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Abstract:  

One of approaches for numerical simulation of a ship moving in a still water is based on the 

composition of double-body flow and wavy flow solved by a boundary element method.  There 

are several terms related to the second order derivative (𝜙𝑧𝑧   of double-body flow velocity 

potential with respect to the vertical coordinate in the free surface conditions. Understanding of 

the effects of the terms is very limited so far.  In many cases, they are just ignored even for ships 

with a high forward speed, particularly in the cases associated with multihull ships, for which no 

investigations on their effects have been found.  This paper will present a study on the effects 

of the terms on the numerical prediction of the attitudes and resistance of different ships in 

various situations, including monohull, catamaran and trimaran with different parameters and at 

different Froude numbers. The results will demonstrate that the effects of the terms are significant 

in many cases and that considering this term may lead to the results similar to those obtained by 

fully nonlinear models at high Froude numbers. 
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1 Introduction 

In the process of ship design, hull attitudes including trim and sinkage are very important 

parameters, because they may have significant effect on propeller design and hull form optimization. 

Ma et al. (2016  showed that the trim and sinkage were quite large when the Froude number reaches 

0.45 based on experimental measurements for 22 monohull ship models. The influence of sinkage 

and trim on the drag of a ship can be significant for Froude Number > 0.25, depending on the hull 

form, as indicated by Ma et al. (2017 .  For high-speed ships, the hull attitude has even more 

significant effect on the resistance calculation, as pointed out by Deng et al. (2015 , which took 

sinkage and trim into account for trimaran resistance calculation, and found the resistance of the main 

hull and side hull to be increased by 18% and 200%, respectively, at Froude Number = 0.65. 
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Several approaches have been developed for predicting the hull attitudes and their resistance. The 

CFD methods may be employed, but they are very computationally expensive and unsuitable for a 

large amount of computation in the early stage of ship design. Sherbaz (2014  demonstrated that 

pressure forces have a far greater effect on trimming moments compared with viscous forces. 

Therefore, the methods based on potential flow theory are often employed, which can give results 

with sufficient accuracy but is much faster. One of the potential flow methods was proposed by Raven 

(1994, 1996 , called Rapid (Raised panel improved Dawson  method. In his method, the consideration 

of nonlinear effects was achieved by iteration. In each iteration, the high-order terms in the free 

surface conditions are omitted.  Another nonlinear potential method is based on a panel method 

using Rankine source as a Green’s function, as described by Wang et al. (2011 . In their method, the 

nonlinear free surface conditions were satisfied also by performing iterations and the nonlinearity was 

fully considered in each iteration. Chen et al. (2016  used the similar iterative method but employed 

the fully nonlinear high order boundary element method and started with a solution obtained by using 

a linear method. They studied the hull attitudes of Wigley hull, KCS and a fishery patrol boat. 

Another method based on the potential theory was proposed by Dawson (1977 . In his method, the 

total flow is considered as the composition of double-body flow and wavy flow (also called 

perturbation flow in literature . The double-body flow is first solved satisfying the boundary 

conditions on the hull without the free surface. The wavy flow is then solved satisfying the conditions 

on both the hull surface and on the free surface.  The free surface condition for the wavy flow is 

simplified on the basis of the double-body flow by assuming the Froude number to be small (i.e., the 

forward motion is slow .  The advantage of Dawson’s method is of its high computational efficiency 

compared with the other potential methods discussed above.  Many researchers have improved this 

method.  A few examples are just given here.  Tarafdera et al. (2008a, 2008b  improved the 

Dawson’s method with the body-fitted free surface mesh scheme instead of traditional streamline 

mesh scheme. The improved method was used to predict the wave-making resistance of ship with 

fixed trim and sinkage. Peng et al. (2014  improved the Dawson’s method with a stern region excluded 

from the computational region to predict the wave making resistance of ships. 

The Dawson’s method including these with improvements has been employed by many researchers 

to analyze the attitudes and resistance of ships and to perform hull form optimization. Suzuki et al. 

(2005  carried out a stern hull form optimization for a ship with block coefficient 𝐶𝑏 > 0.65 by 

using Dawson’s method. Chen et al. (2006  using this method calculated the wave making resistance 

of high speed (𝐹𝑛 > 0.7  catamaran and trimaran with assuming that there were no trim and sinkage.  

Xie et al. (2007a, 2007b  also applied Dawson's method with more nonlinear terms to the analysis of 

3D hydrofoil under free surface and wave-making resistance of a multi-hull craft for the Froude 

https://zh.wikipedia.org/wiki/%CE%A8
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number at 0.2 and 0.7 respectively. Yasin et al. (2008  also calculated 3D hydrofoil on and under free 

surface with a larger Froude number up to 0.8. Zhang et al. (2009, 2012  optimized S60 ships with 

bow bulbs based on the double-body flow theory and linearized free surface boundary condition.  

Xie et al. (2011  improved the hull form of a fishing trawler with Dawson’s method and calculated 

the resistance in calm water. Skejic et al. (2012  used the improved Dawson's method to study the 

power performance and environmental footprint of high-speed (𝐹𝑛 = 1.0  vessels in calm deep water. 

Saha et al. (2013  computed the flow around the transom stern of a slim ship with the Froude number 

being up to 0.8. Ali et al. (2013  studied the bow wave breaking of a large block coefficient ship also 

using the Dawson's method. Lv et al. (2013  predicted the wave-making resistance of HUST hull 

(𝐶𝑏 > 0.7   form with different displacements and hull attitudes by using the method similar to 

Dawson’s method. Mon et al. (2014  also applied the method to optimize a ship with a large block 

coefficient for reducing the wave-making resistance and wave breaking at the bow.  Danışman (2014  

optimized a fast catamaran with center bulb for the Froude number up to 𝐹𝑛 = 0.7.  Zhang et al. 

(2015a  applied the method to determine the hull form with minimum total resistance, and suggests 

that, compared with wave making resistance, there is no significant increase in viscous resistance 

during the process of hull form optimization. Zhang et al. (2015b  combined Dawson’s method with 

vortex lattice method to optimize the full form ship (𝐶𝑏 = 0.82 . Vernengo et al. (2017  used the same 

idea as of the Dawson’s method, i.e., linearizing free surface condition around the double body flow 

to calculate the hydrodynamic resistance of small water plane area twin hulls (SWATHs  with the 

Froude number up to 0.9.  

Although the Dawson’s method has been extensively used by many researchers, not only for small 

Froude number (or low-speed on which the method is based  but also for large Froude numbers, the 

simplified free surface boundary conditions in Dawson (1977  was not based on a sound theoretical 

analysis as indicated by Eggers (1980  and Nakos (1990 . To overcome the shortcoming, Eggers 

(1980  and Nakos (1990  gave two forms of free surface conditions by keeping the terms containing 

4th order of Froude number. Compared with the free surface boundary conditions in Dawson (1977 , 

both Eggers (1980  and Nakos (1990  contained the additional terms associated with the second order 

derivative (𝜙𝑧𝑧) of the double-body flow potential. There is a slight difference between the free 

surface conditions in Nakos (1990  and Eggers (1980 . The former has an additional term related to 

the product of the free surface elevation due to the double-body flow and 𝜙𝑧𝑧 but no such terms in 

the later. So far, very limited investigations on the effects of the terms associated with 𝜙𝑧𝑧 have been 

carried out. Most of the papers that apply Dawson’s method or its improved forms just ignored the 

terms. Baba (1979  partially studied such effects on a monohull and proved that the effects can be 

significant for non-wall-sided ships. Xie et al (2007a, 2007b, 2016  did include the term in their 

https://zh.wikipedia.org/wiki/%CE%A8
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calculation of wave making resistance, but they did not investigate the effect of 𝜙𝑧𝑧. So, it is still an 

open question about what a role would be played by the term, in particular when the Froud number 

is quite large. 

This paper aims to study the effects of the terms associated with 𝜙𝑧𝑧 on the hull attitudes and 

corresponding wave-making resistance. Different ships including monohull, catamaran and trimaran 

will be considered. The evidence will be presented that the term 𝜙𝑧𝑧 should be considered to obtain 

more accurate results. 

2 Mathematical formulation and numerical method 

The mathematical formulation and numerical methods for the problem concerned have been well 

known. A brief discussion about them are just given for completeness in this section. 

