossover’s capacity if different types of par-

ents exchange genetic information (hence different probability of improve-

ment). Even if this analysis does not improve the asymptotic runtime result,

it may shed light on the working of the recombination process and the power

behind EA, since it is hypothesized (see e.g. [Gol89, Mit96]) that EAs’ effi-

ciency is vastly boosted by recombination rather than mutation.

5. Rate of elitism. In [HY02, CHS+09] out of μ + λ population and recom-

bination pool μ best species are selected to form a new population at the

end of each generation. Nevertheless, in many applications different rates

and/or types of elitism are used: saving only 1 best species, replace the rest

with offsprings, or save a certain proportion of the best (not necessarily cur-

rently best), replace the rest with offsprings. There are very few theoretical

investigations in how this affects the efficiency of the algorithm.

Most of these questions are usually either avoided or oversimplified in EA theo-

retical community. In the rest of this chapter a new approach is developed that

takes on some of these issues. It is applied to four different cases, each also solved

asymptotically. In the next chapter a whole new tool is developed and used to

find upper bounds on the runtime of population-based EAs.

4.3 Algorithms

Although many findings here can be extended to similar algorithms, the analysis

is restricted to just two: (μ+λ)EA1BS, i.e. an elitist EA with 1-Bit-Swap operator

(see Table 4.1 and (μ+λ)RLS, an elitist EA with Randomized Local Search(RLS),

a form of stochastic hill-climber (see Table 4.2). The main difference from 1
n

mutation is that RLS flips exactly 1 bit per string, not each bit with probability
1
n
. The KBS operator was introduced in [TSMH10] and described in great detail

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 44

in the previous chapter. Both algorithms use the same variant of Tournament

selection function (see Table 4.3), and no other genetic operators (e.g. crossover,

mutation).

1 create μ starting species at random
loop until solution is found

2 select using a variant of fitness-proportional Tournament selection
λ
2
pairs of parents into the pool

3 swap a pair of bits between each pair of parents
4 keep currently best species in the population, delete the same

number of non-elite offsprings, replace the rest of the population
with the remainder of the pool

end loop

Table 4.1: (μ+ λ)EA1BS

4.4 Problems

Two problems are analyzed in detail in this Chapter: OneMax and Royal Roads

(RR)

1 create μ starting species at random
loop until solution is found

2 select using a variant of fitness-proportional Tournament selection
λ parents into the pool

3 flip exactly one bit in each parent (RLS)
4 keep currently best species in the population, delete the same

number of non-elite offsprings, replace the rest of the population
with the remainder of the pool

end loop

Table 4.2: (μ+ λ)RLS

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 45

loop over λ
1 select two candidates from the population at random
2 examine their fitness, place the better one in the pool

discard the other one
end loop

Table 4.3: Selection Function

4.4.1 OneMax

This is one of the simplest and frequently analyzed problems in EA community,

also known as Counting Ones:

f(x) =
n∑

i=1

xi

xi ∈ {0, 1}

Although this is an easy problem with an obvious global solution n (all bits set to

1), it is of interest to compare the mathematical model of an algorithm with 1BS

to many existing ones with crossover and mutation.

A whole range of bounds exist for various algorithms solving OneMax. Some

of the best known are Θ(n log n) for (1+ 1)EA with mutation, O(n log n+nμ) for

(μ+ 1)EA with mutation in [Wit04], O(n log n+ nλ) for (1 + λ)EA in [JDJW05]

and O(n log n+ nN logN) for (N +N)EA in [CHS+09] (all of these are measured

in the number of function evaluations).

4.4.2 Royal Roads

This test function was presented in [MFH92] and analyzed in [Mit96] for com-

parison of EA to stochastic hill-climbers (e.g. Random-mutation hill climbing,

also known as Randomized Local Search, RLS, considered in this thesis). For this

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 46

research it is important as an example of a function with plateaus of fitness.

f(x) =
K−1∑
k=0

ck

M−1∏
j=0

xkj

xkj ∈ {0, 1}, ck = M ∀ k

That is, a string is divided into K consecutive and disjoint subsets (bins) each of

length M . Unless all bits in the bin are set to 1, its fitness is 0. Otherwise it

‘jumps’ to ck. Since ck = M ∀ k obviously KM = n and the maximum fitness of

the string is n. In Section 4.8 kth bin is denoted as sk or, for simplicity, k, and the

whole string s.

There are two main reasons to study the RR function:

1. Complexity of the function, which comes from the fact that a plateau of

fitness has to be overcome, i.e. selection function does not have an incentive

to select species that are closer to the next fitness plateau. Hence the ability

of algorithms to overcome plateaus can be tested,

2. Potential applications in real life, such as a model of DNA structure

Such functions were analyzed already in [Mit96] and later in [JW01, Sud08a] and

some other and a (1 + 1)EA was found to have Θ(n3) runtime. A similar Leadin-

gOnes problem is solved by (N +N)EA in O(n2 +nN logN) function evaluations

(see [CHS+09]). It is of interest to see if population-powered EAs using 1BS can

improve these bounds. The earliest result, in [Mit96] gives a bound of O(2M logK),

which does not use population size, although it is clear that population greatly

affects the efficiency of the algorithm. Moreover this result would be quite loose,

e.g. if K = M =
√
n the runtime is O(2

√
n log n) or if M = 1, K = n, then runtime

is O(log n), which is impossible.

Also statistical dynamics of EA (evolutionary paths) was studied in [vNCM99,

vN00] (does not involve runtime analysis).

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 47

4.5 Population-Based Evolutionary Algorithms

and Distribution of Species

As discussed earlier, distribution of species with different properties in the popu-

lation is a large and important area of research in biological sciences. So far in the

EA community there has been almost no discussion of this, although quite clearly

derivation of such distributions would contribute greatly to the understanding of

the working of population-based EA.

In this Chapter the first attempt is made to at least assume (for now without

any proof) that species in the population follow some distribution and use this

assumption to derive lower bounds on the runtime. Since this feature is common

to both algorithms, it is described here in greater detail.

Similar to the fitness-levels partition (see Section 2.4.1), a population of binary-

encoded chromosomes (also referred to as species) is broken down into disjoint

subsets based on their fitness. In case there are n levels of fitness and each level k

has Ak representatives in the population, the total population can be represented

as a union of these disjoint subsets: μ = A1 ∪ A2 ∪ . . . ∪ An. Quite obviously,

structures arising in the population dynamics of EA are very complicated, so it

is necessary to approximate them by focusing on just a few subsets. Specifically,

one distinguishes a subset α, which includes all currently best (elite) strings in the

population. Next-best (species with the next-best fitness) are β, and the rest of

the population are γ.

In this chapter the analysis is restricted to dynamics and evolution of α species,

ignoring other subsets of the population. This serves the purpose of analyzing the

two algorithms in question. They both use an operator that improves at most one

bit in any parent, so the quality of the population cannot improve by more than

1 level of fitness each generation. This means lower-ranked species cannot ‘jump’

an evolution ladder to evolve better offsprings. Later in the chapter this idea

is extended to account for plateaus of fitness and in the next chapter to include

lower-ranked species, β and γ.

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 48

Since one needs to sample at least one α species into the recombination pool

to have a non-zero probability of evolution, it is necessary to say something about

the distribution of α species in the population. For various reasons: simplicity,

expectation of μ−1
2

species, empirical distribution of elite species in the population,

it is assumed that this distribution is approximated by the Uniform distribution.

For the verification of the empirical point see Figures 4.1, 4.2, 4.8, 4.9. The author

argues that this assumption gives upper bound on the true probability to observe

a ‘large’ number of elite species in the population, hence the resulting mean first

hitting time is the lower bound on the true runtime of the algorithm.

There are certain similarities in the working and analysis of both algorithms that

are pointed out here:

1. 1-Bit-Swap recombines exactly one bit from each parent, RLS flips exactly

one bit in each parent

2. Analysis is restricted to elitist species in the population

3. Population size μ and recombination pool size λ are arbitrary unless speci-

fied (e.g. μ = λ or μ = 1)

4. Rate of elitism is not specified: all elite species are saved, new elite offsprings

are added from the recombination pool and the rest of the population is re-

placed with offsprings selected randomly.

5. Elite species in the population are assumed to follow Uniform distribution

6. The only variable analyzed in this Chapter is the expected runtime, e.g.

the expected number of generations/function evaluations until the algorithm

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 49

achieves the highest artificial fitness level.

7. For the OneMax test function, the probability to generate a higher-ranked

offspring serves as a parameter in the Geometric rv.

8. Expectations of the Geometric rv is the expected time until the event of

evolving a higher-ranked offspring

9. The sum of independent (but not identically distributed, therefore this sum

is not Negative Binomial) Geometric random variables is therefore the ex-

pected first hitting time of the whole algorithm

10. For the Royal Roads test function an auxiliary function tracking progress

between fitness plateaus is used (OneMax for each plateau, see Section 4.8)

The main models are presented in the relevant sections, and later complemented

with further analytical and numerical derivations. This allows one to make a very

exact comparison between these two algorithms and find which one is a better

optimizer. These findings are supplemented with numerical results.

The author starts though with a simple example that allows to present the ef-

ficiency of both tools used extensively later: Geometric rvs and Markov chains.

4.6 Runtime analysis of (1+2)EA1BS solving One-

Max Problem

This is the simplest instance of (μ + λ)EA1BS with μ = 1, λ = 2. Since it is

impossible have more than one 1-bit improvement each generation, the Coupon

Collector’s problem is directly applicable in this case. Pessimistically, assuming at

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 50

the beginning there is only one 1-bit in the string, the probability and the expected

time of improving from k to k + 1 bits are

pk,k+1 =
2k

n

(
1− k

n

)

ETk =
1

pk,k+1

=
n2

2k(n− k)

This comes from the fact that in order to improve fitness the algorithm must swap

a 1-bit from any of two parents and 0-bit from the other one. The expected first

hitting time of the algorithm on OneMax problem is

Eτ(1+2)EA1BS
=

n−1∑
k=1

ETk =
n2

2

n−1∑
k=1

1

k(n− k)
=

n2

2
· 1
n

(n−1∑
k=1

1

k
+

n−1∑
k=1

1

n− k

)

=
n

2
· 2Hn−1 = O(n log n)

The last step included expansion in partial fractions and approximation of n-th

Harmonic sum: log n < Hn =
∑n

k=1
1
k
< log n + 1. The solution is asymptotic in

n, see Section 2.5

It is quite interesting that the same result can be obtained using the set of re-

current equations for finding the mean first hitting time in a Markov Chain. The

finite set of states is of cardinality n of which all are transient (due to the elitism),

except the last state sn, which is absorbing. Also, transition is possible only from

state sk to the adjacent state sk+1. This is essentially a pure birth Markov Chain.

These properties follow directly from the definition of (1 + 2)EA1BS with elitism.

What one needs to derive is m1A, i.e. the expected time of achieving the set of all

populations that contain at least one chromosome with the global solution if the

starting string has only one 1-bit. The probability of going one state up in the

MC is the same as pk,k+1 defined above.

It is quite easy to see that in fact, by the Kolmogorov-Chapman equations,

hk,n =
∑
A

pkAhAn = 1

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 51

that is, the global optimum is achievable from any state with probability 1. Here

A is the set of all states that do not include both the starting state and the global

optimum, n is obviously the global optimum, hk,n is the probability to reach the

state n eventually, starting from state k.

As mentioned above, due to the elitism property, this is a pure birth process,

and the expected first hitting time for the state k + 1 from the state k is

mk,k+1 = 1 + (1− pk,k+1)mk,k+1 =
1

pk,k+1

Summing over all k, the expected first hitting time starting in state 1 is (given the

boundary condition mn,n = 0).

m1,n =
n−1∑
k=1

mk,k+1 =
n−1∑
k=1

1

pk,k+1

and, substituting in the expression for pk,k+1:

m1,n == Eτ(1+2)EA1BS
=

n2

2

n−1∑
k=1

1

k(n− k)
=

n2

2
· 1
n

(n−1∑
k=0

1

k
+

n−1∑
k=0

1

n− k

)
= O(n log n)

In fact, since Hn = Θ(log n), Eτ(1+2)EA1BS
= Θ(n log n), i.e. it is both upper- and

lower bounded by n log n up to some constant. In the next section these ideas are

extended to a more complicated case with both μ > 1 and λ > 2.

4.7 Main model of the (μ + λ) Algorithm on the

OneMax Test Function

The main model for both algorithms exhibits a number of similarities. The prob-

ability used in this model is the probability to evolve at least one higher-ranked

offspring, which is the parameter in the Geometric random variable. It is defined as

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 52

1 - Probability of failing to evolve such an offspring (i.e. evolve 0 better offsprings):

P (Gk) = 1− P (G0k)

where k is the number of improvements (so far). The expected runtime of the

algorithm (measured in the number of generations) is found by summing over the

total number of these improvements:

Eτ =
n−1∑
k=1

ETk =
n−1∑
k=1

1

P (Gk)
=

n−1∑
k=1

1

1− P (G0k)

To find the main expression for the probability of failure P (G0k) , the law of total

probability is used twice. First, one conditions on the number of occurrences of

elite species in the recombination pool, which cannot be larger than λ. Second,

one conditions on the number of elite species in the population, which is anywhere

between 1 and μ:

P (G0k) =
λ∑

j=0

P (G0k|Hj)P (Hj) =
λ∑

j=0

P (G0k|Hj)

μ∑
α=1

P (Hj|α)P (α) (4.1)

P (α) is the probability to observe α elite species in the population (Uniform),

P (Hj) is the probability to obtain j elite parents in the recombination pool using

a variant of tournament selection function. In the remainder of the Section, this

model is applied to both algorithms. Also α denotes both elite species and their

number, |α|.

4.7.1 Runtime analysis of (μ + λ)EA1BS on the OneMax

problem

Since 1-Bit-Swap recombines information between two parents to evolve new off-

springs, one needs to find the probability of selecting an elite pair < α, α > into

the recombination pool given there are α elite species in the population:

Psel,α =
(α
μ
· α
μ
+

α

μ

(
1− α

μ

))2
=

(
α

μ

)2

(4.2)

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 53

This comes from the fact that if an α candidate parent is paired with any lower-

ranked candidate, it always wins, and if the other candidate is also α, either enters

the pool. This is not to be confused with P (α), i.e. the probability to observe

exactly α elite species in the population. Since the analysis is restricted only to

elite pairs, the probability of evolution (generation of a better offspring as a result

of 1-Bit-Swap) is

Pswap =

(
2

1

)
k

n

(
1− k

n

)
(4.3)

since the algorithm needs to select a 0-bit in either parent and a 1-bit in the other

one, with k = 0 : n − 1. This is due to the pessimistic assumption that at the

start of the algorithm the fitness of the best string is just 1.

Of interest is the probability of evolving at least 1 new elite offspring, i.e. of

at least 1 successful swap in any elite pair. From the main model one obtains:

P (at least 1 new elite offsping in the population at t+ 1)

= 1− P (no new elite offspring in the population at t+ 1)

The first expression is for convenience referred to as the ‘probability of success’,

and the second one as the ‘probability of failure’.

By assumption, elite species are distributed uniformly: P (α) = 1
μ
. The total

number of elite pairs in the recombination pool is at most λ
2
. The probability of

failure given zero elite pair is

P (G0|H0)P (H0) = P (G0|H0)

μ∑
α=1

P (H0|α)P (α) =
1

μ

μ∑
α=1

P (H0|α)

=
1

μ

((
1− Psel,1

)λ
2
+
(
1− Psel,2

)λ
2
+ . . .+

(
1− Psel,μ

)λ
2

)

=
1

μ

μ∑
α=1

(
1− Psel,α

)λ
2

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 54

P (G0|H0) is obviously equal to 1, since 0 elite pairs in the pool excludes any

probability of evolution. Along these lines, to fail evolution given 1 elite pair in

the recombination pool:

P (G0|H1)P (H1) =

(
1− 2k

n

(
1− k

n

))
1

μ

μ∑
α=1

P (H1|α)

and
μ∑

α=1

P (H1|α) =
(

λ
2

1

) μ∑
α=1

Psel,α

(
1− Psel,α

)λ
2
−1

therefore, the probability of failure given 1 elite pair given k improvements so far

is

P (G0k|H1)P (H1) =

(
1− 2k

n

(
1− k

n

))(
λ
2

1

)
1

μ

μ∑
α=1

Psel,α

(
1− Psel,α

)λ
2
−1

For cases {Hj : 2 ≤ j ≤ λ
2
} the logic is similar, so the full expression for the

probability of failure is

P (G0k) =

λ
2∑

j=0

P (G0|Hj)P (Hj)

=
1

μ

λ
2∑

j=0

(
1− 2k

n

(
1− k

n

))j(λ
2

j

) μ∑
α=1

P j
sel(α)

(
1− Psel,alpha

)λ
2
−j

=
1

μ

λ
2∑

j=0

(
1− 2k

n

(
1− k

n

))j(λ
2

j

) μ∑
α=1

(
α

μ

)2j(
1−

(
α

μ

)2)λ
2
−j

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 55

Interchanging the sums and using the binomial identity (s+ t)n =
∑n

k=0

(
n
k

)
sktn−k,

one gets:

P (G0k) =
1

μ

μ∑
α=1

λ
2∑

j=0

(
λ
2

j

)((
1− 2k

n

(
1− k

n

))(
α

μ

)2
)j(

1−
(
α

μ

)2)λ
2
−j

=
1

μ

μ∑
α=1

(
1−

(
α

μ

)2

Pswap

)λ
2

The probability of success is therefore

P (Gk) = 1− P (G0k) = 1− 1

μ

μ∑
α=1

(
1−

(
α

μ

)2

Pswap

)λ
2

For each 1 ≤ k ≤ n− 1:

ETk =
1

1− 1
μ

∑μ
α=1(1− (α

μ
)2Pswap)

λ
2

and therefore the expected first hitting time for the algorithm is

Eτ(μ+λ)EA1BS
=

n−1∑
k=0

ETk = μ
n−1∑
k=0

1

μ−∑μ
α=1(1− (α

μ
)2Pswap)

λ
2

(4.4)

Unfortunately, this quantity does not seem to exist in a closed form. Therefore,

the asymptotic approximation is derived and checked numerically by comparing

Equation 4.4 to computational experiments for different values of μ, λ, n.

