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Minimum cell connection in line segment arrangements®

Helmut Altf Sergio Cabello*® Panos Giannopoulos®  Christian Knauer™

Abstract

We study the complexity of the following cell connection problems in segment ar-
rangements. Given a set of straight-line segments in the plane and two points a and b in
different cells of the induced arrangement:

(i) compute the minimum number of segments one needs to remove so that there is a
path connecting a to b that does not intersect any of the remaining segments;

(ii) compute the minimum number of segments one needs to remove so that the arrange-
ment induced by the remaining segments has a single cell.

We show that problems (i) and (ii) are NP-hard and discuss some special, tractable
cases. Most notably, we provide a near-linear-time algorithm for a variant of problem (i)
where the path connecting a to b must stay inside a given polygon P with a constant
number of holes, the segments are contained in P, and the endpoints of the segments are
on the boundary of P. The approach for this latter result uses homotopy of paths to
group the segments into clusters with the property that either all segments in a cluster
or none participate in an optimal solution.

1 Introduction

In this paper we study the complexity of some natural optimization problems in segment
arrangements. Let S be a set of straight-line segments in R2, A(S) be the arrangement
induced by S, and a,b be two points not incident to any segment of S and in different cells
of A(S).

In the 2-CELLS-CONNECTION problem we want to compute a set of segments S’ C S of
minimum cardinality with the property that a and b belong to the same cell of A(S\ S’). In
other words, we want to compute an a-b path that crosses the minimum number of segments
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Figure 1: A polygon with holes and a minimum-cost a-b path.

of S counted without multiplicities. The cost of a path is the total number of segments it
crosses.

In the ALL-CELLS-CONNECTION problem we want to compute a set S’ C S of minimum
cardinality such that A(S \ S’) consists of one cell only.

Apart from being interesting in their own right, the problems we consider here are also
natural abstractions of problems concerning sensor networks. Each segment is surveyed (cov-
ered) by a sensor, and the task is to find the minimum number of sensors of a given network
over some domain that must fail so that an intruder can walk freely between two given points
(2-CELLS-CONNECTION) or can reach freely any point (ALL-CELLS-CONNECTION). In such
scenarios, it is also worth considering a variant where the segments lie inside a given polygon
P with holes and have their endpoints on the boundary of P, and the a-b path must also stay
inside P. See Fig. 1 for an example of this last scenario. We refer to these variant as the
restricted 2-CELLS-CONNECTION in a polygon.

Our results. We show that both 2-CELLS-CONNECTION and ALL-CELLS-CONNECTION
are NP-hard even when the segments are in general position. The first result is given by
a careful reduction from MAX-2-SAT, which also implies APX-hardness. The second one
follows from a straightforward reduction that uses a connection to the feedback vertex set
problem in the intersection graph of the segments and holds even if there are no proper
segment crossings. Also, when any three segments may intersect only at a common endpoint,
2-CELLS-CONNECTION is fixed-parameter tractable with respect to the number of proper
segment crossings.

Finally, we consider the restricted problems in a polygon. The restricted 2-CELLS-
CONNECTION in a polygon remains NP-hard but can be solved in near-linear time for any
fixed number of holes. The approach for this latter result uses homotopies to group the seg-
ments into clusters with the property that any cluster is either contained or disjoint from the
optimal solution.

Related work. Our NP-hardness proof for 2-CELLS-CONNECTION has been carefully ex-
tended by Kirkpatrick and Tseng [TK12, Tsell], who showed that the 2-CELLS-CONNECTION
remains NP-hard even for unit-length segments. However, their result does not imply APX-
hardness for unit-length segments. Kirkpatrick et al. [KYZ14] have shown that the 2-CELLS-
CONNECTION is solvable in polynomial time for rays, that is, half-lines. The related problem
of finding (from scratch) a set of segments with minimum total length that forms a barrier



between two specified regions in a polygonal domain has been shown to be polynomial-time
solvable by Kloder and Hutchinson [KHOT].

The problems we consider can of course be considered for other geometric objects, most no-
tably unit disks. To this end, closely related work was done by Bereg and Kirkpatrick [BK09],
who studied the counterpart of 2-CELLS-CONNECTION in arrangements of unit disks and gave
a 3-approximation algorithm. There exist polynomial-time algorithms for restricted belt-
shaped and simple polygonal domains [KLLAQ7]. The 2-CELLS-CONNECTION for so-called fat
regions has been studied at length by Korman et al. [KLSS13], where several positive and
negative results are provided. In any case, the complexity of 2-CELLS-CONNECTION for unit
(or arbitrary) disks is still unknown.