2.1 Basic equations 

The co-ordinate system moves with the same forward speed as the ship with its origin on the 

undisturbed free surface at midship. The x-axis and y-axis extend to stem and portside, respectively 

(Fig. 1 . Ship advances with a constant speed 𝑈 along the x-direction. It is assumed that the fluid is 

ideal and water depth is infinite. 

 

Fig. 1 Definition of the co-ordinate system 

The total velocity potential 𝜓 satisfies the Laplace equation 

∇2𝜓 = 0                                       (1  

The total velocity potential 𝜓 can be split into the double-body flow velocity potential 𝜙 and the 

wavy velocity potential 𝜑  representing the effect of the free surface conditions as suggested by 

Dawson (1977 : 

𝜓 = 𝜙 + 𝜑                                      (2  

https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/%CE%A8
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𝜁 = 𝜉 + 𝜂                                       (3  

where 𝜁, 𝜉 and 𝜂 are the wave elevations corresponding to 𝜓 , 𝜙 and 𝜑, respectively.  On the 

wetted hull surface, the normal velocity components of both the double-body flow velocity potential 

𝜙 and the wavy potential 𝜑 are zero 

∇𝜙 ∙ 𝒏 = 0                                      (4  

∇𝜑 ∙ 𝒏 = 0                                      (5  

where 𝒏 is the normal vector of the hull surface. On the free surface, the total velocity potential 𝜓 

satisfies both the kinematic and dynamic conditions 

𝜓𝑥𝜁𝑥 + 𝜓𝑦𝜁𝑦 − 𝜓𝑧 = 0   on 𝑧 = 𝜁                         (6  

𝑔𝜁 +
1

2
(∇𝜓 ∙ ∇𝜓 − 𝑈2) = 0   on 𝑧 = 𝜁                         (7  

Eliminating  from Eq. (6  and Eq. (7  leads to 

𝑔𝜓𝑧 +
1

2
∇𝜓 ∙ ∇(∇𝜓 ∙ ∇𝜓) = 0   on 𝑧 = 𝜁                         (8  

Based on the slow-speed linearization (Nakos,1990  with the higher order of Froude number 

ignored, substituting Eq. (2  into Eq. (8  and expanding the resulting equation into the Taylor series, 

one obtains the following expression of the free surface condition in terms of 𝜙 and 𝜑 

𝑔𝜑𝑧 + ∇𝜙 ∙ ∇(∇𝜙 ∙ ∇𝜑) +
1

2
∇𝜑 ∙ ∇(∇𝜙 ∙ ∇𝜙) −

𝜕

𝜕𝑧
[𝑔𝜙𝑧 +

1

2
∇𝜙 ∙ ∇(∇𝜙 ∙ ∇𝜙)]

∇𝜙 ∙ ∇𝜑

𝑔 + ∇𝜙 ∙ ∇𝜙𝑧
 

= −𝑔𝜙𝑧 −
1

2
∇𝜙 ∙ ∇(∇𝜙 ∙ ∇𝜙) +

𝜕

𝜕𝑧
[𝑔𝜙𝑧 +

1

2
∇𝜙 ∙ ∇(∇𝜙 ∙ ∇𝜙)]

∇𝜙 ∙ ∇𝜙 − 𝑈2

2𝑔
 

on 𝑧 = 0    (9  

Because the double-body flow velocity potential 𝜙 is symmetric to the undisturbed free surface 

(Tarafdera et al., 2008a , it satisfies 

𝜙𝑧 = 0 

∇𝜙 ∙ ∇𝜙𝑧 = 0                      on 𝑧 = 0  (10  

𝜕

𝜕𝑧
[∇𝜙 ∙ ∇(∇𝜙 ∙ ∇𝜙)] = 0 

Substituting Eq. (10  into Eq. (9 , the free surface condition can be re-written as 

𝜙𝑥(𝜙𝑥𝜑𝑥 + 𝜙𝑦𝜑𝑦)
𝑥

+ 𝜙𝑦(𝜙𝑥𝜑𝑥 + 𝜙𝑦𝜑𝑦)
𝑦

+
1

2
𝜑𝑥(𝜙𝑥

2 + 𝜙𝑦
2)

𝑥
+

1

2
𝜑𝑦(𝜙𝑥

2 + 𝜙𝑦
2)

𝑦
+ 𝑔𝜑𝑧 

https://zh.wikipedia.org/wiki/Zeta
https://zh.wikipedia.org/wiki/Xi
https://zh.wikipedia.org/wiki/Eta
https://zh.wikipedia.org/wiki/Zeta
https://zh.wikipedia.org/wiki/Xi
https://zh.wikipedia.org/wiki/Eta
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/Zeta
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/Zeta
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/Zeta
https://zh.wikipedia.org/wiki/Zeta
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/Zeta
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/%CE%A8
https://zh.wikipedia.org/wiki/Zeta
https://zh.wikipedia.org/wiki/Zeta
https://zh.wikipedia.org/wiki/Zeta
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−𝜙𝑧𝑧(𝜙𝑥𝜑𝑥 + 𝜙𝑦𝜑𝑦) =
1

2
𝜙𝑧𝑧(𝜙𝑥

2 + 𝜙𝑦
2 − 𝑈2) −

1

2
𝜙𝑥(𝜙𝑥

2 + 𝜙𝑦
2)

𝑥
−

1

2
𝜙𝑦(𝜙𝑥

2 + 𝜙𝑦
2)

𝑦
 

on 𝑧 = 0  (11  

It is noted that when Eq. (11  is applied to the region after the transom stern of a ship, the velocity 

at the intersection curve between the free surface and the transom needs to be estimated by an 

approximate approach.  This paper follows the approximation proposed by Saha et al. (2013 , in 

which the velocity is evaluated by Bernoulli’s equation with the assumption that the flow at the 

intersection curve is tangential to the hull surface.  The readers are referred to the cited reference for 

more details. 

It is also noted that Eq. (11  has two terms related to 𝜙𝑧𝑧  (the second order derivative of the 

double-body velocity potential along the vertical direction : one is the last term on the left-hand side 

associated with the wavy and double-body flow potentials while the other is the first term on the 

right-hand side associated only with the double-body flow potential. The equation here is the same as 

that in Nakos (1990  but different from that in Raven (1996  as the first term on the right hand side 

excluded in the latter.  In the original formulation of Dawson (1977 , both terms were omitted, which 

has been usually followed in literature (e.g, Tarafdera et al., 2008a .  Baba (1979  studied the effects 

of the first term on the right-hand side without the last term on the left and proved its effects to be 

significant for the non-wall-sided ships.  Study on the effects of the two terms is very limited so far.  

The main contribution of this paper is to investigate the effects of both the terms and to quantitively 

demonstrate that they should not be ignored in many cases.  For convenience of discussions, the two 

terms including 𝜙𝑧𝑧 are denoted as 𝑆𝑂𝑍 hereafter. 

In addition, as the computation domain must be truncated at a finite distance from the ships and 

artificial boundaries need to be inserted around the ships, the radiation condition need to be imposed 

on the artificial boundaries, which should be ∇𝜙 = −𝑈𝑒𝑥 and ∇𝜑 = 0 in the area far from the ships.  

With applying the correct radiation conditions, there should be no wave at the upstream free surface 

and the downstream reflected wave will not significantly affect wave dynamics near the ships.  

Based on the discussions of Nakos (1990 ,  the imposition of the upstream radiation conditions 

should be carefully dealt with while the downstream radiation condition does not affect the results 

considerably as long as the truncated boundaries are reasonably far away from the ships.  Numerical 

implementation of the radiation condition will be discussed in the sections below.    

