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Abstract We study the following separation problem: Given n connected curves and
two points s and t in the plane, compute the minimum number of curves one needs to
retain so that any path connecting s to t intersects some of the retained curves. We give
the first polynomial (O(n3)) time algorithm for the problem, assuming that the curves
have reasonable computational properties. The algorithm is based on considering the
intersection graph of the curves, defining an appropriate family of closed walks in the
intersection graph that satisfies the 3-path-condition, and arguing that a shortest cycle
in the family gives an optimal solution. The 3-path-condition has been used mainly
in topological graph theory, and thus its use here makes the connection to topology
clear. We also show that the generalized version, where several input points are to be
separated, is NP-hard for natural families of curves, like segments in two directions
or unit circles.
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Fig. 1 A possible instance for 2-POINT-SEPARATION with weights: a polygonal domain with 5 rectangular
holes and several disks. The task is to retain the minimum number of disks such that any path connecting
s to t inside the domain intersects some retained disk.

1 Introduction

Let C be a family of n connected curves in the plane, and let s and t be two points
not incident to any curve of C. In the 2-POINT-SEPARATION problem we want to
compute a subset C′ ⊆ C of minimum cardinality that separates s from t, i.e., any
path connecting s to t intersects some curve of C′. Its generalization where several
input points are to be separated will be referred to as POINTS-SEPARATION.

We will actually solve a natural weighted version of 2-POINT-SEPARATION, where
we have a weight function w assigning weight w(c)≥ 0 to each curve c ∈C. For any
subset C′ ⊆ C we define its weight w(C′) as the sum of the weights over all curves
c ∈C′. The task is to find a minimum weight subset C′ ⊆C that separates two given
points s and t. Such weighted scenario is useful, for example, when we want to keep
separated two points in a polygonal domain using a subset of disks. In such case, we
can assign weight 0 to each edge of the domain and weight 1 to the boundary of each
disk. See Fig. 1 for an example. Such problem naturally arises in so-called barrier
problems when wireless sensors are modeled by disks [4,11].

In typical scenarios, C is a family of circles or segments, possibly of unit size. In
our algorithms we need to assume that some primitive operations involving the input
curves can be carried out efficiently. Henceforth, we will assume that the following
primitive operations can be done in constant time:

(i) given two curves c and c′ of C, we can compute a point in c∩c′ or correctly report
that c and c′ are disjoint;

(ii) given a curve c of C and two points x and y on c, we can compute the number of
crossings between a path inside c that connects x to y and the segment st;

(iii) given a curve c of C, we can decide whether c separates s and t;
(iv) given two curves c and c′ of C, we can decide whether c and c′ together separate

s and t.

These operations take constant time for semialgebraic curves of constant description
complexity.
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Our results. We provide an algorithm that solves the weighted version of 2-POINT-
SEPARATION in O(nk+n2 logn) time, where k is the number of pairs of curves that
intersect. The algorithm itself is simple, but its correctness is not obvious. We justify
its correctness by considering an appropriate set of closed walks in the intersection
graph of the curves and showing that it satisfies the so-called 3-path-condition [16]
(see also [13, Chapter 4]). The use of the 3-path-condition for solving 2-POINT-
SEPARATION is surprising, but it makes the connection to topology clear. In fact,
our approach can be interpreted alternatively as searching for a shortest non-zero-
homologous cycle in R2 \{s, t} (with coefficients in Z2). This approach works when
the optimal solution is given by at least 3 curves. We take care for the case when the
optimal solution is attained by two curves separately by brute-force.

On the negative side, we use a reduction from PLANAR-3-SAT to show that
POINTS-SEPARATION is NP-hard for two natural families of curves:

– horizontal and vertical segments;
– unit circles.

Related work. Gibson et al. [7] provide a polynomial-time O(1)-approximation al-
gorithm for the problem POINTS-SEPARATION for disks. Their approach is based on
building a solution by considering several instances of 2-POINT-SEPARATION with
disks, which they solve also approximately. It should be noted that no polynomial-
time algorithm that gives the exact optimum for 2-POINT-SEPARATION was previ-
ously known, even for unit disks. Using our exact solution to 2-POINT-SEPARATION
for the boundaries of the disks leads to a better approximation factor in the final
outcome of their algorithm.

The ideas used here for 2-POINT-SEPARATION were already included in the un-
published manuscript with Alt and Knauer [2] for segments. This work replaces and
extends that part of the manuscript. In the terminology used in Wireless Sensor Net-
works, we are computing a minimum-size 1-barrier [10,4]. Researchers have also
considered the dual problem of computing the so-called resilience: remove the mini-
mum number of curves such that there exists a path from s to t avoiding the retained
curves. Computing the resilience was shown to be NP-hard for arbitrary segments by
Alt et al. [2,3], and for unit segments by Tseng and Kirkpatrick [17,18]. A constant-
factor approximation algorithm for resilience in families of unit disks was given by
Bereg and Kirkpatrick [4].

In an independent and simultaneous work, Penninger and Vigan [15] have shown
that POINTS-SEPARATION is NP-hard for the case of unit disks. Their reduction is
from the problem PLANAR-MULTITERMINAL-CUT and it is very different from ours.
Note that in our reduction we need unit circles.