2 Connecting two cells

We show that 2-CELLS-CONNECTION is NP-hard and APX-hard by a reduction from ExAcT-
MAX-2-SAT, a well studied NP-complete and APX-complete problem(c.f. [Has01]): Given a
propositional CNF formula ® with m clauses on n variables and exactly two variables per
clause, decide whether there exists a truth assignment that satisfies at least k clauses, for a
given k € N, k < m. Let x1,...,x, be the variables of ®, ¢; be the number of appearances
of variable z; in ®, and ¢ = ) . {;; since each clause contains exactly 2 variables, ¢ = 2m.
The maximum number of satisfiable clauses is denoted by opt(®). Using ® we construct an
instance consisting of a set of segments S = S(®) and two points a = a(®P) and b = b(P) as
follows.

Abusing the terminology slightly, the term segment will refer to a set of identical single
segments stacked on top of each other. The cardinality of the set is the weight of the segment.
Either all or none of the single segments in the set can be crossed by a path. There are two
different types of segments, 71, and 7., according to their weight. Segments of type 71
have weight 1 (light or single segments), while segments of type 7o, have weight 20m (heavy
segments). The weight of heavy segments is chosen so that they are never crossed by an
optimal a-b path.

We first provide an informal, high-level description of the construction that uses curved
segments. Later on, each curved segment will by replaced by a collection of straight-line
segments in an appropriate manner. See Fig. 2. We have a rectangle R, made of heavy
segments, with point a at a lower corner and b at an upper corner. For each variable z;, we
add a small vertical segment of type 7 in the lower half of R.,. From the segment we place ¢;
horizontal light segments, denoted by R;, going to the right and ¢; horizontal light segments,
denoted by L;, going to the left until they reach the outside of R. Roughly speaking, (things
are slightly more complicated) an optimal a-b path will have to choose for each x; whether it
crosses all segments in L;, encoding the assignment x; = T, or all segments in R;, encoding
the assignment x; = F. Consider a clause like x5 V x,,, where both literals are positive. We
prolong one of the segments of Lo and one of the segments of L, with a curved segment so
that they cross again inside R, (upper half) in such a way that an a-b path inside R, must
cross one of the prolongations, and one is enough; see Fig. 2, where one of the prolongations
passes below Ro. A clause like Z, V xo is represented using prolongations of one segment
from Lo and one segment of R,. The other types of clauses are symmetric. For each clause
we always prolong different segments; since L; and R; have ¢; segments, there is always some
segment that can be prolonged. It will then be possible to argue that the optimal a-b path



Figure 2: Idea of the construction with curved segments.

has cost £ + (m — opt(®)). We do not provide a careful argument of this here since we will
need it later for a most complicated scenario. This finishes the informal description of the
idea.

We now describe in detail the construction with straight-line segments. First, we construct
a polygon, called the tunnel, with heavy boundary segments of type 7oo; see Fig. 3(a). The
tunnel has a ‘zig-zag’ shape and can be seen as having 8 corridors, C1,...,Cs. It starts with
(4, the main corridor (at the center of the figure), which contains point a, then it turns left
to Cy, then right, etc., gradually turning around to C7 and then to the end corridor Cg (at
the top). The latter contains point b. To facilitate the discussion, we place a point " in the
tunnel where the transition from C5 to the end corridor occurs. The tunnel has a total weight
of 21 - 20m = O(m). The rest of the construction will force any a-b path of some particular
cost (to be given shortly) to stay always in the interior of the tunnel.

Each variable x; of ® is represented by a collection of 16 pieces, which form a chain-like
structure. Each piece is a group of ¢; nearly-parallel single segments whose ends are either
outside the tunnel or lie on ‘short’ heavy segments of type 7o in the interior of the tunnel,
referred to as obstacles. For each variable, there is one obstacle in each of the corridors C1,
(s, C7 and there are two obstacles in each of the corridors Cs, Cy, C5, and Cg. See Fig. 3(a),
where we represent each piece by a light gray trapezoid and each obstacle by a bold, short
segment. Pieces always contain a part outside the tunnel. The exact description of the
structure is cumbersome; we refer the reader to the figures. The obstacle in Cs contains the
extremes of four pieces: two pieces, called P;, go to the obstacle in the main corridor, one
goes to an obstacle in C3, and the fourth piece, which we call Nil goes outside the tunnel.
Symmetrically, the obstacle in C7 contains the extremes of four pieces: two pieces, called N;,
go to the main corridor, one goes to the corridor Cg, and one, which we call P/ goes outside
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Figure 3: (a) Tunnel and variable chain. Each gray trapezoid represents a piece with ¢;
parallel segments. (b) Part of a chain piece close to the tunnel.

