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DESCENT OF EQUIVALENCES AND CHARACTER

BIJECTIONS

RADHA KESSAR, MARKUS LINCKELMANN

Abstract. Categorical equivalences between block algebras of finite groups -

such as Morita and derived equivalences - are well-known to induce character
bijections which commute with the Galois groups of field extensions. This

is the motivation for attempting to realise known Morita and derived equiv-

alences over non splitting fields. This article presents various results on the
theme of descent to appropriate subfields and subrings. We start with the

observation that perfect isometries induced by a virtual Morita equivalence in-

duce isomorphisms of centers in non-split situations, and explain connections
with Navarro’s generalisation of the Alperin-McKay conjecture. We show that

Rouquier’s splendid Rickard complex for blocks with cyclic defect groups de-

scends to the non-split case. We also prove a descent theorem for Morita
equivalences with endopermutation source.

February 14, 2018

1. Introduction

Throughout the paper, p is a prime number. Let (K,O, k) be a p-modular
system; that is, O is a complete discrete valuation ring with residue field k =
O/J(O) of characteristic p and field of fractions K of characteristic zero. We
are interested in capturing equivariance properties of various standard equivalences
(such as Morita, Rickard or p-permutation equivalences) in the block theory of finite
groups. A common context for these is the notion of virtual Morita equivalence
which we recall.

Let A, B, C be O-algebras, finitely generated free as O-modules. Denote
by mod-A the category of finitely generated left A-modules and by R(A) the
Grothendieck group of mod-A with respect to split exact sequences. Denoting
by [M ] the element of R(A) corresponding to the finitely generated A-module M ,
R(A) is a free abelian group with basis the set of all elements [M ], where M runs
through a set of representatives of the isomorphism classes of finitely generated
indecomposable A-modules.

Denote by R(A,B) the group R(A ⊗O Bop) and by P(A,B) the subgroup
of R(A,B) generated by elements [M ], where M is an (A,B)-bimodule which
is finitely generated projective as left A-module and as right B-module. We let
− ·B − : R(A,B) × R(B,C) → R(A,C), M × N 7→ M ·B N be the group homo-
morphism induced by tensoring over B, that is such that [X] ·B [Y ] = [X ⊗B Y ]
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for all finitely generated (A,B)-bimodules X and (B,C)-bimodules Y . If X is an
(A,B)-bimodule, then its O-dual X∨ = HomO(X,O) is a (B,A)-bimodule. The
algebra A is called symmetric if A ∼= A∨ as (A,A)-bimodules. If A and B are
symmetric, and if X is an (A,B)-bimodule which is finitely generated projective as
left A-module and as right B-module, then the (B,A)-module X∨ is again finitely
projective as left B-module and as right A-module (this holds more generally if
A and B are relatively O-injective). We denote in that case by M → M∨ the
unique homomorphism P(A,B)→ P(B,A) such that [X]∨ = [X∨] for any (A,B)-
bimodule X which is finitely generated projective as left A-module and as right
B-module. Note that in the above we may replace O by any complete local ring,
and in particular by a field, and we will do so without further comment.

Definition 1.1. Let A and B be O-algebras, finitely generated free as O-modules,
and let M ∈ P(A,B) and N ∈ P(B,A). We say that M and N induce a virtual
Morita equivalence between A and B if M ·B N = [A] in R(A,A) and N ·A M =
[B] in R(B,B).

Remark 1.2. Let A and B be symmetric O-algebras. We will use without further
comment the following well-known implications between the various levels of equiv-
alences we consider in this paper. If M is an (A,B)-bimodule which is finitely gen-
erated projective as a left and right module and which induces a Morita equivalence
between A and B, then [M ] and [M∨] induce a virtual Morita equivalence. More
generally, if X is a Rickard complex of (A,B)-bimodules, then [X] =

∑
i∈Z(−1)i[Xi]

and [X∨] induce a virtual Morita equivalence between A and B. Following [1], if A,
B are blocks of finite group algebras, then a virtual Morita equivalence between A
and B given by M and M∨ is called a p-permutation equivalence if M can be written
in the form M = [M0]− [M1], where M0, M1 are p-permutation (A,B)-bimodules
which are finitely generated projective as left and right modules. In particular, if
X is a splendid Rickard complex of (A,B)-bimodules, then [X] and [X∨] induce a
p-permutation equivalence.

Let K ′ be an extension field of K. For an O-algebra A, we denote by K ′A
the K ′-algebra K ′ ⊗O A, and for any A-module V we denote by K ′V the K ′A-
module K ′ ⊗O V . The functor K ′ ⊗O − : mod-A → mod-K ′A induces a group
homomorphism [V ] 7→ [K ′V ] from R(A) to R(K ′A), for all finitely generated A-
modules V . We use analogous notation for bimodules. Let Aut(K ′/K) denote the
group of automorphisms of K ′ which induce the identity on K. For σ ∈ Aut(K ′/K)
and a K ′A-module U we denote by σU the σ-twist of U , that is σU is the K ′A-
module which is equal to U as a KA-module and on which λ⊗a acts as σ−1(λ)⊗a
for all λ ∈ K ′ and all a ∈ KA. We use the analogous notation for the induced map
on R(K ′A).

If K ′A is a semisimple algebra, we denote by Irr(K ′A) the subset of R(K ′A)
consisting of the elements [S], where S runs through a set of representatives of
isomorphism classes of simple K ′A-modules. Then Irr(K ′A) is a Z-basis ofR(K ′A).
For χ = [S] ∈ Irr(K ′A) we denote by eχ the unique primitive idempotent of Z(K ′A)
such that eχS 6= 0.

The following general result on symmetric O-algebras is the starting point of the
phenomenon we wish to exhibit.

Theorem 1.3. Let (K,O, k) be a p-modular system. Let A and B be symmetric
O-algebras and let K ′ be an extension field of K such that K ′A and K ′B are split
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semisimple. Suppose that M ∈ P(B,A) is such that M and M∨ induce a virtual
Morita equivalence between A and B. Then there exists a bijection I : Irr(K ′A)→
Irr(K ′B) and signs εχ ∈ {±1} for any χ ∈ Irr(K ′A) such that

εχI(χ) = K ′M ·K′A χ

for all χ ∈ Irr(K ′A). Moreover, the following holds.

(a) The algebra isomorphism Z(K ′A) ∼= Z(K ′B) sending eχ to eI(χ) for all χ ∈
Irr(K ′A) induces an O-algebra isomorphism Z(A) ∼= Z(B).

(b) The bijection I commutes with Aut(K ′/K); that is, we have I( σχ) = σI(χ)
for all σ ∈ Aut(K ′/K) and all χ ∈ Irr(K ′A).

Remark 1.4. By a result of Broué [3, 1.2], a virtual Morita equivalence between
two blocks of finite group algebras over O given by a virtual bimodule and its
dual induces a perfect isometry. In particular, if A and B in Theorem 1.3 are
blocks of finite group algebras, then the bijection I and the signs in the theorem
are together a perfect isometry. Not every perfect isometry is induced by a virtual
Morita equivalence, but the advantage of virtual Morita equivalences is that they
are defined for arbitrary algebras. Broué’s abelian defect group conjecture, in the
version predicting a Rickard equivalence between a block with an abelian defect
group and the Brauer correspondent of that block, in conjunction with Remark
1.2, implies therefore that the induced perfect isometry between a block and its
Brauer correspondent is in fact induced by a virtual Morita equivalence.

We are interested in subgroups of Gal(Qn/Q) which lift automorphisms in char-
acteristic p. For a positive integer n, we denote by np (respectively np′) the p-part
(respectively p′-part) of n.

Definition 1.5. Let (K,O, k) be a p-modular system such that k is perfect. Let
K̄ be an algebraic closure of K. Let n be a positive integer, denote by Qn the
n-th cyclotomic subfield of K̄, and let k′ be a splitting field of the polynomial
xnp′ − 1 over k. We denote by Hn the subgroup of Gal(Qn/Q) consisting of those
automorphisms α for which there exists a non-negative integer u such that α(δ) =
δp
u

for all np′ -roots of unity δ in Qn. We denote by Hn,k the subgroup of Hn
consisting of those automorphisms α for which there exists a non-negative integer
u and an element τ ∈ Gal(k′/k) such that α(δ) = δp

u

for all np′ -roots of unity δ in

Qn and τ(η) = ηp
u

for all np′ -roots of unity η in k′.

Note that Hn is the image under restriction in Qn of the Weil subgroup of the
absolute Galois group of the p-adic numbers (see Lemma 3.2 and Lemma 3.3).
Note also that Hn,k is independent of the choice of a splitting field k′ of xnp′ −
1 over k. With the notation of the above definition, for a finite group G, the
set Irr(K̄G) may be identified with the set of characters χ : G → K̄ of simple
K̄G-modules. The group Aut(K̄) acts on Irr(K̄G) via σχ(g) := χ(σ(g)), χ ∈
Irr(K̄G), σ ∈ Aut(K̄). We say that a positive integer n is large enough for G if
the action of Aut(K) on Irr(K̄G) factors through to an action of Gal(Qn/Q) via
the surjective homomorphism from Aut(K̄) to Gal(Qn/Q) induced by restriction
to Qn. In particular, if n is a multiple of |G|, then n is large enough for G.

By a block of OG for G a finite group we mean a primitive idempotent of the
center of the group algebra OG. If b is a block of OG we denote by Irr(K̄Gb) the
subset of Irr(K̄G) consisting of the characters of simple K̄Gb-modules. There are
many open questions and conjectures around bijections between sets of irreducible
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characters of blocks which commute with the action of the groups Hn and Hn,k,
most notably Navarro’s refinement of the Alperin-McKay conjecture [24, Conjecture
B].

Theorem 1.3 yields the following equivariance result for character bijections.
The slogan is: categorical equivalences between blocks over absolutely unramified
complete discrete valuation rings give rise to character bijections which commute
with the action of Hn,k. Recall that O is said to be absolutely unramified if J(O) =
pO.

Theorem 1.6. Let (K,O, k) be a p-modular system such that k is perfect and such
that O is absolutely unramified. Let K̄ be an algebraic closure of K. Let G and H
be finite groups, let b be a block of OG, c a block of OH and let n be large enough
for G and for H. A virtual Morita equivalence between OGb and OHc given by a
virtual bimodule M and its dual M∨ induces a bijection I : Irr(K̄Gb)→ Irr(K̄Hc)
satisfying σI(χ) = I( σχ) for all χ ∈ Irr(K̄Gb) and all σ ∈ Hn,k.

As mentioned before, the bijection I in the above theorem is part of a perfect
isometry. Further, Morita, Rickard and p-permutation equivalences all yield virtual
Morita equivalences. Thus the conclusion of the Theorem holds on replacing the
hypothesis of virtual Morita equivalence by any of these equivalences - in the case
of a Morita equivalence the induced bijection between the sets of irreducible Brauer
characters also commutes with the action of Hn,k as well as with the decomposition
map (see Theorem 3.4).

Recall that a character χ ∈ Irr(K̄G) is said to be p-rational if there there exists
a root of unity δ in K̄ of order prime to p such that χ(g) ∈ Q[δ] for all g ∈ G.
Theorem 1.6 has the following consequence.

Corollary 1.7. Suppose that O and K̄ are as in Theorem 1.6. Any virtual Morita
equivalence between block algebras OGb and OHc given by a virtual bimodule and
its dual induces a bijection between Irr(K̄Gb) and Irr(K̄Hc) which preserves p-
rationality.

Recall that for a perfect subfield k′ of k, there is a unique absolutely unramified
complete discrete valuation ring W (k′) contained in O such that the image of W (k′)
under the canonical surjection O → k is k′ (see [32, Chapter 2, Theorems 3, 4 and
Prop. 10]). The ring W (k′) is called the ring of Witt vectors in O of k′.