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 56

4.7.2 Asymptotic runtime of (μ+ λ)EA1BS on the OneMax

Test function

The author starts with approximating the probability of failure:

P (G0k) =
1

μ

μ∑
α=1

(
1−

(
α

μ

)2

Pswap

)λ
2

≥ 1

μ

μ∑
α=1

(
1− λ

2

(
α

μ

)2

Pswap

)

= 1−
μ∑

α=1

λ

2

α2

μ3
Pswap > 1− λPswap

2

The last step comes from the well-known identity:

μ∑
α=1

α2 =
μ(2μ+ 1)(μ+ 1)

6
≤ μ3

since P (Gk) = 1 − P (G0k) one can easily get the lower bound on the expression

for the whole algorithm:

Eτ(μ+λ)EA1BS
≥ 2

λ

n−1∑
k=1

1

Pswap

=
2n2

λ

n−1∑
k=1

1

2k(n− k)
=

2n2

λ
· 1
n

(n−1∑
k=1

1

k
+

1

2
·
n−1∑
k=1

1

n− k

)

>
3n log(n− 1)

λ

The third step is due to the partial fraction expansion. The last step is due to the

bounds on the Harmonic sum. Therefore, the lower asymptotic bound on runtime

of this algorithm is

Eτ(μ+λ)EA1BS
= Ω

(
n log n

λ

)
(4.5)

or, if measured in the number of function evaluations,

Eτ(μ+λ)EA1BS
= Ω(n log n) (4.6)

which is a well-known runtime bound on the OneMax function. In other words,

if elite species in the population are distributed uniformly, expected runtime of

(μ+ λ)EA1BS is asymptotically the same as any mainstream (1+ 1) Evolutionary

Algorithm and gets improved if run on parallel computers.

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 57

4.7.3 Runtime analysis of (μ+λ)RLS on the OneMax Test

Function

For the comparison, Eτ for (μ+λ)RLS using a similar approach (law of total prob-

ability + sum of independent Geometric rvs) is derived. Results will be compared

to Equation 4.4. Changes apply mostly to the selection and flipping probabilities,

as there are no pairs to form:

Psel,α =
α

μ

(
α

μ
+ 1− α

μ

)
=

α

μ

This comes from the fact that regardless of what candidate is selected by the

tournament selection function, an α species enters the pool. The probability to

flip the correct bit is the same as for any other RLS-type algorithm:

Pflip = 1− k

n

The same assumptions of uniform distribution of elite species in the population

are used, as with the (μ+ λ)EA1BS.

Failure event G0 is defined in the same way: no successful flips in the recom-

bination pool, so the probability thereof is defined in a similar way to the one in

Equation 4.1.

P (G0) =
λ∑

j=0

P (G0|Hj)

μ∑
α=1

P (Hj|α)P (α) (4.7)

Only in this case, of course, j is the number of elite parents in the pool and goes

from 0 to λ.

P (Hj|α)P (α) =

(
λ

j

)
P j
sel,α(1− Psel,α)

λ−j

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 58

and therefore (using the same idea with the binomial theorem)

P (G0k) =
1

μ

λ∑
j=0

(k
n

)j(λ
j

) μ∑
α=1

P j
sel,α(1− Psel,α)

λ−j =
1

μ

μ∑
α=1

λ∑
j=0

(
λ

j

)(k
n
Psel,α

)j
(1− Psel,α)

λ−j

=
1

μ

μ∑
α=1

(
1− α

μ
Pflip

)λ

Unfortunately, the closed expression for this sum does not seem to exist either, so

one remains with the following expression for the expected runtime of the algo-

rithm:

Eτ(μ+λ)RLS ≥
n−1∑
k=1

ETk = μ

n−1∑
k=1

1

μ−∑μ
α=1(1− α

μ
(1− k

n
))λ

(4.8)

Just as with the previous algorithm, asymptotic approximation is derived and this

expression is compared to the numerical results in Section 4.9

4.7.4 Asymptotic runtime of (μ + λ)RLS on the OneMax

Test function

It is quite straightforward to find the lower bound on P (G0k):

P (G0k) =
1

μ

μ∑
α=1

(
1− α

μ

(
1− k

n

))λ

≥ 1

μ

μ∑
α=1

(
1− λα

μ

(
1− k

n

))
= 1− λ

(
1− k

n

)

where once again Bernoulli inequality was found useful for the lower bound on the

expression. Therefore the probability of success is

P (Gk) ≤ λ

(
1− k

n

)

and, to find the expected runtime of the whole algorithm one needs to sum expec-

tations of Geometric rvs:

Eτ(μ+λ)RLS ≥
n−1∑
k=1

1

Gk

=
n

λ

n−1∑
k=1

1

n− k
≥ n log(n− 1)

λ

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 59

In other words, the lower bound on expected runtime is asymptotically

Eτ(μ+λ)RLS = Ω

(
n log n

λ

)
(4.9)

or, measured in number of function evaluations,

Eτ(μ+λ)RLS = Ω(n log n) (4.10)

which is the same as the lower bound for (μ+ λ)EA1BS. This means that asymp-

totically these two algorithms perform the same (with the benefit from paralleliza-

tion).

4.8 Main model of the (μ + λ) Algorithm on the

Royal Roads Test Function

The setup for the RR problem is along the lines of [Mit96] (referred to as R1 in

the book). If the length of the chromosome is n, it is split into K consecutive

disjoint subsets (also referred to as segments or bins), length of each bin is M (so

that n = KM). Originally this problem was designed to test EA’s capacity for

recombining building blocks compared to other heuristics (for details see [Mit96]).

It can also be seen as EA’s capacity to traverse the fitness plateau. For the details

of RR see Section 4.4.2.

In [JW01] efficiency of two different algorithms on functions with plateaus of con-

stant fitness was compared and it was proven that for some functions an algorithm

that accepts a new solution if it is at least as good (same fitness) can outperform

the one that accepts only better solutions. Here only the second case is considered

(success is defined as improving the auxiliary function, see below).

An auxiliary function is introduced to track progress between improvements in

the fitness (the idea is similar to that in, e.g. [DJW10a, HY04]), which in this

case is V (sk) = Vk = OneMax(sk) since both functions achieve have maxV (sk) =

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 60

max f(sk) = M and max f(s) = maxVs = max
∑

k Vk = n.

The motivation behind this auxiliary function is quite obvious: it is necessary

to track progress of the algorithms between jumps of the fitness value. OneMax

is a suitable candidate for this purpose as the number of 1-bits in the bin gives a

good measure on the distance to the next fitness level. Therefore, in addition to

artificial fitness levels one can also use artificial auxiliary levels, i.e. all populations

that have at least one species with the auxiliary value Vk.

There is one important feature of the evolutionary process to see here: when

parents exchange genetic information, it doesn’t matter where the information

comes from (which segment of the parent). What matters, is where it is inserted,

because it may mean that the fitness of the recipient segment has reached M , and

therefore the fitness of the offspring has increased.

Since both 1BS and RLS bins swap/flip exactly 1 bit, bins in the string evolve

in an arbitrary sequence (i.e. there are M !K! ways of evolution, since it does not

matter, in which order bits in the bin and bins in the string evolve). This directly

means that no two different bins can evolve simultaneously. It is also pessimisti-

cally assumed that the best auxiliary function value in the first generation is 1

(and hence the auxiliary value of the whole string is K) and the fitness function

is 0. The bin that is currently being ‘processed’ is referred to as ‘active’. Again,

the assumption about the distribution of elite species in the population is made

(Uniform).

4.8.1 Runtime analysis of (μ + λ)EA1BS on the RR Test

Function

As with OneMax, the author starts with introducing the probability of failure:

P (G0) =

λ
2∑

j=0

P (G0|Hj)

μ∑
α=1

P (Hj|α)P (α) (4.11)

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 61

where all variables are the same as in (μ+λ)EA1BS solving OneMax: Hj is j
th elite

pair in the recombination pool λ, α is the number of elite species in the population

μ with both highest fitness and auxiliary function values. The selection function

is the same as Equation 4.2:

Psel,α =

(
α

μ

)2

Having selected the pair, the probability that as the result of swapping bits between

them, a better offspring evolves is:

Pswap = 2 · M − l

n
· K − k + l + kM

n
=

2(M − l)(K + l + k(M − 1))

n2

This probability comes from the fact that one wants to select any 0 in the active

bin in one of the parents and a 1 anywhere in the other parent. Obviously, as the

number of 1-bits in both parents grows, so does this quantity. K comes from the

pessimistic assumption that the algorithm is initialized with one 1-bit in each bin.

Again, the probability of failure is also used:

PF = 1− Pswap

The same assumption about the Uniform distribution of elite species is made as

in the OneMax Section. The main model (Equation 4.11) is the application of the

law of total probability twice. Once the probability of success has been found, one

can treat it as a parameter in a Geometric rv: the number of failures before the

first success. The probability of failure given l bits set to 1 in the active bin is

P (G0l) =
1

μ

μ∑
α=1

(1− Psel,αPswap)
λ
2

Therefore, the probability of breeding at least one offspring with higher auxiliary

function value is

P (Gl) = 1− P (G0l) = 1− 1

μ

μ∑
α=1

(1− Psel,αPswap)
λ
2

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 62

and the expected time until the next improvement of the auxiliary function of the

active bin is

ETk =
M−1∑
l=0

1

P (Gl)
(4.12)

Finally, summing over all k from 0 to K − 1(since G depends on both l and k):

Eτ(μ+λ)EA1BS
=

K−1∑
k=0

M−1∑
l=0

1

P (Gl,k)
=

K−1∑
k=0

M−1∑
l=1

1

1− 1
μ

∑μ
α=1(1− Psel,αPswap)

λ
2

=
K−1∑
k=0

M−1∑
l=1

1

1− 1
μ

∑μ
α=1(1− 2α2(M−l)(K+l+k(M−1))

μ2n2)
λ
2

(4.13)

This expression is tested numerically for different values of n, μ, λ. Unfortunately,

it does not seem to exist in the closed form, so instead asymptotic approximation

is derived in the next subsection.

4.8.2 Asymptotic runtime of (μ+λ) EA1BS on the RR Test

Function

This derivation is in many ways similar to that for the OneMax test function.

P (G0l) =
1

μ

μ∑
α=1

(
1− Psel,αPswap

)λ
2

≥ 1

μ

μ∑
α=1

(
1− λ

2
Psel,αPswap

)

= 1− λPswap

2μ3

μ∑
α=1

α2 ≥ 1− 3λPswap

2

Here the Bernoulli inequality (1 − y)n > 1 − ny was used since obviously 0 <

Psel,αPswap < 1 (product of the probabilities) and λ
2
> 1. Then also

μ∑
α=1

α2 =
(2μ+ 1)(μ+ 1)μ

6
< 3μ3 = O(μ3)

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 63

Since P (Gl) = 1−P (G0l), the expected time until solving an active bin (using the

expression for Pswap) is

ETl ≥
M−1∑
l=1

1

P (Gl)
=

n2

3λ

M−1∑
l=1

1

(M − l)(K + l + k(M − 1))

=
n2

3λ(M +K + k(M − 1))

(M−1∑
l=1

1

M − l
+

M−1∑
l=1

1

K + k(M − 1) + l

)

≥ n2

3λ(M +K + k(M − 1))

(
logM + o(1)

)

Here again the bounds on the M th Harmonic number:

logM ≤
M∑
l=1

1

l
≤ logM + 1

The o(1) of the second term comes from the following derivation (using the defi-

nition n = KM) and asymptotically as K → ∞:

M−1∑
l=1

1

K + k(M − 1) + l
= log(K + k(M − 1) +M)− log(K + k(M − 1))

= log

(
1 +

M

K + k(M − 1)

)
≥ log

(
1 +

M

n

)
= log

(
1 +

1

K

)
= o(1)

Finally, one is able to sum over the number of bins in the string, K and obtain the

asymptotic expression for the whole algorithm:

Eτ(μ+λ)EA1BS
≥

K−1∑
k=0

n2 logM

3λ(M +K + k(M − 1))
=

n2 logM

3λ

K−1∑
k=0

1

K +M + k(M − 1)

=
n2 logM

3λM
log(1 +

KM

K +M
) = Ω

(
n2 logM log(KM

K+M
)

λM

)
(4.14)

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 64

This result is true if run on theoretical parallel computers. To measure this bound

in the number of function evaluations, it is multiplied by Ω(λ):

Eτ(μ+λ)EA1BS
= Ω

(
n2 logM log(KM

K+M
)

M

)
(4.15)

For a specific case of the Royal Roads Test function when K = M =
√
n this

bound becomes

Eτ(μ+λ)EA1BS
= Ω

(
n

3
2 log2 n

)
(4.16)

which seems to be a big improvement compared to the RR function [WJ07, SW03],

where the bound is Ω(n2) and LeadingOnes in [CHS+09], where the bound is

O(n2 + nN logN).

4.8.3 Runtime analysis of (μ+λ)RLS on the RR Test Func-

tion

The main difference of this model from the previous one is the genetic operator.

Since bits are flipped in a single parent, they do not depend on the number of

1-bits in other strings in the pool. Therefore the index of the active bin does not

really matter. This simplifies the analysis quite a bit.

Psel,α =
α

μ

(
α

μ
+ 1− α

μ

)
=

α

μ

The same assumption of the Uniform distribution of elite species is used. The flip

probability, assuming each bin has only 1 bit at the beginning of the run (therefore

the auxiliary value of the string is K) is just

Pflip =
M − l

n

since it is sufficient to select any one of 0-bits from the active bin regardless of

values in other bins or in the other parents.

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 65

Probability of failure given l successful flips so far (using Equation 4.1) is

P (G0l) =
1

μ

μ∑
α=1

(
1− αPflip

μ

)λ

and the runtime of the algorithm is

Eτ(μ+λ)RLS =
K−1∑
k=0

M−1∑
l=0

1

1− 1
μ

∑μ
α=1

(
1− αPflip

μ

)λ (4.17)

which is also tested numerically.

4.8.4 Asymptotic runtime of (μ + λ)RLS on the RR Test

Function

Approximating the probability of failure given l bits set to 1,

P (G0l) =
1

μ

μ∑
α=1

(
1− αPflip

μ

)λ

≥ 1

μ

μ∑
α=1

(
1− λαPflip

μ

)
= 1−

μ∑
α=1

λαPflip

μ2

= 1− λPflip

and the expected time to solve the active bin is therefore

ETk =
M−1∑
l=1

1

λPflip

=
n

λ

M−1∑
l=1

1

M − l
≥ n logM

λ

Since there are K such bins and the probability of successful sampling does not

depend on it (unlike (μ+λ)EA1BS), the expected first hitting time for the algorithm

on the RR test function is obtained:

Eτ(μ+λ)RLS =
K−1∑
k=1

ETk = Ω

(
nK logM

λ

)
(4.18)

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 66

or, measured in the number of function evaluations,

Eτ(μ+λ)RLS =
K−1∑
k=1

ETk = Ω(nK logM) (4.19)

If for example K = M =
√
n, the bounds become

Eτ(μ+λ)RLS = Ω(n
3
2 log n)

which is only up to an order Ω(log n) faster than EA using 1-Bit-Swap operator.

4.9 Numerical results

To test four equations that do not exist in the closed form, a large number of

numerical experiments was performed. For simplicity, μ ≡ λ and M ≡ 8 for the

RR test function. In Tables 4.4 and 4.5 the set of parameters for which the exper-

iments were run is presented for both OneMax and Royal Roads test functions.

n μ Length of run (generations)
50 20,30,40,50 500
100 30,40,50,60,70,80,90,100 1000

500
20,50,100,150,200

3000
250,300,350,400,450,500

1000
50,100,150,200

5000
250,300,350,400,450,500

Table 4.4: Set of parameters used for OneMax test function

Each parameter tuple (μ, n) was run 50 times (the length of run is given in the

respective table). The author compares the average generation at which the global

optimum (or to relax this condition, its ε−basin) was reached to the theoretical

estimate in the respective equation. In case the basin was not reached, this run is

ignored. Plots of the probability of success of (μ+λ)EA1BS on OneMax is missing

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 67

n μ Length of run (generations)
32 40,50,60,70,80,90,100 1000
64 40,50,60,70,80,90,100,110,120 1000

128
40,50,60,70,80,90,100,110,120

1000/2000
130,140,150,160,170,180,190,200

256
40,60,80,100,120,140,160

3000/4000
180,200,220,240,260,280

512
30,60,90,120,150,180,210,240

5000/6000
270,300,330,360,390,420,450,480,510,540

Table 4.5: Set of parameters used for the RR test function

(a)
n=50

(b)
n=100

(c)
n=500

(d)
n=1000

Figure 4.1: Distribution of the elite species in the population of (μ + λ) EA1BS

solving OneMax Test Function for μ = λ = 500 and stopped at the achievement
of the global optimum

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 68

(a)
n=50

(b)
n=100

(c)
n=500

(d)
n=1000

Figure 4.2: Distribution of the elite species in the population of (μ+λ)RLS solving
OneMax Test Function for μ = λ = 500 and stopped at the achievement of the
global optimum

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 69

(a)
n=100

(b)
n=500

(c)
n=1000

Figure 4.3: Probability of success of (μ+ λ)RLS solving OneMax Test Function.

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 70

(a)
n=50

(b)
n=100

(c)
n=500

(d)
n=1000

Figure 4.4: Numerical runtime estimate for (μ + λ)EA1BS solving OneMax Test
Function for different population sizes.

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 71

(a)
n=50

(b)
n=100

(c)
n=500

(d)
n=1000

Figure 4.5: Numerical runtime estimate for (μ + λ)RLS solving OneMax Test
Function for different population sizes.