2.2 Numerical method and procedure for solving the velocity potentials 

Following the conventional boundary element method, e.g., (Dai, 2008 , the double-body velocity 

potential (Fig. 2  𝜙 can be expressed as 

https://zh.wikipedia.org/wiki/Zeta
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𝜙 = ∬
1

𝑟𝑆𝐵+𝑆𝐵
′ 𝜎𝐵0 𝑑𝑆 − 𝑈𝑥                             (12  

 

Fig. 2 Sketch of a double body model 

where 𝑆𝐵  is the hull surface boundary, and 𝑆𝐵
′   is the image of 𝑆𝐵  about the undisturbed free 

surface 𝑧 = 0 , 𝑟  is the distance from the source point to the field point. It is noted that the 

corresponding source 𝜎𝐵0 on 𝑆𝐵
′  is equal to 𝜎𝐵0 on 𝑆𝐵 due to symmetry.  The discretized form 

of the double-body velocity potential at the field point 𝑖 with the constant distribution of source on 

a panel can be expressed as 

𝜙𝑖 = ∑ (𝜎𝐵0)𝑗 ∬
1

𝑟𝑖𝑗𝑆𝑗+𝑆𝑗
′ 𝑑𝑆 − 𝑈𝑥

𝑁𝐵
𝑗=1                          (13  

where 𝑟𝑖𝑗 represents the distance between the 𝑖-th and 𝑗-th points; 𝑆𝑗  and 𝑆𝑗
′ are the panels on the 

hull surface and its image, respectively; 𝑁𝐵 is the number of panels on the hull surface. The panels 

on the hull surface are triangular to conform to the curved hull surface as close as possible.  Later, 

the free surface will also be discretized, which will be done by using quadrilateral panels. The reason 

why the panels on the free surface are quadrilateral, rather than triangular, is because the second order 

derivatives in Eq. (11  need to be estimated by using finite difference. Use of quadrilateral panels on 

the free surface makes the estimation of the second order derivatives relatively straightforward.   

Using the hull surface condition Eq. (4 , one obtains  

−2𝜋(𝜎𝐵0)𝑖 + ∑ (𝜎𝐵0)𝑗 ∬ ∇
1

𝑟𝑖𝑗𝑆𝑗+𝑆𝑗
′ 𝑑𝑆 = 𝑼 ∙ 𝒏𝑖

𝑁𝐵
𝑗=1
𝑖≠𝑗

                    (14  

where the collocation point i is at the center of 𝑖-th panel,  𝒏𝑖 is the normal vector in 𝑖-th panel of 

the hull surface, and 𝑖 = 1,2, … , 𝑁𝐵 .  The double-body velocity potential 𝜙  can be found after 

solving Eq. (14 .   

The integral in Eq. (14  represents the induced velocity at the field point 𝑖 by an unit source on 

the panel 𝑆𝑗, which may be expressed as  

𝑉𝑖𝑗 = (𝑣𝑥𝑖𝑗 , 𝑣𝑦𝑖𝑗 , 𝑣𝑧𝑖𝑗) = ∬ ∇
1

𝑟𝑖𝑗

 

𝑆𝑗
𝑑𝑆                         (15  
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Following the Hess-Smith approach (Dai, 2008; Raven, 1989 , Eq. (15  is estimated in the local 

coordinate system (Fig. 3  of the panel 𝑆𝑗. The center of local coordinate system are the geometric 

center of the panel 𝑆𝑗. Take 𝑣𝑧𝑖𝑗 as example, the integration can be expressed as  

𝑣𝑧𝑖𝑗 = ∑ (𝑎𝑟𝑐𝑡𝑎𝑛
𝑚𝑘,𝑘+1𝑐𝑘−ℎ𝑘

𝑧′𝑖𝑟𝑘
− 𝑎𝑟𝑐𝑡𝑎𝑛

𝑚𝑘,𝑘+1𝑐𝑘+1−ℎ𝑘+1

𝑧′𝑖𝑟𝑘+1
)𝑁

𝑘=1                (16  

𝑐𝑘 = (𝑥′𝑘 − 𝑥′𝑖)
2 + 𝑧′𝑖

2        ℎ𝑘 = (𝑥′𝑘 − 𝑥′𝑖)(𝑦′𝑘 − 𝑦′𝑖)               (17  

𝑚𝑘,𝑘+1 =
𝑦′𝑘+1−𝑦′𝑘

𝑥′𝑘+1−𝑥′𝑘
           𝑟𝑘 = √𝑐𝑘 + (𝑦′𝑘 − 𝑦′𝑖)2                (18  

where (𝑥′𝑖, 𝑦′𝑖 , 𝑧′𝑖) is the position of field point, (𝑥′𝑗 , 𝑦′𝑗 , 𝑧′𝑗) is the position of source point, and 

(𝑥′𝑘, 𝑦′𝑘, 𝑧′𝑘) is the 𝑘-th corner point of the panel j. 𝑁 = 3 for a triangular panel on the hull surface, 

and 𝑁 = 4 for a four-nodes panel on the free surface. 

a    b  

Fig. 3 Sketch of the local coordinate system. (a  a four-nodes panel on free surface, (b  a triangular 

panel on hull surface. 

In the local coordinate system (𝑥′, 𝑦′, 𝑧′), the normal vector is assumed to point to the inside hull 

on the hull surface panel and upward on the free surface panel. When 𝑖 = 𝑗,  the integration in Eq. 

(15  is analytically evaluated, i.e., 𝑣𝑧𝑖𝑗 = 2𝜋.  More details about the treatment could be found in 

Dai, (2008 . 

Using the solution of Eq. (14 , the induced velocity 𝜙𝑥 and 𝜙𝑦 (𝜙𝑧  on the 𝑛-th field point of 

the free surface can be estimated by 

(𝜙𝑥)𝑛 = ∑ (𝜎𝐵0)𝑗 ∬
𝜕

𝜕𝑥
(

1

𝑟𝑛𝑗
)

𝑆𝑗+𝑆𝑗
′ 𝑑𝑆 − 𝑈

𝑁𝐵
𝑗=1                      (19  

(𝜙𝑦)𝑛 = ∑ (𝜎𝐵0)𝑗 ∬
𝜕

𝜕𝑦
(

1

𝑟𝑛𝑗
)

𝑆𝑗+𝑆𝑗
′ 𝑑𝑆

𝑁𝐵
𝑗=1                         (20  

𝜙𝑧 can be found in the same way in Eq. (20 , by changing 𝑦 to 𝑧. 

Similarly, the wavy velocity potential 𝜑 (Fig. 4  can be expressed by 

𝜑 = ∬
1

𝑟𝑆𝐵
𝜎𝐵1𝑑𝑆 + ∬

1

𝑟𝑆𝑓
𝜎𝑓𝑑𝑆                           (21  
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Fig. 4 Sketch of wavy velocity potential 

where 𝜎𝐵1 and 𝜎𝑓 are the sources on the hull and free surface, respectively. Using the hull surface 

condition Eq. (5 , one obtains  

∑ (𝜎𝐵1)𝑗 ∬
𝜕

𝜕𝑛𝑖
(

1

𝑟𝑖𝑗𝑆𝑗
) 𝑑𝑆

𝑁𝐵
𝑗=1
𝑖≠𝑗

− 2𝜋(𝜎𝐵1)𝑖 + ∑ (𝜎𝑓)
𝑚

∬
𝜕

𝜕𝑛𝑖
(

1

𝑟𝑖𝑚𝑆𝑚
) 𝑑𝑆

𝑁𝑓

𝑚=1 = 0         (22  

where 𝑁𝑓 is the number of the free surface panels. 

The major difference between solving 𝜙 and 𝜑 is that the latter has to satisfy Eq. (11 , the free 

surface condition.  In other words, Eq. (22  should be solved together with Eq. (11 . To discretize 

Eq. (11 , one needs to evaluate the second order partial derivatives of products of velocity potential 

on the free surface panels.  Take the (𝜙𝑥𝜑𝑥)𝑛 on 𝑛-th free surface panel as example which can be 

expressed by 

𝑓𝑛 = (𝜙𝑥𝜑𝑥)𝑛 = ∑(𝜙𝑥)𝑛(𝐼𝑥)𝑛𝑗(𝜎𝐵1)𝑗

𝑁𝐵

𝑗=1

+ ∑ (𝜙𝑥)𝑛(𝐼𝑥)𝑛𝑚(𝜎𝑓)
𝑚

𝑁𝑓

𝑚=1

 

= ∑ 𝑓(𝑛, 𝑗)
𝑁𝐵
𝑗=1 + ∑ 𝑓(𝑛, 𝑚)

𝑁𝑓

𝑚=1 ,    (23  

(𝐼𝑥)𝑛𝑗 = ∬
𝜕

𝜕𝑥
(

1

𝑟𝑛𝑗𝑆𝑗
) 𝑑𝑆,         (𝐼𝑥)𝑛𝑚 = ∬

𝜕

𝜕𝑥
(

1

𝑟𝑛𝑚𝑆𝑚
) 𝑑𝑆, 

𝑓(𝑛, 𝑗) = (𝜙𝑥)𝑛(𝐼𝑥)𝑛𝑗(𝜎𝐵1)𝑗, 𝑓(𝑛, 𝑚) = (𝜙𝑥)𝑛(𝐼𝑥)𝑛𝑚(𝜎𝑓)
𝑚

. 