Definition 1.8. Let (K,O, k) be a p-modular system. Let G be a finite group and
b a block of OG. The minimal complete discrete valuation ring of b in O denoted
Ob is the ring of Witt vectors in O of the finite subfield of k generated by the
coefficients of the group elements in the image of b under the canonical surjection
OG→ kG. If Ob = O, then we say that O is a minimal complete discrete valuation
ring of b.

By idempotent lifting arguments we have b ∈ ObG, and if R is any complete
discrete valuation ring which is properly contained in Ob and with J(R) ⊆ J(Ob),
then b /∈ RG.

The following is a corollary of the special case of Theorem 1.6 in which O is a
minimal complete discrete valuation ring of the blocks involved.

Corollary 1.9. Suppose that O and K̄ are as in Theorem 1.6. Let G and H be
finite groups and let n be large enough for G and for H. Let b be a block of OG and
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c a block of OH. Suppose that O is a minimal complete discrete valuation ring for
both b and c. A virtual Morita equivalence between OGb and OHc given by a virtual
bimodule and its dual induces a bijection I : Irr(K̄Gb) → Irr(K̄Hc) such that for
any χ ∈ Irr(K̄Gb), and any σ ∈ Hn, we have σχ = χ if and only if σI(χ) = I(χ).

For a p-subgroup P of G the Brauer homomorphism BrP : (OG)P → kCG(P )
is the map which sends an element

∑
g∈G αgg of (OG)P to

∑
g∈CG(P ) ᾱgg, where

ᾱ denotes reduction modulo the maximal ideal J(O) of O. Recall that BrP is
a surjective O-algebra homomorphism and that BrP (Z(OG)) ⊆ Z(kCG(P )). In
particular, if b is a central idempotent of OG, then either BrP (b) = 0 or BrP (b) is
a central idempotent of kCG(P ). If b is a block of OG, then a defect group of b
is defined to be a maximal p-subgroup P of G such that BrP (b) 6= 0. By Brauer’s
first main theorem, if b is a block of OG with defect group P , then there is a unique
block c of ONG(P ) with defect group P such that BrP (b) = BrP (c) and the map
b 7→ c is a bijection between the set of blocks of OG with defect group P and the
set of blocks of ONG(P ) with defect group P , and this bijection is known as the
Brauer correspondence.

In [24, Conjecture B], Navarro conjectured that if |G| = n, b and c are blocks
in correspondence as above and K contains Qn, then for each σ ∈ Hn the number
of height zero characters in Irr(K̄Gb) fixed by σ equals the number of height zero
characters in Irr(K̄Hc) fixed by σ. Since Ob = Oc, and since the bijection I of
Corollary 1.9 is part of a perfect isometry and hence preserves heights, it follows
that a virtual Morita equivalence between ObGb and ObHc given by a virtual
bimodule and its dual implies Navarro’s conjecture.

In view of the above discussion, it would be desirable to explore the following
question: Given a categorical equivalence, say a Morita equivalence or Rickard
equivalence between O′Gb and O′Hc for some complete discrete valuation ring O′,
for G and H finite groups, b and c blocks of O′G and O′H respectively, and a
complete discrete valuation ring O contained in O′ such that b (respectively c)
belongs to OGb (respectively OHc), is the equivalence between O′Gb and O′Hc an
extension of an equivalence between Ob and OHc? We give a positive answer to
this question in the case of blocks with cyclic defect groups.

Let G be a finite group and b a block of OG with a nontrivial cyclic defect group
P . If k is a splitting field for all subgroups of G, then in [31] Rouquier constructed
a 2-sided splendid tilting complex of (OGb,ONG(P )e)-bimodules, where e is the
Brauer correspondent of b. (The hypotheses in [31] also require the field of fractions
K to be large enough, but it is easy to see that Rouquier’s construction works with
O absolutely unramified). We show that Rouquier’s construction descends to any
p-modular system which contains the block coefficients.

Theorem 1.10. Let (K ′,O′, k′) be a p-modular system such that O ⊆ O′ and
such that J(O) ⊆ J(O′). Let G be a finite group and b a block of O′G having a
nontrivial cyclic defect group P . Suppose that b ∈ OG and that k′ is a splitting
field for all subgroups of G. Let e be the block of O′NG(P ) with P as a defect group
corresponding to b via the Brauer correspondence. Then e ∈ ONG(P ) and the blocks
OGb and ONG(P )e are splendidly Rickard equivalent. More precisely, there is a
splendid Rickard complex X of (OGb,ONG(P )e)-bimodules such that O′ ⊗O X is
isomorphic to Rouquier’s complex X ′.
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Since a Rickard equivalence induces a virtual Morita equivalence, by the above
discussion around Navarro’s conjecture, we recover the following result of Navarro
from Theorem 1.10.

Corollary 1.11 ([24, Theorem 3.4]). Conjecture B of [24] holds for blocks with
cyclic defect groups.

General descent arguments from Theorem 6.5 in conjunction with Theorem 1.10
yield a splendid equivalence for cyclic blocks for arbitrary p-modular systems.

Theorem 1.12. Let (K,O, k) be a p-modular system. Let G a finite group and b a
block of OG having a nontrivial cyclic defect group P . Let e be the block of ONG(P )
with P as a defect group corresponding to b via the Brauer correspondence. Then
OGb and ONG(P )e are splendidly Rickard equivalent. In particular, OGb and
ONG(P )e are p-permutation equivalent.

The above results may be viewed as evidence for a refined version of the Abelian
defect group conjecture, namely that for any p-modular system (K,O, k) and any
block b of OG with abelian defect group P and Brauer correspondent c, there is a
splendid Rickard equivalence between OGb and ONG(P )c.

If one is only interested in keeping track of p-rational characters, then by Corol-
lary 1.7 it suffices to descend to any absolutely unramified complete discrete valu-
ation ring. Since p-permutation modules all have forms over absolutely unramified
complete discrete valuation rings, any p-permutation equivalence between block al-
gebras of finite groups can be easily seen to be an extension of a p-permutation
equivalence between the corresponding blocks over the subring of Witt vectors. We
show that such descent is also possible for Morita equivalences induced by bimod-
ules with endopermutation sources.

Theorem 1.13. Let (K,O, k) be a p-modular system. Let G and H be finite groups,
b a block of OG and c a block of OH. Denote by b̄ the image of b in kG and by c̄
the image of c in kH. Assume that k is a splitting field for all subgroups of G×H.

(a) For any Morita equivalence (resp. stable equivalence of Morita type) between
kGb̄ and kHc̄ given by an indecomposable bimodule M̄ with endopermutation
source V̄ there is a Morita equivalence (resp. stable equivalence of Morita type)
between OGb and OHc given by a bimodule M with endopermutation source V
such that k ⊗O M ∼= M̄ and k ⊗O V ∼= V̄ .

(b) For any Morita equivalence (resp. stable equivalence of Morita type) between
OGb and OHc given by an indecomposable bimodule with endopermutation
source V there is a Morita equivalence (resp. stable equivalence of Morita
type) between W (k)Gb and W (k)Hc given by an indecomposable bimodule with
endopermutation source U such that k ⊗W (k) U ∼= k ⊗O V .

Remark 1.14. The proof of the above theorem requires a lifting property of fusion
stable endopermutation modules from Lemma 8.4 below, which in turn relies on the
classification of endopermutation modules. The hypothesis on k being large enough
is there to ensure that the fusion systems of the involved blocks are saturated. The
well-known Morita equivalences in block theory such as in the context of nilpotent
blocks [26], blocks with a normal defect group [12] and blocks of finite p-solvable
groups [11], [28] are all given by endopermutation source bimodules hence are de-
fined over the Witt vectors and preserve p-rational characters and p-rational lifts
of Brauer characters (cf. Corollary 1.7, Theorem 3.4).
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The paper is organised as follows. Section 2 contains the proof of Theorem 1.3
and Section 3 contains the proofs of Theorem 1.6 and its corollaries. Sections 4,
5 and 6 contain general results on descent. Theorems 1.10 and 1.12 are proved in
Section 7, and Section 8 contains the proof of Theorem 1.13.

Notation 1.15. We will use the above notation of Galois twists for arbitrary
extensions of commutative rings O ⊆ O′. That is, given an O-algebra A, a module
U over the O′-algebra A′ = O′ ⊗O A and a ring automorphism σ of O′ which
restricts to the identity map on O, we denote by σU the A′-module which is equal
to U as a module over the subalgebra 1 ⊗ A of A′, such that λ ⊗ a acts on U as
σ−1(λ) ⊗ a for all a ∈ A and λ ∈ O′. Note that if f : U → V is an A′-module
homomorphism, then f is also an A′-module homomorphism σU → σV . The Galois
twist induces an O-linear (but not in general O′-linear) self equivalence on mod-A′.

2. On virtual Morita equivalences

This section contains the proof of Theorem 1.3. We start with some background
observations. Let (K,O, k) be a p-modular system. It is well-known that a vir-
tual Morita equivalence between two split semisimple algebras given by a virtual
bimodule and its dual is equivalent to fixing a bijection between the isomorphism
classes of simple modules of the two algebras together with signs. We sketch the
argument for the convenience of the reader.

Lemma 2.1. Let A and B be split semisimple finite-dimensional K-algebras. Let
M be a virtual (A,B)-bimodule in R(A,B). Then M and M∨ induce a virtual
Morita equivalence between A and B if and only if there is a bijection I : Irr(A)→
Irr(B) and signs εS ∈ {±1} for all S ∈ Irr(A) such that

M =
∑

S∈Irr(A)

εSS ⊗K I(S)∨

in R(A,B).

Proof. Write M =
∑
S,T a(S, T )S ⊗K T∨, with integers a(S, T ), where S and T

run over Irr(A) and Irr(B), respectively. Since B is split semisimple, we have
T∨⊗BT ∼= K and T∨⊗BT ′ = {0}, where T , T ′ ∈ Irr(B), T 6∼= T ′. Thus M ·B M∨ =∑
S,S′,T a(S, T )a(S′, T )S′⊗KS∨, with S, S′ running over Irr(A) and T running over

Irr(B). We have the analogous formula for M∨ ·A M . Since A is split semisimple,
we have [A] =

∑
S S ⊗K S∨. Thus M , M∨ induce a virtual Morita equivalence

if and only if
∑
T a(S, T )2 = 1 for all S ∈ Irr(A), and

∑
T a(S, T )a(S′, T ) = 0 for

any two distinct S, S′ in Irr(A). Since the a(S, T ) are integers, the first equation
implies that for any S there is a unique T = I(S) such that a(S, T ) ∈ {±1} and
a(S, T ′) = 0 for T ′ 6= T . The second equation implies that I is a bijection. The
result follows with εS = a(S, I(S)). �

We will use the transfer maps in Hochschild cohomology from [18], specialised in
degree 0; we sketch the construction. Let A and B be symmetric O-algebras with
fixed symmetrising forms. Let M be an (A,B)-bimodule which is finitely generated
projective as left A-module and as right B-module. Then the functors M⊗B− and
M∨ ⊗A − are biadjoint; the choice of the symmetrising forms determines adjunc-
tion isomorphisms. Let y ∈ Z(B). Multiplication by y induces a (B,B)-bimodule
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endomorphism of B. Tensoring by M ⊗B −⊗BM∨ yields an A-A-bimodule endo-
morphism of M ⊗BM∨. Composing and precomposing this endomorphism by the
adjunction counit M ⊗B M∨ → A and the adjunction unit A→ M ⊗B M∨ yields
an (A,A)-bimodule endomorphism of A, which in turn yields a unique element z ∈
Z(A) which induces this endomorphism by multiplication on A. We define the lin-
ear map trM : Z(B) → Z(A) by setting trM (y) = z, with y and z as above. The
map trM is additive in M (cf. [18, 2.11.(i)]), depends only on the isomorphism class
of M (cf. [18, 2.12.(iii)]) and is compatible with tensor products of bimodules (cf.
[18, 2.11.(ii)]). In general, trM depends on the choice of the symmetrising forms
(because the adjunction units and counits depend on this choice), but there is one
case where it does not:

Lemma 2.2. Let A be a symmetric O-algebra. Consider A as an (A,A)-bimodule.
Then trA = IdZ(A).