Roadmap. In Section 2 we describe the algorithm for 2-POINT-SEPARATION. We
argue its correctness in Section 3. In Section 4 we show that POINTS-SEPARATION
is NP-hard.
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2 Algorithm for 2-Point-Separation

In this section we describe a polynomial-time algorithm for 2-POINT-SEPARATION.
Our time bounds will be expressed as a function of n, the number of curves in C, and
k, the number of pairs of curves from C with non-empty intersection. We justify the
correctness of the algorithm in Section 3.

2.1 Preliminaries

The use of the term curve will be restricted to elements of C. The use of the term path
(or closed path) will be restricted to parametric paths constructed in our algorithm
and proofs. The use of the term walk will be restricted to graphs. A cycle is a closed
walk in a graph without repeated vertices.

General position. We are going to count crossings between portions of the input
curves and the segment st. To simplify the exposition, we assume general position in
the following sense: the segment st does not contain any self-intersection of a curve
of C; the segment st does not contain any intersection of two curves of C; the segment
st is not tangent to any curve of C, thus any intersection of st with any curve of C is
a crossing; no curve of C contains a non-zero-length portion of st. For reasonable
curves, these assumptions can be ensured (or avoided, from the point of view of a
programmer) with a small perturbation of s. Separating s and t or separating a small
enough perturbation of s and t are equivalent problems.

Intersection graph. The set C of input curves defines the intersection graph G =
G(C) = (C,{cc′ | c∩ c′ 6= /0}); see Fig. 2. Note that G has k edges. To each edge cc′

of G we attach the weight (abstract length) w(c)+w(c′). Any distance in G will refer
to these edge weights. For any walk π in G we use lenG(π) for its length, that is, the
sum of the weights on its edges counted with multiplicity, and C(π) = V (π) for the
set of curves that appear as vertices in the walk π .

For each curve r ∈C, let Tr be a shortest-path tree of G from r; if there are several,
we select one of them arbitrarily and maintain this choice throughout the algorithm.
For any r ∈ C and any edge e ∈ E(G) \E(Tr), let walk(r,e) denote the closed walk
obtained by concatenating the edge e with the two paths in Tr from r to the endpoints
of e. When walk(r,e) is a cycle it is usually called a fundamental cycle with respect
to Tr.

Fixing intersections and subpaths. For each two distinct curves c and c′ from C that
intersect, we fix an intersection point and denote it by xc,c′ ; if there are different
choices, we choose xc,c′ arbitrarily and maintain this choice throughout the algorithm.
Given a curve c ∈C and two points x,y on C, let c[x→ y] be any path contained in c
connecting x to y; if there are different choices, we choose c[x→ y] arbitrarily.



The Complexity of Separating Points in the Plane 5

c1

c2
c3

c4 c5

c7

c6

c8

(a) (b)

c8

c7

c1 c2

c3

c4

c5c6

Fig. 2 (a) A set of curves C with the fixed intersection points xc,c′ . (b) The corresponding intersection
graph G.

π-paths. Consider a walk π = c0c1 · · ·ct in G. Let γ be a path in R2. We say that
γ is a π-path if there are paths γ1, . . . ,γt−1 such that: the path γi is contained in ci
(i = 1, . . . , t − 1), the path γi goes from xci−1,ci to xci,ci+1 (i = 1, . . . , t − 1), and the
concatenation of γ1, . . . ,γt−1 gives γ . The intuition is that γ starts at xc0,c1 , follows c1
until xc1,c2 , follows c2 until xc2,c3 , and so on, until eventually it arrives to xct−1,ct by
following ct−1. See Fig. 3(a) for an example.

If the walk π = c0c1 · · ·ct is closed, which means that ct = c0, then a closed path
γ is a closed π-path if there are paths γ1, . . . ,γt such that: the path γi is contained in
ci (i = 1, . . . , t), the path γi goes from xci−1,ci to xci,ci+1 (i = 1, . . . , t and ct+1 = c1),
and the concatenation of γ1, . . . ,γt gives γ . See Fig. 3(b)–(c) for an example. If γ is a
π-path or a closed π-path, then γ ⊂ ⋃C(π). Even if π is a cycle, which is a closed
walk without repeated vertices, a closed π-path may have self-intersections.

There may be different π-paths. Given a walk π = c0c1 · · ·ct in G we can construct
a π-path in linear time by concatenating c j[xc j−1,c j → xc j ,c j+1 ] for j = 1, . . . , t−1. If
π is a closed walk with c0 = ct , we can obtain a closed π-path by closing it with
c0[xct−1,c0 → xc0,c1 ]. When the input family C is a family of pseudosegments, there is
a unique π-path for each walk π and a unique closed π-path for each closed walk π .

We will mainly use closed (walk(r,e))-paths, where r is a curve of C and e ∈
E(G)\E(Tr). Thus, we introduce the notation γ(r,e) to denote a closed (walk(r,e))-
path; if there are several such paths, it denotes an arbitrary one.

Counting crossings. Let γ be a path contained in
⋃

C, possibly with self-intersections.
We define N(γ) as the number of crossings between st and γ , modulo 2. (Due to the
general position assumptions, no self-intersections of γ are counted.) If C′ ⊂C does
not separate s and t, then for any closed path γ contained in

⋃
C′ we have N(γ) = 0.