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 72

(a)
n=50

(b)
n=100

(c)
n=500

(d)
n=1000

Figure 4.6: Theoretical and numerical estimate for (μ+λ)EA1BS solving OneMax
Test Function

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 73

(a)
n=50

(b)
n=100

(c)
n=500

(d)
n=1000

Figure 4.7: Theoretical and numerical estimate for (μ + λ)RLS solving OneMax
Test Function

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 74

(a)
n=32

(b)
n=64

(c)
n=128

(d)
n=256

(e)
n=512

Figure 4.8: Distribution of the elite species in the population of (μ + λ) EA1BS

solving Royal Roads Test Function for μ = λ = 500 and stopped at the achievement
of the global optimum

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 75

(a)
n=32

(b)
n=64

(c)
n=128

(d)
n=256

(e)
n=512

Figure 4.9: Distribution of the elite species in the population of (μ+λ)RLS solving
Royal Roads Test Function for μ = λ = 500 and stopped at the achievement of
the global optimum

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 76

(a)
n=128

(b)
n=256

(c)
n=512

Figure 4.10: Probability of success of (μ + λ) EA1BS solving Royal Roads Test
Function. For n = 32, 64 it is always almost 1

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 77

(a)
n=128

(b)
n=256

(c)
n=512

Figure 4.11: Probability of success of (μ+ λ)RLS solving Royal Roads Test Func-
tion.For n = 32, 64 it is always almost 1

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 78

(a)
n=32

(b)
n=64

(c)
n=128

(d)
n=256

(e)
n=512

Figure 4.12: Numerical runtime estimate for (μ + λ)EA1BS solving Royal Roads
Test Function for different population sizes. The positive effect of the population
size measured in the number of generations is obvious.

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 79

(a)
n=32

(b)
n=64

(c)
n=128

(d)
n=256

(e)
n=512

Figure 4.13: Numerical runtime estimate for (μ+λ)RLS solving Royal Roads Test
Function for different population sizes. The positive effect of the population size
measured in the number of generations is obvious.

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 80

(a)
n=32

(b)
n=64

(c)
n=128

(d)
n=256

(e)
n=512

Figure 4.14: Theoretical and numerical bounds for (μ + λ)EA1BS solving Royal
Roads Test Function

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 81

s
(a)
n=32

(b)
n=64

(c)
n=128

(d)
n=256

(e)
n=512

Figure 4.15: Theoretical and numerical bounds for (μ+λ)RLS solving Royal Roads
Test Function

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 82

since it is always 1.

Certain conclusions can be draw from these results.

1-Bit-Swap vs Randomized Local Search Results for EA with 1BS are con-

sistently better than those for RLS for most instances of both functions, both in

terms of the higher probability of success (1BS always finds the solutions, hence

the respective plots are missing) and shorter runtime. This results is especially

strong for all instances of OneMax and small populations on the RR. For large

populations on RR the results for RLS are similar to those for 1BS. One doesn’t

fail to notice that theoretically RLS performs up to an order Ω(log n) faster than

EA with 1BS. More investigation is needed in this area to clarify this result. One

may suggest that if tested on even large populations sizes, RLS may outperform

1BS.

Distribution of Elite Species (OneMax Test Function) Numerically for

OneMax problem (see Figures 4.1, 4.2) it is obvious that the assumption of Uniform

distribution of elite species as an upper bound on the probability to observe ‘large’

numbers of elite species does not hold. In fact, EA with 1BS exhibits a completely

different pattern of elite species than RLS. It seems to accumulate a large number

of elite species fast and thus improve the probability of finding a better solution.

RLS on the other hand does not seem to exhibit any consistent pattern at all,

although the upper bound assumption seems to hold.

Distribution of Elite Species (Royal Roads Function) By looking at fig-

ures 4.8, 4.9 it becomes pretty clear that elite species in both algorithms (or, more

correctly, super-elite, those with the highest auxiliary OneMax value) follow some

form of an exponential decay. This justifies the use of Uniform distribution be-

cause it gives an upper bound on the probability to observe ‘large’ numbers of α

species. This phenomena will be scrutinized in the next chapter.

Effect of the Population size (OneMax Function) On Figures 4.3, 4.4 and

4.5 it is quite obvious, that the increase in the population size does not bring about

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 83

any positive changes in the efficiency of both algorithm, neither for the probability

of finding the solution, nor the runtime. Obviously, if measured in the number

of function evaluations (multiplied by 2λ) effect of the population will be strictly

degrading. This confirms many previous findings (e.g. in [He10, Wit04]) that have

showed the negative effect of the population for algorithms solving OneMax or

other easy (runtime at most O(n log n)) problems.

Effect of the Population size (Royal Roads Function) On Figures 4.10

and 4.11 the positive effect on the probability of finding the global optimum by

both algorithms is quite obvious, unlike OneMax. Another thing is the leveling

out effect, that was noticed already in [HY02]: as the population size increases,

the marginal effect reduces. On Figures 4.12 and 4.13 another positive effect of

the population is obvious, i.e. faster convergence: as the population increases,

runtime, measured in generations, decreases. This benefit is achieved though if

run on parallel computers. On a single computer, if measures in the number of

function evaluations, in some of these cases increase in the population size degrades

performance.

Numerical vs Theoretical Results (OneMax Test Function) Finally, it is

possible to compare numerical and theoretical findings (see Figures 4.6 and 4.7).

Theoretical findings (Equations 4.4 and 4.8) yield lower bounds despite the clear

violation of the Uniform distribution assumption as shown above. As a result,

apart from the (μ + λ)EA1BS algorithm with n = 50 all other bounds seem quite

loose. Results for the other three (μ+λ)EA1BS algorithms are tighter than for all

four (μ + λ)RLS, although even in the worst case theoretical results are different

by the factor of 4, which still qualifies for a ‘small constant’.

Numerical vs Theoretical Results (Royal Roads Test Function) For

Royal Roads (Figures 4.14, 4.15 and Equations 4.13, 4.17) the results are substan-

tially more consistent than for OneMax. Numerical and theoretical curves have

the same shape, demonstrating the leveling-out effect of the population. Since the

Uniform distribution assumption for the RR function was verified, lower bounds

are much tighter than for OneMax. For the (μ+ λ)EA1BS algorithm it is tight at

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 84

most up to a very small constant (for n = 128 it is ≈ 2). For larger n, e.g. n = 512

theoretical result is asymptotically tight as μ → ∞. For (μ + λ)RLS the results

are more loose, but for large n they again get tight asymptotically (the constant

is ≈ 3).

4.10 Conclusions

As mentioned at the beginning of the chapter, there have been very few results on

(μ+ λ) population-based EAs, and even fewer on the structure of the population.

In this chapter an attempt was made to answer some of the most basic questions

arising in connection with population-based elitist EAs, e.g. the distribution of

elite species. As a result of this approach, a number of lower bounds on the runtime

were derived and the results were tested numerically.

• Both asymptotic solutions for OneMax function are of the same order Ω(n logn
λ

)

and are comparable to the results for (μ + 1) and (1 + λ) EAs available in

the literature. Also this results demonstrates the benefit of using parallel

computers by increasing the size of the recombination pool

• The asymptotic order for the Royal Roads function depends on the number

of bits in a bin M and the number of bins K. For K = M =
√
n RLS out-

performs 1BS by an order of Ω(log n). The result comes from the linear ex-

pression for the probability of selecting the correct bit for RLS and quadratic

for 1BS. Since theoretical results contradict this finding (1BS greatly out-

performs RLS for most sizes of the problem and the populations), one can

infer that that additional investigation is needed (see next chapter)

• The positive effect of the population (measured as the probability to find

the global solution and the runtime till this event) is evident on the Royal

Roads function. Numerically it is shown that for OneMax, as the population

size increases, neither the probability of finding the global solution nor the

expected time (measured in the number of generations) improve. For the

Royal Roads the situation is the opposite-the first benchmark grows, the

CHAPTER 4. LOWER BOUNDS ON THE RUNTIME 85

second one reduces, clearly demonstrating the benefit of large populations

(at least when run on parallel computers).

• All theoretical results obtained from respective equations are tight up to a

small constant. Nevertheless, it is quite obvious that for the Royal Roads

test function they are much more consistent with the numerical results, i.e.

they both reduce and level out (i.e. the efficiency of adding more species

to the population drops). For the 1BS, results are much tighter, sometimes

the multiplying constant can be as small as 1.5 (e.g. for n = 256, μ = 280).

Results for RLS are more loose, sometimes up to the factor of 6 (e.g. for

n = 32, μ = 100). This directly implies that the approximation of the

distribution of elite species with Uniform distribution is much more relevant

for 1BS than RLS. This is indirectly confirmed by the empirical distribution

of elite species- they resemble some form of an exponential decay for both

algorithms, but the right tail is much longer for 1BS than RLS.

• The distribution of elite species in both algorithms on the OneMax function

does not seem to follow any distribution, which may well explain the lower

consistency of theoretical results: the shapes of the theoretical curves are dif-

ferent to those of numerical on Figures 4.6 and 4.7. Although they are never

too loose, the assumption of the Uniform distribution is clearly violated.

• The main point is that, when analyzing population-based EAs, making an

assumption about the distribution of species to construct the model is a

straightforward solution, but it may lead to worse-than-expected results. The

next Chapter is a further step in the direction of the analysis of the subsets

of the population and their effect on the runtime without such assumptions.

Chapter 5

Upper Bounds on the Runtime

In the Chapter 4 an attempt was made to understand some of the processes af-

fecting the structure of the population and the recombination pool, and apply

this understanding to the derivation of the bounds on runtime. Although some of

the results were quite encouraging, numerical experiments revealed a number of

drawbacks, among them:

1. Assumption of the Uniform distribution as an approximation of the sampling

probability is clearly violated in the OneMax Problem.

2. Numerical results demonstrated that some bounds were quite loose (e.g. RLS

solving OneMax problem).

3. The adopted approach does not distinguish between species of the same

fitness level, but different distance to the next fitness level on the Royal

Roads problem (or on any other problem with fitness plateaus)

It is therefore necessary to design a method that would take these points into

consideration. More specifically, it should:

1. Avoid making assumptions about the distribution of species in the popula-

tion,

2. Give an asymptotically tight upper bound that can be compared to the

findings in Chapter 4 and results in the literature,

86

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 87

3. Distinguish between species on the plateau of fitness (Royal Roads), which

is crucial to the derivation of the runtime

For this purpose, in this chapter a tool called the Elitism Levels Traverse Mecha-

nism is developed and applied to both OneMax and Royal Roads (or, more gen-

erally, function with fitness plateaus). This is a novel flexible method that allows

analysis of population-based algorithms solving different functions.

5.1 Main results

Some of the main results of this Chapter are:

1. Development of a new tool for the analysis of population-based Evolutionary

Algorithms

2. Upper bound on the runtime of (μ+ λ)EA1BS on OneMax is O(μn logn
λ

)

3. Upper bound on the runtime of (μ + λ)EA1BS on Royal Roads with K =

M =
√
n is O(μn

3
2 log2 n
λ

)

4. There exists a lower bound on the probability to add 1 elite offspring to

the population that allows only to consider types of pairs, rather than the

number of each type in the recombination pool

5. Probability to evolve a higher-ranked offspring solving a function with plateaus

is lower-bounded by 1− e−
c
8 + o(1) for some small constant c if λ = μ.

6. Limiting distribution of super-elite species, when solving the first bin in the

Royal Roads problem converges to truncated Poisson distribution if the rate

of progress is slow and Normal if it is fast.

The recovery of the results for OneMax and improvement of the results for Royal

Roads verifies the validity of this approach and its potential for solving similar

problems.

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 88

5.2 The Elitism Levels Traverse Mechanism

In this section a new approach to modeling (μ+ λ) algorithms, the Elitism Levels

Traverse Mechanism, is presented. It is loosely based on the ideas of fitness levels

traversal (see [JW01]) and locally-optimal individuals (see [CHS+09, CTCY12]).

This approach addresses some of the main problems identified in Chapter 4 and

suggests a different way to derive bounds on mean first hitting times of global

solutions:

1. It replaces the assumption of the species distribution in the population with

the mechanism that tracks the change in their number by identifying the

ways of adding certain types of species (e.g. elite) to the population,

2. Instead of using the probability of advancing a level of fitness, it makes use of

the probability of advancing a level of elitism, e.g. adding an elite species up

to a certain proportion δ such that the probability of evolution is arbitrarily

close to 1, i.e. 1− o(1),

3. Tracks the change in the number of elite species on plateaus of fitness that

enables the derivation of sharper results for the Royal Roads function (see

Subsection 5.4.1).

The working of the Elitism Levels Traverse Mechanism can be illustrated by an

example from epidemiology (similar to the approach in [Nas96, Nas99]).

Suppose that there exists a population of species of size N , which is suscepti-

ble to M types of infection, which are mutually exclusive, i.e. a species cannot

be infected by more than one infection at the same time. The size of each type

of infected species cannot be larger than mj. A sick species can infect exactly

one healthy individual. An event E∗
jr that r < mj infected species of type j are

observed in the population one of which infects exactly one healthy species. Since

the sets of infected species are mutually exclusive, by additivity, the probability

that exactly one healthy species gets any of the M infections is obtained:

P

(M⋃
j=1

E∗
j

)
= P

(M⋃
j=1

mj⋃
r=1

E∗
jr

)
=

M∑
j=1

mj∑
r=1

P (E∗
jr) =

M∑
j=1

P (E∗
j) = P (E∗)

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 89

This expression needs to be simplified for a number of reasons, e.g. the knowledge

of mj. Although one can find bounds on the partial sum of rows of Pascal triangle

(since mj is clearly less than N), it is guaranteed to make the derivation messy.

Therefore, only one infected species of each type is considered rather than r, and

the event of infecting exactly one healthy species with infection type j is therefore

Ej. This yields the lower bound on the total probability of adding exactly one

infected offspring:

P (E∗
j) ≥ P (Ej) ↔ P (E∗) =

M∑
j=1

P (E∗
j) >

M∑
j=1

P (Ej) = P (E) (5.1)

In the language of Evolutionary Computation, infected species of any type are

elite species, M are the types of pairs that are able to produce at most one elite

offspring, mj is the number of pairs of type j in the recombination pool, N is the

size of the recombination pool. The new idea is the δμ (for 0 < δ < 1), which is the

number of elite individuals in the population that ensures the 1− o(1) probability

of advancing to the next level of evolution. If there are n such levels, the expected

runtime of EA can be expressed as

Eτ =
n∑

k=1

δμ∑
α=1

1

P (E∗(α, k))
=

n∑
k=1

δμ∑
α=1

1∑M
j=1 P (E∗

j (α, k))

<
n∑

k=1

δμ∑
α=1

1∑M
j=1 P (Ej(α, k))

=
n∑

k=1

δμ∑
α=1

1

P (E(α, k))
(5.2)

Derivation of the upper bound on the runtime using Equation 5.2 is rather flexible.

One needs to identify pairs of possible parents < p1, p2 > such that there exists

some probability of swapping (or otherwise exchanging) bits ϕ(k) > 0 that, as a

result, a new elite offspring evolves.

Before this tool is applied to OneMax and Royal Roads problems, Equation 5.1

(and, hence, Equation 5.2) is proved for an arbitrary type of pairs (infection) j (this

lower bound is not to be confused with a trivial one of the form
∑

k≥r

(
n
k

)
pk(1 −

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 90

p)k >
(
n
r

)
pr(1− p)n−r):

P (Ej) =

(
λ
2

1

)
PselPswap =

(
λ
2

1

)
Pselϕj(k) (5.3)

P (E∗
j) = P

(
mj⋃
r=1

E∗
jr

)

=

mj∑
r=1

(
λ
2

r

)
P r
sel(1− Psel)

λ
2
−r

(
r

1

)
ϕj(k)(1− ϕj(k))

r−1 (5.4)

As mentioned before, Pswap is the probability to swap bits such that a new elite

offspring evolves. Since all the terms in the sum are positive, the lower bound on

this expression can be used:

P (E∗
j) ≥

mj∑
r=1

(
λ
2

r

)
P r
sel(1− Psel)

λ
2
−rϕj(k)(1− ϕj(k))

r−1

≥ ϕj(k)

(1− ϕj(k))

(
mj∑
r=0

(
λ
2

r

)
P r
sel(1− ϕj(k))

r(1− Psel)
λ
2
−r − (1− Psel)

λ
2

)

≥ ϕj(k)

(
mj∑
r=0

(
λ
2

r

)
P r
sel(1− ϕj(k))

r(1− Psel)
λ
2
−r − (1− Psel)

λ
2

)

Canceling out ϕj(k) and moving the term e−1 ≤ (1−Psel)
λ
2 ≤ 1√

e
< 1 to the other

side, the LHS of the inequality becomes

P (E∗
j) ≥

mj∑
r=0

(
λ
2

r

)
P r
sel(1− ϕj(k))

r(1− Psel)
λ
2
−r

≥ (Psel(1− ϕj(k)) + 1− Psel)
λ
2

= (1− Pselϕj(k))
λ
2

and the RHS is upper-bounded by

1√
e
+

λPsel

2
=

1√
e
+ o(λc−1)by the argument below

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 91

The LHS is lower-bounded by (using Bernoulli inequality for λ
2
≥ 1):

P (E∗
j) ≥ (1− Pselϕj(k))

λ
2 ≥ 1− λPselϕj(k)

2

Since one can select Psel = O(λ−c) and ϕj(k) = O(n−c), c ∈ Z, the expression is

P (E∗
j) = 1− o(1) >

1√
e
+ o(1) = P (Ej) (5.5)

thus proving the lower bound on the probability of evolving exactly one more elite

species for an arbitrary subset j. This logic applies for each of the M subsets

(types of pairs) of the recombination pool, and the inequality becomes

P (E∗) = P

(
M⋃
j=1

E∗
j

)
>

M∑
j=1

P (Ej) = P (E) (5.6)

The upper bound in Equation 5.2 follows directly.