Proof. Let s : A → O be a symmetrising form of A, and let X be an O-basis
of A. Denote by X ′ the dual basis of A with respect to s; for x ∈ X, denote
by x′ the unique element in X ′ satisfying s(xx′) = 1 and s(yx′) = 0, for all y ∈
X \ {x}. The well-known explicit description of the adjunction maps (see e. g. [18,
Appendix]) implies that the adjunction unit A → A ⊗A A∨ sends 1A to 1A ⊗ s,
and the adjunction counit A ⊗A A∨ → A sends 1A ⊗ s to

∑
x∈X s(x′)x, which is

equal to 1A by [18, Appendix 6.3.3]. One can prove this also without those explicit
descriptions, by first observing that the above adjunction maps are isomorphisms,
and deduce from this that trA is a linear automorphism. Since trA◦trA = trA⊗AA =
trA, this implies that trA = IdZ(A). �

In order to show that trM is well-defined with M replaced by any element in the
Grothendieck group P(A,B), we need the following observation.

Lemma 2.3. Let A, B be symmetric O-algebras with chosen symmetrising forms.
Let M0, M1, N0, N1 be (A,B)-bimodules which are finitely generated projective as
left and as right modules. If [M0]−[M1] = [N0]−[N1] in P(A,B), then trM0−trM1 =
trN0 − trN1 .

Proof. The equality [M0]−[M1] = [N0]−[N1] is equivalent to [M0⊕N1] = [N0⊕M1].
The Krull-Schmidt Theorem implies that this is equivalent to M0⊕N1

∼= N0⊕M1.
The additivity of transfer maps implies that in that case we have trM0

+ trN1
=

trN0
+ trM1

, whence the result. �

This Lemma implies that if A, B are symmetric O-algebras with chosen sym-
metrising forms, then for any M ∈ P(A,B) we have a well-defined map trM :
Z(A) → Z(B) given by trM = trM0 − trM1 , where M0, M1 are (A,B)-bimodules
which are finitely generated as left and right modules such that M = [M0]− [M1].

Lemma 2.4. Let A, B, C be symmetric O-algebras. Let M ∈ P(A,B) and N ∈
P(B,C). Then trM ·B N = trM ◦ trN . In particular, if M and M∨ induce a vir-
tual Morita equivalence between A and B, then trM : Z(A) → Z(B) is a linear
isomorphism with inverse trM∨ .

Proof. The first equality follows from the corresponding equality [18, 2.11.(ii)]
where M and N are actual bimodules, together with 2.3. The second statement
follows from the first and 2.2. �
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Remark 2.5. The three lemmas 2.2, 2.3, 2.4 hold verbatim for the transfer maps
on the Hochschild cohomology of A in B in any non-negative degree, and with O
replaced by any complete local principal ideal domain.

Proof of Theorem 1.3. We use the notation and hypotheses from Theorem 1.3.
Write M = [M0] − [M1], where M0, M1 are (A,B)-bimodules which are finitely
generated projective as left A-modules and as right B-modules. By 2.1 there ex-
ist a bijection I : Irr(K ′A) → Irr(K ′B) and signs εχ ∈ {±1} such that εχχ =
K ′M ·K′B I(χ) in R(K ′A) for all χ ∈ Irr(K ′A). By 2.4, the linear map trM :
Z(B) → Z(A) is an isomorphism, with inverse trM∨ . Let v ∈ Z(B) such that
trM (v) = 1A and let u ∈ Z(A) such that trM∨(u) = 1B . Define linear maps
α : Z(A)→ Z(B) and β : Z(B)→ Z(A) by setting

α(z) = trM∨(uz)

β(y) = trM (vy)

for all z ∈ Z(A) and y ∈ Z(B). By the choice of u and v we have α(1A) = 1B and
β(1B) = 1A. We extend α and β K ′-linearly to maps, still called α, β, between
Z(K ′A) and Z(K ′B). Setting K ′M = K ′ ⊗O M as before, note that the transfer
map trK′M : Z(K ′B) → Z(K ′A) is the K ′-linear extension of trM . Note further
that K ′M =

∑
χ∈Irr(K′A) εχχ ⊗K′ I(χ)∨ and χ ⊗K′ I(χ)∨ = eχK

′MeI(χ). Thus

trK′M =
∑
χ∈Irr(K′A) εχtreχK′MeI(χ)

. In particular, trK′M sends K ′eχ to K ′eI(χ).

Let χ ∈ Irr(K ′A) and η = I(χ). We have β(eη) = trK′M (veη). Since Z(K ′B)
is a direct product of copies of K ′, it follows that veη = λχeη for some λχ ∈ K ′.
Thus trK′M (veη) = µχeχ for some µχ ∈ K ′. Therefore

1A = trM (v) =
∑

χ∈Irr(K′A)

trK′M (veI(χ)) =
∑

χ∈Irr(K′A)

µχeχ .

Since also 1A =
∑
χ∈Irr(K′A) eχ, the linear independence of the eχ implies that all

µχ are 1, hence that α(eχ) = eI(χ). This shows that α and β are inverse algebra
isomorphisms Z(K ′A) ∼= Z(K ′B). By their constructions, α maps Z(A) to Z(B)
and β maps Z(B) to Z(A). This proves statement (a). This shows also that
the isomorphism Z(K ′A) ∼= Z(K ′B) sending eχ to eI(χ) induces an isomorphism
Z(KA) ∼= Z(KB). In other words, since Z(K ′A) = K ′ ⊗K Z(KA) and Z(K ′B) =
K ′⊗KZ(KB), it follows that the above isomorphism Z(K ′A) ∼= Z(K ′B) is obtained
from K ′-linearly extending an isomorphism Z(KA) ∼= Z(KB), which implies that
this isomorphism commutes with the action of Aut(K ′/K), whence statement (b).

�

By Lemma 2.1, a virtual Morita equivalence between split semisimple finite-
dimensional algebras given by a virtual bimodule and its dual is equivalent to a
character bijection with signs. If the compatibility of the character bijection with
Galois automorphisms is all one wants to establish, one does not need to descend to
valuation rings. For the sake of completeness, we spell this out for block algebras;
this is an easy consequence of results of Broué [3].

Proposition 2.6. Let G and H be finite groups and let K ′/K be a finite Galois
extension such that K ′ is a splitting field for both G and H. Let b be a central
idempotent of K ′G and c a central idempotent of K ′H and let I : Irr(K ′Gb) →
Irr(K ′Hc) be a bijection. Suppose that there exist signs δχ ∈ {±1} for any χ ∈
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Irr(K ′Gb), such that the virtual bicharacter µ :=
∑
χ∈Irr(K′Gb) δχ(χ×I(χ)) of G×H

takes values in K. Then b ∈ KG and c ∈ KH. Moreover, the following hold.

(a) For all σ ∈ Gal(K ′/K) and all χ ∈ Irr(K ′Gb) we have I(σχ) = σI(χ).
(b) The K ′-algebra isomorphism Z(K ′Gb)→ Z(K ′Hc) sending eχ to eI(χ) for all

χ ∈ Irr(K ′Gb) restricts to a K-algebra automorphism Z(KGb)→ Z(KHc).

Proof. The hypothesis that µ takes values in K implies that if δχ(χ × I(χ)) is a
summand of µ, then so is δχ(σχ× σI(χ)). This shows that b and c are Gal(K ′/K)-
stable, hence contained in KG and KH, respectively, and it shows that I commutes
with the action of Gal(K ′/K) as stated in (a). Again since µ takes values in K, it
follows from the explicit formulas of the central isomorphism Z(K ′Gb) ∼= Z(K ′Hc)
in the proof of [3, Théorème 1.5] that this isomorphism restricts to an isomorphism
Z(KGb) ∼= Z(KHc). �

3. Characters and Galois automorphisms

Definition 3.1. An extension of a p-modular system (K,O, k) is a p-modular
system (K ′,O′, k′) such that O is a subring of O′, with J(O) ⊆ J(O′).

In the situation of the above definition, we write (K,O, k) ⊆ (K ′,O′, k′), and
whenever convenient, we identify without further notice K as a subfield of K ′ and
k as a subfield of k′ in the obvious way.

In this section we fix a p-modular system (K,O, k) such that k is perfect. Denote
by K̄ a fixed algebraic closure of K and Qn the n-th cyclotomic extension of Q in
K̄. We denote by Gn the group Gal(Qn/Q). The following lemma combines some
basic facts on extensions of complete discrete valuation rings; we include proofs for
the convenience of the reader.

Lemma 3.2. Let (K ′,O′, k′) be an extension of the p-modular system (K,O, k)
such that K ′ is a normal extension of K. Then, O′ is Gal(K ′/K)-invariant, and
k′/k is a Galois extension. Moreover, if O is absolutely unramified, then the ho-
momorphism Gal(K ′/K)→ Gal(k′/k) induced by restriction to O′ is surjective.

Proof. Let π (respectively π′) be a uniformiser of O (respectively O′) and let a be
a real number with 0 < a < 1. Since O ⊆ O′ and J(O) ⊆ J(O′), we have π = π′

e
u,

for some positive integer e and some u ∈ (O′)×. Let ν : K → R be the absolute
value defined by ν(x) = aei if x = πiv, v ∈ O× and let ν′ : K ′ → R be the absolute

value defined by ν′(x) = ai if x = (π′)iv, v ∈ O′×. Then ν′, and consequently ν′ ◦σ
are extensions of ν to K ′ for any σ ∈ Gal(K ′/K). On the other hand, since K ′ is
an algebraic extension of K and since ν is complete, there is a unique extension of ν
to an absolute value on K ′ (see [25, Chapter 2, Theorem 4.8]). Thus ν′ = ν′ ◦σ for
all σ ∈ Gal(K ′/K). This proves the first assertion as the valuation ring of ν′ is O′.
It follows from the first assertion that O′ is integral over O, and consequently that
k′ is a normal extension of k. Further, since any algebraic extension of a perfect
field is perfect, k′ is perfect and k′/k is separable, Hence k′/k is Galois as claimed.

Now suppose that O is absolutely unramified; that is, O is the ring of Witt
vectors W (k). Let O0 = W (k′) ⊆ O′ be the ring of Witt vectors of k′ in O′ and let
K0 be the field of fractions of O0. Then K0 is a normal extension of K; to see this
it suffices to show that K0 is Gal(K ′/K)-invariant, hence that O0 is Gal(K ′/K)-
invariant. This is obvious since O0 is generated by p and the canonical lift of (k′)×

in (O′)×, both of which are clearly Gal(K ′/K)-invariant.
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Applying the first part of the lemma to the extension (K0,O0, k
′) of (K,O, k)

we obtain, via restriction to O0, a homomorphism from Gal(K0/K) → Gal(k′/k).
This homomorphism is surjective. Indeed, by [32, Chapter 2, Theorem 4], any
automorphism of k′ lifts uniquely to an automorphism of O0, and applying the
same theorem again shows that the unique lift of an automorphism of k′ which is
the identity on k is the identity on O. By the normality of K ′/K every element of
Gal(K0/K) extends to an element of Gal(K ′/K), proving the result. �

Lemma 3.3. Let (K ′,O′, k′) be an extension of the p-modular system (K,O, k)
such that K ′ is a normal extension of K contained in K̄. Suppose that O is abso-
lutely unramified.