Let π be a walk in G and let γ be some π-path. We define N(π) = N(γ). Thus,
N(·) is defined for paths in the plane and for walks in G. A priori, the value N(π)
depends on the choice of the π-path γ . However, as we will see in Lemma 3, when
no curve of C alone separates s and t, the value N(π) is independent of the choice of
γ . Our first step in the algorithm will be to remove from C any curve that separates s
and t.

In this paper,
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Fig. 3 Some paths in the example of Fig. 2, using the fixed intersection points marked in Fig. 2. In (a)
there is a π-path for the walk π = c2c1c4c6c7c5c4. In (b) and (c) there are two different closed π-paths for
the closed walk π = c2c1c4c6c7c2.

any arithmetic involving N(·) is done modulo 2.

Because of our assumptions on general position, for any walk c0c1 · · ·ct and any i,
1 < i≤ t, we have

N(c0c1 · · ·ct) = N(c0c1 · · ·ci−1ci)+N(ci−1ci · · ·ct).

2.2 The algorithm

We now describe the algorithm. Firstly, we select the minimum-weight solution C≤2
consisting of one or two curves from C. We do this by testing separately each curve
and each pair of curves from C. Of course, it may be that C≤2 is undefined.

We remove from C any curve that alone separates s and t. We keep using C for
the remaining set of curves.

Next we compute the set

P = {(r,e) ∈C×E(G) | e ∈ E(G)\E(Tr) and N(walk(r,e)) = 1}.
Then we choose

(r∗,e∗) ∈ arg min
(r,e)∈P

lenG(walk(r,e)),

and compute C>2 =C(walk(r∗,e∗)). It may happen that P is empty, which means that
(r∗,e∗) and C>2 are undefined.

If both C≤2 and C>2 are defined, we return the lightest of them. If only one among
C≤2 and C>2 is defined, we return the only one that is defined. If both C≤2 and C>2
are undefined, we return “C does not separate s and t”. This finishes the description
of the algorithm. We will refer to this algorithm as ALGORITHM-2PS.

2.3 Time Complexity of the Algorithm

ALGORITHM-2PS, as described above, can be implemented in O(n2k+n2 logn) time
in a straightforward way. Since computing C≤2 can be done trivially in O(n2) time,
the bottleneck of the computation is to obtain (r∗,e∗). We next describe how to obtain
a better time bound.
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Fig. 4 (a) Tree Tc1 for the scenario of Fig. 2 assuming curves of unit weight. In this case Ac1 [c8] = c2
and Ac1 [c6] = c4. (b) Possible (Tc1 [c8])-path and (Tc1 [c6])-path used to compute Nc1 [c8] and Nc1 [c6]. (c)
Possible (c7c8c6c4)-path and (c4c1c2)-path that are used to compute N(walk(c1,c6c8)) in Lemma 1.

Lemma 1 ALGORITHM-2PS can be modified to run in O(nk+n2 logn) time.

Proof The set C≤2 can be computed in O(n2) time by brute force. We compute
(r∗,e∗) and C>2 =C(walk(r∗,e∗)) as follows.

The graph G can be constructed explicitly in O(n2) time by checking each pair
of curves, whether they cross or not. Recall that G has k edges.

For any curve r ∈C, let us define

Er = {e ∈ E(G) | (r,e) ∈ P}
= {e ∈ E(G) | e ∈ E(G)\E(Tr) and N(walk(r,e)) = 1}.

Note that
P =

⋃
r∈C

{r}×Er,

and therefore

min
(r,e)∈P

lenG(walk(r,e)) = min
r∈C

min
e∈Er

lenG(walk(r,e)).

Thus, (r∗,e∗) can be computed by finding, for each r ∈C, the value

min
e∈Er

lenG(walk(r,e)).

We shall see that, for each fixed r ∈C, such value can be computed in O(k+n logn)
time. It then follows that (r∗,e∗) can be found in |C| ×O(k + n logn) = O(nk +
n2 logn) time.

For the rest of the proof, let us fix a curve r ∈C. Computing the shortest-path tree
Tr takes O(|E(G)|+ |V (G)| log |V (G)|) = O(k+n logn) time. The main idea now is
simple: for each edge cc′ ∈E(G), we can obtain N(walk(r,cc′)) and lenG(walk(r,cc′))
in constant time using information stored at c and c′. (The details below become a
little cumbersome.)

For any curve c ∈C, c 6= r, let Tr[c] denote the path in Tr from r to c, let Ar[c] be
the child of r in Tr[c], and let Nr[c] = N(Tr(c)). See Fig. 4(a)–(b).

The values Nr[c], c ∈C, can be computed in O(n) time using a BFS traversal of
Tr, as follows. We set Nr[r] = 0 and, for each child c of r, we set Nr[c] = 0. For any
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other curve c, if pr(c) is the parent of c in Tr, we can compute Nr[c] from Nr[pr(c)]
in O(1) time using that

Nr[c] = Nr[pr(c)]+N (pr(pr(c)) pr(c)c)

= Nr[pr(c)]+N
(

pr(c)[xpr(pr(c)),pr(c)→ xpr(c),c]
)
.

In this last equality we are constructing implicitly a Tr[c]-path from a Tr[pr(c)]-path
attaching to it a path contained in the curve pr(c).