5.3 Upper bounds on the OneMax test function

In this section the assumption is made that the starting fitness of strings is at most

3 (to avoid division by 0). This comes from considering three types of species in

the population, unlike the approach in Chapter 4.

α : currently best species, i.e. species with the highest fitness so far

β : species with the next-best fitness value

γ : the remainder of the population

The Elitism Levels Traverse Mechanism requires identifications of only those pairs

that can evolve a currently elite offspring, therefore pairs like < γ, γ > are not

considered. In fact, one of the questions that is addressed in this section, is whether

the use of γ species is necessary at all.

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 92

5.3.1 Simple upper bound on OneMax

To derive the simple upper bound, first only two pairs are considered, neither of

which makes use of γ species:

E1 :< α, β >

E2 :< β, β >

Note the obvious pair < α, α > as in Chapter 4 is not used since if bits are swapped

successfully (i.e. in both strings either two 0- or 1-bits are selected), two currently

elite offsprings are generated. In case in both parents bits with different values are

selected, a better offspring evolves. Both of these cases are outside of the scope

of the approach considered here. At the end of this Section though the possible

extension of this approach to include < α, α > pairs is discussed.

The probabilities of events E1, E2 are

P (E1) = 2

(
λ
2

1

)
ϕ1(k) · α

μ
· β
μ

(
1− α

μ

)
=

αβλ(μ− α)ϕ1(k)

μ3

P (E2) =

(
λ
2

1

)
ϕ2(k)

(
β

μ

(
1− α

μ

))2

=
λϕ2(k)β

2(μ− α)2

2μ4

Both equations yield the lower bound on the true probability, as per Equation 5.1.

P (E1) is due to selecting exactly 1 α parent and 1 β parent (the order in the pair

does not matter). P (E2) comes from selecting β parents in both cases. In the

tournament selection this means that a β candidate has to be paired either with

another β, or γ to enter the pool.

The probability of at least 1 of these events is

P (E(α, k)) ≥ P (E1) + P (E2) =
2ϕ1(k)αβλ(μ− α)

μ3
+

ϕ2(k)λβ
2ϕ1(k)(μ− α)2

2μ4

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 93

and, since P (E(alpha, k)) is the lower bound on the probability, the upper bound

on the expected time to traverse enough levels of elitism (i.e. add enough currently

elite species to the population) to evolve from fitness levels k to k + 1 is

ET̃α,k ≤
δμ∑
α=1

1

P (E(α, k))

The following auxiliary notation is uses here:

Eτ(μ+λ)EA1BS
=

n−1∑
k=1

ET̃μ,k =
n−1∑
k=1

δμ∑
α=1

ET̃α,k =
n−1∑
k=1

δμ∑
α=1

1

P (Sα,k)

The expression for the mean time to observe δμ elite species in the population

is obtained as a result of this setup (at this point β is pessimistically set to 1 to

simplify the derivation):

ET̃α,k ≤ 2μ4

δμ∑
α=1

1

βλ(μ− α)(2αμϕ1(k)− αβϕ2(k) + βμϕ2(k))

<
2μ4

λ

×
δμ∑
α=1

1

(ϕ2(k)− 2μϕ1(k))α2 + (2μ2ϕ1(k)− 2μϕ2(k))α + μ2ϕ2(k)

=
2μ4

λ(ϕ2(k)− 2μϕ1(k))

δμ∑
α=1

1

α2 + b1α + b0
(5.7)

where

b0 =
μ2ϕ2(k)

ϕ2(k)− 2μϕ1(k)

b1 =
2μ(μϕ1(k)− ϕ2(k))

ϕ2(k)− 2μϕ1(k)

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 94

In order to simplify the already complicated derivation, the summand in the ex-

pression for ET̃α,k is written in the form

S̃(α, k) =
1

(α + r)2
=

1

(α2 + 2rα + r2)

for some r. From equating coefficients it becomes clear that

r =
√

b0 or r =
b1
2

and so, using the first root

S̃(μ, k) =

δμ∑
α=1

1

(α + r)2
= ψ1(

√
b0)− ψ1(

√
b0 + δμ+ 1)

For large b0 these expressions involving a digamma function can be expanded

asymptotically in the Taylor series (only the first two terms are used):

S̃(μ, k) ≈
(

1

b0
− 1

2b0

)
−
(1

b0
− δμ

b0
− 1

2b0

)
=

δμ

b0

=
δμ(ϕ2(k)− 2μϕ1(k))

μ2ϕ2(k)
=

δ(ϕ2(k)− 2μϕ1(k))

μϕ2(k)

and therefore the expected time to traverse enough levels of elitism to improve 1

bit of the string is (substituting this expression into Equation 5.7)

ET̃μ,k =
2μ4

λ(ϕ2(k)− 2μϕ1(k))
· δ(ϕ2(k)− 2μϕ1(k))

μϕ2(k)

=
2μ3δ

λϕ2(k)

To improve the pair < β, β > one needs to either swap 1 from the first parent and

0 from the second, or the other way around (any other outcome just keeps the

current number of bits in each parent):

ϕ2(k) = 2 · k − 1

n
· n− k + 1

n
=

2(k − 1)(n− k + 1)

n2

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 95

Substituting this into the expression for ET̃μ,k, one obtains the expected optimiza-

tion time of the algorithm, pessimistically assuming that at the beginning of the

run the best species has only 2 1-bits anywhere in the string.

Eτ(μ+λ)EA1BS
≤ μ3n2δ

λ

n−2∑
k=2

1

(k − 1)(n− k + 1)

=
δμ3n2

λ
· 1
n

(
n−2∑
k=2

1

k − 1
+

n−2∑
k=2

1

n− k + 1

)

=
δμ3n

λ

(
log(n− 1) +O(1)

)
(5.8)

The second step is due to the partial fraction expansion. Although this seems

quite a loose bound given cubic in μ, one can take μ = O(λ) so all it is left to

establish is δ.

Obviously 0 < δ < 1, but one needs to select it s.t. summation over α makes

sense. δ = μ−ε1 is set for an arbitrary ε1 > 0 s.t. δμ = μ1−ε1 > 1. Then

δμ2 = μ2−ε1 = μ1+ε2 . For example, ε2 =
1
2
yields δμ =

√
μ and δμ2 =

√
μ3.

The optimization time is

Eτ(μ+λ)EA1BS
= O(μ1+ε2n log n) (5.9)

or, in the number of function evaluations

Eτ(μ+λ)EA1BS
= O(λμ1+ε2n log n) (5.10)

That is, runtime grows both in μ and λ. Nevertheless, if δμ = c = O(1), this

bound reduces to linear in μ:

Eτ(μ+λ)EA1BS
= O(λμn log n) (5.11)

Hence, it is of interest to see if these bounds improve if all pairs of parents able to

breed a currently elite offspring are considered.

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 96

5.3.2 Refined upper bounds on OneMax

In addition to pairs E1 and E2 in Subsection 5.3.1, two more are added, both

involve the ‘primitive’ species γ:

E1 :< α, β >

E2 :< β, β >

E3 :< α, γ >

E4 :< β, γ >

The corresponding probabilities of evolving an α offspring are

P (E1) = 2

(
λ
2

1

)
ϕ1(k) · α

μ
· β
μ

(
1− α

μ

)
≥ αλ(μ− α)ϕ1(k)

μ3

P (E2) =

(
λ
2

1

)
ϕ2(k)

(
β

μ

(
1− α

μ

))2

≥ λϕ2(k)(μ− α)2

2μ4

P (E3) = 2

(
λ
2

1

)
α

μ
·
(
1− α + β

μ

)2

ϕ3(k) ≈ λα

μ

(
1− α

μ

)2

ϕ3(k)

P (E4) = 2

(
λ
2

1

)
β

μ

(
1− α

μ

)(
1− α + β

μ

)2

ϕ4(k) ≈ λ

μ

(
1− α

μ

)3

ϕ4(k)

P (E3) is due to selecting a γ species in addition of α: it is possible only if both

candidates are γ. P (E4) is similar, but to select a β parent it must not compete

against α. Again, to avoid overcomplications, only the lower bound on the num-

ber of the next-best species is considered, β ≥ 1. The combined probability of

evolution is (P (E1), P (E2) are the same as in the previous derivation):

P (E(α, k)) = P (E1) + P (E2) + P (E3) + P (E4)

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 97

and the expected time until there are δμ elite strings in the population:

ET̃μ,k ≤
δμ∑
α=1

1

P (E(α, k))
= 2μ4

δμ∑
α=1

1

b3α3 + b2α2 + b1α + b0

=
2μ4

b3

δμ∑
α=1

1

α3 + b2
b3
α2 + b1

b3
α + b0

b3

(5.12)

where

b0 = λμ2(2μϕ4(k) + ϕ2(k))

b1 = 2λμ(μϕ1(k) + μ2ϕ3(k)− 3μϕ4(k)− ϕ2(k))

b2 = λ(ϕ2(k)− 4μ2ϕ3(k)− 2μϕ1(k)− 6μϕ4(k))

b3 = 2λ(μϕ3(k)− ϕ4(k))

One needs a solution to the cubic (in α) equation of the form

S(μ, k) =
∑
α

S(α, k) =

δμ∑
α=1

1

α3 + b′2α2 + b′1α + b0

where

b′2 =
ϕ2(k)− 4μ2ϕ3(k)− 2μϕ1(k)− 6μϕ4(k)

2(μϕ3(k)− ϕ4(k))

b′1 =
μ(μϕ1(k) + μ2ϕ3(k)− 3μϕ4(k)− ϕ2(k))

2(μϕ3(k)− ϕ4(k))

b′0 =
μ2(2μϕ4(k) + ϕ2(k))

2(μϕ3(k)− ϕ4(k))

Solution to S(μ, k) is of the form

S(μ, k) =
∑
α

1

(α + ρ)3
=
∑
α

1

α3 + 3α2ρ+ 3αρ2 + ρ3

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 98

Equating the coefficients three roots for ρ are obtained:

ρ =
b′2
3

ρ = ±
√
b′1
3

ρ = 3
√

b′0

To simplify the increasingly complicated notation, only the last root is selected:

S(μ, k) =

δμ∑
α=1

1

(α + 3
√

b′0)3
=

ψ2(
3
√

b′0 + δμ+ 1)− ψ2(
3
√

b′0 + 1)

2

=
1

2

((
− 1

3

√
b′0

2
+

2δμ+ 1

b′0

)
−
(

− 1

3

√
b′0

2
+

1

b′0

))

=
1

2
· 2δμ
b′0

=
δμ

b′0

The second line in the derivation was obtained by expanding both second-order

polygamma functions in Taylor series as b′0 → ∞ and taking the first two terms of

each function. The front term in Equation 5.12 is combined with this derivation to

obtain the expression of the upper bound on the expected time until the number

of elite species in the population in kth fitness level reaches δμ:

ET̃μ,k ≤ 2μ5δ

λb3b′0
=

2δμ3

λ(2μϕ3(k) + ϕ4(k))

since

b3b
′
0 = 2(μϕ3(k)− ϕ4(k)) · μ

2(2μϕ3(k) + ϕ4(k))

2(μϕ3(k)− ϕ4(k))
= μ2(2μϕ3(k) + ϕ4(k))

Finally, it is possible to find the upper bound on the expected optimization time

of the algorithm:

Eτ(μ+λ)EA1BS
≤

n−3∑
k=3

ET̃μ,k =
2δμ3

λ

n−3∑
k=3

1

2μϕ3(k) + ϕ4(k)
(5.13)

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 99

Here again a pessimistic assumption is made that the best species at the start of

the run has a fitness of 3, since in such case the fitness of γ has minimal fitness of

1 to avoid inconsistencies of the form 1
0
. Two probabilities are considered for the

two new types of pairs:

ϕ3(k) =
k

n
· k − 2

n
+

n− k

n
· n− k + 2

n

=
k(k − 2) + (n− k)(n− k + 2)

n2

The expression comes from the fact that it is necessary to preserve the 1-bits in the

better parent in order to add its offspring to the population, so one needs to either

select 1-bits in each parent or 0-bits in each parent. For the last swap probability,

ϕ4(k), one needs only to select a 0-bit in the β parent and a 1-bit in γ parent,

other options either degrade the better parent or leave the current fitness.

ϕ4(k) =
(n− k + 1)(k − 2)

n2

Manipulating the summand over k:

S(μ, k) =
1

2μϕ3(k) + ϕ4(k)

=
n2

(4μ− 1)k2 + (n− 8μ− 4μn+ 3)k + 4μn− 2n+ 2μn2 − 2

≤ n2

μ
· 1

k2 − 4(n+ 2)k + 2n(n+ 1)

The first fraction is left out, and the denominator is factored in the form (k −
s)(k − r), s.t. s, r are solutions to the set of equations:

{
s+ r = 4(n+ 2)

sr = 2n(n+ 1)

The resulting solution (only the larger of the two roots that are symmetric around

2n is used) is: {
s = 2n+

√
2
√
n2 + 7n+ 8 + 4

r = 2n−√
2
√
n2 + 7n+ 8 + 4

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 100

The value under the root can be bounded by

n+ 2 ≤
√
n2 + 7n+ 8 ≤ n+ 4

So the expression becomes upper-bounded by

S(μ, n) ≤ n2

μ

1

(k − (2n+
√
2(n+ 2)))(k − (2n−√

2(n+ 4)))

Expanding this in partial fractions, two sums over k are obtained:

S1(μ, n) =
n−3∑
k=3

1

k − (2n+
√
2(n+ 2))

≈ ψ0(n− 2n−
√
2n)− ψ0(3− 2n−

√
2n)

= ψ0(−(1−
√
2)n)− ψ0(3− (2 +

√
2)n) = O(1)−O(1) = −O(1)

The result of −O(1) is due to the fact that any n can be selected, for which the

values of digamma function are small negative constants. For the second sum, the

upper bound on the value in the denominator, since 2−√
2 ≈ 0.58 < 1, is:

S2(μ, n) =
n−3∑
k=3

1

k − (2n−√
2(n+ 2))

≤
n−3∑
k=3

1

k − n
= −

n−3∑
k=3

1

n− k

≈ − log(n− 3) +O(1)

the minus sign in front of the expression cancels out by multiplying S1(μ, k) by

S2(μ, k) and the upper bound for S(μ, n) is obtained:

S(μ, n) ≤ n2(log(n− 3)−O(1))

μn

and the upper bound on the expected first hitting time:

Eτ(μ+λ)EA1BS
≤ 2δμ2n(log(n− 3)−O(1))

λ
(5.14)

This equation is up to an order μ tighter than Equation 5.8, demonstrating the

benefit of using ‘primitive’ species to traverse levels of elitism. Setting δμ = c =

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 101

O(1), the expression becomes (measured in the number of generations, for c > 0)

Eτ(μ+λ)EA1BS
=

cμn log n

λ
−O

(
μn

λ

)
(5.15)

or, in the number of function evaluations,

Eτ(μ+λ)EA1BS
= cμn log n−O(μn) (5.16)

In addition to being tighter than the bound with two terms in subsection 5.3.1, it

is also comparable to the results in [CHS+09, JDJW05, He10] (see below).

5.3.3 Use of < α, α > pair

At the beginning of this section it was mentioned that this type of pairs, consid-

ered in Chapter 4 is excluded from analysis since it does not follow the idea of

the worst upper bound in the Elitism Levels Traverse Mechanism. Although this

approach is probably worth additional scrutiny, there is one thing to notice here.

In this chapter the worst upper bound for OneMax was derived, and turned out

to be O(μn log n). The lower bound in Chapter 4 was found to be Ω(n log n).

Trivially, adding the new pair can only improve the upper bound, but it certainly

cannot be better that the lower bound. And since the only difference is the μ

term, improvement is only possible up to O(μ).

5.3.4 Generations vs Function evaluations

Tournament selection has a property that one does not need to evaluate every

species, but it is necessary to make 2λ evaluations (since two species compete for

1 slot in the recombination pool, so the number of evaluations each generation is

O(λ). Therefore, in terms of the number of function evaluations the simple bound

in Subsection 5.3.1 becomes O(μλn log n) and the refined one in Subsection 5.3.2

O(μn log n). If μ = λ = O(1) this reduces to the well-known result of O(n log n)

for OneMax function. The λ term in the denominator means that if the algorithm

is run on parallel computers, the increase in the recombination pool size improves

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 102

the performance.

Another interesting feature, is that the refined case demonstrates the importance

of making use of γ species, that turn out to improve the bounds.

5.3.5 Comparison to earlier results

The results in this Section can be compared to those in [CHS+09] for (N +N)EA

with mutation and a variant of tournament selection function, O(nN logN +

n log n) if measured in the number of function evaluations (Proposition 4). By

setting N = O(1) = c ≥ 1 this bound becomes n log n + O(n), which is larger

than cn log n − O(n) in this section. If instead population size is set to μ =

N = O(
√
log n) or O(logn

log logn
) the result in [CHS+09] is sharper than here. For

populations Ω(
√
n

logn
) the bound in this section becomes sharper again, e.g., for

μ = N = O(
√
n) it is cn

3
2 log n−n

3
2 , and in [CHS+09] it is 0.5n

3
2 log n+O(n log n).

The models in this section concerned only OneMax, a function without plateaus

of fitness. In the remainder of this chapter it will be shown that the Elitism Levels

Traverse Mechanism can be effectively applied to functions with fitness plateaus.

It is also possible to approximate the limiting distribution of the number of super-

elite species in the population.

5.4 Upper Bounds on the Royal Roads test func-

tion

The remainder of this chapter is dedicated to the upper bound on the runtime of

(μ + λ)EA1BS solving Royal Roads and stationary properties of the distribution

of species. The definition of the problem and the approach in the part of using

active bins are the same as in Chapter 4. Analysis here though has a number

of substantial differences from both OneMax in Section 5.3 and Royal Roads in

Section 4.8:

1. One of the most important differences is the random walk on the plateau

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 103

of fitness. As mentioned several times in Chapter 4, fitness-proportional

selection function does not differentiate between species of the same fitness,

but different distance to the next fitness level (‘plateau of fitness’). Therefore,

population performs random walk on this plateau. Hence the idea of artificial

auxiliary levels has to be expanded to construct a better model.