the tunnel. We add pieces connecting the obstacles in C3 and Cy, the obstacles in C4 and
Cs, and the obstacles in C5 and Cg. From the obstacle in C3 that currently has one piece we
add another piece, which we call Pil and whose other extreme is outside the tunnel. From the
obstacle in Cg that currently has one piece we add another piece, which we call N, whose
other extreme is outside the tunnel.

The obstacles and the pieces of all variables should satisfy some conditions: obstacles
should be disjoint, pieces can touch only the obstacles at their extremes, and pieces may cross
only outside the tunnel or inside the end corridor of the tunnel. See Fig. 4. Some of the single
segments of P, Pil, N, Nz-l will be prolonged and rotated slightly to encode the clauses. For
this, we will need that the line supporting a segment from P/ U ;" intersects inside the end
corridor the line supporting a segment from le UN Jl This can be achieved by stretching the
end corridor sufficiently and placing the obstacles of Co and C'7 close to the tunnel boundary;
see Fig. 3(b).

For each clause of ® we prolong two segments of P/ U Pil UNj U Nil as follows; see Fig. 4
for an example of the overall construction, where prolongations are shown by dashed lines.
Each segment corresponds to some literal x; or z; in the clause: in the first case the segment
comes from either P or PZ-Z, while in the second one it comes from either N, or Nil. For the
construction, these choices for each clause can be made arbitrarily, provided that one segment
intersects the tunnel from the left side and the other one from the right. These segments are



Figure 4: Example of overall construction.

prolonged until their intersection point inside the end corridor. For each clause, two different
segments are prolonged. Since the pieces corresponding to variable x; have ¢; segments, there
is always some segment available. Segments corresponding to different clauses may intersect
only outside the tunnel; this is ensured by rotating the segments slightly around the endpoint
lying in the obstacle. In this way, the end corridor is obstructed by m pairs of intersecting
segments such that any path from the intermediate point b to point b staying inside the
tunnel must intersect at least one segment from each pair.
The following lemma establishes the correctness of the reduction.

Lemma 1. There is an a-b path of cost at most 8¢+ k, where 1 < k < m, if and only if there
is a truth assignment satisfying at least (m — k) of the clauses.

Proof. We denote by S; the set of segments in the pieces corresponding to the variable x;.
Let S;r C S; be the set constructed in the following way: starting from Pil and moving along
the chain structure corresponding to x;, we put in SZ-T the segments in PZ-Z, the segments in
the piece connecting Cy4 to Cj5, the segments in the piece connecting Cg to C7, the segments
in P/, the segments in the both pieces of F;, the segments in the piece connecting C3 to Cy,
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Figure 5: Removal of ST (left) and SF' (right).

and the segments in the piece connecting C5 to Cp; see Fig. 5(right). Note that SiT contains
P;, P! and P/. We denote by S!' the segments S; \ S;. Note that ST contains N;, N} and
N/ . Each of the sets S;T and SiF contains 8¢; segments. Inside the tunnel there is an a-b’ path
disjoint from SiT and there is another a-b' path disjoint from Sf . We also denote by T} the
two segments used for clause C; of ®.

Consider a truth assignment {x; = b;}, where each b; € {T,F}, satisfying at least (m — k)
clauses. We construct a subset of segments S’ where we include the set Sf-’ i, for each variable
x;, and a segment of T}, for each clause Cj that is not satisfied by the truth assignment.
Since ]SE) ‘| = 8¢;, the set S’ contains at most 8¢ + k segments. The removal of S leaves the
points a and b’ in the same cell of the arrangement. Equivalently, there is an a-b’ path inside
the tunnel that crosses only segments from S’. If a clause C; of @ is satisfied by the truth
assignment, then at least one of the segments in T} is included in Sf P C S’ If a clause Cj is
not satisfied, then one of the segments 7} is included in S’ by construction. Thus, for each
clause C; we have T; NS’ # (). It follows that b’ and b are in the same cell after the removal
of §'.