We can also compute Ar[c] for all c ∈C, c 6= r, using a BFS traversal of Tr. We
set Ar[c] = c for each child c of r and, for any other c ∈C, we set Ar[c] = Ar[pr(c)],
where pr(c) is again the parent of c in Tr.

For cc′ ∈ E(G)\E(Tr), we have that

N(walk(r,cc′)) = Nr[c]+N
(

pr(c)cc′ pr(c′)]
)
+Nr[c′]+N

(
Ar[c′]r Ar[c]]

)
.

See Fig. 4(b)–(c). Therefore, each N(walk(r,cc′)) can be computed in O(1) time
from the values Nr[c], Nr[c′], Ar[c], Ar[c′]. It follows that Er can be constructed in
O(|E(G)|) = O(k) time.

The length of any closed walk walk(r,e) can be computed in O(1) time per pair
(r,e) in a similar fashion. For each vertex c, we store at c its shortest-path distance
dG(r,c) from the root r. The length of the closed walk walk(r,cc′) can then be recov-
ered using

lenG(walk(r,cc′)) = dG(r,c)+w(c)+w(c′)+dG(r,c′).

Equipped with this, we can in O(k) time compute

min
e∈Er

lenG(walk(r,e)).

ut

The following special case may be relevant in some applications.

Lemma 2 If the weights of the curves C are 0 or 1, then ALGORITHM-2PS can be
modified to run in O(nk+n2) time.

Proof In this case, a shortest path tree Tr can be computed in O(|E(G)|+ |V (G)|) =
O(k + n) time because the edge weights of G are 0, 1, or 2. Using the approach
described in the proof of Lemma 1 we spend O(k+n) per root r ∈C, and thus spend
O(nk+n2) in total. ut

3 Correctness of the Algorithm for 2-Point-Separation

In this Section we show the correctness of ALGORITHM-2PS. Since in ALGORITHM-
2PS we test each curve of C whether it separates s and t, and, if it does, then remove
it from C, and since every such separating curve is tested for optimality,

we can assume henceforth that no curve in C separates s and t.



The Complexity of Separating Points in the Plane 9

As already mentioned earlier, we first show that this assumption implies that the
choice of π-paths made to define N(π) is irrelevant.

Lemma 3 Let π be a walk in G and let γ and γ ′ be two π-paths. Then N(γ) = N(γ ′).
Similarly, if π is a closed walk in G and γ and γ ′ are two closed π-paths, then N(γ) =
N(γ ′).

Proof Let c be any curve of C(π). Since c does not separate s and t, any closed
path contained in c crosses st an even number of times. We can use this to make
replacements that transform γ into γ ′ while keeping N(γ) constant, as follows.

We consider the case where π is a closed walk and γ and γ ′ are closed π-paths.
The other case is similar.

Let γ1, . . . ,γt be the pieces of γ that certify that γ is a closed π-curve. Similarly,
let γ ′1, . . . ,γ

′
t be the pieces of γ ′ that certify that γ ′ is a closed π-curve. For i = 1, . . . , t,

the paths γi and γ ′i have the same endpoints (xci−1,ci and xci,ci+1 , where c0 = ct and
c1 = ct+1) and are contained in ci. Therefore N(γi)+N(γ ′i ) = 0 for i = 1, . . . , t, which
implies N(γi) = N(γ ′i ). We thus have

N(γ) =
t

∑
i=1

N(γi) =
t

∑
i=1

N(γ ′i ) = N(γ ′).

ut

3.1 3-Path-Condition

Consider the set of closed walks

Π(C) = {π | π is a closed walk in G(C); N(π) = 1}.

We will drop the dependency on C and use Π = Π(C). However, towards the end we
will use Π(C̃) for some C̃ ⊆C.

We next show the following property, known as 3-path-condition. It implies that
from the 3 “natural” closed walks defined by 3 walks with common endvertices,
either 2 or none belong to Π .

Lemma 4 Let α0,α1,α2 be 3 walks in G from c to c′. For i = 0,1,2, let πi be the
closed walk obtained by concatenating αi−1 and the reverse of αi+1, where indices
are modulo 3. Then N(π1)+N(π2)+N(π3) = 0.

Proof This is basically a matter of parity. For i = 0,1,2, let βi be any αi-path, let
ai ∈ c be its endpoint on c and let bi ∈ c′ be its endpoint on c′. See Fig. 5(a). Note that
the paths β0,β1,β2 start on c and finish on c′, but they have different endpoints. To
handle this, for i = 0,1,2, we define γi to be the path obtained by the concatenation
of c[a0 → ai], βi, and c′[bi → b0]. Now the paths γ0,γ1,γ2 start at a0 and finish at
b0. See Fig. 5(b). For i = 0,1,2, let δi be the closed πi-path defined by concatenating
βi−1, c′[bi−1→ bi+1], the reversal of βi+1, and c[ai+1→ ai−1], where indices are taken
modulo 3. Because of Lemma 3 we have N(πi) = N(δi) for i = 0,1,2.
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(a) (b)

c

c′

c

c′

β0 β1
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Fig. 5 Notation in the proof of Lemma 4. (Parts of γ1 and γ2 lie on c∪ c′. We draw them outside because
of the common part.)

A simple but tedious calculation shows that, using indices modulo 3,

N(δi) = N(γi−1)+N(γi+1).