2. Elitism that simplified the analysis on OneMax by considering only pure

birth Markov Chain, is not straightforwardly applicable in this case. An

additional measure has to be introduced to account for the difference in the

number of bits set to 1 among all elite individuals.

3. Therefore, a birth-and-death MC has to be constructed with the number

of states equal to the number of those species that are needed to evolve an

offspring with a higher number of 1-bits in the active bin.

In essence, this new approach is a combination of a birth-and-death Markov Chain

that tracks the progress of the population between jumps in the artificial auxiliary

levels and the Elitism Levels Traverse Mechanism that determines the parameters

of this MC. Therefore, it is necessary to introduce additional notation. If the

current fitness of the best species in the population is k, then all α species can be

partitioned into the following subsets:

α∗ : species with the currently highest auxiliary value

β∗ : species with the next highest auxiliary value

γ∗ : the remainder of the elite subset

η : union of the sets β and γ

In the rest of the chapter α∗ species are referred to as ‘super-elite’. The explanation

of the birth-and-death Markov chain follows in the next subsection. The last new

definition necessary to add here is, similar to δμ for the OneMax function, δ∗α,

i.e. the number of super-elite species necessary to advance to the next artificial

auxiliary level with probability 1− o(1).

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 104

To simplify the derivation, it is assumed that at least 1 super-elite species al-

ways remains in the population, i.e. the artificial auxiliary level does not degrade,

unlike the number of α∗ species. This assumption can be viewed in the following

way: if the auxiliary value of the last super-elite species degrades (which is per-

fectly possible in real life), the auxiliary value of the population degrades with it

to that of β∗. By this time, the number of the next-best species is large enough

to regenerate an α∗ species with probability 1 − o(1). This approach is used, for

example, in epidemiology by having a constant rate ν that reintroduces virus into

the population.

5.4.1 The birth-and-death Markov Chain for Royal Roads

For an introduction, good explanation and some advanced features of birth-and-

death MCs see [Shi07a, Shi07b, Doo90, KS76].

Birth-and-death MC is defined for each artificial auxiliary level and has 1 ab-

sorbing state (δ∗α). By the assumption above, state 0 is excluded. The δ∗α× δ∗α

transition matrix for this MC is

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1,1 p1,2 0 0 · · · 0 0 0

q2,1 r2,2 p2,3 0 · · · 0 0 0

0 q3,2 r3,3 p3,4 · · · 0 0 0
...

...
...

... · · · ...
...

...

0 0 0 0 · · · qδ∗α−1,δ∗α−2 rδ∗α−1,δ∗α−1 pδ∗α−1,δ∗α

0 0 0 0 · · · 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The dimensionality follows from the pessimistic assumption that each artificial

auxiliary level starts with only one super-elite parent. The mean first hitting time

of the absorbing state from any state in the MC is

mα∗,δ∗α = 1 + qα∗,α∗−1mα∗−1,δ∗α + rα∗,α∗mα∗,δ∗α + pα∗,α∗+1mα∗+1,δ∗α (5.17)

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 105

due to the assumption the boundary conditions are

m1,δ∗α = 1 + r1,1m1,δ∗α + p1,2m2,δ∗α (5.18)

and mδ∗α,δ∗α = 0. A new recurrence expression is defined:

Mα∗ = mα∗,δ∗α −mα∗+1,δ∗α

This quantity is obviously nonnegative and the telescoping sum is

δ∗α−1∑
α∗=1

Mα∗ = m1,δ∗α

Solving the recurrence equation one gets:

(pα∗,α∗+1 + qα∗,α∗−1)mα∗,δ∗α = 1 + qα∗,α∗−1mα∗−1,δ∗α + pα∗,α∗+1mα∗+1,δ∗α

pα∗,α∗+1(mα∗,δ∗α −mα∗+1,δ∗α) = 1 + qα∗,α∗−1(mα∗−1,δ∗α −mα∗,δ∗α)

pα∗,α∗+1Mα∗ = 1 + qα∗,α∗−1Mα∗−1

Mα∗ =
1

pα∗,α∗+1

+
qα∗,α∗−1

pα∗,α∗+1

Mα∗−1 (5.19)

Also:

m1,δ∗α =
1

p1,2
+m2,δ∗α

and, therefore,

M1 =
1

p1,2

Recurrently substituting in terms in the RHS of Equation 5.19, one obtains the

expression for the general term Mα∗ :

Mα∗ =
1

pα∗,α∗+1

(
1 +

qα∗,α∗−1

pα∗−1,α∗
+ · · ·+ qα∗,α∗−1 · qα∗−1,α∗−2 . . . q2,1

pα∗−1,α∗ · pα∗−2,α∗−1 · p1,2

)

=
1

pα∗,α∗+1

(
1 +

α∗∑
m=2

α∗−m∏
l=0

qα∗−l,α∗−l−1

pα∗−l−1,α∗−l

)
(5.20)

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 106

Summing on α∗, the LHS is simply the desired quantity, m1,δ∗α:

m1,δ∗α =
δ∗α−1∑
α∗=1

1

pα∗,α∗+1

+
δ∗α−1∑
α∗=1

1

pα∗,α∗+1

α∗∑
m=2

α∗−m∏
l=0

qα∗−l,α∗−l−1

pα∗−l−1,α∗−l

(5.21)

In the next subsection the RHS will be approximated, but first some simplification

is necessary. The numerator of each fraction is a product of probabilities, so each

of them is upper-bounded by qα∗,α∗−1. The denominator can be simplified in the

following way: if the probability to increase the number of super-elite species grows

(which is proven at the beginning of the next subsection) for any 1 ≤ α∗ ≤ δ∗α,

the set of inequalities pδ∗α−1,δ∗α ≥ pδ∗α−2,δ∗α−1 ≥ . . . ≥ p1,2 ≥ pδ
∗α

1,2 can be used.

Thus the upper bound bound on the first hitting time of δ∗α super-elite species in

the population is

m1,δ∗α ≤
δ∗α−1∑
α∗=1

1

pα∗,α∗+1

+
δ∗α
pδ

∗α
1,2

δ∗α−1∑
α∗=2

qα∗,α∗−1 (5.22)

From this, the upper bound on the expected first hitting time of the algorithm

will be derived:

Eτ(μ+λ)EA1BS
=

K−1∑
k=0

M−1∑
j=3

m1,δ∗α(j, k) (5.23)

For simplicity
∑

k

∑
j

∑δ∗α−1
α∗=1

1
pα∗,α∗+1

is referred to as the ‘first expression’ and∑
k

∑
j

δ∗α
pδ

∗α
1,2

∑δ∗α−1
α∗=2 qα∗,α∗−1 as the ‘second expression’.

5.4.2 Upper bounds on the Royal Roads problem

The runtime of the algorithm is broken down into two phases. The first one begins

after the random initialization of the population and ends when fitness of one of

the offspring improves. The second phase begins immediately after this and ends

when one of the offspring has maximal fitness. The rationale behind this is that

the first bin is especially hard to solve, since all strings have fitness 0 and the

fitness-proportional selection function is completely unguided.

Before the model is solved though, it is necessary to show the monotonicity of

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 107

pα∗,α∗+1 in α∗ that is used extensively here. Since all swap probabilities ϕ1 . . . ϕ4 =

O(1), one needs to show
pα∗,α∗+1

pα∗−1,α∗
≥ 1 ∀ α∗

The numerator and denominator for all four types of probabilities are (since bino-

mial coefficient
(λ

2
1

)
cancels out):

pα∗,α∗+1 =
2α∗

4μ2
+

2α∗(μ− α∗ − 1)

4μ2
+

1

4μ2
+

2(μ− α∗ − 1)

4μ2

pα∗−1,α∗ =
2(α∗ − 1)

4μ2
+

2(α∗ − 1)(μ− α∗)
4μ2

+
1

4μ2
+

2(μ− α∗)
4μ2

pα∗,α∗+1

pα∗−1,α∗
=

2μ− 2α∗ + 2μα∗ − 2α∗2 − 1

2α∗ + 2μα∗ − 2α∗2 − 1 ≥ 1 if α∗ ≤ μ

2

It is shown in Section 5.4.3 that one needs only a relatively small number of super-

elite species (independent of μ for λ = μ and certainly less than μ
2
) to produce an

offspring with a higher auxiliary value.

Phase 1

As with OneMax, it is assumed that the auxiliary value of the first active bin is 3.

This is done to avoid division by 0 in case of γ∗ parents.

To use the Elitism Levels Traverse Mechanism, one needs to identify all pairs

of parents that may add exactly one super-elite string to the population. These

are: < α∗, β∗ >,< α∗, γ∗ >,< β∗, β∗ >,< β∗, γ∗ >. As the author is primar-

ily concerned with the evolution of super-elite species, the trivial lower bound of

β∗ ≥ 1 is used. Therefore the number of γ∗ species is upper-bounded by μ−α∗−1.

If a super-elite parent competes with another parent from the same level, the

probability to get selected into the pool is halved (since fitnesses of α∗, β∗ and γ∗

are the same). In the first phase all species in the population have the same fitness,

they differ only in the auxiliary function, thus super-elite species are relatively un-

likely to be selected into the recombination pool. This is in contrast with OneMax,

where α species are much more likely to get selected into the recombination pool.

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 108

The swapping probabilities for the respective type of pair are defined as ϕ1, ϕ2, ϕ3, ϕ4.

The first sum in the expression becomes (first, second and fourth expression are

multiplied by two since parents in the pair can be in any order). Here it also used

μ− 1 > μ
2
∀ μ ≥ 2.

pα∗,α∗+1 =

(
λ
2

1

)(
2α∗

4μ2
ϕ1 +

2α∗

2μ

(
μ− 1− α∗

2μ

)
ϕ2 +

1

4μ2
ϕ3 +

2

2μ

(
μ− 1− α∗

2μ

)
ϕ4

)

Many of the algebraic manipulations here were done in Matlab, Matlab Sym-

bolic Toolbox and Wolfram Alpha.

The probabilities are defined as following:

ϕ1 =
j

n2
(2K − 3 + j)

ϕ2 =
j

n2
(K − 3 + j)

ϕ3 =
2(M + 1− j)(2K − 3 + j)

n2

ϕ4 =
(M + 1− j)(K − 3 + j)

n2

The first expression is due to selecting a 1-bit in the active bin in α∗ and a 1

anywhere in the second parent β∗. This uses the pessimistic assumption that in

all bins β∗ parents have only two 1-bits. The second one is the same, but the

second parent is γ∗. The third one is due to selecting a 0-bit in the β∗ species and

a 1 anywhere in the second parent (also β∗, therefore multiplied by 2). The fourth

swap probability is selecting a 0-bit in the β∗ parent’s active bin and 1 anywhere

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 109

from γ∗. Therefore,

pα∗,α∗+1 =
λ

8μ2
(2α∗(ϕ1 + (μ− 1− α∗)ϕ2) + ϕ3 + (μ− 1− α∗)ϕ4)

=
λ

8μ2n2
(j(2K − 3 + j)− α∗j(K − 3 + j) + (μ− 1)j(K − 3 + j))

+ (M + 1− j)(2(2K − 3 + j)− 2α∗(K − 3 + j) + 2(μ− 1)(K − 3 + j))

=
λ

8μ2n2
(2j(α∗ − 1)(K + (K − 3 + j)(1− α∗) + 2j(μ− 1)(K − 3 + j)(α∗ + 1)))

≈ 2λjα∗(K + (K − 3 + j)(μ+ 1− α∗))
8μ2n2

The first expression of the expectation of Phase 1 is

S11 =
M∑
j=3

δ∗α−1∑
α∗=1

1

pα∗,α∗+1(j)
=

8μ2n2

λ

M∑
j=3

δ∗α−1∑
α∗=1

1

2jα∗(K + (K − 3 + j)(μ+ 1− α∗))

The summand above is denoted S11(α
∗) (also

∑δ∗μ
α∗=1 S11(α

∗) = S11(μ)) and ex-

panded in partial fractions w.r.t α∗:

S11(α
∗) =

1

2jα∗(K + (K − 3 + j)(μ+ 1− α∗))

≈ 1

2j(K +Kμ+ jμ)

(
1

α∗ +
K + j

K +Kμ+ jμ− α∗(K + j)

)

Sum over α∗ of the first fraction in the brackets is of course log(δ∗α). The second

fraction can be approximated in the following way (up to a constant):

K + j

K +Kμ+ jμ− α∗(K + j)
≈ 1

μ− α∗

and the expression becomes

S11(μ) ≈ 1

2j(K +Kμ+ jμ)

(
log

δ∗αμ
μ− δ∗α

)

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 110

Again, expanding the expression in partial fractions w.r.t. j, one gets

S11(μ) ≈ log

(
δ∗αμ

μ− δ∗α

)(
1

2(K +Kμ)j
− μ

2(K +Kμ)(K +Kμ+ jμ)

)

Summing the first term w.r.t. j one gets HM ≈ log(M + 1). The second term is

at most O(1). The upper bound for the first expression is (since μ
μ+1

≈ 1 for large

μ)

S11 <
4μn2 log

(
δ∗αμ
μ−δ∗α

)
log(M + 1)

λK

The second expression is

S12 =
δ∗α
pδ

∗α
1,2

δ∗α−1∑
α∗=2

qα∗,α∗−1

The cumbersome term in the denominator in the second expression (assuming

r1,1 ≤ p1,2 and using Bernoulli inequality) is simplified:

δ∗α
pδ

∗α
1,2

=
δ∗α

(1− (1− p1,2))δ
∗α =

δ∗α
(1− r1,1)δ

∗α ≤ δ∗α
1− δ∗αp1,2

The expression for p1,2 can be upper-bounded in the following way:

δ∗αp1,2 =
λδ∗α
2

(
2j(j − 1 + 2(K − 1))

4μ2n2
+

2(μ− 2)j(K − 3 + j)

4μ2n2

+
2(M + 1− j)(2K − 3 + j)

4μ2n2

+
2(μ− 2)(M + 1− j)(K − 3 + j)

4μ2n2

)

≤ λδ∗α
4μ2n2

(
j(2K + j) + μj(2K + j) + (2M − j)(2K + j)

+ μ(2M − j)(2K + j)

)
≤ λδ∗α

4μ2n2

(
2μj(2K + j) + 2μ(2M − j)(2K + j)

)

=
λδ∗αM(2K + j)

μn2

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 111

Trivially j < M , so the whole expression becomes (since there are at most M − 3

bits to flip:
M−3∑
j=1

δ∗α
pδ

∗α
1,2

≤ δ∗α(M − 4)

1− λδ∗αM(2K+M)
μn2

Thus the front term in the second expression was simplified. Obviously, if the

super-elite species degrades, it is replaced by its offspring (β∗). The lower bound

on the probability of degrading is by pairing < α∗, γ∗ >.

Psel =
α∗(μ− 1− α∗)

4μ2

qflip =
j

n
· n− (j − 2)− (K − 1)

n
=

j(n−K + 3− j)

n2

q′flip = 1− qflip

a =
λj(n−K + 3− j)

n2

δ∗α−1∑
α∗=2

qα∗,α∗−1 =
δ∗α−1∑
α∗=2

(
λ
2

1

)
Psel(1− Psel)

(λ
2
−1)qflip

≤
δ∗α−1∑
α∗=2

λ
2∑

l=0

(
λ
2

l

)
P l
sel(1− Psel)

(λ
2
−l)qlf lip

(
l

l

)

=
δ∗α−1∑
α∗=2

(1− Pselq
′
flip)

λ
2 =

δ∗α−1∑
α∗=2

(1− α∗(μ− 1− α∗)
4μ2

q′flip)
4μ2

4μ2
λ
2

≤
δ∗α−1∑
α∗=2

e
−α∗(μ−1−α∗)λq′flip

8μ2 ≈ δ∗α
∫ 1

0

e
x(μ−1)(μ−1−(μ−1)x)λq′flip

8μ2 dx

≤ δ∗α
∫ 1

0

e
−μ2x(1−x)λq′flip

32μ2 dx = δ∗α
∫ 1

0

e−
x(1−x)λq′flip

32 dx

=

δ∗α2
√
2F

(√
a

8
√
2

)
√
a

The third step is due to the Binomial theorem (a+ b)n =
∑

k

(
n
k

)
akb(n−k) and the

fourth one is the definition of the exponential function: (1− a
n
)n ≤ e−a. The sum

in the third line is approximated with an integral using Riemann sums. F (·) in the

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 112

last line is Dawson’s integral. For small a, which are expected given that j ≤ M ,

a = O(1
n
) and Dawson’s integral can be expanded in Taylor series:

δ∗α2
√
2F

(√
a

8
√
2

)
√
a

≈ δ∗α
(
1− a

192

)
≤ δ∗α

Summing over j this becomes

M−3∑
j=1

δ∗α−1∑
α∗=2

qα∗,α∗−1 = δ∗α(M − 4)

and so the upper bound on the second expression is

S12 <
δ∗α(M − 4)

1− λδ∗αM(2K+M)
μn2

· δ∗α(M − 4) =
(δ∗α(M − 4))2

1− λδ∗αM(2K+M)
μn2

(5.24)

Therefore the upper bound on the mean first hitting time of Phase 1 becomes

ET1 ≤
4μn2 log

(
δ∗αμ
μ−δ∗α

)
log(M + 1)

λK
+

(δ∗α(M − 4))2

1− λδ∗αM(2K+M)
μn2

(5.25)

Phase 2

In this phase the remaining K − 1 bins are solved. In addition to the four pairs in

Phase 1, there are two more: < α∗, η >,< β∗, η > . η are any species that are not

elite, i.e. β ∪ γ using the terminology established before. Since all the expressions

are already quite messy, the author simplifies further. First, one needs to reduce

the number of types of parents considered.