Conversely, note first that any a-b path with cost at most 8 + k < 16m +m = 17m
cannot intersect the tunnel boundary or an obstacle because segments of type 7., have weight
20m. Let S’ be the set of segments crossed by the path. If P, C S’, then we define b; = T;
otherwise, we define b; = F. Note that when P; ¢ S’, then N; C S’ because the a-b path is
inside the tunnel. (However it may be N;UP; C S’, so the assignment of b; is not symmetric.)
We next argue that the truth assignment {x; = b;} satisfies at least (m — k) clauses.

Consider the case when P; C S’. Inspection shows that

15" N S;| > 8¢; + S N (N UNT)|.

Indeed, after the removal of P, U N} U NI any path from a to b must still cross at least 6
pieces. Similarly, inspection shows that when N; C S’ we have

1SN S;| > 8¢; +|S" N (Pl U P

Let A; = N/UN/ ifb; = T and A; = P'UP! if b; = F. The previous cases can be summarized



as
|S" N S;| > 8¢; + 1S N Ayl
We further define
Y = J(8'n 4.

For each clause C; we have S'NT}; # () by construction, as otherwise a and b cannot be in the
same cell of S\ S’. If C; is not satisfied by the truth assignment {z; = b;}, then it must be
(8"NTj) C §'N Ay, for some variable x, in C;. This means that T; NY # ). Since the sets T}
are disjoint by construction, the number of unsatisfied clauses is bounded by |Y'|. Using that
n n n
8+k = | = D [9NS| = Y BL+ISNA]) = 80+ [N A
i=1 i=1 i=1
we obtain
n
IS N Al < k.
i=1
Therefore, the total number of clauses with value F is bounded by

V| = ) IS'nA| < k. O

The construction can be easily modified by replacing every heavy segment with a set
of 20m distinct parallel single segments such that every single segment in S that originally
intersected the heavy segment now intersects all the segments in the new set and such that
no three segments have a point in common. We have the following:

Theorem 2. 2-CELLS-CONNECTION is NP-hard and APX-hard even when no three segments
intersect at a point.

Proof. NP-hardness follows from Lemma 1 and the fact that the reduction produces O(nm)
segments, whose coordinates can be bounded by a polynomial in (n + m). APX-hardness
follows from the fact that the reduction is approximation-preserving, as we now show.

First, since there is always an assignment that satisfies at least 3m/4 clauses, we have that
m < (4/3)opt(®). Recall that an optimal a-b path costs 8¢ + (m — opt(®P)), where £ = 2m. A
polynomial-time c-approximation algorithm (¢ > 1) for the problem would give a path that
costs at most

c(80+ (m —opt(®))) = c(17m — opt(P))

17m — copt(®) + 17(c — 1)m

17m — copt(®) 4+ 17(c — 1)(4/3)opt(P)
= 17m — opt(®)(68/3 — (65/3)c)

— 16m + |m — opt(®)(68/3 — 65c/3)]

IN

and, by Lemma 1, a truth assignment that satisfies at least opt(®)(68/3 — 65¢/3) clauses.
However, EXACT-MAX-2-SAT cannot be approximated above 21/22 [Has01], which implies
that ¢ must be larger than (68/65 — 63/(22 - 65)) ~ 1.002097... (A slightly better inap-
proximability result can be obtained using the better bounds that rely on the unique games
conjecture [KKMOO07].) O



Figure 6: Examples of intersections in A(S) and colored edges in G.

We can reduce 2-CELLS-CONNECTION to the minimum color path problem (MCP): Given
a graph G with colored (or labeled) edges and two of its vertices, find a path between the
vertices that uses the minimum possible number of colors. We color the edges of the dual
graph G of A(S) as follows: two edges of G get the same color if and only if their corresponding
edges in A(S) lie on the same segment of S. Then, finding an a-b path of cost &k in A(S)
amounts to finding a k-color path in G between the two cells which a, b lie in.

However, MCP is NP-hard [BLWZ05] and W[1]-hard [FGI10] (with respect to the solution
size) even for planar graphs, it has a polynomial-time O(/n)-approximation algorithm and
is non-approximable within any polylogarithmic factor [HMSO07].