The second order partial derivatives of the velocity potential can be found by estimating the first 
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order derivatives of 𝑓𝑛.  Considering 
𝜕

𝜕𝑥
𝑓𝑛 as an instance, one may have 

𝜕

𝜕𝑥
𝑓𝑛 = ∑

𝜕

𝜕𝑥
𝑓(𝑛, 𝑗)

𝑁𝐵
𝑗=1 + ∑

𝜕

𝜕𝑥
𝑓(𝑛, 𝑚)

𝑁𝑓

𝑚=1                          (24  

Take 𝑓(𝑛, 𝑗) as instance, the partial derivative can be calculated as follows  

𝜕

𝜕𝑥
𝑓(𝑛, 𝑗) =

𝜕

𝜕𝜉
𝑓(𝑛, 𝑗)

𝜕𝜉

𝜕𝑥
+

𝜕

𝜕𝜂
𝑓(𝑛, 𝑗)

𝜕𝜂

𝜕𝑥
                       (25  

𝜕

𝜕𝜉
𝑓(𝑛, 𝑗) = [3𝑓(𝑛, 𝑗) − 4𝑓(𝑛 − 1, 𝑗) + 𝑓(𝑛 − 2, 𝑗)]/2∆𝜉                (26  

𝜕𝑥

𝜕𝜉
= [3𝑥(𝑛) − 4𝑥(𝑛 − 1) + 𝑥(𝑛 − 2)]/2∆𝜉                    (27  

𝜕𝜉

𝜕𝑥
=

1

|𝐽|

𝜕𝑦

𝜕𝜂
 ,   

𝜕𝜂

𝜕𝑥
= −

1

|𝐽|

𝜕𝑦

𝜕𝜉
 ,   𝐽 = [

𝜕𝑥/𝜕𝜉 𝜕𝑥/𝜕𝜂
𝜕𝑦/𝜕𝜉 𝜕𝑦/𝜕𝜂

]              (28  

where 𝜉 and 𝜂 are the vector components parallel to the local grid line, as shown in Fig. 5.  More 

details about the finite difference scheme could be found in Tarafdera et al. (2008a,b .  To satisfy 

the radiation conditions mentioned above, ∇𝜙 = −𝑈𝑒𝑥 and ∇𝜑 = 0 are applied on the foremost 

panel of the free surface when computing the second order partial derivatives as in shown in Eqs. 

(25 -(28 .   

Eqs. (25 -(28  works well for many cases.  However, some spikes in the wave profiles near 

the bow and stern can be observed when Froude number is larger than 0.45. By numerical tests, it is 

found that the problem can be overcome by using a low order (two-point  finite difference operator, 

i.e., 
𝜕

𝜕𝜉
𝑓(𝑛, 𝑗) = [𝑓(𝑛, 𝑗) − 𝑓(𝑛 − 2, 𝑗)]/∆𝜉  and 

𝜕𝑥

𝜕𝜉
= [𝑥(𝑛) − 𝑥(𝑛 − 2))] /∆𝜉  rather than their 

counterparts in Eqs. (25 -(28  on the panels near the bow and stern is employed.  The idea is 

borrowed from Tarafdera et al (2007 , in which a three-point finite difference operator was used for 

Fn<0.35 and two-point finite difference operator was used for Fn>0.35 in the whole domain.  

However it is noted that the numerical method adopted by Tarafdera et al (2007  is a perturbation 

method which is different from the one employed in this paper.  The tests on using the two-point 

finite difference operator in the whole domain are also carried out for the work in this paper but the 

results show that the accuracy can be significantly downgraded, though the spikes do not appear.  

Use of the two-point finite difference operator only on a few panels near the bow and stern can 

ensure the accuracy is relatively higher without the spikes.  More investigations are needed in 

future to find the reason why the two-point finite difference operator can help removing spikes. 

. 
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Fig. 5 Sketch of local coordinate system of free surface panel 𝑛 

The term of 𝜙𝑧𝑧 in the free surface condition is estimated in the following way 

𝜙𝑧𝑧(𝑥, 𝑦, 0) =
3𝜙𝑧(𝑥,𝑦,0)−4𝜙𝑧(𝑥,𝑦,∆𝑧)+𝜙𝑧(𝑥,𝑦,2∆𝑧)

2∆𝑧
                     (29  

where ∆𝑧 is proportional to the free surface panel length along x-direction, which is denoted by 

𝛿𝐿𝑝. Through convergent tests, ∆𝑧 is taken as 0.05𝛿𝐿𝑝.  By solving Eq. (22  together with the 

discretized form of Eq. (11 , the wavy velocity potential 𝜑 can be found. 

To validate the method for computing 𝜙𝑧𝑧, Eq. (29  is applied to estimate the second order partial 

derivative of 𝜙 =
1

𝑟
, for which there should be 𝜙𝑧𝑧 =

4𝑧2

𝑟5 +
2

𝑟3.  In order to verify Eq. (29 , the 

second order partial derivative at 10 points on the line from (0 0 0  to (0 1 0  with ∆𝑧 = −0.001 

are estimated by using Eq. (29  and compared with analytical values in Table 1. It can be seen that 

both results are in good agreement. 

Table 1 Comparison between numerical result and analytical value of 𝜙𝑧𝑧. 

No. 

Field point Analytical Value 

4𝑧2

𝑟5
+

2

𝑟3
 

Calculated by Eq. (29) 
x y z 

1 0 0.1 0 2000.000  2000.599  

2 0 0.2 0 250.000  250.019  

3 0 0.3 0 74.074  74.077  

4 0 0.4 0 31.250  31.251  

5 0 0.5 0 16.000  16.000  

6 0 0.6 0 9.259  9.259  

7 0 0.7 0 5.831  5.831  

8 0 0.8 0 3.906  3.906  



 

 

- 12 - 

 

9 0 0.9 0 2.743  2.743  

10 0 1.0 0 2.000  2.000  

 

After finding the velocity potential and the velocity, the corresponding wave elevation at the 𝑛-

th point of the free surface can be estimated by 

𝜁𝑛 =
1

2𝑔
(|𝑼|2 − |𝑽𝑛|2)                                (30  

where 𝑽𝑛 = ∇𝜙𝑛 + ∇𝜑𝑛. 

Although the problem is steady relative to the coordinate system used, the attitudes (trim and 

sinkage  of the ships are unknown.  To find the attitudes, the fact needs to be used that the ship 

will be in equilibrium and the resulting force coefficient 𝐶𝐹𝑧 in the vertical direction and the 

moment coefficient 𝐶𝑁𝑦 about the y-axis must be zero, i.e., 

𝐶𝐹𝑧 =
∑ 𝐶𝑝𝑖𝑛𝑧𝑖𝑆𝑤𝑖

𝑁𝐵
𝑖=1

−
2g∇𝐻

𝑈2

∑ 𝑆𝑤𝑖
𝑁𝐵
𝑖=1

= 0                               (31  

𝐶𝑁𝑦 =
∑ 𝐶𝑝𝑖[(𝑧𝑖−𝑧𝑔)𝑛𝑥𝑖−(𝑥𝑖−𝑥𝑔)𝑛𝑧𝑖]𝑆𝑤𝑖

𝑁𝐵
𝑖=1

∑ 𝑥𝑖𝑆𝑤𝑖
𝑁𝐵
𝑖=1

= 0                          (32  

where the pressure coefficient on the hull surface is defined by 𝐶𝑝𝑖 = 1 − (
|∇ψ|

𝑈
)

2

+
2𝑔𝑧𝑖

𝑈2 ,  𝑆𝑤𝑖 is 

the area of 𝑖-th panel on the hull surface，𝑥𝑖 and 𝑧𝑖 are the co-ordinates of the center of 𝑆𝑤𝑖，𝑥𝑔 

and 𝑧𝑔 are the co-ordinates of ship gravitational center，𝑛𝑥𝑖  and 𝑛𝑧𝑖 are the normal vector of 𝑆𝑤𝑖, 

and ∇𝐻 is the displacement of ship.  It can be seen from the two equations above that 𝐶𝐹𝑧 and 

𝐶𝑁𝑦  are related to the solutions of 𝜙  and 𝜑 , the solutions of 𝜙  and 𝜑  depend on the wetted 

surface of ships, which is related to their attitudes.  As a result, Eqs. (33  and (34  can only be met 

through an iterative procedure as below: 