In subsection 5.4.4 it is shown how both probabilities involving η can be lower-

bounded by respective probabilities on pairs < α∗, γ∗ >,< β∗, γ∗ >. Therefore in

the expression for pα∗,α∗+1 these probabilities are multiplied by 2.

pα∗,α∗+1 ≥
(

λ
2

1

)(
2α∗

4μ2
ϕ1 +

4α∗

2μ

(
μ− 1− α∗

2μ

)
ϕ2 +

1

4μ2
ϕ3 +

4

2μ

(
μ− 1− α∗

2μ

)
ϕ4

)

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 113

The swap probabilities are

ϕ1 =
j(kM + 2K + j − 3)

n2

ϕ2 =
j(kM +K + j − 2)

n2

ϕ3 =
2(M − j + 1)(kM + 2K + j − 3)

n2

ϕ4 =
(M − j + 1)(kM +K + j − 2)

n2

So pα∗,α∗+1 can be transformed accordingly:

pα∗,α∗+1 ≥ λ

8μ2
(2α∗ϕ1 + ϕ3 + 4(μ− 1− α∗)(α∗ϕ2 + ϕ4))

=
λ

8μ2n2
(2(kM + 2K + j − 3)(M + 1 + j(α∗ − 1)

+ 4(μ− 1− α∗)(kM +K + j − 2)(M + 1 + j(α∗ − 1))))

=
λ

4μ2n2
(M + 1 + j(α∗ − 1))(K + (kM + k + j − 3)(2μ+ 3− α∗))

The first expression in Phase 2 is

S21 =
4μ2n2

λ

K−1∑
k=1

M∑
j=3

δ∗α−1∑
α∗=1

1

(M + 1 + j(α∗ − 1))(K + (kM + k + j − 3)(2μ+ 3− α∗))

since the rest of the calculations are quite similar to Phase 1, except for the

straightforward sum over k, only the main result on the upper bound on the

first term is stated here:

S21 <
8μn2 log δ∗α logK log(M + 1)

λM

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 114

Now for the second expression:

S22 =
∑
k

∑
j

δ∗α− 1

pδ
∗α

1,2

·
∑
α∗

qα∗,α∗−1

For the front term the similar trivial upper bound as in Phase 1, but also for the

K term:
K−1∑
k=1

δ∗α(M − 4)

1− λδ∗αM(2K+M)
μn2

=
δ∗α(M − 4)(K − 2)

1− λδ∗αM(2K+M)
μn2

There are two ways to lose a super-elite species now, when pairing it with either

γ∗ or η. The probability to select a 0-bit in γ∗ parent is

n− (K − 1)− k(M − 1)− (j − 2)

n
=

n−K + 3− k(M − 1)− j

n

for η it is
n− (K − 1)− (k − 1)(M − 1)

n

which is larger than the one for γ∗. The probability to select a 1-bit in the active

bin in α∗ parent is always j
n
:

S22 =
∑
k

∑
j

δ∗α−1∑
α∗=2

qα∗,α∗−1 =

(
λ
2

1

)
Psel1qswap1 +

(
λ
2

1

)
Psel2qswap2

≤
∑
k

∑
j

δ∗α−1∑
α∗=2

λPsel1qswap2 =
λ

μ2

K−1∑
k=1

(n−K − 1− (k − 1)(M − 1))

n2

×
M−1∑
j=3

j

4

δ∗α−1∑
α∗=1

α∗(μ− α∗)

=
λ

4μ2n2
· M

2 −M − 6

2
· (3μ− 2δ∗α− 1)δ∗α(δ∗α− 1)

6

× (K − 2)(2n−K −KM +M − 3)

2

≤ λ(M2 −M − 6)(3μ− 2δ∗α− 1)(δ∗α)2(K − 2)(2n−K −KM +M − 3)

96μ2n2

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 115

The second expression for Phase 2 is

S22 <
(M − 4)(K − 2)2λ(M2 −M − 6)(

1− λδ∗αM(2K+M)
μn2

)

× (3μ− 2δ∗α− 1)(δ∗α)3(2n−K −KM +M − 3)

96μ2n2

Combining both expression, the expected first hitting time for Phase 2 is upper-

bounded by

ET2 <
8μn2 log δ∗α logK log(M + 1)

λM

+
(M − 4)(K − 2)2λ(M2 −M − 6)(3μ− 2δ∗α− 1)(δ∗α)3(2n−K −KM +M − 3)(

1− λδ∗αM(2K+M)
μn2

)
96μ2n2

(5.26)

Combined runtime of the algorithm

Combining the expressions in Equations 5.25 and 5.26, the upper bound on the

expected first hitting time for the whole algorithm is obtained:

Eτ = ET1 + ET2 <
4μn2 log

(
δ∗αμ
μ−δ∗α

)
log(M + 1)

λK
+

(δ∗α(M − 4))2

1− λδ∗αM(2K+M)
μn2

+
8μn2 log δ∗α logK log(M + 1)

λM

+
(M − 4)(K − 2)2λ(M2 −M − 6)(3μ− 2δ∗α− 1)(δ∗α)3

1− λδ∗αM(2K+M)
μn2

× 2n−K −KM +M − 3

96μ2n2
(5.27)

Equation 5.27 looks quite cumbersome, but it can be reduced to same case with

as in Chapter 4. By setting K = M =
√
n and taking δ∗α = O(1), as was the case

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 116

with δμ for OneMax, it is obtained:

Eτ ≤ 4μn
3
2 log n

λ
·O(1) + n ·O(1) +

8μn
3
2 log2 n

λ
·O(1) +

λn

μ
·O(1)

= O

(
μn

3
2 log2 n

λ

)
(5.28)

or, measured in the number of function evaluations,

Eτ = O(μn
3
2 log2 n) (5.29)

Comparing this result to similar ones in EA literature, including 2
√
n log n in

[Mit96] and O(μn2) in [CHS+09], it is easy to notice that (μ + λ)EA1BS out-

performs other algorithms.

No less important, upper bounds need to be compared to the lower bounds in

Chapter 4. It is easy to see that they are tight up to the μ term in the numerator,

which can probably be explained by the (fairly loose) assumption of Uniform dis-

tribution. It is an encouraging result, and allows for the hypothesis that there is

a different way to approach derivation of the lower bound to obtain Θ(μn
3
2 log2 n)

bound on RR, if measured in the number of function evaluations.

5.4.3 Proof of the lower bound on the probability of ad-

vancing to the next artificial auxiliary level

In this Chapter derivations of the runtime were based on the assumption that

δ∗α = O(1) and δμ = O(1), i.e. for some constant c that does not depend on

α or μ. Here the bound on the probability to evolve a higher-ranked offspring is

derived. The attention is restricted to Phase 1 only. Analysis of Phase 2 is similar.

Using the law of total probability on the probability of failure (F), i.e. proba-

bility that a species with higher auxiliary value does not evolve if the super-elite

species haver already reached O(1) = c. There are three types of pairs that can

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 117

evolve: < α∗, α∗ >,< α∗, β∗ >,< α∗, γ∗ >. Event A is defined that none of the

three pairs get selected into the pool and event B that at least one of any pair gets

selected. Since obviously P (F |A) = 1,

P (F) = P (F |A)P (A) + P (F |B)P (B) = P (A) + P (F |B)P (B)

Since there are c super-elite species in the population, the probability not to select

any < α∗, α∗ > pairs is simply (1− c2

4μ2)
λ
2 . In a similar way, the probability not to

select any of the other two types of pairs is, respectively, (1− c
4μ2)

λ
2 and (1− μ−c−1

4μ2)
λ
2

using the trivial lower bound on the number of β∗ parents (> 1). The product of

these probabilities is

P (A) ≤
(
1− c2

4μ2

)λ
2
(
1− c

4μ2

)λ
2
(
1− c(μ− c− 1)

4μ2

)λ
2

≤ e
− c2λ

8μ2 e
− cλ

8μ2 e
− cλ(μ−c−1)

8μ2 = e
−λμc

8μ2

For λ = μ, which is the usual choice in many applications, the probability of this

event becomes upper bounded by:

P (A) ≤ e−
c
8

the number of pairs of each type in the recombination pool is upper-bounded by

(respectively) m1,m2,m3, so the second part of the expression is the probability

to select p pairs into the recombination pool and flip the bits unsuccessfully, which

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 118

is denoted by ϕ
′
1, ϕ

′
2, ϕ

′
3.

P (F |B)P (B) =

m1∑
p=1

(
λ
2

p

)(
c2ϕ

′
1

4μ2

)p(
1− c2

4μ2

)λ
2
−p m2∑

p=1

(
λ
2

p

)(
cϕ

′
2

4μ2

)p(
1− c

4μ2

)λ
2
−p

×
m3∑
p=1

(
λ
2

p

)(
c(μ− c− 1)ϕ

′
3

4μ2

)p(
1− c(μ− c− 1)

4μ2

)λ
2
−p

≤
(
1− c2

4μ2

)λ
2
(
1− c

4μ2

)λ
2
(
1− c(μ− c− 1)

4μ2

)λ
2

×
(

m1∑
p=0

(λ
2
)p

p!

(
c2ϕ

′
1

4μ2 − c2

)p

− 1

)

×
(

m2∑
p=0

(λ
2
)p

p!

(
cϕ

′
2

4μ2 − c

)p

− 1

)(
m3∑
p=0

(λ
2
)p

p!

(
c(μ− c− 1)ϕ

′
3

4μ2 − c

)p

− 1

)

≤ e−
c
8

(
e

λc2ϕ
′
1

2(4μ2−c2) − 1

)(
e

λcϕ
′
2

2(4μ2−c) − 1

)(
e

λc(μ−c−1)ϕ
′
3

2(4μ2−c(μ−c−1)) − 1

)

The front term is O(1). Taking max{ϕ′
1, ϕ

′
2, ϕ

′
3} = ϕ′ ≤ 1 − O(1

n
) one obtains

the upper bound for the exponential term in the first bracket e
λc2

2(4μ2−c2)
− λc2

2n(4μ2−c2)

and e
λc

2(4μ2−c)
− λc

2n(4μ2−c) in the second bracket. Asymptotically for μ, n → ∞ and

μ = λ both of these terms converge to 1, so expressions in both brackets are o(1).

Following the same ideas, the exponential term in the last bracket is O(1), so the

whole expression is

P (F |B)P (B) = O(1) ·O(1) · o(1) · o(1) = o(1)

Combining the results above, one obtains the upper bound on the probability of

failing to advance to the next artificial auxiliary level given c super-elite species in

the population:

P (F) ≤ e−
c
8 + o(1) (5.30)

And, therefore with probability of at least 1−e−
c
8 +o(1) the population progresses

to a higher artificial auxiliary level by generating a higher-ranked offspring. Nu-

merically it can be easily shown that for c = 1 this probability is roughly 0.1175

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 119

and for c = 6 ≈ 0.5276. Obviously for c = 8 it is ≈ 0.6321.

5.4.4 Lower bounds on the probabilities involving η species

in Phase 2

In Subsection 5.4.2 for lower bounds on probabilities for pairs < α∗, η > and

< β∗, η > in Phase 2 (where η = β ∪ γ) the values for< α∗, γ∗ > and < β∗, γ∗ >

were used. Here it is shown more rigorously, for what values of α, the number of

elite species, this bound is correct. First, the following expressions are compared:

P (< α∗, γ∗ >) =

(
λ
2

1

)
α∗(μ− 1− α∗)

4μ2
ϕ2

P (< α∗, η >) =

(
λ
2

1

)
α∗(μ− α)2

2μ3
ϕ5

The swap probability ϕ5 > ϕ2 since to evolve an α∗ offspring, one only needs to

select a 0 in α∗ active bin and a 0 in the second parent, and obviously there are

more 0-bits in η than in γ∗ and terms
(λ

2
1

)
and α∗

2μ
cancel out. What remains to be

shown is for what α ≥ α∗

(μ− α)2

μ2
≥ (μ− 1− α∗)

2μ

This is a quadratic inequality in α, so it is expressed as (set μ2 + μ+ μα∗ = t):

2α2 − 4μα + t > 0

Since t > 0, 4μ > 0 and 0 < 2 < 16μ2

4(μ2+μ+μα∗) , the only sensible solution is

1 < α ≤ 4μ−√
8μ

4
≤ 4μ−√16μ2 − 4 · 2(μ2 + μ+ μα∗)

4
≈ .29μ

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 120

So for 1 < α < .29μ the inequality holds:

P (< α∗, η >) > P (< α∗, γ∗ >)

The second expression,

P (< β∗, γ∗ >) =

(
λ
2

1

)
1 · (μ− 1− α∗)

4μ2
· (M − j + 1)(kM + j − 2)

n2

P (< β∗, η >) ≥
(

λ
2

1

)
1 · (μ− α)2

2μ3
· (M − j − 1)K

n2

This is a different situation to the previous case, since ϕ6 ≤ ϕ4 in this case, as it

is obviously more likely to sample a 1-bit from γ∗ rather than η. Note an extreme

lower bound on the probability of sampling a 1-bit from η, K
n
is considered, which

amounts to saying that at the initialization of the algorithm each bin starts with

one 1-bit. Canceling out terms, a quadratic inequality in α is obtained:

6Kα2 − 12μKα + μ(kM + j − 2)(1 + α∗ − μ) + 6μ2K > 0

Solving this, as before, there exists only one sensible solution:

1 < α < μ− μ√
6

√
kM + j − 2

K
≤ μ−

√
μ(kM+j−2)(μ−α∗−1)

K√
6

By taking k = K, j = M − 1 the worst upper bound on α is

1 < α < μ(1− .4

√
M +

M

K
− 3

K
)

which is valid for

1− .4

√
M +

M

K
− 3

K
> 0 ⇔ K ≥ M − 3

6.25−M

that is, the derivations here are valid for only M ≤ 6. Of course, most γ parents

have more than K 1-bits, but neither assumptions about their distribution are

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 121

made, nor the change in their number is tracked (unlike super-elite species). If

instead the number of 1-bits in η parents is equal to
√
MK, the bounds become

valid for M ≤ 39. More investigation is needed to make this approach more

general.

5.5 Approximation of the quasi-stationary dis-

tribution of super-elite species in Phase 1

Throughout this thesis the question of the dynamics of the population, demon-

strated by its elite subset, has played a substantial role. In Chapter 4 it was

assumed to follow some distribution, in Chapter 5 the dynamics of its size was

tracked. Finally, the question considered here can be formulated as the proof of

some of the assumptions made before, e.g. distribution of super-elite species, thus

in some way combining ideas from both of these Chapters.

In several areas of science, such as epidemiology and the study of computer viruses,

Markov Chain models are widely applied to the study of the evolution and extinc-

tion of processes, e.g. spread of viral diseases (see [Nas99]) and the distribution

of uninfected computers in a computer network (see [WM04]). These ideas were

already used in Section 5.2 to explain the working of the Elitism Levels Traverse

Mechanism. One of the best known models in this area is Susceptible-Infected-

Susceptible (SIS), see [Nas99, WM04], which roughly corresponds to the birth-

and-death MC that was constructed in Section 5.4.1. To the best of the author’s

knowledge this is the first application of this approach in EA community, although

statistical distribution of the first hitting times was analyzed in [GKS99].

In this section the limiting distribution of the number of super-elite species in

the population is approximated as δ∗α, μ → ∞ and δ∗α = o(μ). Markov chain

is the same as in Section 5.4.1, which is aperiodic and time-homogeneous. Since

there are no transitive states, presence of the absorbing state makes the stationary

distribution trivial with the full mass of the limiting probability set to state δ∗α.

The MC is transformed by adding the probability of moving from state δ∗α back

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 122

to state 1 equal to 1 along the lines of the model in [WM04]. In the light of the

set-up of the whole model this makes sense, since after the improvement in the

auxiliary function the new number of super-elite species reduces back to 1 on the

new auxiliary level.

It is also assumed that the MC is reversible (otherwise a set of recurrent equations

similar to those in Section 5.4.1 have to be derived). The stationary distribution

of an MC is defined as the limiting proportion of time spent by the stochastic

process Xt in a state sk:

πk = lim
t→∞

P (Xt = sk)

From this, using the set of detailed balance equations one can derive the expressions

for stationary distributions:

p1,2π1 = q2,1π2

p2,3π2 = q3,2π3

.

pδ∗α−2,δ∗α−1πδ∗α−2 = qδ∗α−1,δ∗α−2πδ∗α−1

π2 =
p1,2
q2,1

π1

π3 =
p1,2p2,3
q2,1q3,2

π1

.

πα∗ =
p1,2p2,3 . . . pα∗−1.α∗

q2,1q3,2 . . . qα∗,α∗−1

π1

and, since πα∗ is a probability distribution:

δ∗α∑
α∗=1

πα∗ = 1

which enables us to find the expression for π1:

π1 =
1

1 +
∑δ∗α−1

m=1

∏m
l=1

pl,l+1

ql+1,l

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 123

Ratios of probabilities serve as progress rates here. Two cases are considered: slow

and fast progress rates. All derivations are for Phase 1. Findings for Phase 2 are

similar.

5.5.1 Slow progress rate (Poisson approximation)

Derivation of πα∗ depends on the ratio
pl−1,l

ql,l−1
. This ratio can be written as a product

pl−1,l

ql,l−1

=
r(l)θ1
s(l)θ2

≈ ρ

l

where θ1, θ2 do not depends on l. If the approximation above holds, and θ1
θ2

= ρ

is not very large, the following limiting distribution of super-elite species can be

derived.

π1 =
1

1 +
∑δ∗α

m=2

∏m
l=2

pl−1,l

ql,l−1

≈ 1

1 +
∑δ∗α

l=1
ρl

l!