3 Tractable cases for connecting two cells

We now describe two special cases where 2-CELLS-CONNECTION is tractable. First, we con-
sider the case where the input segments have few crossings, in a sense that is specified below.
Then, we return to the special case where we have a polygon and provide an algorithm that
takes near-linear time when the number of holes in the polygon is constant.

3.1 Segments crossings.

We say that two segments cross if and only if they intersect at a point that is interior to
both segments (a segment crossing). Without loss of generality, we assume that (i) every
segment in S intersects at least two other segments and (ii) both endpoints of a segment are
intersection points; otherwise the piece between the endpoint and the last crossing point is
removed.

Consider the colored planar dual graph G of A(S) as defined after Theorem 2. A face of
G (except the outer one) corresponds to a point of intersection of some r > 2 segments and
has r colors and, depending on the type of intersection, from r to 2r edges. For example, for
r = 2 we can get two multiple edges, a triangle, or a quadrilateral, with two distinct colors.
See Fig. 6(a)-(c), where the colors are given as labels.

When any three segments may intersect only at a common endpoint and no two segments
cross, G can only have multiple edges (possible all with the same color), bi-chromatic triangles,
and arbitrary large faces where all edges have different colors; See Fig. 6(d) for an example. In
this case, since two segments can intersect only at one point, each color induces a connected
subgraph of G, in fact a tree (all but one multiple edges with the same color can be deleted,
therefore there can be no monochromatic cycle in G). Within such a tree any two vertices
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Figure 7: Example of the special case where any three segments may intersect only at a
common endpoint and no two segments cross: the colors are given as labels (left) and the
graph resulting from the completion of the trees into cliques is shown (right).

are connected by a (monochromatic) path, which means that in A(S) the corresponding two
cells can be connected by removing only one segment. Therefore, we can complete each tree
into a clique by adding all egdes missing from the tree and discard the colors; see Fig 7 for
an example. Then, 2-CELLS-CONNECTION reduces to a simple shortest path computation
between the cells (vertices) containing a and b in the resulting uncolored graph. By contrast,
note that ALL-CELLS-CONNECTION is still NP-hard for this special case; see Section 4.

Generalizing this, if we allow k segment crossings, we can easily reduce the problem to
20() shortest path problems as follows. Let C' C S be the set of the (at most 2k) segments
participating in these crossings. For a fixed subset C” of C, we first contract every edge of
G corresponding to a segment in C’, effectively putting all segments of C’ into the solution.
Then, we delete every edge corresponding to a segment in C'\ C’ that still participates in a
crossing, i.e., we exclude all crossing segments of C'\ C’ from the solution. In the resulting
(possibly disconnected) graph G’, each of the remaining colors induces again a monochromatic
subtree, thus we can compute a shortest path as before and add C’ to the solution. Finally,
we return a minimum size solution set over all 20(*) possible subsets C’. Thus, we have just
proved the following:

Theorem 3. 2-CELLS-CONNECTION is fized-parameter tractable with respect to the number
of segment crossings if any three segments may intersect only at a common endpoint.

3.2 Polygon with holes.

Let P be a polygon with A holes and S be a set of segments lying inside P with their endpoints
on its boundary; see Fig. 1. We use n as a bound for the number of vertices of P and segments
in S. We consider the restricted 2-CELLS-CONNECTION problem where the a-b path may not
cross the boundary of P. This version is also NP-hard by a simple reduction from the general
one: place a large polygon enclosing all the segments and add a hole at the endpoint of each
segment. We assume for simplicity that a and b are in the interior of P.

A boundary component of P may be the exterior boundary or the boundary of a hole.
For each boundary component 3 of P, let Cg be the connected component of R2\ P that has
B as boundary, and let zg be an arbitrary, fixed point in the interior of C'3. If 3 is the exterior
boundary, then Cg is unbounded.
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Figure 8: Some of the curves v, arising from Fig. 1 and the resulting clusters. In the left case,
B and ' are boundaries of holes, while in the right case 3’ is the exterior boundary. Some
curves are drawn with a small perturbation so that their actual common parts are disjoint.