Indeed, since c does not separate s and t, any closed path contained in c crosses st an
even number of times and thus

N(c[a0→ ai+1])+N(c[ai+1→ ai−1])+N(c[ai−1→ a0]) = 0.

Since we use arithmetic modulo 2 and N(c[ai−1→ a0]) = N(c[a0→ ai−1]) we obtain

N(c[ai+1→ ai−1]) = N(c[a0→ ai+1])+N(c[a0→ ai−1]).

Similarly, for c′ we have

N(c′[bi+1→ bi−1]) = N(c′[b0→ bi+1])+N(c′[b0→ bi−1]).

Then we have

N(δi) = N(βi−1)+N(c′[bi−1→ bi+1])+N(βi+1)+N(c[ai+1→ ai−1])

= N(βi−1)+N(c′[b0→ bi+1])+N(c′[b0→ bi−1])

+N(βi+1)+N(c[a0→ ai+1])+N(c[a0→ ai−1])

= N(c[a0→ ai−1])+N(βi−1)+N(c′[b0→ bi−1])

+N(c[a0→ ai+1])+N(βi+1)+N(c′[b0→ bi+1])

= N(γi−1)+N(γi+1).

It follows that, using indices modulo 3,

2

∑
i=0

N(πi) =
2

∑
i=0

N(δi) =
2

∑
i=0

(N(γi−1)+N(γi+1)) = 0.

ut
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Fig. 6 Notation in the proof of Lemma 5.

When a family of closed walks satisfies the 3-path-condition, there is a general
method to find a shortest element in the family. The method is based on considering
so-called fundamental cycles defined by shortest-path trees, which is precisely what
ALGORITHM-2PS is doing specialized for the family Π . See [16] or [13, Chapter 4]
for the original approach, and [6] for a recent extension to weighted, directed graphs.

Lemma 5 Assume that Π is nonempty. Then the closed walk τ∗ = walk(r∗,e∗) com-
puted by ALGORITHM-2PS is a cycle and is a shortest closed walk of Π .

Proof We first show that each shortest closed walk of Π is a cycle. This is a conse-
quence of Lemma 4. Assume for the sake of a contradiction that some shortest closed
walk π of Π repeats a vertex c. Then we apply Lemma 4 to two non-trivial subwalks
π ′ and π ′′ of π from c to c and the trivial walk with only vertex c. (Lemma 4 does
not require that c 6= c′.) It follows that both π ′ and π ′′ are shorter than π and either
N(π ′) = 1 or N(π ′′) = 1, so π could not be shortest in Π . We conclude that each
shortest closed walk of Π is a cycle.

Consider the set of closed walks

Π
′ = {walk(r,e) | r ∈C, e ∈ E(G)\E(Tr), N(walk(r,e)) = 1} ⊆ Π .

We are going to show that some shortest closed walk of Π is in Π ′.
Choose a vertex r with the property that some shortest closed walk of Π goes

through r. Choose a closed walk π of Π through r that is shortest. If Π has several
different shortest closed walks through r, we take π that minimizes the number of
edges in E(G) \E(Tr). Since Tr is a tree, π must contain some edges from E(G) \
E(Tr). We are going to show that π has exactly one edge from E(G)\E(Tr).

Assume, for the sake of contradiction, that π contains at least two edges e and e′

from E(G)\E(Tr). See Figure 6 for the following notation. Let c be a vertex between
e and e′ as we walk from r along π . (If e and e′ have a common vertex, then c must be
that common vertex.) The closed walk π defines two walks from r to c, one in each
orientation. Let π ′ be the closed walk obtained by concatenating one of those walks
with the reversal of Tr[c] and let π ′′ be the closed walk obtained by concatenating the
other walk with the reversal of Tr[c]. Applying Lemma 4 to the two walks from r to c
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Fig. 7 Uncrossing argument in the proof of Lemma 6.

defined by π and the walk Tr[c] we obtain

N(π)+N(π ′)+N(π ′′) = 0.

Since N(π) = 1 because π ∈ Π , then either N(π ′) = 1 or N(π ′′) = 1. Take π̃ to be
the cycle among π ′ and π ′′ with N(π̃) = 1. Note that π̃ goes through r, is no longer
than π (we are replacing a part of π with the shortest path Tr[c]), and contains at least
one edge (e or e′) less from E(G) \E(Tr). Such closed walk π̃ would contradict the
choice of π . We conclude that π cannot have two edges from E(G)\E(Tr), and thus
it has exactly one edge from E(G)\E(Tr).

Since π has a single edge of E(G)\E(Tr), then π ∈Π ′. We have seen that finding
a shortest closed walk in Π amounts to finding a shortest closed walk in Π ′. The
closed walk walk(r∗,e∗), as computed by ALGORITHM-2PS, is a shortest element of
Π ′ by construction, and thus also a shortest element of Π . ut

3.2 Feasibility

The next step in our argument is showing that, when C>2 is defined, it is a feasible
solution. For this we find a closed, simple path contained in C>2 that separates s and
t.

Lemma 6 Assume that Π is nonempty and let π be any cycle in Π . The set of curves
C(π) separates s and t.

Proof Let γ be a closed path contained in C(π) with N(γ) = 1 and with the minimum
number of self-intersections. Such a path exists because π ∈Π and thus some closed
π-path crosses st an odd number of times.