(1) Given the values of sinkage (S  and trim (T  and the values of force and moment coefficients 

(𝐶𝐹𝑧
(𝑡)

 and 𝐶𝑁𝑦
(𝑡)

  at t-th iteration (which are zero in the first iteration ;  

(2) Predict the values of sinkage (S  and trim (T  at (t+1)-th iteration by 𝑆𝑡+1 = 𝑆𝑡 + 𝐶𝐹𝑧
(𝑡)𝛿1 

and  𝑇𝑡+1 = 𝑇𝑡 + 𝐶𝑁𝑦
(𝑡)𝛿2  with 𝛿1 = 0.0981

𝐹𝑛
2𝐿

𝐶𝑏𝐵
  and  𝛿2 = 0.0981

𝐹𝑛
2𝐿2

𝐶𝑏𝐵2; 

(3) Adjust grids on the wetted hull surface and on the free surface, and then find the solutions 

of 𝜙 and 𝜑; 

(4) Evaluate 𝐶𝐹𝑧
(𝑡+1)

 and 𝐶𝑁𝑦
(𝑡+1)

; 

(5) Check if |𝐶𝐹𝑧
(𝑡+1)| < 𝜀、|𝐶𝑁𝑦

(𝑡+1)| < 𝜀 are satisfied; if yes, stop; otherwise go back to 

https://zh.wikipedia.org/wiki/Zeta
https://zh.wikipedia.org/wiki/%CE%A8
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Step (1 . 

The whole procedure is illustrated by the flow chart in Fig. 6. It has been numerically checked 

that 𝜀 = 10−4 is appropriate and used in the paper.  In the above procedure, the Froude number 

𝐹𝑛 is defined by 𝐹𝑛 = 𝑈/√𝐿𝑔, and the block coefficient 𝐶𝑏 by 𝐶𝑏 = ∇𝐻 (𝐿𝐵𝐷)⁄ , where g is the 

gravitational acceleration, L and 𝐵 are the length and breadth of the waterline under the hydrostatic 

balance with D being the draft from the keel to the waterline. When all the iteration is completed, 

the coefficient of wave making resistance can be calculated as 𝐶𝑤 = (∑ 𝐶𝑝𝑖𝑛𝑥𝑖𝑆𝑤𝑖
𝑁𝐵
𝑖=1 )/(∑ 𝑆𝑤𝑖

𝑁𝐵
𝑖=1 ). 

 

Fig. 6. Flow chart 

3 Results and discussions 

The effects of the 𝑆𝑂𝑍  terms will be investigated for different types of ships under different 

conditions, including monohull, trimaran and catamaran. In all the cases, the convergent tests will be 

carried out first to ensure that the elements used are small enough.  In some cases, the numerical 

results are validated by experimental data. 

3.1 Monohull 

Wigley hull (IHI et al., 1983  and KRISO Container Ship (KCS  (Larsson et al., 2010  are taken as 

examples to study the effects of 𝑆𝑂𝑍  on the attitudes of monohull ships. The Wigley hull is 

considered first with its surface defined by  

𝑦 =
𝐵

2
[1 − (

2𝑥

𝐿
)2] [1 − (

𝑧

𝐷
)2]                               (33  

The main characteristic dimensions of the Wigley hull are 𝐵/𝐿 = 0.1, 𝐷/𝐿 = 0.063, and its block 
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coefficient is 𝐶𝑏 = 0.444, the gravity center is at 𝑥𝑔/𝐿 = 0.0 and 𝑧𝑔/𝐿 = 0.0.  

The computational domain for the monohull cases are illustrated in Fig.7. The total length of the 

domain is 𝐿𝑑 = 𝛼𝐿 + 𝐿 + 1.5𝛼𝐿, where 𝐿 is the waterline length of ship, 𝛼𝐿 is the length before 

the foremost point of the waterplane and 1.5𝛼𝐿 is the length after the aftmost point of the waterplane. 

The half width of the domain is 𝑊𝑑 = 𝛼𝐿.  Following the suggestion given by (Tarafdera et al., 

2008a,b , 𝛼 = 1.0 is appropriate, which will be confirmed by some numerical results given below.  

For the numerical computation, the meshes for the ship hull surface and the free surface are 

generated separately. The hull surface is firstly divided by a number of transversal and horizontal 

planes to give quadrilaterals, and then each of quadrilaterals are split into two triangles, to form the 

mesh as shown in Fig. 8. Refinement in the bow and stern areas is applied if necessary. 

For generating the mesh for the free surface, it is split into three regions, shown in Fig. 7, by two 

lateral dashed lines.  Region 1 covers the part of the free surface before the ship, Region 2 covers 

the part of the free surface between the foremost and aftmost points of waterplane and Region 3 

covers the part of the free surface after the ship. When discretizing the free surface, Region 2 are 

firstly split by lateral lines, between which the distance is a constant determined by 2𝜋𝐿𝐹𝑛
2/𝑁𝑤 with 

𝑁𝑤  being the number of panels per wavelength, as recommended by (Wang et al., 2011 . Then, 

Regions 1 and 3 are split by lateral lines with variable distances, i.e., the distance expanded by the 

factor of 1.04 from dashed lines shown in Fig. 7.  After that, the longitudinal lines are applied. The 

distance between the hull surface and its nearest longitudinal line is 𝛽𝐿, while the distance between 

other longitudinal lines from the nearest longitudinal line expanded by factor of 1.04. The mesh 

generated in such way is illustrated in Fig. 9. 

 

Fig. 7.  Plan view of computation domain for monohull 
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Fig. 8. Hull surface panel arrangement of the Wigley hull. 

 

Fig. 9. Free surface panel arrangement of the Wigley hull (where NL and NT show the number of 

elements in transversal and longitudinal directions, respectively . 

For the case with Froude number 𝐹𝑛 = 0.5, the convergent tests for nine cases (each with different 

values of 𝑁𝑤 and 𝛽  are carried out on a computer with Intel(R  Core(TM  i7-6700HQ CPU.  The 

results for trim angle and sinkage together with the total CPU time are given in Table 2, in which the 

total CUP time is the time from first iteration step to the stable state with the trim and sinkage 

unchanged anymore. The relative errors are plot in Fig. 10, which is calculated by  

|𝑅𝑖+1 − 𝑅𝑖|/|𝑅𝑖+1|, where 𝑅𝑖 is the solution of either trim or sinkage for Case No. 𝑖. 

 

Table 2 

Computed result and the CPU time of Wigley hull with different panel arrangements at 𝐹𝑛 = 0.5. 
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Case 

No. 

Total 

 grid 

number 

(on half 

domain) 

Hull 

surface 

(half) 

Free 

surface 

(half) 

With 𝑆𝑂𝑍 Without 𝑆𝑂𝑍 Total 
CPU 
time Trim Sinkage/𝐿 Trim Sinkage/𝐿 

  deg *102 deg *102 min 

1 1110 180 930 -2.034  -0.814  -2.094  -0.812  0.59  

2 1544 320 1224 -1.936  -0.733  -1.987  -0.732  1.13  

3 2077 500 1577 -1.897  -0.699  -1.948  -0.698  1.83  

4 2673 720 1953 -1.880  -0.680  -1.928  -0.679  2.87  

5 3349 980 2369 -1.867  -0.667  -1.915  -0.666  4.22  

6 4030 1280 2750 -1.863  -0.654  -1.901  -0.657  7.38  

7 4806 1620 3186 -1.853  -0.650  -1.899  -0.653  11.07  

8 5625 2000 3628 -1.852  -0.651  -1.897  -0.650  16.87  

9 7300 2880 4204 -1.854  -0.649  -1.898  -0.648  26.91 

1 2 3 4 5 6 7 8 9 10

0%

2%

4%

6%

8%

10%

12%
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 Trim (without SOZ)
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Fig. 10. Relative errors in solutions with and without 𝑆𝑂𝑍 (Wigley hull, 𝐹𝑛 = 0.5 . 

Table 2 and Fig. 10 show that no matter whether the 𝑆𝑂𝑍 terms are included or not, the numerical 

results can be considered as convergent when the mesh is finer than that for No. 6 because the error 

are less than 2% in Cases 7, 8 and 9. To further demonstrate this, the wave profiles on the hull surface 

for Case 1, 3, 7 and 8 are depicted in Fig. 11, in which the maximum error between Case 7 and 8 

occurring near the bow is 2.6%.  Similar convergent tests are also carried out for the cases with 

smaller Froude number and confirmed that the meshes used in Case 7 are fine enough to achieve the 

convergent results, which is not presented for brief. 
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Fig. 11. Convergence of wave profiles with 𝑆𝑂𝑍 considered (Wigley hull, 𝐹𝑛 = 0.5 . 