(a) Let ζ ∈ K ′ be a root of unity whose order is a power of p. Then Gal(K[ζ]/K) ∼=
Aut(〈ζ〉) ∼= Gal(Q[ζ]/Q).

(b) Suppose that Qn ⊆ K ′. Then Hn,k is the image of the map Gal(K ′/K) → Gn
induced by restriction to Qn.

Proof. (a) Let m ≥ 1 and let Φpm(x) ∈ Z[x] denote the pm-th cyclotomic polyno-
mial. We have

Φpm(x) =
xp

m − 1

xpm−1 − 1
= Φp(x

pm−1

).

Set f(x) = Φpm(x+ 1). Then,

f(x) = Φp((x+ 1)p
m−1

) ≡ Φp(x
pm−1

+ 1) mod pZ[x].

Note that Φp(x+1) = (x+1)p−1
x =

∑p
i=1

(
p
i

)
xi−1, so all but the leading coefficient of

this polynomial are divisible by p. Upon replacing x by xp
m

, it follows in particular
that all intermediate coefficients of

Φp(x
pm−1

+ 1) =
(xp

m−1

+ 1)p − 1

xpm−1

are divisible by p. Thus all intermediate coefficients of f(x) are divisible by p.
Also, f(x) is monic and has constant term p. Since p is prime in O, it follows by
Eisenstein’s criterion applied to O, that Φpm(x) is irreducible in O[x], and hence by
Gauss’s lemma that Φpm(x) is irreducible in K[x]. This proves the first assertion.

(b) We first show that the image of Gal(K ′/K) in Gn is contained in Hn,k. By
Lemma 3.2, restriction to O induces a homomorphism Gal(K ′/K) → Gal(k′/k).
Let τ ∈ Gal(K ′/K) and denote by τ̄ the image of τ ∈ Gal(k′/k) under the above
map. The restriction of τ̄ to the (finite) splitting field of xn − 1 over Fp is a power
of the Frobenius map x→ xp. Since the canonical surjection u→ ū from O′ to k′

induces an isomorphism between the groups of p′-roots of unity of K ′ and of k′ and
since τ̄ is the identity on k, it follows that the restriction of τ to Qn is an element
of Hn,k.

Next we show that Hn,k is contained in the image of Gal(K ′/K) in Gn. Let
ζ ∈ Qn be a primitive n-th root of unity. Write ζ = ζpζp′ , where ζp, ζp′ are powers
of ζ, the order of ζp is a power of p, and the order of ζp′ is prime to p. Let α ∈ Hn,k.
We will prove that there exists β ∈ Gal(K ′/K) such that the restriction of β to Qn
equals α. By Lemma 3.2, k′ is a normal extension of k. Hence by the definition
of Hn,k, there exists τ̄ ∈ Gal(k′/k) and a non-negative integer u such that α(δ) =

δp
u

for all np′ -roots of unity δ in Qn and τ̄(η) = ηp
u

for all np′ -roots of unity η
in k′. Again by Lemma 3.2, τ̄ lifts to an automorphism τ ∈ Gal(K ′/K). By the
isomorphism between the groups of p′-roots of unity in K ′ and in k, we have that
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τ(ζp′) = α(ζp′). By part (a), there exists σ ∈ Gal(K0[ζp]/K0) such that σ(τ(ζp)) =
α(ζp). Let σ′ be any extension of σ to K ′ and set β := σ′τ . Then β has the required
properties. �

Theorem 1.6 forms the first part of the statement of the following result. For
a finite group G denote by IBr(G) the set of irreducible Brauer characters of G
interpreted as functions from the set of p-regular elements of G to K̄. If b is
a central idempotent of OG, then we denote by IBr(G, b) the subset of IBr(G)
consisting of the Brauer characters of simple k′Gb-modules for any sufficiently large
field k′ containing k.

Theorem 3.4. Let G,H be finite groups and let n be large enough for G and H. Let
b, c be blocks of OG and OH respectively. Suppose that O is absolutely unramified.
Any virtual Morita equivalence between OGb and OHc given by a virtual bimodule
and its dual induces a bijection I : Irr(K̄Gb)→ Irr(K̄Hc) satisfying σI(χ) = I( σχ)
for all σ ∈ Hn,k and all χ ∈ Irr(K̄Hc).

If the virtual Morita equivalence is induced from a Morita equivalence, then in
addition there exists a bijection, Ī : IBr(G, b) → IBr(H, c) such that for all χ ∈
Irr(G, b), ϕ ∈ IBr(G, b) and σ ∈ Hn,k the decomposition numbers dI(χ),Ī(ϕ) and

dχ,ϕ are equal and σ Ī(ϕ) = Ī( σϕ).

Proof. Let (K ′,O′, k′) be an extension of the p-modular system (K,O, k) such that
K ′ ⊆ K̄ and such that the extension K ′/K is normal. Suppose that k′ is perfect,
and that K ′ contains primitive n-th, |G|-th and |H|-th roots of unity. We may and
will identify Irr(K̄G) and Irr(K̄H) with Irr(K ′G) and Irr(K ′H) respectively. By
Lemma 3.3, the subgroup Hn,k is the image of the restriction map from Gal(K ′/K)
to Gn. It follows from 1.3 that a virtual Morita equivalence between OGb and
OHc given by a virtual bimodule and its dual yields a character bijection I which
commutes with Gal(K ′/K), hence with Hn,k. By [3, 1.2], the bijection I, together
with the signs from 2.1 is a perfect isometry.

Now suppose that X is a (OHc,OGb)-bimodule finitely generated and projective
as left OHc-module and as right OGb-module such that X⊗OGb− induces a Morita
equivalence between OGb and OHc. Then X ′ := O′ ⊗O X induces a Morita
equivalence between O′Gb and O′Hc and X̄ := k ⊗O X and X̄ ′ := k′ ⊗k X̄ induce
Morita equivalences between kGb and kHc and between k′Gb and k′Hc respectively.

Since k′ contains enough roots of unity, we may identify IBr(G, b) (respectively
IBr(H, c)) with the Brauer characters of simple k′Gb-modules (respectively k′Hc-
modules). For a simple k′Gb-module (or k′Hc-module) S, denote by ϕS the corre-
sponding Brauer character. Let Ī : IBr(G, b)→ IBr(H, c) be the bijection induced
by X̄ ′, that is such that Ī(ϕS) = ϕX̄′⊗′kS for any simple k′Gb-module S. Since

X̄ ′ ∼= k′ ⊗O′ X ′, we have that dI(χ),Ī(ϕ) = dχ,ϕ for all χ ∈ IrrK′(G, b), ϕ ∈ IBr(b).
Let σ ∈ Hn,k. By the previous lemma, there exists τ ∈ Gal(K ′/K) such that

the restriction to Qn is σ. Let τ̄ ∈ Gal(k′/k) be the image of τ . If S is any simple
k′Gb-module (respectively k′Hc-module), then σ(ϕS) = ϕ τ̄S . Thus, it suffices to
show that τ̄ (X̄ ′ ⊗k′ S) ∼= X̄ ′ ⊗k′ τ̄S for any simple k′Gb-module S. Now

τ̄X ′ = τ̄ (k′ ⊗k X) ∼= k′ ⊗X

as (k′Hc, k′Gb)-bimodule and it follows that for any simple k′Gb-module S that

τ̄ (X ′ ⊗k′Hc S) ∼= τ̄X ′ ⊗k′Hc τ̄S ∼= X ′ ⊗k′Hc τ̄S
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as k′Hc-modules. This proves the result. �

Proof of Corollary 1.7. Let n be a common multiple of |G| and of |H|. For any
g ∈ G and χ ∈ Irr(K̄G), χ(g) ∈ Qn. By the basic theory of cyclotomic extensions
of Q, χ is p-rational if and only if σχ = χ for all σ ∈ Gn such that σ(η) = η for all
np′ -roots of unity η ∈ Qn and similarly for the characters of H. On the other hand,
if σ ∈ Gn is such that σ(η) = η for all np′ -roots of unity η ∈ Qn, then σ ∈ Hn,k.
The result is now immediate from Theorem 3.4. �

Proof of Corollary 1.9. The action of Hn on Irr(K̄G) induces an action of Hn on
the set of blocks of OG. Since O is a minimal complete discrete valuation ring for
b, k is a finite field and consequently a splitting field of xnp′ −1 over k is also finite.
Let |k| = pd. Then Hn,k consists of precisely those elements α of Gn for which there

exists a non-negative integer u such that σ(δ) = δp
ud

for all np′ -roots of unity in
Qn. It follows that Hn,k is the stabiliser of b in Hn and similarly for H and c. The
result is now immediate from Theorem 3.4. �

‘

4. Descent for equivalences

Let O, O′ be complete local commutative principal ideal domains such that
O ⊆ O′ and J(O) ⊆ O′ (so that either O, O′ are complete discrete valuation
rings or they are fields, allowing the possibility that O is a field but O′ is not).
Let A be an O-algebra which is finitely generated as an O-module. Then A is
in particular noetherian, and hence the category of finitely generated A-modules
mod-A is abelian and coincides with the category of finitely presented A-modules.
We set A′ = O′ ⊗O A. For any A-module U we denote by U ′ the A′-module
O′ ⊗O U , and for any homomorphism of A-modules f : U → V , we denote by f ′

the homomorphism of A′-modules IdO′⊗f : U ′ → V ′. We extend this notion in the
obvious way to complexes; that is, if X = (Xn)n∈Z is a complex of A-modules with
differential δ = (δn)n∈Z, then we denote by X ′ the complex of A′-modules (X ′n)n∈Z
with differential δ′ = (δ′n)n∈Z.

The following lemmas are adaptations to the situation considered in this paper
of well-known results which hold in greater generality; see the references given. We
do not require the ring O′ to be finitely generated as an O-module.

Lemma 4.1. The ring extension O ⊆ O′ is faithfully flat; that is, the functor
O′ ⊗O − is exact and sends any nonzero O-module to a nonzero O′-module.

Proof. Since O′ is torsion free as an O-module, it follows from [13, (4.69)] that
O′ is flat as an O-module. Since J(O) = O ∩ J(O′) is the unique prime ideal in
O, it follows from [13, (4.74)] or also [13, (4.71)] that O′ is faithfully flat as an
O-module. �

Lemma 4.2. Let A be an O-algebra which is finitely generated as an O-module.

Then for any sequence M
f // N

g // U of A-modules, the sequence is exact

at N if and only if the sequence M ′
f ′ // N ′

g′ // U ′ of A′-modules is exact at
N ′.

Proof. This follows from Lemma 4.1 and [13, (4.70)]. �
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Recall that a morphism α : X → Y in a category C is split if there exists a
morphism β : Y → X such that αβα = α.

Lemma 4.3. Let A be an O-algebra which is finitely generated as an O-module. A
morphism f : M → N in mod-A is split if and only if the morphism f ′ : M ′ → N ′

in mod-A′ is split.

Proof. One checks easily that f is split if and only if the two epimorphisms M →
Im(f) andN → coker(f) are split. By Lemma 4.1, the extensionO ⊆O′ is faithfully
flat, and hence Im(f ′) = Im(f)′ and coker(f ′) = coker(f)′. Thus it suffices to
show that f is a split epimorphism if and only if f ′ is a split epimorphism. Now
f is a split epimorphism if and only of the map HomA(N,M) → HomA(N,N)
induced by composing with f is surjective (since in that case an inverse image
of IdN under this map is a section of f). Again since the extension O ⊆ O′ is
faithfully flat, it follows that f is a split epimorphism if and only if the induced
map O′ ⊗O HomA(N,M) → O′ ⊗O HomA(N,N) is surjective. Since M , N are
finitely generated, hence finitely presented by the assumptions on A, it follows
from [23, Theorem I.11.7] (applied with O′ instead of B) that there is a canonical
isomorphism O′ ⊗O HomA(N,M) ∼= HomA′(N

′,M ′) and a similar isomorphism
with N instead of M . Thus the surjectivity of the previous map is equivalent to the
surjectivity of the map HomA′(N

′,M ′) → HomA′(N
′, N ′) induced by composing

with f ′. This is, in turn, equivalent to asserting that f ′ is a split epimorphism,
whence the result. �

Lemma 4.4. Let A be an O-algebra which is finitely generated as an O-module,
let X be a complex of finitely generated A-modules and let M be a finitely generated
A-module. Then

(a) M is projective if and only if M ′ is projective as A′-module.
(b) X is acyclic if and only if X ′ is acyclic as complex of A′-modules.
(c) X is contractible if and only if X ′ is contractible as complex of A′-modules.