= c∗e−ρ

for some constant c∗. The ratio in the denominator accounts for quasi-stationarity:

pδ∗α,1 = 1. Therefore, the quasi-stationary distribution of the super-elite species is

πα∗ = c∗e−ρρ
α∗

α∗!

which is a form of truncated Poisson distribution with removed origin (0) and the

upper tail (δ∗α + 1, δ∗α + 2, ...). If δ∗α → ∞, c∗ can be found:

c∗ =
1∑∞

α∗=1 πα∗
=

1

1− e−ρ

5.5.2 Fast progress rate (Normal approximation)

Here the limiting distribution of super-elite species as ρ → ∞ is considered. A∗ is

used as a random variable for the super-elite species:

πα∗ = P(A∗ = α∗) =
c∗e−ρρα

∗

α∗!
=

ρα
∗

α∗!
π1

which, as mentioned before, is a form of truncated Poisson distribution with the

removed origin (for comparison see [Nas96], Section 3). Characteristic function is

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 124

used to derive its expectation and variance:

φA∗(t) = EeitA
∗
=

δ∗α∑
α∗=1

eitα
∗
πα∗ = π1

δ∗α∑
α∗=1

eitα
∗ ρα

∗

α∗!
= π1e

ρeit

For δ∗α → ∞. Standardizing constant is c∗ (to account for the removed origin).

By taking a derivative w.r.t t and setting t = 0:

EA∗ =
1

i
φ′
A∗(0) =

dEeitA
∗

idt

∣∣∣∣
t=0

= π1ρe
ρeiteit

∣∣∣
t=0

= π1e
ρρ = c∗ρ

In a similar way the asymptotic expression for the variance, VarA∗ can be found:

VarA∗ = EA∗2 − (EA∗)2 = −φ′′(0) + (φ′(0))2

This uses the fact that i2 = −1 and 1
i
= −i. Therefore,

φ′′(t) = iπ1ρ(ie
it+ρeit + iρe2it+ρeit) = −π1ρ(e

it+ρeit + ρe2it+ρeit)

φ′′(0) = −π1ρ(ρ+ 1)eρ, (φ′(0))2 = −π2
1ρ

2e2ρ

Hence,

VarA∗ = π1ρ(ρ+ 1)eρ − π2
1ρ

2e2ρ = c∗ρ(1 + ρ(1− c∗))

Since both expectation and variance of this random variable have been found, one

can derive the limiting distribution of standardized A∗:

A′ =
A∗ − EA∗
√
VarA∗

Using the sum of Poisson random variables, one gets EA′ = 0, VarA′ = 1. There-

fore:

A′ =

∑
l A

∗
l − (EA∗

1 + EA∗
1 + . . .EA∗

ρ)√
ρVarA∗

l

=
A∗

1 − EA∗
1√

ρVarA∗
l

+
A∗

2 − EA∗
2√

ρVarA∗
l

+ . . .
A∗

ρ − EA∗
ρ√

ρVarA∗
l

= A′
1 + A′

2 + . . . A′
ρ

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 125

where all A′
l are iid. The characteristic function of A′ is

φA′(t) = EeitA
′
= Eeit

∑
l A

′
l = E

ρ∏
l=1

eitA
′
l = (EeitA

′
l)ρ

=

(
E

(
1 + itA′

l +

(
itA′

l

2!

)2

+O

(
1

ρ2

))ρ

=

(
1− t2

2ρ

)ρ

→ e−
t2

2

which is a characteristic function of standard Normal distribution with parameters

0 and 1. The derivation was due to Taylor series expansion of the exponential func-

tion around 0 (since the function is dominated by ρ). Since A′
l are all identically

distributed, their expectation is 0. Additionally,

EA′
l < EA∗ < ∞

E(A′
l)
2 =

E(A∗
l − EA∗

l)
2

ρVarA∗
l

=
VarA∗

l

ρVarA∗
l

=
1

ρ
< ∞

So the conditions for the Central Limit Theorem are fulfilled, and super-elite

species converge to Normal distribution if the progress rate is high. As it turned

out, to prove convergence of the transformed truncated Poisson distribution to

Normal distribution, its expectation and second moment were not used.

5.6 Conclusions

A new tool for the analysis of population-based elitist EAs, the Elitism Levels

Traverse Mechanism, was presented in this chapter, which was used to derive an

upper bound on runtime of two (μ + λ) EAs with a recombination operator and

a variant of tournament selection. The main idea of the tool is to identify pairs

or species that are able to breed at most one currently elite offspring. The lower

bound on this probability was proven, which enabled the derivation of the upper

bound on the expected optimization time.

The Mechanism that was designed in this Chapter proved to be quite efficient in

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 126

deriving sharp upper bounds (worst case) for functions with and without plateaus

and it is quite possible it can also yield tight upper bounds on other population-

driven algorithms solving more complicated problems (e.g. with local optima).

Bounds on OneMax function were found to be O(μn logn
λ

), on an instance of Royal

Roads with the size of the plateau equal to the number of bins, i.e. K = M =√
n O(μn

3
2 log2 n
λ

). The former is a well-known bound, the latter is an improvement

compared to similar algorithms. Additionally, it was shown that the probability

to generate a higher-ranked offspring is lower-bounded by 1− e−
c
8 + o(1) if μ = λ.

These results used the assumption that to advance to the next artificial fitness

level with probability 1− o(1) δμ elite species are needed in case of OneMax. For

RR, δ∗α super-elite species are needed to advance to the next artificial auxiliary

level with the same probability.

It was shown that if the number of super-elite species is less than μ
2
, the posi-

tive effect from adding them continues to grow. What has not been shown for

(μ+λ) algorithms yet, is the effect of the population size. The result for OneMax

reduces to O(μn log n) if measured in the number of function evaluations that re-

duces to O(n log n) for μ = 1. This also confirms many previous findings.

Perhaps for the first time in theoretical EA community limiting distributions of

super-elite species were derived. For slow rates of progress ρ, it was approxi-

mated with truncated Poisson distribution (origin removed). For large ρ it con-

verges to Normal distribution. In both cases the infinite-population approximation

(i.e. δ∗α → ∞) and quasi-stationarity of the underlying MC were used. It also

turned out that the truncated Poisson distribution has expectation c∗ρ and vari-

ance c∗ρ(1 + ρ(1− c∗)) for some constant c∗.

Findings in this chapter can be extended in many ways:

1. Sharper approximation of the population structure. So far limiting distribu-

tion only of super-elite species in one algorithm on one function was derived,

CHAPTER 5. UPPER BOUNDS ON THE RUNTIME 127

but other subsets of the population, algorithms and functions are of interest

too. It is also beneficial to derive the stationary distribution without the

infinite population approximation.

2. Analysis of functions with traps and local optima. One can expect that such

functions benefit from the population diversity more than those analyzed

here, i.e. without local solutions.

3. Elitism rates comparison. In this chapter the rates of elitism were never

really considered, i.e. the actual number of species saved in the population

each generation, although numerical computation shows that it has a strong

effect on the runtime. So far the author used the fact that all elite species

are saved each generation, thus accumulating over time till δμ for OneMax

or δ∗α for Royal Roads. It would be interesting to compare elitism level 1

to 50% (as implemented in Chapter 3), i.e. if there is any difference if only

1 species is saved compared to half of the population.

4. Comparison of the structure of the population and recombination pool (which

subsets are more likely to evolve).

5. Derivation of δ and δ∗ to find the proportion of elite species that yields a

1− o(1) probability of evolution. Quite obviously it is different for functions

with plateaus and without.

6. Effect of the population size. It is of major interest to develop theoretical

foundations for numerical results in Chapters 3 and 4 by showing a positive

effect of the population size for algorithms solving functions with plateaus, at

least when measured in the number of generations. So far only the positive

effect of elite and super-elite species was shown.

Chapter 6

Summary, Conclusions and

Future Work

There are many reasons to use EAs with population, recombination pools and re-

combination operators rather than (1+1) algorithms with mutation. Among them

are diversity and lower probability of premature convergence. Unfortunately, due

to the complexity of analysis, most population-powered EAs have seen less atten-

tion in the theoretical EA community than they deserve. Most importantly, the

knowledge of the structure of the population and recombination pool are almost

non-existent.

Summary In this thesis an attempt was made to understand some of the pro-

cesses observed in the population-based EAs by modeling and approximating the

structure of the population. This knowledge was applied to derive certain proper-

ties of population-based algorithms. Some of these findings are recovery of known

results using completely new approaches, some are improvements of past known

results and some results are completely new. Most of findings here are bounds on

runtime, but some also concern limiting distributions of species.

Most EAs analyzed in the theoretical community use only mutation-type genetic

operators. Much of analysis in this thesis is dedicated to K-Bit-Swap (mostly for

128

CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE WORK 129

K=1), which recombines genetic information between two parents in the recombi-

nation pool. In Chapter 3, by performing a large number of numerical experiments

on different problems, it was shown to be efficient on many of them, such as Royal

Roads. In terms of probability of finding the global solution, it outperformed

many other EAs with crossover and mutation. At the same time, it was not very

efficient on the Traveling Salesman Problem. The intuition behind this efficiency,

is the uniform sampling of bits in each parent and the bias towards larger number

of highly-fit parents in the recombination pool. In Section 3.3 these results were

validated statistically using the bootstrap resampling technique. This motivated

to study the runtime of EAs with KBS in greater depth.

In Chapter 4 EA using 1BS was compared to Randomized Local Search (RLS),

which flips exactly one bit in each parent. Assuming that the unknown probabil-

ity to observe a large number of elite species in the population is upper-bounded

by the Uniform distribution, both algorithms were found to have the same lower

bound on OneMax. On Royal Roads though RLS outperforms 1BS by a factor

or Ω(log n). In Section 4.9 four models (two algorithms on two test functions)

were tested numerically. It was shown that the assumption of the Uniform up-

per bound is violated for OneMax and holds for the Royal Roads. For OneMax

the increase in the population size does not improve the probability of finding the

global solution within a set number of generations, thus confirming the well-known

result for (μ + 1) algorithms. It also does not improve runtime (measured in the

number of generations). Derived bounds for EA with 1BS on OneMax are better

than for RLS, which are still tight up to a small constant (e.g. ≈ 4.5 for n = 1000).

Results for the Royal Roads are much more consistent: population size greatly

improves performance (probability of finding the global maximum), distribution of

elite species exhibits a form of exponential decay, which suggests that the Uniform

distribution gives an upper bound on the probability of observing large number of

elite species. In terms of the runtime, theoretical and numerical results are much

more consistent: both exhibit improvement of performance and reduction of the

population effect, i.e. as the population size grows larger the positive effect levels

out. Analysis of the Royal Roads makes use of artificial auxiliary levels.

CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE WORK 130

Such results motivated the study of the effect and evolution of elite species in

Chapter 5. In Section 5.2 the Elitism Levels Traverse Mechanism was introduced

and used to derive upper bounds for both test functions. It works by identifying

pairs of parents that are able to breed at most one new currently elite offspring

that is added to the population. Next, the expected time until a certain proportion

is full of such species is derived, after which any of them improves to the next level

of fitness with probability 1−o(1). Although it sounds like a pessimistic approach

that can give a loose bound, the bounds derived were quite sharp. In Section 5.4

the concept of super-elite species was introduced and developed in depth to derive

a complicated expression on the runtime of (μ + λ)EA1BS on the Royal Roads

function, which improved the previously-known results and was consistent with

the results in Chapter 4.

Finally, in Section 5.5 certain limiting distributions of super-elite species were

considered that don’t seem to have attracted much attention in EA community

before. Applying ideas well-known in other areas of science, e.g. epidemiology, ap-

proximations of the limiting distributions of the super-elite species were derived,

both for the slow and fast progress rates. The results in this chapter to some

extent verified numerical results for the Royal Roads function in Chapters 4 and 5

by showing that often only a small number of super-elite species is needed for the

evolution with high probability.

Conclusions The Elitism Levels Traverse Mechanism is a powerful and flexible

tool for analyzing EAs that use population and recombination pool larger than 1.

It can incorporate various genetic operators, although in this thesis only 1BS was

considered. Since it focuses on the lower bound of the probability of evolving an

additional currently best offspring, worst-case analysis can be easily extended to

any function with single and multiple optima.

Perhaps the most important contribution of this work is the attempt to solve

CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE WORK 131

some of the known problems in the area of analysis of EAs using tools and ap-

proaches that have not seen much attention before: structure of the population,

recombination of information between individuals in the recombination pool, lim-

iting distribution of the size of subsets. Results have either been improved, or

confirmed, which, in the author’s opinion, validates the adopted approach.

In this thesis the author was able to construct an approximation to some pro-

cesses underlying the efficiency and success of population-based EAs. The com-

plex area of the dynamics of the structure of EA populations is in its infancy,

and although both theoretical and numerical results are very encouraging, during

this work more questions have arisen that are discussed below. Among them are

the dynamics and limiting distribution of subsets of the population, effect of the

rates of elitism, comparison of the recombination pool and population structures,

sharper approximation of the population structure based on its fitness or other

benchmarks (in this thesis only three types of species have been analyzed based

on artificial fitness and auxiliary levels).

Implications of Results and Future Work Of all possible ways to expand

the results in this thesis the author suggests that the following problems may of

great interest.

1. Limiting distribution of different types of species in the population. As shown

above, even primitive γ species can affect performance, so it is interesting

to see if their presence in the population converges asymptotically to any

distribution at all.

2. Extension of findings to KBS with K > 1. Numerical results show that often

higher values of K improve performance, so logically one would expect that

theoretical findings should confirm this, at least for some type of problems.

3. Extension of findings to different rates of elitism. Numerical results also show

CHAPTER 6. SUMMARY, CONCLUSIONS AND FUTURE WORK 132

that the change in the rate of elitism from 1 to 50 % improve the performance.

4. Results in Chapter 5 can be proven more rigorously. For example, for the

Royal Roads function one can derive the number of super-elite individuals

that ensures evolution of a higher-ranked offspring w.p. 1−o(1), rather than

1−O(1).

5. The approach using the Elitism Levels Traverse Mechanism can be adopted

to find sharper lower bounds, as it clear that both the assumption of Uniform

rv and the missing μ term in the main results of Chapter 4 can be improved.

6. Of course, the ideas behind the Elitism Levels Traverse Mechanism can be

applied to other genetic operators and other problems, including problems

with different encoding and local solutions, e.g. TSP, TwoMax and trap

functions.

The author is convinced that better understanding of the population structure and

dynamics will shed light on the work and efficiency of Evolutionary Algorithms

and their application in real life.

Appendix A

Results of Numerical Experiments

In this appendix plots of numerical results of experiments in Chapter 3 are pre-

sented.

Figure A.1: Conditional probability of success and runtime of (μ + λ)EAKBS vs
(μ+ λ)EA−KBS on the Rosenbrock test function

133

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 134

Figure A.2: Conditional probability of success and runtime of (μ + λ)EAKBS vs
(μ+ λ)EA−KBS on the Rastrigin test function

Figure A.3: Conditional probability of success and runtime of (μ + λ)EAKBS vs
(μ+ λ)EA−KBS on the Ackley test function

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 135

Figure A.4: Conditional probability of success and runtime (μ+ λ)EAKBS on the
Royal Roads test function. Algorithms with other parameter settings do not solve
the problem in the set number of generations.

Figure A.5: Conditional probability of success and runtime of (μ + λ)EAKBS vs
(μ+ λ)EA−KBS on the Four Peaks test function

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 136

Figure A.6: Conditional probability of success and runtime of (μ + λ)EAKBS vs
(μ+ λ)EA−KBS on the trivial TSP

Figure A.7: Conditional probability of success and runtime of (μ+ λ)EA−KBS on
the TSP on US Capital Cities. Algorithms with KBS do not solve the problem in
the set number of generations

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 137

Figure A.8: Probability of success (μ+λ)EAKBS vs (μ+λ)EA−KBS on the trivial
k-means clustering problem

Figure A.9: Probability of success (μ+λ)EAKBS vs (μ+λ)EA−KBS on the random
k-means clustering problem

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 138

Figure A.10: Histograms of bootstrap estimate of the difference in means for
the Rosenbrock function: probability of failure, conditional probability of success,
runtime

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 139

Figure A.11: Histograms of bootstrap estimate of the difference in means for
the Rastrigin function: probability of failure, conditional probability of success,
runtime

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 140

Figure A.12: Histograms of bootstrap estimate of the difference in means for the
Ackley function: probability of failure, conditional probability of success, runtime

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 141

Figure A.13: Histograms of bootstrap estimate of the difference in means for the
Royal Roads function: probability of failure, and conditional probability of success

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 142

Figure A.14: Histograms of bootstrap estimate of the difference in means for
the Four Peaks function: probability of failure, conditional probability of success,
runtime

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 143

Figure A.15: Histograms of bootstrap estimate of the difference in means for the
TSP on a circle: probability of failure, conditional probability of success, runtime

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 144

Figure A.16: Histograms of bootstrap estimate of the difference in means for the
TSP on US Cities: probability of failure and conditional probability of success

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 145

Figure A.17: Histograms of bootstrap estimate of the difference in means for the
trivial k-means clustering problem: probability of failure, conditional probability
of success, runtime

APPENDIX A. RESULTS OF NUMERICAL EXPERIMENTS 146

Figure A.18: Histograms of bootstrap estimate of the difference in means for the
random k-means clustering problem: probability of failure, conditional probability
of success, runtime

Appendix B

Concepts from Probability

Theory

Concepts in this Appendix were used throughout the thesis: the law of total

probability in Chapter 4 to derive the probability of failure, Bernoulli, Binomial

and CLT in Chapter 5. Ideas from Markov Chain theory were used extensively in

both of these chapters.

Law of Total Probability For an event A and a set of events Bi s.t. ∪iBi = Ω,

∀i, j Bi ∪ Bj = ∅ where Ω is the sample space the following is true:

P (A) =
n∑

i=1

P (A|Bi)P (Bi) > P (A|Bi)P (Bi)

Bernoulli and Binomial probability ifXk ∼ Bernoulli(p), then Y =
∑n

k=1 Xk ∼
Binomial(n, p) with EY = np,VarY = np(1− p) and

P (Y ≤ r) =
r∑

k=0

(
n

k

)
pk(1− p)n−k

Since this expression does not exist in closed form, it can be either approximated

using mathematical tools, as in e.g. [Wor94], which can get quite messy, or using

the Central Limit Theorem.