The free surface wave elevation of Case 8 is shown in Fig. 12, it can be seen that the wave before 

the ship is negligible and there is almost no visible disturbance due to the wave reflection on the 

lateral boundaries. This seems to mean that the numerical technique employed for the radiation 

condition is quite effective.  To further show the effectiveness of the numerical technique for the 

radiation condition, the different values of 𝛼 (different size of domain  are used for Case 7, and wave 

profiles at different longitudinal sections are shown in Fig. 13. It shows that there is no visible 

difference between the results for 𝛼 11 and 𝛼 12.  The results with other values of 𝛼  are also 

examined but not presented here as they indicate the same conclusion as these Fig. 13, i.e., the domain 

with 𝛼11 is large enough and the influence of the reflected waves from the boundaries can be ignored.  

   

 

Fig. 12. Computed wave elevation of Wigley in Case 8 with 𝑆𝑂𝑍 terms at 𝐹𝑛 = 0.5. 
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Fig. 13. Computed wave profiles of Wigley with 𝑆𝑂𝑍 terms at 𝐹𝑛 = 0.5. 

Based on the convergent study, the effects of the 𝑆𝑂𝑍 term on the sinkage and trim of the Wigley 

hull are studied for practical Froude number of a monohull. For this purpose, half the hull surface and 

free surface are discretized by 1620 panels and 3186 respectively, i.e. the same as in Case 7.  Fig. 

14. shows the computed results together with experimental data in literature (IHI et al., 1983 .  As 

can be seen, the 𝑆𝑂𝑍 terms have little effect on the numerical results for a range of Froude numbers 

less than 0.3. Only when Froude number is larger than 0.3, the terms begin to have visible effects on 

trim, and the results with the 𝑆𝑂𝑍 terms are a bit closer to the experimental data. However, the effect 

is not significant. To compare the numerical wave profiles with the experimental data (IHI et al., 1983  

for the cases without trim and sinkage, the cases for the same ship at two Froude numbers are 

computed.  The wave profiles on the hull are plotted in Fig. 15. The figure also shows that the effect 

of the 𝑆𝑂𝑍 terms on the wave profile is not significant and the wave profile with the 𝑆𝑂𝑍 term is 
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closer to experimental data. 
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Fig. 14. Hull attitudes and wave-making resistance of Wigley hull. (a  Computed sinkage, (b  

Computed trim. (c  wave making resistance 
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Fig. 15. Wave profiles of Wigley hull for different Froude numbers without trim and sinkage. (a  

wave profiles at 𝐹𝑛 = 0.289, (b  wave profiles at 𝐹𝑛 = 0.316 

Secondly, the effects of 𝑆𝑂𝑍 on the numerical results of KCS are studied. The main characteristic 

dimensions of KCS are 𝐶𝑏 = 0.65 , 𝐷/𝐿 = 0.046 , 𝐵/𝐿 = 0.139 , 𝑥𝑔/𝐿 = −0.0149 , 𝑧𝑔/𝐿 =
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−0.0149.  The 𝐶𝑏 and 𝐵/𝐿 are larger than those of the Wigley hull discussed above. 

For this ship, the numerical tests have been carried and confirm that the computational domain with 

𝛼 = 1.0 is large enough. The discretization of the free surface is the same as in the previous cases 

but the discretization of the KCS hull surface is different. The middle part of the KCS is discretized 

in the same way for the Wigley hull but the panels in the bow and the stern area are generated 

separately with their size being about 1/4 of the panels in the midship. The convert tests are also 

carried out with different number of panels on the free surface and on the hull surface, though not 

presented here for brief. The tests show that 4320 panels on half the free surface domain and 3846 

panels on the half hull surface can give convergent results. The corresponding panel arrangement of 

KCS on the hull and free surfaces are shown in Fig. 16 and Fig. 17, respectively. 

 

Fig. 16. Hull surface panel arrangement of KCS. 

 

Fig. 17. Free surface panel arrangement of KCS. 

The studies are carried out on the effects of the 𝑆𝑂𝑍 terms on the attitude of KCS using the setup 

in the above figures for different Froude numbers. The results are depicted in Fig. 18, together with 

these obtained by experiments from reference (Larsson et al., 2010  and the fully nonlinear potential 

simulation (Chen et al., 2016 . As can be seen, the effects of the 𝑆𝑂𝑍 terms are generally more 

significant than what have been shown for the Wigley hull. More specifically, when Froude number 
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is larger than 0.2, the difference between computed results with and without considering 𝑆𝑂𝑍 can 

reach to 9% (e.g. in Fig.18a . Fig. 19 gives the wave profiles on the hull surface and in the longitudinal 

sections with 𝑌/𝐿 = 0.0741 and 𝑌/𝐿 = 0.1509 for the Froude number at 0.26. It shows that the 

wave profiles with the 𝑆𝑂𝑍 terms are quite different from these without the terms. 

0.18 0.20 0.22 0.24 0.26 0.28 0.30
-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

a

 

 

S
in

k
ag

e/
L

 (
*

1
0

2
)

Fn

 Cal.(With SOZ)

 Cal.(Without SOZ)

 Nonlinear(Chen, 2017)

 Exp.( Gothenburg  2010)

 CFD.( Gothenburg 2010)

 

0.18 0.20 0.22 0.24 0.26 0.28 0.30
0.05

0.10

0.15

0.20

b

 

 

T
ri

m
 (

d
eg

)

Fn

 Cal.(With SOZ)

 Cal.(Without SOZ)

 Nonlinear(Chen, 2017)

 Exp.( Gothenburg  2010)

 CFD.( Gothenburg 2010)

 

Fig. 18. Hull attitude of KCS. (a  Sinkage, (b  trim. 
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Fig. 19. Wave profiles of KCS at different sections (𝐹𝑛 = 0.26, without trim and sinkage . (a  wave 

profiles along ship, (b  section at 𝑌/𝐿 = 0.0741, (c  section at 𝑌/𝐿 = 0.1509 

It is interesting to see that the computed trim and sinkage with considering the 𝑆𝑂𝑍 terms are 

much closer to experimental data than these without considering the terms.  Furthermore, the results 

with the effects of the 𝑆𝑂𝑍 terms are in the similar level of accuracy as the CFD and fully nonlinear 

potential simulations.  This seems to suggest that considering the 𝑆𝑂𝑍  terms can effectively 

account for the nonlinear effects in these cases, which are more pronounced for ships with larger 

block coefficients and with a higher speed. 

The computed wave elevation of KCS model is shown in Fig. 20, it can be seen that with α11, the 

free surface before the bow is calm and the wave reflection from the lateral boundaries is not 

observable in the domain.  These indicate the domain used in this case is large enough and the 

technique used for the radiation condition is effective. 
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Fig. 20. Computed wave elevation of KCS model with 𝑆𝑂𝑍 terms at 𝐹𝑛 = 0.3. 

3.2 Trimarans 

It is now to consider trimarans, which can advance at a high speed with the Froude number usually 

reaching 0.7 (Fitzsimmons V R, 2015, Bennett, 2006 . Two trimarans will be considered. One is 

composed of three Wigley hulls (called as Tri A  and another is an actual trimaran (called Tri B . 

Some experiments on the trimaran model of Tri B are carried out by the authors in the towing tank 

of Harbin Engineering University (HEU , which is 110m length, 7m width and 3.5m depth. The trim 

and sinkage of the model is measured by 4 degrees of freedom (DoFs  nautical instrument. The model 

has one center hull and two side hulls.  The central hull and side hulls are connected by two 

transverse rigid links, shown in Fig. 21. Some of the results will be used for validation represented 

below. 