Proof. Part (a) and part (b) follow from Lemma 4.2 and Lemma 4.3. By [36, §1.4],
a complex of A-modules (respectively A′-modules) is contractible if and only if the
complex is acyclic and the differential in each degree is split. Therefore part (c)
also follows from Lemma 4.2 and Lemma 4.3. �

Let A and B be symmetric O-algebras. Let M be a finitely generated (A,B)-
bimodule which is projective as left A-module and as right B-module. If M ⊗B − :
mod-B → mod-A is an equivalence, then the symmetry of A and B implies that an
inverse of this equivalence is induced by tensoring with the O-dual M∨ of M ; that
is, M ⊗B M∨ ∼= A as (A,A)-bimodules and M∨ ⊗AM ∼= B as (B,B)-bimodules.
Following Broué, we say that M induces a stable equivalence of Morita type if there
exist a projective (A,A)-bimodule U and a projective (B,B)-bimodule V such that
M⊗BM∨ ∼= A⊕U as (A,A)-bimodules andM∨⊗AM ∼= B⊕V as (B,B)-bimodules.
Let X be a bounded complex of finitely generated (A,B)-bimodules which are
projective as left A-modules and as right B-modules, and let X∨ = HomO(X,O)
be the dual complex. We say that X induces a Rickard equivalence and that X
is a Rickard complex if there exist a contractible complex of (A,A)-bimodules Y
and a contractible complex of (B,B)-bimodules Z such that X ⊗B X∨ ∼= A ⊕ Y
as complexes (A,A)-bimodules and X∨ ⊗A X ∼= B ⊕ Z as complexes of (B,B)-
bimodules. Let M and N be finitely generated (A,B)-bimodules, projective as left
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and right modules and let U = [M ] − [N ]. Then U∨ = [M∨] − [N∨]. Recall that
U and U∨ induce a virtual Morita equivalence between A and B if U ·B U∨ =
[A] in R(A,A) and U∨ ·B U = [B] in R(B,B). We denote by Cb(A) the category
of bounded complexes of finitely generated A-modules, by Kb(A) the homotopy
category of bounded complexes of finitely generated A-modules and by Db(A) the
bounded derived category of mod-A. For a finitely generated A-module M we
denote by [M ] the isomorphism class of M as an element of the Grothendieck group
of mod-A with respect to split exact sequences. We use the analogous notation for
bimodules.

Proposition 4.5. Let A and B be symmetric O-algebras. Let M , N be finitely
generated (A,B)-bimodules which are projective as left A-module and as right B-
module and let X be a bounded complex of finitely generated (A,B)-bimodules which
are projective as left A-modules and as right B-modules.

(a) X ′ induces a Rickard equivalence between A′ and B′, if and only if X induces
a Rickard equivalence between A and B.

(b) M ′ induces a stable equivalence of Morita type between A′ and B′ if and only
if M induces a stable equivalence of Morita type between A and B.

(c) M ′ induces a Morita equivalence between A′ and B′ if and only if M induces
a Morita equivalence between A and B.

(d) [M ′]− [N ′] and [(M ′)∨]− [(N ′)∨] induce a virtual Morita equivalence between
A′ and B′ if and only if [M ] − [N ] and [M∨] − [N∨] induce a virtual Morita
equivalence between A and B.

Proof. One direction of the implications is trivial. We verify the reverse implica-
tions. We will apply the previous lemmas in this section to theO-algebras A⊗OBop,
A ⊗O Aop etc. In what follows, we will freely switch between the terminology of
(A,A)-bimodules and A⊗O Aop-modules.

We prove (a). Suppose that X ′ induces a Rickard equivalence between A′ and
B′ and let Y be a contractible bounded complex of (A′, A′)-bimodules such that
X ′ ⊗B′ (X ′)∨ = A′ ⊕ Y .

The functors X ⊗B − and X∨ ⊗A − define a pair of biadjoint functors between
Cb(B ⊗O Aop) and Cb(A ⊗O Aop) (this is well-known; see e. g. [18, Section
6.10]). Denote by εX : X ⊗B X∨ → A and εX∨ : X∨ ⊗A X → B the counits
of these adjunctions. Similarly, denote by εX′ : X ′ ⊗B′ (X ′)∨ → A′ and ε(X′)∨ :
(X ′)∨ ⊗A′ X ′ → B the counits corresponding to the biadjoint pair X ′ ⊗B′ − and
(X ′)∨ ⊗A′ − between Cb(B′ ⊗O (A′)op) and Cb(A′ ⊗O (A′)op). Since the terms of
X are finitely generated and O-free, we have that (X ′)∨ ∼= (X∨)′ . Hence we may
assume that εX′ = ε′X and ε(X′)∨ = ε′X∨ . Now the hypothesis implies that X ′⊗B′−
and (X ′)∨⊗A′− define a pair of inverse equivalences between Kb(A′⊗O′ (A′)op) and
Kb(B′ ⊗O′ (A′)op). Thus εX′ : X ′ ⊗B′ (X ′)∨ → A′ is an isomorphism in Kb(A′ ⊗O
(A′)op) (see for instance [22, Chapter 4, §2, Prop. 4]). Since A′ is concentrated in a
single degree it follows that εX is split surjective in Cb(A′ ⊗O′ (A′)op) and X ′ ⊗B′
(X ′)∨ = A′ ⊕ Ker(εX′) in Cb(A′ ⊗O′ (A′)op). Since we also have X ′ ⊗B′ (X ′)∨ =
A′ ⊕ Y in Cb(A′ ⊗O′ (A′)op) with Y contractible, by the Krull-Schmidt property
of Cb(A′ ⊗O′ (A′)op) we have that Ker(εX′) is contractible. By Lemma 4.2 we
have that Ker(εX′) = Ker(ε′X) = (Ker(εX))′. Hence by Lemma 4.4 we have that
Ker(εX) is contractible as a complex of (A,A)-bimodules. Similarly by Lemma 4.2
we have that εX is surjective and by Lemma 4.3 that εX is split (note that since A
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is concentrated in a single degree, namely zero, the split surjectivity of εX as map of
complexes is equivalent to the split surjectivity of the degree 0-component of εX).
Thus, we have that X⊗BX∨ = A⊕Ker(εX) as complexes of (A,A)-bimodules and
Ker(εX) is contractible. Arguing similarly for X∨ ⊗A X proves (a).

The proof of (b) proceeds along the same lines as that of (a), the contractibility
arguments are replaced by the fact that if U is a finitely generated (A,A)-bimodule,
then U is projective if U ′ is a projective (A′, A′)-bimodule (Lemma 4.4). The proof
of (c) is a special case of the proof of (b).

Statement (d) is a consequence of a version, due to Grothendieck, of the Noether-
Deuring Theorem for the base rings under consideration. More precisely, if [M ]−[N ]
and its dual induce a virtual Morita equivalence, then

[M ⊗B M∨] + [N ⊗B N∨]− [M ⊗B N∨]− [N ⊗B M∨] = [A] ,

which is equivalent to the existence of an (A,A)-bimodule isomorphism

M ⊗B M∨ ⊕N ⊗B N∨ ∼= A⊕M ⊗B N∨ ⊕N ⊗B M∨ .

By [9, Proposition (2.5.8) (i)] such an isomorphism exists if and only if there exists
an analogous isomorphism for the corresponding (A′, A′)-bimodules, whence (d).

�

Remark 4.6. While the categorical equivalences in (a), (b), (c) in the theorem
above induced by a bimodule or a complex of bimodules have the property that
their inverses are automatically induced by the dual of that bimodule or complex,
this is not true for virtual Morita equivalences, whence the extra hypothesis in
(d). For instance, if A is a split semisimple K-algebra with m isomorphism classes
of simple modules, then any matrix (ai,j) in SLm(Z) with inverse (bi,j) yields a
virtual self Morita equivalence of A of the form

∑
i,j ai,j [Si ⊗k S∨j ] with inverse∑

i,j bi,j [Si⊗k S∨j ], where {Si} is a set of representatives of the isomorphism classes
of simple A-modules, and where the indices i, j run from 1 to m.

5. Descent and relative projectivity

Let (K,O, k) ⊆ (K ′,O′, k′) be an extension of p-modular systems (see Definition
3.1). LetG be a finite group and P a subgroup ofG. AnOG-module U is called rela-

tively P -projective, if U is isomorphic to a direct summand of IndGP (V ) = OG⊗OP V
for some OP -module V , where OG is regarded as an OG-OP -bimodule. Dually, U
is relatively P -injective, if U is isomorphic to a direct summand of HomOP (OG,V )
for some OP -module V , where OG is regarded as an OP -OG-bimodule. It is
well-known that because OG is symmetric, the notions of relative projectivity and
relative injectivity coincide. Any OG-module is relatively OP -projective, where P
is a Sylow p-subgroup of G. Following Green [7], a vertex of a finitely generated
indecomposable OG-module U is a minimal p-subgroup P of G such that U is rela-
tively P -projective. In that case, U is isomorphic to a direct summand of IndGP (V )
for some finitely generated indecomposable OP -module V , called an OP -source of
V , and then V is isomorphic to a direct summand of ResGP (U). If P is clear from
the context, V is just called a source of U . The vertex-source pairs (P, V ) of U are
unique up to G-conjugacy. See e. g. [34, §18] for details.
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Lemma 5.1 ([6, (III.4.14)]). Suppose that O′ is finitely generated as an O-module.
Let G be a finite group and U a finitely generated O-free indecomposable OG-
module. Let P be a vertex of U . Then P is a vertex of every indecomposable direct
summand of the O′G-module O′ ⊗O U .

Lemma 5.2. Suppose that O′ is finitely generated as an O-module. Let G be a
finite group and U a finitely generated O-free indecomposable OG-module. Let P
be a vertex of U . Let V be an indecomposable direct summand of the O′G-module
U ′ = O′ ⊗O U and let Y be an O′P -source of V . Suppose that Y ∼= O′ ⊗O X for
some OP -module X. Then X is an OP -source of U , and every indecomposable
direct summand of U ′ has Y as a source. In particular, U has a trivial source if
and only if every indecomposable direct summand of U ′ has a trivial source.

Proof. This is basically a special case of the Noether-Deuring Theorem; we sketch
the argument. Since O′ is finitely generated as an O-module, we have O′ ∼= Od for
some positive integer d. Thus restricting U ′ to OG yields an OG-isomorphism U ′ ∼=
Ud, and hence, as an OG-module, V ′ is isomorphic to U c for some positive integer
c, by the Krull-Schmidt Theorem. Similarly, we have an OP -isomorphism Y ∼= Xd.
Since Y is isomorphic to a direct summand of ResGP (V ), it follows again from the

Krull-Schmidt Theorem that X is isomorphic to a direct summand of ResGP (U). By
Lemma 5.1, P is a vertex of X and of U , and therefore X is a source of U . Since U
is isomorphic to a direct summand of IndGP (X), it follows that U ′ is isomorphic to

a direct summand of IndGP (Y ). This implies that every indecomposable summand
of U ′ has Y as a source. The last statement follows from the special case where
Y = O′. �

We use the following concepts and results from Knörr [10] and Thévenaz [33].
Let G be a finite group, P a p-subgroup of G and U a finitely generated OG-module.
A relative P -projective presentation of U is a pair (Y, π) consisting of a relatively
P -projective OG-module Y and a surjective OG-homomorphism π : Y → U whose
restriction to OP is split surjective. Such a presentation is called a relatively P -
projective cover if in addition ker(π) has no nonzero relatively P -projective direct
summand; by [33, Cor. (1.9)] this is equivalent to π being essential; that is, any
endomorphism β of Y satisfying π = π ◦ β is an automorphism of Y . The results
in [10] and [33] imply that U has a relative projective resolution which is unique
up to isomorphism and which is additive in U . Moreover, if U is indecomposable
and not relatively P -projective, and if (Y, π) is a relatively P -projective cover of
U , then ker(π) is indecomposable and not relatively P -projective. These results,
together with Lemma 5.1, imply immediately the following.