We can use an uncrossing argument to show that γ has no self-intersection, as fol-
lows. See Figure 7. Assume, for the sake of contradiction, that γ has a self-intersection
at a point p. We can uncross γ at p to obtain two closed paths γ1 and γ2, each of is
part of γ and has fewer self-crossings than γ . Note that

1 = N(γ) = N(γ1)+N(γ2)

because the paths γ1 and γ2 form a disjoint partition of γ . Therefore, for i = 1 or i = 2,
the path γi has N(γi) odd, is part of γ and thus contained in C(π), and has fewer self-
crossings than γ . This would contradict the choice of γ . We conclude that γ must be
simple.
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δ′i
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δ′′i−1 δ′′i+1

(a) (b)

δ′i+1δ′i−1

Fig. 8 (a) Notation and (b) the paths δ ′i ,δ
′′
i constructed in the proof of Lemma 7.

Since γ is simple and N(γ) is odd, γ separates s and t. It follows that C(π) sepa-
rates s and t because γ is contained in C(π). ut

We next argue that the algorithm computes a feasible solution, when it exists. We
know that C≥2 = C(walk(r∗,e∗)) separates s and t, when it is defined, but could it
happen that Π is empty and thus (r∗,e∗) is undefined?

Lemma 7 If C separates s and t but no two curves in C separate s and t, then Π is
nonempty.

Proof Consider the connected component of R2 \⋃C containing s. Since C sepa-
rates s and t, t is in a different connected component. Let δ be a simple, closed path
contained in the boundary of the connected component of s in R2 \⋃C such that δ

separates s and t. We then have N(δ ) = 1.
Let c0,c1, . . . ,ct (with ct = c0) be the sequence of input curves that contain δ , in

the order in which they are visited by δ . We have t ≥ 3 because no two curves separate
s and t. Note that π = c0c1 . . .ct is a closed walk of G. We will see that π ∈Π , which
implies that Π is nonempty. It is not true in general that δ is a closed π-path because
it does not need to pass through the fixed intersection points xci,ci+1 . However, we can
construct a closed π-path δ ′′ such that N(δ ′′) = N(δ ) = 1, as follows.

Let δi be a path contained in ci such that the concatenation of δ0,δ1, . . . ,δt−1 is δ .
For i = 0, . . . , t−1, let ai be the start point of δi and let δ ′i be the path obtained by the
concatenation of ci[xci−1,ci→ ai], δi, and ci+1[ai+1→ xci,ci+1 ]. Thus, for i= 0, . . . , t−1,
the path δ ′i starts at xci−1,ci , finishes at xci,ci+1 , and is contained in ci∪ci+1. Finally, let
δ ′ be the concatenation of δ ′0,δ

′
1, . . . ,δ

′
t−1. Since δ ′ is obtained from δ by inserting

the paths ci[xci−1,ci → ai] twice, once in each direction, we have N(δ ′) = N(δ ) = 1.
See Fig. 8.

For i = 0, . . . , t−1, let δ ′′i = ci[xci−1,ci → xci,ci+1 ]. Define δ ′′ as the concatenation
of δ ′′0 , . . . ,δ

′′
t−1. Note that δ ′′ is a π-path by construction. Note that, for i= 0, . . . , t−1,

the paths δ ′i and δ ′′i are contained in ci∪ci+1 and have the same endpoints. See Fig. 8.
Since ci∪ ci+1 does not separate s and t, it holds N(δ ′i ) = N(δ ′′i ). It follows that

N(δ ′′) = ∑
i

N(δ ′′i ) = ∑
i

N(δ ′i ) = N(δ ′) = 1.

Since δ ′′ is a closed π-path and N(π) = N(δ ′′) = 1, we have π ∈Π . ut
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3.3 Main result

We can now prove that ALGORITHM-2PS correctly solves the problem 2-POINTS-
SEPARATION.

Theorem 1 The weighted version of 2-POINTS-SEPARATION can be solved in O(nk+
n2 logn) time, where n is the number of input curves and k is the number of pairs of
curves that intersect.

Proof We use ALGORITHM-2PS. The running time follows from Lemma 1. If C
does not separate s and t, then Π is empty because of Lemma 6, both C>2 and C≤2
are undefined, and the algorithm will return the correct answer.

It remains to see the feasibility and optimality of the solution returned by ALGO-
RITHM-2PS when C separates s and t. If there is an optimal solution consisting of at
most two curves, then it is clear that the algorithm is correct because C>2 is always
a feasible solution, if defined. Let us consider the case when each optimal solution
has at least 3 curves. Let C̃ ⊆C be one such optimal solution. Because of Lemma 7
applied to C̃, we know that Π(C̃) is non-empty. Let τ̃ be a shortest cycle in Π(C̃).
Since C(τ̃)⊂ C̃ is a feasible solution, because of Lemma 6 applied to Π(C̃), and C̃ is
an optimal solution, it must be C̃ =C(τ̃).

Now note that Π(C̃) ⊆ Π(C) because C̃ ⊆C, which implies that τ̃ is a cycle of
Π(C). Since τ∗ is a shortest cycle in Π(C) due to Lemma 5, we have lenG(τ∗) ≤
lenG(τ̃). For any cycle π of G we have lenG(π) = 2w(C(π)) because of the choice
of the edge-weights in G. This implies that

w(C>2) = 1
2 lenG(τ∗) ≤ 1

2 lenG(τ̃) = w(C(τ̃)) = w(C̃).