147

APPENDIX B. CONCEPTS FROM PROBABILITY THEORY 148

Central Limit Theorem (CLT) If Xi ∼ F with EXi = μ < ∞,VarXi =

σ2 < ∞, then

lim
n→∞

(∑n
i=1 Xi − nμ

σ
√
n

≤ x

)
= Φ(x)

where Φ(x) is Standard Normal distribution with mean 0 and variance 1.

Applications of CLT Getting back to the example with the Binomial distri-

bution above, the cumulative probability can be derived in the following way:

r∑
j=0

(
n

j

)
pj(1− p)n−j = P (Y ≤ r) = P

(
Y − nμ

σ
√
n

≤ r − nμ

σ
√
n

)
→n Φ

(
r − nμ

σ
√
n

)

Given that for the Bernoulli rv μ = p, σ =
√

p(1− p) the above result reduces to

P (Y ≤ r) →n Φ

(
r − np√
np(1− p)

)

Another useful application of CLT in this thesis is approximation of cumula-

tive distribution function of Poisson random variable. If X ∼ Poisson(λ), then

X =
∑λ

i=1 Xi, where Xi ∼ Poisson(1) with EX = E
∑λ

i=1 Xi = λ,VarX =

Var
∑λ

i=1 Xi = λ the, for large λ:

Sλ =
λ∑

k=0

λk

k!
= eλ

λ∑
k=1

e−λλk

k!
= eλP(X ≤ λ) = eλP

(∑n
k=1 Xk − λ√

λ
≤ 0

)
≈ eλ

2

since Φ(0) = 1
2
.

Absorbing states in a Markov Chain Throughout the thesis, the concept of

absorbing states was used to support the fact that once an elitist EA has found

the global solution, it always maintains it, i.e. the artificial fitness level has the

same property as an absorbing state in a Markov chain:

If a stochastic process X(t) is defined on a discrete set of states S, a state si

with the property

P (X(t+ 1) = si|X(t) = si) = 1 ∀ t

APPENDIX B. CONCEPTS FROM PROBABILITY THEORY 149

is called absorbing.

Mean first hitting time in a Markov Chain The main focus of the thesis,

runtime of EAs, roughly corresponds to the concept of the mean first hitting time

in an MC. Since the objective is the expected time to find the global solution, this

can be seen as the problem of finding the mean first hitting time of the absorbing

state A in a system where all other states are transient (i.e. limt→∞ ptii = 0, the

probability to return to the state after t steps):

m1,A = 1 +
n∑

j=1

mj,Ap1,j

Stationary distribution in a Markov Chain In Section 5.5 an absorbing MC

was approximated by transforming the probability distribution in the state δ∗α.

Here the idea behind this transformation is explained.

Stationary distribution in an MC is defined as

π = π lim
n→∞

Pn

where π is the vector or stationary distribution, Pn is the transition matrix defined

recurrently as Pn = Pn−1P. Intuitively, π is the limiting proportion of time spent

by X(t) in each state (so the values in the vector sum to 1). Obviously, if the

state si is transient, then, by Borel-Cantelli lemma P (X(t) = si i.o.) = 0, and

the respective entry is 0. If the MC consists of all but one state transitive and

one state absorbing, the values in π trivially converge to 0 for all entries except

this last one and 1 for the absorbing state. Transformation in Section 5.5 makes

the MC ergodic and all states positive-recurrent, i.e. all entries in π are strictly

positive.

Bibliography

[BC95] S. Baluja and R. Caruana. Removing the Genetics from the Stan-

dard Genetic Algorithm. Technical report, Carnegie Mellon University,

School of Comupter Science, 1995.

[Ber] Zuse Institut Berlin. GA Playground - Travelling Salesman Prob-

lem. http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/

att48.opt.tour.

[BKB05] L. Bianchi, J. Knowles, and N.l Bowler. Local search for the probabilis-

tic travelling salesman problem. Correction to the 2-p-opt and 1-shift

algorithms. European Journal of Operations Research, 162:206–219,

2005.

[Bur09] K. Burjorjee. Generative Fixation: A Unified Explanation of Adaptive

Capacity of Simple Recombinative Genetic Algorithms. PhD thesis,

Brandeis University, 2009.

[CHS+09] T. Chen, J. He, G. Sun, G. Chen, and X. Yao. A New Approach for An-

alyzing Average Time Complexity of Population-Based Evolutionary

Algorithms on Unimodal Problems. IEEE Transactions on Systems,

Man, and Cybernetics, 39(5):1092–1106, 2009.

[CTCY12] T. Chen, K. Tang, G. Chen, and X. Yao. A large population size can be

unhelpful in evolutionary algorithms. Theoretical Computer Science,

436(2012):54–70, 2012.

[DBIJV97] J. S. De Bonet, C. L. Isbell Jr., and P. Viola. MIMIC: Finding Optima

150

BIBLIOGRAPHY 151

by Estimating Probability Densities. Advances in Neural Information

Processing Systems (NIPS97), 9:424, 1997.

[DFW11] B. Doerr, M. Fouz, and C. Witt. Sharp Bounds by Probability-

Generating Functions and Variable Drift. In Genetic and Evolutionary

Computing Conference (GECCO) 2011, pages 2083–2090, 2011.

[DHK11] B. Doerr, E. Happ, and C. Klein. Crossover Can Provably be Useful

in Evolutionary Computation. In press. 2011.

[DJW02] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evo-

lutionary algorithm. Theoretical Computer Science, 276:51–81, 2002.

[DJW10a] B. Doerr, D. Johannsen, and C. Winzen. Drift Analysis and Linear

Functions Revisited. In Genetic and Evolutionary Computing Confer-

ence (GECCO) 2010, pages 1–8, 2010.

[DJW10b] B. Doerr, D. Johannsen, and C. Winzen. Multiplicative Drift Analysis.

In Genetic and Evolutionary Computing Conference (GECCO) 2010,

pages 1449–1456, 2010.

[DJW11] B. Doerr, D. Johannsen, and C. Winzen. Multiplicative Drift Analysis.

In press. 2011. arXiv:1101:0776.

[Doo90] J.L. Doob. Stochastic Processes. John Wiley & Sons, 1990.

[GKP95] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathemat-

ics:A Foundation for Computer Science. Addison-Wesley Publishing

Company, 1995.

[GKS99] J. Garnier, L. Kallel, and M. Schoenauer. Rigorous hitting times for

binary mutations. Evolutionary Computation, 7(1):45–68, 1999.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Ma-

chine Learning. Addison-Wesley, Reading, Massachussetts, 1989.

[Haj82] B. Hajek. Hitting-Times and Occupation-Time Bounds Implied

by Drift Analysis with Applications. Advanced Applied Probability,

14:502–525, 1982.

BIBLIOGRAPHY 152

[He10] J. He. A Note on the First Hitting Time of (1 + λ) Evolutionary

Algorithm for Linear Functions with Boolean Inputs. In Conference

on Evolutionary Computation (CEC), pages 1–6, 2010.

[HK99] J. He and L. Kang. On The Convergence Rates of Genetic Algorithms.

Theoretical Computer Science, 229(1999):23–39, 1999.

[Hol75] John H. Holland. Adaptation in Natural and Artificial Systems. The

University of Michigan Press, Ann Arbor, 1975.

[HY01] J. He and X. Yao. Drift analysis and average time complexity of evo-

lutionary algorithms. Artificial Intelligence, 127(2001):57–85, 2001.

[HY02] J. He and X. Yao. From an Individual to a Population: An Analy-

sis of the First Hitting Time of Population-Based Evolutionary Algo-

rithms. IEEE Transactions on Evolutionary Computation, 6-5, Octo-

ber 2002:495–511, 2002.

[HY03] J. He and X. Yao. Towards an analytic framework for analysing the

computational time of evolutionary algorithm. Artificial Intelligence,

145(2003):59–97, 2003.

[HY04] J. He and X. Yao. A study of drift analysis for estimating computation

time of evolutionary algorithm. Natural Computing, 3(2004):21–35,

2004.

[Ios80] M. Iosifescu. Finite Markov Processes and Their Applications. John

Wiley and Sons, 1980.

[Jag08] J. Jagerskupper. A Blend of Markov Chains and Drift Analysis. Par-

allel Problem Solving from Nature X, 5199/2008:41–51, 2008.

[JDJW05] T. Jansen, K. A. De Jong, and I. Wegener. On the Choice of the

Offspring Population Size in Evolutionary Algorithm. Evolutionary

Computation, 13(4):413–440, 2005.

[JW01] T. Jansen and I. Wegener. Evolutionary Algorithms-How to Cope

With Plateuas of Constant Fitness and When to Reject Strings of

BIBLIOGRAPHY 153

The Same Fitness. IEEE Transactions on Evolutionary Computation,

5(6):589–599, 2001.

[KS76] J. G. Kemeny and J. L. Snell. Finite Markov Chains. Springer Verlag,

1976.

[LK73] S. Lin and B.W. Kernighan. An Effective Heuristic Algorithm for

the Travelling Salesman Problem. Operations Research, 21-2:498–516,

1973.

[MFH92] M. Mitchell, S. Forrest, and John H. Holland. The Royal Road for Ge-

netic Algorithms: Fitness Landscapes and GA Performance. European

Conference on Artificial Life, 1:245–254, 1992.

[Mit96] M. Mitchell. Introduction to Genetic Algorithm. Kluwer Academic

Publishers, 1996.

[Nas96] I. Nasell. On the quasi-stationary distribution of the closed endemic

SIS model. Advances in Applied Probability, 28(1996):895–932, 1996.

[Nas99] I. Nasell. On the quasi-stationary distribution of the stochastic logistic

epidemic. Mathematical Biosciences, 156(1999):21–40, 1999.

[NV92] AE Nix and MD Vose. Modeling Genetic Algrotihms with Markov

chains. Annals of Mathematics and Artificial Intelligence, 5:79–88,

1992.

[NW04] F. Neumann and I. Wegener. Randomized local search, evolutionary

algorithms, and the minimum spanning tree problem. In Genetic and

Evolutionary Computing Conference (GECCO) 2004, pages 953–960,

2004.

[OHY07] P. S. Oliveto, J. He, and Xin Y. Time Complexity of Evolutionary Al-

gorithms for Combinatorial Optimization: A Decade of Results. Inter-

national Journal of Automation anc Computing, 04(3):281–293, 2007.

BIBLIOGRAPHY 154

[OHY08] P. S. Oliveto, J. He, and X. Yao. Analysis of Population-based Evo-

lutionary Algorithms for the Vertex Cover Problem. In Congress of

Evolutionary Computation(CEC), pages 1563–1570, 2008.

[OW11] P. S. Oliveto and C. Witt. Simplified Drift Analysis for Proving Lower

Bounds in Evolutionary Computation. Algorithmica, 2011/59:369–386,

2011.

[PB94] A. Prugel-Bennet. Analysis of Genetic Algorithms Using Statistical

Mechanics. Physical Review Letters, 72-9:1305–1309, 1994.

[PR91] M. Padberg and G. Rinaldi. A Branch-and-Cut Algorithm for the

Resolution of Large-Scale Symmetric Travelling Salesman Problem.

SIAM Review, 33-1:60–100, 1991.

[Ros06] Jeffrey S. Rosenthal. A First Look at Rigorous Probability Theory.

World Scientific, 2006.

[RR03] Colin R. Reeves and Johnathan E. Rowe. Genetic algorithms - Princi-

ples and Perspectives:A Guide to GA Theory. Kluwer Academic Pub-

lishers, 2003.

[RS96] M. Rattary and J. Shapiro. The Dynamics of a Genetic Algorithm for

a Simple Learning Problem. Journal of Physics A:Mathematical and

General, 29-23:7451–7473, 1996.

[Rud94a] G. Rudolph. Convergence analysis of canonical genetic algorithms. In

IEEE Transactions on Neural Networks, volume 5, pages 96–101, 1994.

[Rud94b] G. Rudolph. Convergence of non-elitist strategies. In The 1st IEEE

Conference on Evolutionary Computation, pages 65–68, 1994.

[Rud96] G. Rudolph. Convergence of Evolutionary Algorithms in General

Search Spaces. In The IEEE International Conference on Evolutionary

Computation, pages 50–54, 1996.

BIBLIOGRAPHY 155

[Rud97] G. Rudolph. Convergence Rates of Evolutionary Algorithms for a Class

of Convex Objective Functions. Control and Cybernetics, 26:375–390,

1997.

[Rud98] G. Rudolph. Finite Markov Chain results in evolutionary computation:

A tour d’horizon. In Fundamenta Informaticæ, volume 1-22, 1998.

[Rud99] G. Rudolph. Theory of Evolutionary Algorithms:A Bird’s Eye View.

Theoretical Computer Science, 1999(229):3–9, 1999.

[SC99] A. Simoes and E. Costa. Transposition: A Biologically Inspired Mech-

anism To Use With Genetic Algorithms. In Proceedings of the Fourth

International Conference on Neural Networks and Genetic Algorithms.

Springer-Verlag, 1999.

[Shi07a] A.N. Shiryaev. Veroyatnost I (Probability I). MTsNMO, 2007.

[Shi07b] A.N. Shiryaev. Veroyatnost II (Probability II). MTsNMO, 2007.

[Sud08a] D. Sudholt. Computational Complexity of Evolutionary Algorithms,

Hybridization and Swarm Intelligence. PhD thesis, Dortmund Techni-

cal University, 2008.

[Sud08b] D. Sudholt. The Impact of Parametrization in Memetic Evolutionary

Algorithms. Theoretical Computer Science, 2008:1–30, 2008.

[Suz95] J. Suzuki. A Markov Chain Analysis on Simple Genetic Algorithm.

IEEE Transactions on Systems, Man, and Cybernetics, 25-4:655–659,

1995.

[SW03] T. Storch and I. Wegener. Real Royal Road Function for Constant

Population Size. In Genetic and Evolutionary Computing Conference

(GECCO) 2003, pages 1406–1417, 2003.

[TS12] A. Ter-Sarkisov. Elitism Levels Traverse Mechanism For The Deriva-

tion of Upper Bounds on Unimodal Functions. In WCCI 2012

IEEE World Congress on Computational Intelligence, pages 2161–

2168, 2012.

BIBLIOGRAPHY 156

[TSM11a] A. Ter-Sarkisov and S. Marsland. Convergence of a Recombination-

Based Elitist Evolutionary Algorithm on the Royal Roads Test Func-

tion. In 24th Australasian Joint Conference on Artificial Intelligence,

pages 361–371, 2011.

[TSM11b] A. Ter-Sarkisov and S. Marsland. Convergence Properties of (μ +

λ) Evolutionary Algorithms. In 25th AAAI Conference on Artificial

Intelligence, pages 1816–1817, 2011. Special Student Poster Session.

[TSM11c] A. Ter-Sarkisov and S. Marsland. Convergence Properties of Two

(μ + λ) Evolutionary Algorithms on OneMax and Royal Roads Test

Functions. In International Conference on Evolutionary Computation

Theorey and Applications (ECTA), pages 196–202, 2011.

[TSM12] A. Ter-Sarkisov and S. Marsland. Derivation of Upper Bounds on

Optimization Time of Population-Based Evolutionary Algorithm on a

Function with Fitness Plateaus Using Elitism Levels Traverse Mecha-

nism. 2012. arXiv:1204.2321. To be submitted.

[TSMH10] A. Ter-Sarkisov, S. Marsland, and B. Holland. The k-Bit-Swap: A New

Genetic Algorithm Operator. In Genetic and Evolutionary Computing

Conference (GECCO) 2010, pages 815–816, 2010.

[vN00] E. van Nimwegen. Metastabe Evolutionary Dynamics: Crossing Fit-

ness Barriers or Escaping via Neutral Paths. Bulletin of Mathematical

Biology, 62(5):799–848, 2000.

[vNCM99] E. van Nimwegen, J. P. Crutchfield, and M. Mitchell. Statistical Dy-

namics of the Royal Road Genetic Algorithm. Theoretical Computer

Science, 229-1999:41–102, 1999.

[Vos93] M. Vose. A Critical Examination of Schema Theorem. Technical re-

port, University of Tennessee, 1993.

[Vos99] M. Vose. The Simple Genetic Algorithm: Foundation and Theory.

MIT Press, 1999.

BIBLIOGRAPHY 157

[Weg03] I. Wegener. Methods for the analysis of EAs on pseudo-boolean func-

tions. International Series in Operations Research and Management

Science, 48, VII:349–369, 2003.

[Wit04] C. Witt. An Analysis of the (μ+1)EA on Simple Pseudo-Boolean Func-

tions. In Genetic and Evolutionary Computing Conference (GECCO)

2004, pages 761–773, 2004.

[Wit12] C. Witt. Tight Bounds on The Optimization Time of The (1+1)EA

on Linear Functions. In arXiv Abstract:1108.4386, 2012.

[WJ07] R.A. Watson and T. Jansen. A Building Block Royal Road Where

Crossover is Provably Essential. In Genetic and Evolutionary Com-

puting Conference (GECCO) 2007, pages 1452–1459, 2007.

[WM97] D. H. Wolpert and W. G. Macready. No Free Lunch Theorems

for Optimization. IEEE Transactions On Evolutionary Computation,

1997/1/1:67–82, 1997.

[WM04] John C. Wierman and David J. Marchette. Modeling computer virus

prevalence with a susceptible-infected-susceptible model with reintro-

duction. Computational Statistics and Data Analysis, 45(2004):3–23,

2004.

[Wor94] T. Worsch. Lower and upper bounds for (sums of) binomial coeffi-

cients. Technical report, University of Karlsruhe, 1994. Report 31/94.