Lemma 5.3. Suppose that O′ is finitely generated as an O-module. Let G be
a finite group and R a p-subgroup of G. Let U be an O-free OG-module which
has no nonzero relatively R-projective direct summand. Let (Y, π) be a relatively
R-projective cover of U . Then the O′G-module U ′ = O′ ⊗O U has no nonzero
relatively R-projective direct summand and (Y ′, π′) = (O′ ⊗O Y, IdO′ ⊗ π) is a
relatively R-projective cover of U ′.

6. Descent and Galois automorphisms

Let (K,O, k) ⊆ (K ′,O′, k′) be an extension of p-modular systems (see Defini-
tion 3.1). The following Lemma, due to Reiner, makes use of the fact that finite
fields have trivial Schur indices.
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Lemma 6.1 ([29, Theorem 3], [4, (30.33)]). Suppose that the field k is finite. Let
G be a finite group and U a finitely generated O-free indecomposable OG-module.
Then the indecomposable direct summands in a decomposition of O′ ⊗O U as an
O′G-module are pairwise nonisomorphic.

Denote by Γ the automorphism group of the field extension k′/k. Let A be a
finite-dimensional k-algebra, set A′ = k′⊗kA, and let U ′ be an A′-module. We say
that U ′ is Γ-stable, if U ′ ∼= σU ′ as A′-modules, for all σ ∈ Γ. If U ′ ∼= k′ ⊗k U for
some A-module, then U ′ is Γ-stable. Indeed, the map sending λ⊗ u to σ−1(λ)⊗ u
is an isomorphism k′ ⊗k U ∼= σ(k′ ⊗k U), where σ ∈ Γ, u ∈ U , and λ ∈ k′. The
following is well-known.

Lemma 6.2. Suppose that the fields k′ and k are finite. Let A be a finite-dimensional
k-algebra. Set A′ = k′ ⊗k A. Suppose that the semisimple quotient A/J(A) is sep-
arable. Let Γ be the Galois group of the extension k′/k.

(a) Let S be a simple A-module. Then the A′-module S′ = k′ ⊗k S is semisimple,
isomorphic to direct sum of pairwise nonisomorphic Galois conjugates of a
simple A′-module T .

(b) Let S′ be a semisimple A′-module. There exists a semisimple A-module S sat-
isfying S′ ∼= k′ ⊗k S if and only if S′ is Γ-stable.

(c) Let Y ′ be a finitely generated projective A′-module. There exists a projective
A-module Y satisfying Y ′ ∼= k′ ⊗k Y if and only if Y ′ is Γ-stable.

For the remainder of this section, assume that k, k′ are finite and that O, O′ are
absolutely unramified. Set d = [k′ : k]. Then O′ is free of rank d as an O-module.
Let σ : k′ → k′ be a generator of Gal(k′/k). Denote by the same letter σ : O′ → O′
the unique ring automorphism of O′ lifting σ.

Let A be an O-algebra which is free of finite rank as an O-module. Set A′ =
O′ ⊗O A. Let τ : mod-A′ → mod-A′ be the functor which sends an A′-module
U to the A′-module τ(U) := ⊕0≤i≤d−1

σiU and a morphism f : U → V of A′-
modules to the morphism τ(f) := (f, . . . , f). Let δ : mod-A′ → mod-A be the
functor which sends an A′-module U to the A-submodule δ(U) of τ(U) defined by
δ(U) = {(x, . . . , x) : x ∈ U} and which sends the morphism f : U → V of A′-
modules to the morphism δ(f) defined to be the restriction of τ(f) to δ(U). Finally
let ε : mod-A → mod-A′ be the extension functor O′ ⊗O −. The functors ε, δ and
τ are exact functors of O-linear categories where we regard mod-A′ as an O-linear
category by restriction of scalars.

Proposition 6.3. With the notation and assumptions above, the functors ε◦ δ and
τ are naturally isomorphic.

Proof. Let α ∈ O′ be such that k′ = k[ᾱ] where ᾱ = α + J(O′) ∈ k′. Then
{ᾱi : 0 ≤ i ≤ d − 1} is a k-basis of k′. Since the extension O ⊆ O′ is unramified
J(O′) = J(O)O′. Hence by Nakayama’s lemma {αi : 0 ≤ i ≤ d− 1} is an O-basis
of O′. Let U be a finitely generated A′-module and let

ηU : εδ(U)→ τ(U)

be the unique O′-linear extension of the inclusion δ(U) ⊆ τ(U). Then η = (ηU ) is
a natural transformation from εδ to τ . We will show that η is an isomorphism. It
suffices to show that this is an O-linear isomorphism; that is, we may assume that
A = O and A′ = O′. We show first that ηU is an isomorphism for U = O′. Since
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{αi : 0 ≤ i ≤ d − 1} is an O-basis of O′, it follows that {(αi, αi, ..., αi) : 0 ≤
i ≤ d − 1} is an O-basis of δ(O′). We claim that this set is an O′-basis of τ(O′).
Since the cardinality of this set is equal to d, which is also the O′-rank of τ(O′), it
suffices to show that the image of this set in k′ ⊗O′ τ(O′) is linearly independent.
For notational convenience, assume temporarily that O′ = k′. Suppose that

d−1∑
i=0

λi(α
i, αi, .., αi) = 0

for some coefficients λi ∈ k′. The scalar λi acts on the j-th coordinate as multipli-
cation by σ−j(λi), so this is equivalent to the d equations

d−1∑
i=0

σ−j(λi)α
i = 0

for 0 ≤ j ≤ d − 1. Applying σj to the corresponding equation implies that this is
equivalent to

d−1∑
i=0

λiσ
j(α)i = 0

for 0 ≤ j ≤ d− 1. Note that the σj(α), with 0 ≤ j ≤ d− 1, are pairwise different,
and hence the Vandermonde matrix (σj(α)i) has nonzero determinant. Thus all
coefficients λi are 0.

Reverting to the ring O′ as before, this shows that ηU is an isomorphism if
U = O′. Since ηU is additive in U , it follows that ηU is an isomorphism whenever
U is free of finite rank over O′. Let U be an arbitrary finitely generated O′-module
and let Q1 → Q0 → U → 0 be a free presentation of U . By the naturality of η we
obtain the following commutative diagram

εδ(Q1) //

ηQ1

��

εδ(Q0) //

ηQ0

��

εδ(U)

ηU

��

// 0

τ(Q1) // τ(Q0) // τ(U) // 0

By the exactness of δ, τ and ε, the horizontal rows are exact. Since Q1 and Q0

are O′-free, the vertical maps ηQ1
and ηQ0

are isomorphisms. It follows that ηU is
an isomorphism. �

Let G be a finite group. For a =
∑
g∈G αgg an element of k′G or of O′G,

denote by k[a] the smallest subfield of k′ containing k and (the images in k′ of) all
coefficients αg, g ∈ G.

Lemma 6.4. Let G be finite group. Let b′ be a block of k′G and b a block of kG
such that bb′ 6= 0. Suppose that k′ = k[b′]. Then the extension k′/k is finite. Set
d = [k′ : k] and let σ be a generator of Gal(k′/k). Then

b =
∑

0≤i≤d−1

σi(b′)

is the block decomposition of b in k′G.
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Proof. The block idempotent b′ of k′G has coefficients contained in a finite subfield
of k′ (because G has a finite splitting field) and hence k[b′]/k is a finite extension.
For any i, 0 ≤ i ≤ d − 1, σi(b′) is a block of k′G satisfying σi(b′)b = σi(b′b) 6= 0.
Hence we only need to show that σi(b′) 6= b′ for any i, 0 ≤ i ≤ d− 1. This follows
from the fact that k′ = k[b′] is a finite Galois extension with Galois group 〈σ〉. �

Theorem 6.5. Suppose that k and k′ are finite and that O and O′ are absolutely
unramified. Let G, H be finite groups, b a block of OG and c a block of OH. Let
b′ be a block of O′G satisfying bb′ 6= 0 and let c′ be a block of O′H satisfying cc′ 6=
0. Suppose that k′ = k[b′] = k[c′]. The following hold.

(a) If O′Gb′ and O′Hc′ are Morita equivalent via an (O′Gb′,O′Hc′)-bimodule M ′,
then OGb and OHc are Morita equivalent via an (OGb,OHc)-bimodul M , such
that M ′ is isomorphic to a direct summand of O′ ⊗O M . In particular, if M ′

has a trivial source, then M has a trivial source.
(b) If there is a Rickard complex X ′ of (O′Gb′,O′Hc′)-bimodules, then there is a

Rickard complex X of (OGb,OHc)-bimodules such that X ′ is isomorphic to a
direct summand of O′ ⊗O X. In particular, if b′ and c′ are splendidly Rickard
equivalent, then b and c are splendidly Rickard equivalent.

(c) If there is a virtual Morita equivalence (resp. a p-permutation equivalence)
between O′Gb′ and O′Hc′, then there is a virtual Morita equivalence (resp. a
p-permutation equivalence) between OGb and OHc.

Proof. Let σ be a generator of Gal(k′/k). Since k′ = k[b′] and k′ = k[c′], it follows
from 6.4 that the σi(b′), 0 ≤ i ≤ d − 1, are pairwise different blocks of O′G
whose sum is b, and the analogous statement holds for O′Hc′ and c. Suppose that
O′Gb′ and O′Hc′ are Morita equivalent via an (O′Gb′,O′Hc′)-bimodule M ′. Then

O′Gσi(b′) and O′Hσi(c′) are Morita equivalent via the bimodule σiM ′. Thus the

direct sum τ(M ′) = ⊕d−1
i=0

σiM ′ induces a Morita equivalence between O′Gb and
O′Hc. By Proposition 6.3, the above direct sum is isomorphic to O′⊗OM for some
(OGb,OHc)-bimodule M . By Proposition 4.5, M induces a Morita equivalence. It
follows from Lemma 5.2 that if M ′ has a trivial source, then M has a trivial source.
This proves (a). Obvious variations of this argument prove (b) and (c). �

7. On cyclic blocks

We prove in this section the Theorems 1.10 and 1.12. Modules in this section
are finitely generated. Let (K,O, k) ⊆ (K ′,O′, k′) be an extension of p-modular
systems as in Definition 3.1.

Let G be a finite group and b a block of O′G with a nontrivial cyclic defect
group P . If k′ is a splitting field for all subgroups of G, then Rouquier constructed
a 2-sided splendid tilting complex X ′ of (O′Gb,O′NG(P )e)-bimodules, where e is
the Brauer correspondent of b. The hypotheses in [31] also require K ′ to be large
enough, but it is easy to see that Rouquier’s construction works with O′ absolutely
unramified. In order to prove Theorem 1.10, we need to show that Rouquier’s
complex is defined over the subring O so long as the block idempotent b is contained
in OG. We review Rouquier’s construction and other facts on cyclic blocks as we go
along. We start with some basic observations regarding automorphisms of Brauer
trees.