  

Fig. 21 Photos for experiments of Tri B in calm water  

The main characteristic dimensions of its center hull of Tri B are 𝐵/𝐿 = 0.08, 𝐷/𝐿 = 0.04, 𝐶𝑏 =

0.52  while these for the side hulls are 𝐵1/𝐿1 = 0.05 , 𝐷1/𝐿1 = 0.04 , 𝐶𝑏1 = 0.46 , with 𝑥𝑔/𝐿 =
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−0.01 , 𝑧𝑔/𝐿 = 0.02 , 𝑎/𝐿 = 0.0 , 𝑝/𝐿 = 0.1 , where 𝑎  is the longitudinal distance between the 

center hull stern and the side hull stern, 𝑝 is the separate distance between the center hull and side 

hull, 𝐿1, 𝐵1 and 𝐷1 are the length, the waterline breadth and the draft of side hulls, respectively, as 

shown in Fig. 22. 

 

Fig. 22. Computational Domain of a trimaran 

 

The computational domain for the trimaran cases are illustrated also in Fig. 22, which is defined in 

a similar way to that for monohull by the length of the domain 𝐿𝑑 = 𝛼𝐿 + 𝐿 + 1.5𝛼𝐿, except that 

the half width of the domain is 𝑊𝑑 = 𝑝 + 𝛼𝐿. 

Similar to monohull, the hull and free surfaces of the trimaran are discretized into triangles and 

quadrilaterals, respectively. The meshes on the hull surfaces are generated in the same way as for the 

monohull described in Section 3.1, shown in Fig. 23. When discretizing the free surface, the free 

surface is split into sub-regions as shown in Fig. 22. The lateral lines are firstly used to split the parts 

of the free surface consisting of Regions 2 and 7, Regions 3 and 8, and Region 4, 11, 9, separately. 

The distance between two lateral lines is constant and calculated in the same way as for the free 

surface in the monohull cases.  For the regions before the bow of the central hull and after its stern, 

the lateral lines are applied also in the same way as in the monohull cases. Secondly, the longitudinal 

lines are applied but the distance between them is different in different regions. In Regions 6-10, the 

number of longitudinal lines is calculated by  𝑝/(𝛽𝐿) , while in Regions 11-13, the number of 

longitudinal lines is determined by 𝐵𝑡/(𝛽𝐿), where 𝐵𝑡 is the width of the transom in waterplane. In 

Regions 1-5, the longitudinal lines are distributed again in the same way as for the area (i.e., Regions 
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2-3 in Fig. 7  at the side of the monohull ships. The generated mesh for the free surface is illustrated 

in Fig. 24. 

 

Fig. 23. Hull Surface panel arrangement for Tri B. 

 

Fig. 24. Hull Surface panel arrangement of the Trimaran hull. 

For the trimarans, there is no reference which gives the information about how big the 

computational domain should be.  Therefore, the tests on the influence of domain sizes are carried 

out by changing the factor of 𝛼 from 0.5 to 1.5. When testing the domain size, the mesh used is the 

same as in Case 7 in Table 4 which will be discussed later.  The domain size and the corresponding 

computed result of Tri B at Froude number 𝐹𝑛 = 0.8 are shown in Table 3. The results in the table 

shows that the domain size corresponding to 𝛼 = 1.0 is large enough, which will be used in other 

tests discussed below. 

Table 3 

Computed results of the attitudes of Tri B with different free surface domain sizes at 𝐹𝑛 = 0.8. (with 



 

 

- 27 - 

 

𝑆𝑂𝑍 considered . 

𝛼 𝐿𝑑 𝑊𝑑 
with 𝑆𝑂𝑍 considered 

Trim Sinkage/𝐿 

   deg *102 

0.30  0.3𝐿 +𝐿 +0.45𝐿 0.4 𝐿 -0.842  -0.142  

0.50  0.5𝐿 +𝐿 +0.75𝐿 0.6 𝐿 -0.847  -0.145  

0.70  0.7𝐿 +𝐿 +1.05𝐿 0.8 𝐿 -0.836  -0.146  

1.00  1.0𝐿 +𝐿 +1.50𝐿 1.1 𝐿 -0.838  -0.143  

1.50  1.5𝐿 +𝐿 +2.25𝐿 1.6 𝐿 -0.839  -0.143  

The convergent tests are also carried out for eight cases with different meshes as shown in Table 4.  

Table 4 also shows the computed sinkage and trim of the attitudes of Tri B for these cases.  The 

relative errors evaluated in the same way as for Fig. 10 are presented in Fig. 25. The results show that 

the relative errors between Case 6-8 are less than 2%, which means that the mesh for Case 6 is fine 

enough. Fig. 26 shows the computed wave elevation of Tri B with 𝑆𝑂𝑍 terms at 𝐹𝑛 = 0.7 and α 11.  

As already seen in Fig. 12 and Fig. 20, there is almost no wave before the bow and no wave reflection 

from the lateral boundaries. 
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Fig. 25. Relative errors in solution with and without 𝑆𝑂𝑍 (Trimaran, 𝐹𝑛 = 0.8 . 

Table 4 

Computed result of the attitudes of Tri B with different number of panels at 𝐹𝑛 = 0.8. 

No. 
Total grid number 

(on half domain) 

Free 

surface 

(half  

Center 

hull 

(half  

One 

side 

hull 

(whole  

with SOZ without SOZ 

Trim Sinkage/𝐿 Trim Sinkage/𝐿 

deg *102 deg *102 

1 1417 1225 180 60 -0.894  -0.180  -1.031  -0.175  

2 2730 2070 500 160 -0.880  -0.162  -0.998  -0.165  
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3 4500 2370 720 240 -0.870  -0.155  -0.996  -0.150  

4 4982 2550 980 322 -0.852  -0.148  -0.974  -0.142  

5 5516 2670 1280 416 -0.840  -0.144  -0.958  -0.138  

6 6085 2880 1620 540 -0.838  -0.143  -0.945  -0.137  

7 6620 3240 2000 660 -0.835  -0.141  -0.941  -0.135  

8 8712 3960 2880 936 -0.837  -0.142  -0.943  -0.134 

 

 

Fig. 26. Computed wave elevation of Tri B model with 𝑆𝑂𝑍 terms at 𝐹𝑛 = 0.7. 

Based on this, the effects of the 𝑆𝑂𝑍 terms on the attitudes of Tri B are studied for different 

Froude numbers using the same mesh for Case 6. Fig. 27 gives the sinkage and trim of the ship with 

and without considering the 𝑆𝑂𝑍 terms together with our experimental data. It shows that, when 

Froude number is larger than 0.45, the effects of the 𝑆𝑂𝑍 terms on the trim becomes visible, e.g., 

9.8% at 𝐹𝑛 = 0.8. The influence of the terms on sinkage is a bit more complex. The considerable 

difference between the results with and without the terms happens within the range of 𝐹𝑛 = 0.4 and 

𝐹𝑛 = 0.7 with the maximum difference being 8.2% at about 𝐹𝑛 = 0.5. In both figures, the results 

with considering the 𝑆𝑂𝑍  terms are much closer to the experimental data. It is noted that the 

differences caused by the terms for this ship are in the same level as for KCS, though the block 

coefficient here is much lower. It would be reasonable to deduce that the interaction between central 

and side hulls may enhance the effects of the terms. 
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Fig. 27. Hull attitudes of the trimaran. (a  Sinkage, (b  Trim. 

To further investigate whether such interaction enhance the effects, the attitudes of a trimaran 

composed of Wigley hulls (Fig. 28  is simulated. The main characteristic dimensions of center hull 

and side hulls are 𝐶𝑏 = 0.44, 𝐵/𝐿 = 0.08,  𝐷/𝐿 = 0.036, 𝐶𝑏1 = 0.44, 𝐵1/𝐿1 = 0.44, 𝐷1/𝐿1 =

0.36, and the gravity center is 𝑥𝑔/𝐿 = 0.0 and 𝑧𝑔/𝐿 = 0.0.  The tests on the influences of different 

domain sizes and meshes are also carried out for this ship and demonstrate that 𝛼 = 1.0 and the 

mesh similar to that in Case 6 above are appropriate. For brief, the details are not presented. 
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Fig. 28. Hull surface panel arrangement of the trimaran. 

 

Fig. 29. Free surface panel arrangement of the trimaran. 