Let 8 and ' be two boundary components of P; it may be that 3 = . Let Sg g be the
subset of segments from S with one endpoint in 3 and another endpoint in 3. We partition
Sg g into clusters, as follows. Consider the set X3 g obtained from P\ {a,b} by adding Cp
and Cg . Note that a and b are holes in X3 g. For each segment s = pg € Sg g, with p € g
and ¢ € ', we define the following curve v,: follow a shortest path in Cg from zg to p, then
follow pg, and then follow a shortest path in Cg from g to zg. See Fig. 8. We say that
segments s and s’ from Sg g are a-b equivalent if v, and vy are homotopic paths in Xg g
Since being homotopic is an equivalence relation (reflexive, symmetric, transitive), being a-b
equivalent is also an equivalence relation in Sg g/. Therefore, we can make equivalence classes,
which we call clusters. The following two results provide key properties of the clusters.

Lemma 4. Sg g is partitioned into O(h?) clusters. Such partition can be computed in
O(hnlogn) time.

Proof. Let I'g g be the set of curves 7, over all segments s € Sg g. Note that two curves s
and 7y of I'g g may cross only once, and they do so along s and s’. With a small perturbation
of the curves in I'g 3 we may assume that v, and vy are either disjoint or cross at s N s'.
(We do not actually use that v, contains shortest paths inside Cz and Cpg besides for this
property of non-crossing curves inside Cg and Cpg.)

We now describe a simple criteria using crossing sequences to decide when two segments
of Sgp are a-b equivalent. We take a set X of non-crossing paths in Xg g that have the
following property: cutting Xz g along the curves of ¥ removes all holes. Such set ¥ has a
tree-like structure and can be constructed as follows. For each boundary « of P, distinct from
B and ', we add to X the shortest path in P between a and o. We add to X the shortest
path in P between a and b. Finally, if 8 or 3’ is the exterior boundary of P, we add to ¥
a shortest path from a to a point that is very far in P union the the outer face. In total, X
has O(h) polygonal paths in Xg g. Note that the curves in ¥ are non-crossing and a small
perturbation makes them disjoint, except at the common endpoint a. See Fig. 9. Each curve
o € Y is simple and has two sides. We arbitrarily choose one of them as the right side and
the other as the left side. We use o1, ...,0; to denote the curves of X.

To each path v in I'g g we associate a crossing sequence w(7y) as follows. We start with

11



Figure 9: The curves X in solid and I'g g in dashed style for the example of Fig. 8, after a
small perturbation.

the empty word and walk along v. When ~y crosses an arc g; € 3 from left-to-right we append
o;7 to the word, and when ~y crosses o; from right-to-left we append o;~ to the word. From
the crossing sequence w(7) we can obtain the reduced crossing sequence w't(v): we iteratively
remove contiguous appearances of o;7 and o;~, for any i. For example, from the crossing
sequence 01’05 03 05 0, we obtain the reduced crossing sequence o7”’. A consequence of
using {o;} to construct the so-called universal cover is the following characterization: the
curves 7y, and 7y are homotopic in Xpg g if and only if the curves 5 and vy have the same
reduced crossing sequence. See for example [CLMS04] or the lecture notes by Erickson [Eri09].
We conclude that s and s’ from Sg g are a-b equivalent if and only if w!(vs) = w(vy).

The union of ¥ and I'g g forms a family of pseudosegments: any two of them crosses at
most once. Indeed, by construction different curves can only cross in P, but inside P all those
curves are shortest paths, and thus can cross at most once. Furthermore, the segments 3 do
not cross by construction and the curves of I'g 3 have common endpoints. Mount [Mou90,
Theorem 1.1] has shown that in such case the curves in I'g g define at most O(|£]?) = O(h?)
distinct crossing sequences. Therefore, there are at most O(h?) homotopy classes defined by
the curves in I's g/, and Sg g defines O(h?) clusters.

The procedure we have described is constructive: we have to compute O(h) shortest paths
in P to obtain the curves of X, and then, for each segment s € Sg g/, we have to compute
the corresponding crossing sequence. Such crossing sequence is already reduced. Note that
for computing the crossing sequence of s we never have to construct - itself because all
crossings occur along s. This can be done in O(hnlogn) time using algorithms for shortest
paths in polygonal domains [HS99] and data structures for ray-shooting among the segments
of 3 [CEGT94]. O

Lemma 5. For each cluster, either all or none of the segments in the cluster are crossed by
a minimum-cost a-b path.

Proof. Let s and s’ be two a-b equivalent segments from Sg . This implies that v, and ¢
are homotopic in Xz g/. Therefore, the path v obtained by concatenating s and the reversal
of vy is contractible in Xg 5.