Remark 7.1. Let G be a finite group and b a block of OG with a nontrivial cyclic
defect group P . Suppose in addition that O contains a primitive |G|-th root of
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unity. Any ring automorphism σ of OGb permutes the sets of isomorphism classes
of simple modules, of projective indecomposable modules, and the set of ordinary
irreducible characters of OGb. Thus σ induces an automorphism of the Brauer tree
of b. If |P | = 2, then OGb is Morita equivalent to OC2, and the Brauer tree has a
single edge and no exceptional vertex. Thus there are two automorphisms of this
Brauer tree - the identity, and the automorphism exchanging the two vertices, and
both are induced by ring automorphisms (the automorphism of OC2 sending the
nontrivial group element t of C2 to −t in OC2 exchanges the two vertices of the
tree). If |P | ≥ 3, then the Brauer tree has an exceptional vertex or at least two
edges. In both cases, an easy combinatorial argument shows that an automorphism
of the Brauer tree is uniquely determined by its effect on the edges of the tree. It
follows that the automorphism of the Brauer tree induced by a ring automorphism
σ of OGb is already determined by the induced ring automorphism σ̄ of kGb̄, where
b̄ is the image of b in kG. This is the reason for why the following Lemma, which
is an immediate consequence of (the proof of) [16, Proposition 4.5, Remark 4.6], is
formulated over k rather than O.

Lemma 7.2. Let G be a finite group and b a block of kG with a nontrivial cyclic
defect group P of order at least 3. Suppose that k is a splitting field for the subgroups
of G. Let γ be a ring automorphism of kGb. Then γ induces an automorphism of
the Brauer tree of b which fixes at least one vertex.

Proof. The statement is trivial if the Brauer tree has an exceptional vertex (which
is necessarily fixed). Suppose that the Brauer tree does not have an exceptional
vertex. Then |P | = p ≥ 3, and the tree has p − 1 edges; note that p − 1 is even.
An easy argument shows that any tree automorphism fixes an edge or a vertex. In
the latter case, we are done, so assume that it fixes an edge, which we label by
i. Removing this edge from the Brauer tree yields two disjoint trees. If the two
disjoint trees are exchanged by the Brauer tree automorphism, then they have the
same number t of edges. But then the number of edges of the Brauer tree itself is
2t+1, which is odd, a contradiction. Thus the Brauer tree automorphism stabilises
the two trees obtained from removing the edge i. But then it stabilises the two
vertices connected by i, whence the result. �

Proof of Theorem 1.10. Since any block of a finite group algebra has a finite split-
ting field, we may assume that k and k′ are finite.

Rouquier’s splendid Rickard complex is constructed inductively, separating the
cases according to whether G has a nontrivial normal p-subgroup or not. The
construction of this splendid equivalence is played back to [31, Theorem 10.3]. It
suffices therefore to show that the complexes arising in that theorem are defined
over O. We start with the case Op(G) = {1}. Since p-permutation modules of
finite groups lift uniquely, up to isomorphism, from k to O, it is easy to see that
we may replace O and O′ by k and k′, respectively. (This simplifies notation, but
one could as well write the proof over O and O′, if desired.)

Let H be the normaliser in G of the unique subgroup Z of order p of P , and let
c be the block of k′H corresponding to b via the Brauer correspondence. Since any
block idempotent of kH is contained in kCG(Z), we have BrZ(b) = c. Since b ∈
kG, it follows that also c ∈ kH.
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Set A = kGb, A′ = k′Gb, B = kHc and B′ = k′Hc. By [31, Theorem 10.3],
there is a splendid Rickard complex X ′ of (A′, B′)-modules of the form

· · · // 0 // N ′
π′ // M ′ // 0 // · · ·

for some projective (A′, B′)-bimodule N ′ and some bimodule homomorphism π′

such that (N ′, π′) is a direct summand of a projective cover of M ′. The algebra B′

is Morita equivalent to the serial algebra k′(P oE), where E is the inertial quotient
of b. That is, the Brauer tree of B′ is a star with |E| edges, and exceptional vertex
in the center, if any.

By Proposition 4.5, in order to prove Theorem 1.10, it suffices to prove that
there is a complex of A-B-bimodules X satisfying k′ ⊗k X ∼= X ′.

The (A,B)-bimodule bkGc has, up to isomorphism, a unique nonprojective in-
decomposable bimodule summand M . This bimodule and its dual induce a stable
equivalence of Morita type between A and B (this goes back to Green [8]; see [17]
for a proof using this terminology). As a k(G×H)-module, the diagonal subgroup
∆P is a vertex of M . The analogous properties hold for A′ = k′Gb and B′ = k′Hc.
Lemma 5.1 implies that if M ′ is the unique (up to isomorphism) nonprojective
bimodule summand of bk′Gc, then M ′ ∼= k′ ⊗kM .

If |P | = 2, then M ′, hence M , induces a Morita equivalence, and so we are done
in that case. Suppose now that |P | ≥ 3.

The bimodule M ′ is the right term in Rouquier’s complex. For the left term, we
need to show that N ′ ∼= k′ ⊗k N for some (by 4.4 necessarily projective) (A,B)-
bimodule N , and that the map π′ is obtained from applying k′ ⊗k − to some map
π : N → M . To that end, we need to show that N ′ is Γ-stable, where as before
Γ = Gal(k′/k). This will follow from Rouquier’s description of N ′, which we review
briefly.

For that purpose, we need some classical facts on blocks with cyclic defect groups
which have their origins in work of Brauer, Dade, and Green. We follow the pre-
sentation given in [15], [17]. Denote by I a set of representatives of the conjugacy
classes of primitive idempotents in A′, and by J a set of representatives of the
conjugacy classes of primitive idempotents in B′. Set Si = A′i/J(A′)i for all i ∈ I
and Tj = B′j/J(B′)j for all j ∈ J ′.

Using general properties of stable equivalences of Morita type from [16] and well-
known facts on cyclic blocks, it follows that the B′-modules F(Si) = M ′∗ ⊗A Si
and the A-modules G(Tj) = M ′ ⊗B Tj are indecomposable and uniserial. There
are unique bijections δ, γ : I → J such that Tδ(i) is isomorphic to the unique
simple quotient of F(Si) and such that Tγ(i) is isomorphic to the unique simple
submodule of F(Si). For any i ∈ I there are unique uniserial submodules Ui and
Vi of A′i isomorphic to G(Tδ(i)) and G(Ω(Tγ(i))), respectively. There are unique
permutations ρ and σ of I such that the top composition factors of Ui and Vi are
isomorphic to Sρ(i) and Sσ(i), respectively. In particular, A′ρ(i) is a projective cover
of Ui ∼= M ′ ⊗B′ Tδ(i). Since B′ is symmetric, the projective indecomposable right
B′-module δ(i)B′ is a projective cover of the simple right B′-module T∨δ(i). It follows

from the description of projective covers of bimodules in [31, Lemma 10.2.12], that
a projective cover of the (A′, B′)-bimodule M ′ has the form

Z ′ = ⊕i∈I A′ρ(i)⊗k δ(i)B′

together with a surjective (A′, B′)-bimodule homomorphism π′ from Z ′ onto M ′.
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The permutations ρ and σ determine the Brauer tree as follows. For i ∈ I,
denote by iρ the 〈ρ〉-orbit of i in I; use the analogous notation for iσ. The vertices
of the Brauer tree are the 〈ρ〉-orbits and 〈σ〉-orbits, with exactly one edge labelled i
linking iρ and iσ. Denote by v the exceptional vertex with exceptional multiplicity
m; if there is no exceptional vertex, we choose for v a Γ-stable vertex (which is
possible by 7.2) and set m = 1. Note that there is a unique edge ρ(i) which links
iρ = ρ(i)ρ and ρ(i)σ. Since there is a unique minimal path from v to any other
vertex in the Brauer tree, it follows that we have a well-defined notion of distance
from v - this is the number of edges of a minimal path from v to any other vertex.

The construction of Rouquier’s bimodule complex is based on a partition of I
into two subsets. Note that the vertex iρ = ρ(i)ρ is linked to the vertex ρ(i)σ via
the edge labelled ρ(i). Thus exactly one of these two vertices is further away from
v than the other. We denote by I0 the set of all i ∈ I such that the vertex iρ of the
Brauer tree is further away from the exceptional vertex v than the vertex ρ(i)σ. In
particular iρ is nonexceptional in that case. We set I1 = I \ I0; that is, I1 consists
of all i ∈ I such that ρ(i)σ is further away from v than iρ. In particular, ρ(i)σ is
nonexceptional in that case. Then

N ′ = ⊕i∈I1 A′ρ(i)⊗k δ(i)B′

This is a direct summand of the above projective cover of M ′, and we denote the
restriction of π′ again by π′. Since the action of Γ on the Brauer tree fixes v, it
follows that the set I1 is Γ-stable, and hence so is the isomorphism class of N ′.
It follows from Lemma 6.2 that there is a projective (A,B)-bimodule N such that
N ′ ∼= k′⊗kN . To see that the map π′ can also be chosen to be of the form Idk′ ⊗π
for some bimodule homomorphism π : N →M , consider a projective cover π : Z →
M . Observe that then k′ ⊗k Z ∼= Z ′ yields the projective cover of M ′ above, and
Lemma 6.2 implies that Z has a summand isomorphic to N , so we just need to
restrict π to N and the extend scalars to k′.

This shows that A and B are splendidly Rickard equivalent. It remains to show
that the complex in [31, Theorem 10.3] is also defined over k in the case where
Op(G) is nontrivial.

Set R = Op(G) and assume that R 6= {1}. If R = P , there is nothing further to
prove; thus we may assume that R is a proper subgroup of P . Let Q be the unique
subgroup of P such that |Q : R| = p. Changing earlier notation, set H = NG(Q),
and denote by c the block of k′H which is the Brauer correspondent of b. We have
c = BrQ(b), and hence c ∈ kH. Set A = kGb, A′ = k′Gb, B = kHc, and B′ =
k′Hc.

Note that kG ⊗kR kH ∼= IndG×HR (k) as k(G × H)-modules. Thus A ⊗kR B,
together with the multiplication map A⊗kRB → bkGc, is a relatively ∆R-projective
presentation of bkGc, where we regard this bimodule as k(G × H)-module. Thus
some bimodule summand of A ⊗kR B yields a relatively ∆R-projective cover of
bkGc.