It follows that C>2 is a feasible solution whose weight is not larger than w(C̃), and
therefore C>2 is optimal. ut

Corollary 1 The weighted version of 2-POINT-SEPARATION in which the curves
have weights 0 or 1 can be solved in O(n2 + nk) time, where n is the number of
input curves and k is the number of pairs of curves that intersect.

Proof In the proof of the previous theorem we use Lemma 2 instead of Lemma 1. ut

4 Hardness of Point-Separation

In this section we show that POINTS-SEPARATION is NP-hard for two families of
curves: (i) horizontal and vertical segments, and (ii) unit circles. We reduce from
PLANAR-3-SAT.

Consider a 3-CNF formula with a set C of clauses over a set X of boolean vari-
ables. Its formula graph is defined as the bipartite graph on C ∪X that has an edge
connecting x ∈ X to C ∈ C if and only if C contains literal x or ¬x. A 3-legged rep-
resentation of the formula graph is a plane, rectilinear drawing where the variables
and clauses are drawn as axis-aligned rectangles, the variables are aligned horizon-
tally, and the edges are vertical segments; see the example in Fig. 9. PLANAR-3-SAT
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x1 x2 x3 x4 x5

x1 ∨ ¬x2 ∨ x3

¬x1 ∨ x4 ∨ ¬x5

x2 ∨ x3 ∨ ¬x4

¬x2 ∨ x4 ∨ x5

Fig. 9 Rectilinear representation of planar 3-SAT.

is the restriction of 3-SAT to formulae whose formula graph is planar and has a 3-
legged representation. PLANAR-3-SAT is NP-complete [12], and it remains so when
the 3-legged representation is given as part of the input. Several NP-hardness proofs
of geometric problems have used PLANAR-3-SAT; see for example [1], [5], [8], [9],
and [14].

The reductions for segments and circles are based on the same ideas. Given an in-
stance of PLANAR-3-SAT consisting of a formula Φ , with n variables and m clauses,
and a 3-legged representation L, we transform it into an instance I(Φ) of POINTS-
SEPARATION by replacing the rectangles in L with gadgets, while maintaining their
relative position and the planarity of the representation. In our case we do not need a
gadget to represent the edges because the interaction is straightforward. We describe
the reduction for segments first, and in more detail, since it is easier to visualize.

Let κ ≤ m be the maximum number of occurrences of a variable in Φ and `≤ κ

be the maximum number of edge-segments connecting the top or bottom side of a
variable-rectangle with a clause-rectangle in L.

4.1 Horizontal and vertical segments

Variables. In I(Φ), a variable is now represented by three nested frames (drawn in
black), which define two disjoint, cyclic corridors; see Fig. 10. (From now on, such a
structure will be simply referred to as frame.) The top and bottom side of a frame con-
sist of one horizontal segment each. The left and right side of a frame are composed
of three vertical segments and one horizontal segment each. We place four points at
each side in such a way that removing any one of the ten segments of a frame results
in at least two points being in the same cell. Therefore, all of these segments must be
present in any feasible solution. This finishes the description of a frame.

Next, we place ` pairs Si, 1 ≤ i ≤ `, of vertical segments such that both seg-
ments of each pair intersect the top side of every frame. Similarly, we place ` pairs Si,
` < i≤ 2` that intersect the bottom sides of the frames. Some of the segments in pairs
will be elongated later to cross a rectangle clause, depending on the actual formula.
Each pair encodes a truth assignment for the variable and consists of a positive (red)
segment sr

i which corresponds to TRUE and a negative (blue) one sb
i which corre-

sponds to FALSE. The pairs are arranged in such a way that when walking around a
corridor positive and negative segments alternate. In the upper corridor, we place a
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T F

sri sbi

Fig. 10 Variable gadget for POINTS-SEPARATION with horizontal/vertical segments. The segments with
arrows may be extended.

¬x2 ∨ x4 ∨ x5

x2 ∨ x3 ∨ ¬x4

x1 ∨ ¬x2 ∨ x3

¬x1 ∨ x4 ∨ ¬x5pl pr

Fig. 11 The construction with segments for the example of Fig. 9.

point between the segments of every pair, while in the inner one we place a point be-
tween every two consecutive pairs. The latter ensures that at least one segment from
each pair is needed for separating the points in the inner corridor.

Clauses. A clause in I(Φ) is represented by one frame (as defined in the paragraph
above); see Fig. 11. For each variable that occurs in the clause, we elongate one seg-
ment from the corresponding variable gadget: a positive (red) segment is elongated
for positive occurrences and a negative (blue) one for negative occurrences. Such
elongated segments cross the frame for the clause. Finally, we place one point pl at
the left side of the frame and one point pr at the right side such that at least one
elongated edge-segment is needed for separating the points.