The computed results with and without considering 𝑆𝑂𝑍 for the case 𝑎/𝐿 = 0.32, 𝑝/𝐿 = 0.12 

and 𝐵1/𝐿 = 0.03, the same as these for the model tests (Li et al., 2007 , are shown in Fig. 30 together 

with the experimental results (Li et al., 2007 . It shows that when Froude number is larger than 0.45, 

the sinkage with considering 𝑆𝑂𝑍 are very close to the experimental results while that without the 

terms is about 17.6% lower. The maximum difference of the trim between the cases with and without 

the terms occurs at about 𝐹𝑛 10.55, which is about 8.6%. Fig. 31 shows the coefficients of the 

corresponding wave-making resistance.  It can be seen that the difference between the resistance 

coefficients with and without the SOZ terms become significant when 𝐹𝑛 > 0.4  with the largest 
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being about 12.3% at about 𝐹𝑛 = 0.50. 
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Fig. 30. Hull attitudes of the trimaran. (a  Sinkage, (b  trim. 
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Fig. 31. Wave-making resistance of Tri A. 

To shed more light on how the interaction between hulls enhances the effects of the 𝑆𝑂𝑍 terms, 

the cases with different hull separations (𝑝  and with different side hull breadths (𝐵1  are investigated.  

For these cases, other parameters are kept the same as those for the results in Fig. 30 and Fig. 31. The 

relative difference between the results with and without considering the 𝑆𝑂𝑍 terms is estimated by 

the following way: |𝑓1 − 𝑓2|/𝑓1,𝑚𝑎𝑥, where 𝑓1 is the computed results with the 𝑆𝑂𝑍 terms, 𝑓2 is 

the computed result without the 𝑆𝑂𝑍 terms, and 𝑓1,𝑚𝑎𝑥 is the maximum absolute value in 𝑓1. The 

relative differences are shown in Fig. 32 and Fig. 33 for sinkage, trim and wave-making resistance, 

respectively. One can see from Fig. 32 that when the ratio of the hull separation (𝑝  to the ship length 

(𝐿  is smaller, the effects of the 𝑆𝑂𝑍 terms on the sinkage become more evident, particularly at the 

Froude number larger than 0.5, with the maximum difference to be 30% among the cases studied.  

One can also see from Fig. 32 that the relative difference for the trim increase with the reduction of 

𝑝/𝐿 but the largest value (~9%  occurs at about 𝐹𝑛10.6.  From Fig. 33 which plots the results for 

different side hull breadths, it is observed that the relative differences in both sinkage and trim 

increase with the increase of the breadths. Their maximums (about 50% for sinkage and 20% for trim  

occurring at about 𝐹𝑛 10.6. In addition, From Fig. 32(c  and Fig. 33(c , the corresponding wave-

making resistance is also significantly affected by the SOZ terms with the maximum difference being 

13% in Fig. 32(c  and 28% in Fig. 33(c , respectively.  

All results indicate that the hull interaction can enhance the effects of the 𝑆𝑂𝑍 terms.  In other 

words, the 𝑆𝑂𝑍 terms may play more important role in estimating the sinkage and trim of trimaran 

ships than in estimating these of monohull ships.  
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Fig. 32. Relative differences between computed results with and without considering 𝑆𝑂𝑍 for Tri 

A with different hull separations. (a  Sinkage, (b  Trim, (c  Wave making resistance. 
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Fig. 33. Relative differences between computed results with and without considering 𝑆𝑂𝑍 for Tri 

A with different side hull breadths. (a  Sinkage, (b  Trim, (c  Wave making resistance. 

3.3 Catamaran 

Catamaran with two Wigley hulls is now considered.  For this kind of ships, their Froude number 

can reach 0.75 (Davis et al., 2004 . The main characteristic dimensions of each Wigley hull is the 

same as those for the one used in Section 4.1. The computational domain of the catamaran is shown 

in Fig. 34.  The mesh on the hull is generated in the same way as that for Wigley hull in Section 3.1.  

The generation of mesh on the free surface is also similar to that case.  The main difference lies in 

the distribution of longitudinal lines between the hulls (Regions 4-6 in Fig. 34 , where the distance 

between the lines is constant and determined by 𝛽𝐿. The hull and free surfaces meshes are shown in 
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Fig. 35 and Fig. 36.  The tests similar to what have been done for the Wigley hull on different sizes 

of computational domain and different numbers of panels have been carried out for 𝐹𝑛10.8.  It is 

found that the domain size coefficient can be 𝛼 = 1.0, each hull surface is discretized into 3240 

panels, and the panels on half the free surface is 3300.  

 

 

Fig. 34. Domain size of catamaran 

 

Fig. 35. Hull surface panel arrangement of the catamaran. 
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Fig. 36. Free surface panel arrangement of the catamaran. 

Using the parameters, various cases are studied by varying the Froud number, the breadth of each 

hull and their separation. The range of separation values is chosen to be 0.2𝐿~0.5𝐿 based on the 

information given by reference (Thomas et al., 2011; Souto-Iglesias et al., 2012  for real Catamarans. 

The relative difference (defined as the same as for Fig. 32 and Fig. 33  in the sinkage calculated by 

using the results with and without the 𝑆𝑂𝑍 terms are analyzed. The results are plotted in Fig. 37 for 

different separations between the hulls and in Fig. 38 for different breadths. It can be seen from these 

two figures that the maximum relative differences, which are considerable at some values of Froude 

numbers, in the sinkage, trim and resistance coefficients increase with the separation (p/L  being 

smaller and the breadth (B/L  being larger.  Nevertheless, the magnitudes are not as large as these of 

the trimaran observed in Fig. 32 and Fig. 33.  That is because the separation of the catamaran is 

bigger than the trimaran. 
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Fig. 37. Relative differences between computed results with and without considering 𝑆𝑂𝑍 for the 

catamaran with different hull separations. (a  Sinkage, (b  Trim, (c  Wave making resistance. 
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Fig. 38. Relative differences between computed results with and without considering 𝑆𝑂𝑍 for the 

catamaran with different side hull breadths. (a  Sinkage, (b  Trim, (c  Wave making resistance. 

Wave patterns of different catamarans computed with and without considering the 𝑆𝑂𝑍 terms are 

compared in Fig. 39 and Fig. 40.  Fig. 39 illustrates two cases for different separations and Fig. 40 

depicts the cases for different breadths of the hulls.  In the figures, the upper parts show the results 

with the 𝑆𝑂𝑍  terms while the lower parts give these without the terms. One can see that the 

discrepancy between the computed wave patterns with and without considering the 𝑆𝑂𝑍 terms is 

more apparent for the case with smaller hull separation or larger 𝐵/𝐿, especially in the region after 

stern. 

a  
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b  

Fig. 39. Wave pattern of the catamaran with 𝐵/𝐿 = 0.1 at 𝐹𝑛 = 0.7. (a  𝑝 = 0.2𝐿, (b  𝑝 = 0.4𝐿. 

a  

b  

Fig. 40. Wave pattern of the catamaran with 𝑝 = 0.4𝐿 at 𝐹𝑛 = 0.7. (a  𝐵/𝐿 = 0.133, (b  𝐵/𝐿 =

0.067. 

5 Conclusion 
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In this paper, the effects of the second order derivatives in the free surface condition (i.e., the 𝑆𝑂𝑍 

terms  on the attitudes and wave-making resistance of ships including monohull, catamaran and 

trimaran are studied for different parameters.  For all the cases considered, careful investigations on 

the different numbers of panels and different sizes of computational domain are carried out.  The 

computational results are validated by experimental data in several cases. Based on the results, the 

following conclusions may be drawn. 

1) The 𝑆𝑂𝑍  terms can have visible effects on the sinkage, trim and wave-making resistance of 

monohull when the block coefficient and the Froude number are large; otherwise their effects can 

be ignored as usually done in literature.  

2) For multihull ships, the effects of the 𝑆𝑂𝑍 terms are more pronounced.  The largest difference 

due to the terms observed in the tested cases reaches 50%. 

3) In the cases of multihull ships, the effects of the 𝑆𝑂𝑍 terms do not only depend on the block 

coeffect and Froude number but also on the interaction between the hulls.  More specifically, 

when the interaction is stronger, such as smaller separation between hulls of trimarans and 

catamarans, the effects of the 𝑆𝑂𝑍 terms become more prominent. 

4) Comparison of the results with these of fully nonlinear method shows that the results with 

considering the 𝑆𝑂𝑍 terms are in the similar level of accuracy as the CFD and fully nonlinear 

potential simulations.  This seems to suggest that considering the 𝑆𝑂𝑍 terms can effectively 

account for the nonlinear effects in these cases for ships with larger block coefficients and with a 

higher speed. 

According to the findings, it is recommended that the 𝑆𝑂𝑍  terms should be taken into account, 

unless there is sufficient evidence showing that their effects are negligible. 
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