Let m be a minimum-cost path between a and b and assume, for the sake of reaching a
contradiction, that 7 crosses s but does not cross s’. We take m that minimizes the total
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Figure 10: Figure for the proof of Lemma 5. Left: case when s and s’ are disjoint. Right:
case when s and s’ intersect. In both cases, the darker gray region represents the topological
disk defined by w[z,y| and Ty.

number of crossings with s. We may assume that 7 is simple and disjoint from £, 5’. We use
m[x,y] to denote the subpath of m between points x and y of m. We distinguish two cases:

e s and s’ do not intersect. In this case, the curve ~ is simple and contractible in Xz gr.

It follows that « bounds a topological disk D, in Xg g . By hypothesis, 7 crosses the
part of the boundary of D, defined by s but not s’. Therefore, 7 must cross at least
twice along s. Let x and y be two consecutive crossings of m and s as we walk along
m. See Fig. 10 left. Consider the path " that replaces [z, y| by the segment Ty. Note
that 7]z, y] and Ty define a topological disk, as it is contained in D,. It follows that
any segment s” crossing s along Ty also crosses 7. Indeed, s” has to cross the boundary
of the topological disk defined by 7[z,y] and Ty twice, and cannot cross it at Ty again.
This means that any segment s” crossing 7" also crosses 7. Therefore 7’ crosses no more
segments than 7 and crosses s twice less than 7. Thus, we reach a contradiction. (If 7/
is not simple we can take a simple path contained in 7’.)

s and ¢ intersect. In this case, the curve v in Xg s has precisely one crossing. Let
~" and 7" be the two simple loops obtained by splitting v at its unique crossing. It
must be that 7/ and +” are contractible, as otherwise v would not be contractible. See
Fig. 10 right. Therefore, we obtain two topological disks D., and D.~, one bounded
by 7/ and another by 7”. The path 7 must cross the boundary of D, or D.», and the
same argument than in the previous item leads to a contradiction. O

A minimum-cost a-b path can now be found by testing all possible cluster subsets, that
is, 20(h%) possibilities.

13



Theorem 6. The restricted 2-CELLS-CONNECTION problem in a polygon with h holes and n
segments can be found in 20(hY)p, polylog n time.

Proof. We classify the segments of S into O(h*) clusters using Lemma 4. This takes O(h3n logn)
time. Because of Lemma 5, we know that either all or none of the segments in a cluster are
crossed by an optimal a-b path. Each subset of the clusters defines a set of segments S, and
we can test whether S’ separates a and b in O(n polylogn) time [GSS89, dBDS95]. O

4 Connecting all cells

We show that ALL-CELLS-CONNECTION is NP-hard by a reduction from the NP-hard problem
of feedback vertex set (FVS) in planar graphs (c.f. [Vaz01]): Given a planar graph G, find a
minimum-size set of vertices X such that G — X is acyclic.

First, we subdivide every edge of G obtaining a planar bipartite graph G’. It is clear that
G’ has a feedback vertex set of size k if and only if G has one of size k. Next, we use the result
by de Fraysseix et al. [dFOP91] (see also Hartman et al. [HNZ91]), which states that every
planar bipartite graph is the intersection graph of horizontal and vertical segments, where
no two of them cross (intersect at a common interior point). Let S be the set of segments
whose intersection graph is G’; it can be constructed in polynomial time. Since G’ has no
triangles, no three segments of S intersect at a point. Then, observe that all cells in A(S)
become connected by removing k segments if and only if G’ has a feedback vertex set of size
k. Therefore we have:

Theorem 7. ALL-CELLS-CONNECTION is NP-hard even if no three segments intersect at a
point and there are no segment crossings.

It is also easy to see that if no three segments intersect at a point a k-size solution to
ALL-CELLS-CONNECTION corresponds to a k-size solution of FVS in the intersection graph
of the input segments. For general graphs, FVS is fixed-parameter tractable when parame-
terized with the size of the solution [CFL108], and has a polynomial-time 2-approximation
algorithm [Vaz01]. We thus obtain the following:

Corollary 8. When no three segments intersect at a point, ALL-CELLS-CONNECTION is
fixed-parameter tractable with respect to the size of the solution and has a polynomial-time
2-approzimation algorithm.

5 Conclusion

The main result in this paper is that 2-CELLS-CONNECTION for segments is both NP-hard
and APX-hard. There are many interesting open questions, most notably,

(i) is the problem APX-hard also for the special case of unit-length segments?

(ii) is the problem NP-hard for unit disks?
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