Correctness. Let P and S be the set of all points and segments in I(Φ) respectively.
We claim that the points in P can be separated with 30n+ 10m+ 2` · n segments
from S if and only if Φ is satisfiable. First, assume that those many segments are
sufficient for separation. As argued above in the description of a frame, all its ten
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Fig. 12 Variable gadget for POINTS-SEPARATION with unit circles (top). The extra points that ensure that
all black circles are part of any feasible solution are shown in the zoomed-in area (bottom).

segments are necessary for separation, hence, we have the remaining 2` ·n segments
at our disposal for separating the points in every corridor and points pl and pr in
every clause gadget. From the discussion on the variable gadget we know that at least
one segment from every red/blue pair Si must be used for the points in the inner
corridor to be separated. Since there are 2` such pairs, exactly one segment from
every pair must be used in every variable gadget. Consider an arbitrary red segment
sr

i . If sr
i is included in the solution, then in order to separate the point between sr

i and
sb

i from the next, in clockwise order, point in the corridor, the red segment of the
adjacent pair (in the same order) must also be chosen. A similar observation holds
also for an arbitrary choice of a blue segment, where now the choice propagates in
counterclockwise order. Hence, in a variable gadget, either all red or all blue segments
must be chosen. But since points pl and pr must be also separated, there must be a
choice such that the frame of each clause gadget is intersected by at least one red or
blue edge-segment. Such a choice corresponds to a truth assignment that satisfies Φ .
The converse is obvious. We have proved the following.

Theorem 2 POINTS-SEPARATION is NP-hard for families of vertical and horizontal
segments.

4.2 Unit circles

Variables. For unit circles we use the variable gadget displayed in Fig. 12. It contains
3`− 1 disjoint triples of black circles at the center, which form its backbone. The
circles in each triple intersect pairwise and define four lunes. With four extra points
per triple, as described later on, we can ensure that all these black circles are part of
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pl pr

pl

Fig. 13 The clause (x2∨x3∨¬x4) with unit circles. The corridor is marked by a dashed path. The zoomed-
in area (top left) shows a red circle intersecting a black circle of the corridor (both fat) and disconnecting
the corridor.

any feasible solution. The gadget also contains 6`−2 pairs of red/blue circles. Each
pair encodes a truth assignment, where the red circle corresponds to TRUE and the
blue one to FALSE. In particular, there are two pairs (a top and a bottom one) between
every two consecutive triples. Each such pair intersects the lunes of both triples such
that its circles cover the right-side intersection points of (the circles of) one triple
and the left-side intersection points of the other one. Additionally, there is one pair
intersecting the leftmost triple of the gadget and one pair intersecting the rightmost
triple. The red/blue pairs are arranged in such a way that when walking along a lune
red and blue circles alternate. Next, we place ten points inside the lunes of each triple,
as shown in Fig. 12. Note that inside every inner-most lune there is a point that is not
covered by any red or blue circle. This ensures that at least one red or blue circle from
every pair must be present in any feasible solution. Finally, for every triple, we place
four extra points around the intersection points of its circles, see Fig. 12 (bottom),
such that all points are covered by both circles of at least one red/blue pair, and such
that removing any black circle of the triple results in two of these points being in the
same cell. The latter ensures that all circles of a triple must be present in any feasible
solution, while the former ensures that all extra points are pairwise separated from
all other points inside the lunes, and thus, they do not influence the choice of a red or
blue circle in a feasible solution.

Clauses. The rectangle representing a clause above the line of variables in the 3-
legged representation L is deformed into an M-shaped corridor whose boundary con-
tains black unit circles attached to variable gadgets, see Fig. 13. For this, we use three
consecutive red/blue pairs: one black circle intersects both circles of the first pair, an-
other one intersects both circles of the third pair, and one more intersects only the red
or the blue circle of the middle pair. Again, using extra points, i.e., one point per cell
that is covered only by black circles, we enforce all black circles of a corridor to be
part of any feasible solution. We also place two points, pl and pr, at the left and right
end of the corridor. The corridor is traversed by three red or blue circles from the
variables: each circle comes from some red/blue pair of the gadget of a variable that
belongs to the clause and splits the corridor into two disconnected parts, thus cutting
every path between the two points at the ends of the corridor.
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The complete construction with unit circles for the example of Fig. 9 is shown in
Fig. 14. To avoid a cluttered figure, some of the extra points are not shown.

Correctness. Every variable gadget has 3(3`−1) black circles, 6`−2 red circles, and
6`−2 blue circles. It is clear that for each clause gadget the number of horizontally
placed black circles is some quadratic polynomial on n and ` and the number of
vertically placed black circles is some linear function on m. Let b(I) be the total
number of black circles in I(Φ).

Constructing a feasible solution to I(Φ) with b(I)+(6`−2) ·n circles from a truth
assignment for Φ is immediate. An argument similar to the one used for segments
shows that any feasible solution with b(I) + (6`− 2) · n circles contains all black
circles and, in each variable gadget, either all red circles or all blue circles. The choice
of red or blue circles made in the variable gadget corresponds to a truth assignment
of the variables, and such assignment satisfies the clauses because, in each clause
gadget, the points pl and pr are separated. Therefore a feasible solution containing
exactly b(I)+(6`−2) ·n circles exists if and only if Φ is satisfiable.

Theorem 3 POINTS-SEPARATION is NP-hard for families of unit circles.

5 Open questions

The most prominent open questions here are whether POINTS-SEPARATION admits
a PTAS and whether it is fixed-parameter tractable with respect to the solution size,
i.e., the number separating of curves.
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