Rouquier’s splendid Rickard complex of (A′, B′)-bimodules from [31, Theorem
10.3] is in the present situation a complex X ′ of the form

· · · // 0 // N ′
π′ // M ′ // 0 // · · ·

which is a direct summand of the complex

· · · // 0 // A′ ⊗k′R B′
π′ // bk′Gc // 0 // · · ·
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where π′ is the map induced by multiplication, where M ′ is the unique (up to iso-
morphism) indecomposable direct bimodule summand of bk′Gc with vertex ∆P ,
and where either N ′ = {0} or (N ′, π′) is a relatively ∆R-projective cover of M ′. As
before, Lemma 5.1 implies that M ′ ∼= k′⊗kM , where M is the unique indecompos-
able direct bimodule summand of bkGc with vertex ∆P . If N ′ = {0}, then X ′ is
the complex M ′ concentrated in degree 0, so is trivially of the form k′⊗kX, where
X is the complex M concentrated in degree 0. If N ′ 6= {0}, then N ′ is a relatively
∆R-projective cover of M ′. The properties collected in Lemma 5.3 imply that this
relative projective cover is isomorphic to one obtained from extending the scalars
in a relatively ∆R-projective cover of M , and hence in this case we also get that
X ′ ∼= k′⊗kX for some complex X. This completes the proof of Theorem 1.10. �

Proof of Theorem 1.12. Denote by b̄ the image of b in kG. Write b̄ =
∑
g∈G αgg

with coefficients αg ∈ k. By Proposition 4.5 we may assume that k = Fp[b̄]. Since all
central idempotents of OG belong to W (k)G, we may assume that O is absolutely

unramified. Let k̃ be a splitting field for G containing k, and let b̄′ be a block of
k̃G such that b̄b̄′ 6= 0. Set Õ = W (k̃) and let K̃ be the field of fractions of Õ. Let

k′ = k[b̄′] ⊆ k̃, let O′ = W (k′) and let K ′ the field of fractions of O′. Let b′ be
the block of O′G lifting b̄′. By Lemma 6.4 P is a defect group of b′. Let e′ be
the block of O′NG(P ) in Brauer correspondence with b′. Then ē′ē 6= 0, k = Fp[ē]
and k′ = k[ē′]. By Theorem 1.10, applied to the block b′ and the extension of

p-modular systems (K ′,O′, k′) ⊆ (K̃, Õ, k̃) there is a splendid Rickard complex
X ′ of (O′Gb′,O′NG(P )e′)-bimodules. It follows from Theorem 6.5 that there is a
splendid Rickard complex X of (OGb,ONG(P )e)-bimodules, whence the result. �

Remark 7.3. Zimmermann showed in [37] that Rouquier’s complex can be ex-
tended to Green orders, a concept due to Roggenkamp [30]. This might provide
alternative proofs of the Theorems 1.10 and 1.12. In order to apply Zimmermann’s
result one would need to show that OGb and ONG(P )e are Green orders whose
underlying structure data, as required in [37], coincide.

8. Descent for Morita equivalences with endopermutation source

We briefly recall some notation and general facts about endopermutation mod-
ules over p-groups, which we will use without further reference. Let (K,O, k) be
a p-modular system, and let P be a finite p-group. By an endopermutation OP -
module we will always mean an endopermutation O-lattice.

By results of Dade [5], the tensor product of two indecomposable endopermuta-
tion OP -modules (respectively kP -modules) with vertex P has a unique indecom-
posable direct summand with vertex P ; this induces an abelian group structure
on the set of isomorphism classes of indecomposable endopermutation OP -modules
(respectively kP -modules) with vertex P . The resulting group is denoted DO(P )
(respectively Dk(P )), called the Dade group of P over O (respectively k). Let V be
an endopermutation OP -module (respectively kP -module) having an indecompos-
able direct summand with vertex P . For any subgroup Q of P , the indecomposable
direct summands of ResPQ(V ) with vertex P are all isomorphic, and we denote by

VQ an indecomposable direct summand of ResPQ(V ) with vertex Q. If V is an inde-

composable endopermutation OP -module, then V̄ = k⊗O V is an indecomposable
endopermutation kP -module with the same vertices.
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Let F be a saturated fusion system on P . Following the terminology in [21,
3.3] we say that the class [V ] of an endopermutation OP -module (respectively kP -
module) V in the Dade group DO(P ) is F-stable if for every isomorphism ϕ : Q→
R in F between two subgroups Q, R of P we have VQ ∼= ϕVR. Here ϕVR is the
OQ-module (respectively kQ-module) which is equal to VR as an O-module (re-
spectively k-module), with u ∈ Q acting as ϕ(u) on VR. The F-stable classes
of indecomposable endopermutation OP -modules (respectively kP -modules) with
vertex P form a subgroup of DO(P ) (respectively Dk(P )), denoted DO(P,F) (re-
spectively Dk(P,F)). The F-stability of the class [V ] is a slightly weaker condition
than the F-stability of the actual module V . More precisely, an OP -module V is
F-stable if for every isomorphism ϕ : Q→ R in F between two subgroups Q, R of
P we have ResPQ(V ) ∼= ϕResPR(V ). If V is an F-stable endopermutation OP -module
having an indecomposable direct summand VP with vertex P , then the class [VP ]
in DO(P ) is clearly F-stable. We will need the following result.

Proposition 8.1 ([21, Proposition 3.7]). Let P be a finite p-group, F a saturated
fusion system on P and V and indecomposable endopermutation OP -module with
vertex P such that the class of [V ] in DO(P ) is F-stable. Then there exists an
F-stable endopermutation OP -module V ′ having a direct summand isomorphic to
V . Moreover, we may choose V ′ to have O-rank prime to p, and the analogous
result holds with k instead of O.

The statement on the rank is not made explicitly in [21, Proposition 3.7], and
this Proposition is stated there only over k, but the slightly stronger version above
follows immediately from the construction of V ′ in the proof of that Proposition in
[21].

For P , Q finite p-groups, F a fusion system on P and ϕ : P → Q a group
isomorphism, we set ∆ϕ = {(u, ϕ(u)) | u ∈ P}, and we denote by ϕF the fusion
system on Q induced by F via the isomorphism ϕ. That is, for R, S subgroups of
P , we have HomϕF (ϕ(R), ϕ(S)) = ϕ ◦ HomF (R,S) ◦ ϕ−1, where we use the same
notation ϕ, ϕ−1 for their restrictions to S, ϕ(R), respectively.

The proof of Theorem 1.13 requires the following Lemma, due to Puig, which
summarises some of the essential properties of stable equivalences of Morita type
with endopermutation source. We assume in the remainder of this section that k
is large enough for all finite groups and their subgroups, so that fusion systems of
blocks are saturated.

Lemma 8.2 ([27, 7.6]). Let G, H be finite groups, b, c blocks of OG, OH with
defect groups P , Q, respectively, and let i ∈ (OGb)P and j ∈ (OHc)P be source
idempotents. Denote by F the fusion system on P of b determined by i, and de-
note by G the fusion system on Q determined by j. Let M be an indecomposable
(OGb,OHc)-bimodule inducing a stable equivalence of Morita type with endoper-
mutation source.

Then there is an isomorphism ϕ : P → Q and an indecomposable endopermuta-
tion ∆ϕ-module V such that M is isomorphic to a direct summand of

OGi⊗OP IndP×Q∆ϕ (V )⊗OQ jOH

as an (OGb,OHc)-bimodule. For any such ϕ and V , the following hold.

(a) ∆ϕ is a vertex of M and V is a source of M .
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(b) We have ϕF = G, and when regarded as an OP -module via the canonical iso-
morphism P ∼= ∆ϕ, the class [V ] of the endopermutation module V is F-stable.

See also [20, 9.11.2] for a proof of the above Lemma.

Lemma 8.3. Let G, H be finite groups, b, c blocks of OG, OH, respectively, with
a common defect group P , and let i ∈ (OGb)∆P and j ∈ (OHc)∆P be source
idempotents. Suppose that i and j determine the same fusion system F on P . Let
V be an indecomposable endopermutation OP -module with vertex P such that [V ]
is F-stable. Consider V as an O∆P -module via the canonical isomorphism ∆P ∼=
P . Set

X = OGi⊗OP IndP×P∆P (V )⊗OP jOH
The canonical algebra homomorphism

EndO(G×H)(X)→ Endk(G×H)(k ⊗O X)

is surjective. In particular, for any direct summand M̄ of k ⊗O X there is a direct
summand M of X such that k ⊗O M ∼= M̄ .

Proof. Set A = iOGi and B = jOHj, and set

U = A⊗OP IndP×P∆P (V )⊗OP B .

Set Ā = k ⊗O A, B̄ = k ⊗O B, and Ū = k ⊗O U . Since multiplication by a source
idempotent is a Morita equivalence, it suffices to show that the canonical map

EndA⊗OBop(U)→ EndĀ⊗kB̄op(Ū)

is surjective. By a standard adjunction, we have an isomorphism

EndA⊗OBop(U) ∼= HomO∆P (V,U) .

Thus we need to show that the right side maps onto the corresponding expression
over k. The right side is equal to the space of O∆P -fixed points in the module

HomO(V,U) ∼= V ∨ ⊗O U .

Thus we need to show the surjectivity of the canonical map

(V ∨ ⊗O U)∆P → (V̄ ∨ ⊗k Ū)∆P .

Fixed points in a permutation module with respect to a finite group action over
either O or k are spanned by the orbit sums of a permutation basis, and hence for
the surjectivity of the previous map it suffices to show that

V ∨ ⊗O U
is a permutation O∆P -module. By [19, Proposition 4.1], as an O∆P -module, U is
an endopermutation O∆P -module having V as a direct summand. Thus U∨⊗O U
is a permutation O∆P -module having V ∨ ⊗U is a direct summand. In particular,
V ∨ ⊗O U is a permutation O∆P -module as required. The last statement follows
from lifting idempotents. �

As a consequence of the classification theorem of endopermutation modules over
finite p-groups, if U is an endopermutation kP -module having an indecomposable
direct summand with vertex P , then there exists an endopermutation OP -module
V such that V̄ ∼= U (see [35, Theorem 14.2]). In particular, the canonical map
DO(P ) → Dk(P ) is surjective (cf. [2, Corollary 8.5]). By standard properties of
endopermutation modules, the kernel of this map is Hom(P,O×). Further, for any
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saturated fusion system F on P , if V or its class [V ] is F-stable, then V̄ or its
class [V̄ ] is F-stable, respectively. In particular, the surjection DO(P ) → Dk(P )
restricts to a map from DO(P,F) to Dk(P,F). For fusion systems of finite groups,
the following result has also been observed by Lassueur and Thévenaz in [14, Lemma
4.1].

Lemma 8.4. Let P be a finite p-group and F a saturated fusion system on P . The
canonical map DO(P,F)→ Dk(P,F) is surjective.

Proof. Let U be an indecomposable endopermutation kP -module with vertex P
such that the class [U ] of U is in Dk(P ;F). By Proposition 8.1 there is an F-stable
endopermutation kP -module U ′ of dimension prime to p having a direct summand
isomorphic to U . By the remarks at the beginning of this section, there is an
endopermutation OP -module V ′ of determinant 1 such that V̄ ′ ∼= U . Moreover,
the determinant 1 condition implies that V ′ is unique up to isomorphism (see e. g.

[34, Lemma (28.1)]). Then, for Q a subgroup of P , the OQ-module ResPQ(V ′) of

V ′ is also the unique - up to isomorphism - lift of the kQ-module ResPQ(U ′) with

determinant 1, and for ϕ : Q→ R an isomorphism in F , the OQ-module ϕResPR(V ′)

is the lift with determinant 1 of the kQ-module ϕResPR(U ′). Thus the F-stability of
U ′ implies that V ′ is an F-stable OP -module. But then the class of V is F-stable
in DO(P ;F). By construction, we have V̄ ∼= U , proving the result. �

Proof of Theorem 1.13. Let M̄ be an indecomposable (kGb̄, kHc̄)-bimodule induc-
ing a Morita equivalence (resp. stable equivalence of Morita type). Suppose that
M̄ has endopermutation source V̄ . By Lemma 8.2, we may identify a defect group
P of b with a defect group of c, such that M̄ is a direct summand of

kGī⊗kP IndP×P∆P (V̄ )⊗kP j̄kH
for some source idempotents ī, j̄ of b̄, c̄. Moreover, still by Lemma 8.2, these two
source idempotents determine the same fusion system F on P , and the class [V̄ ]
in Dk(P ) is F-stable, where here V̄ is regarded as a kP -module. By Lemma 8.4
there is an endopermutation OP -module V satisfying V̄ ∼= k⊗O V such that [V ] is
F-stable in DO(P ). It follows from Lemma 8.3 that there is a direct summand M
of

OGi⊗OP IndP×P∆P (V )⊗OP jOH
satisfying M̄ ∼= k⊗OM , where i, j are source idempotents lifting ī, j̄. By construc-
tion, M has vertex ∆P and source V , and by Proposition 4.5, M induces a Morita
equivalence (resp. stable equivalence of Morita type). This proves (a). A Morita
equivalence (resp. stable equivalence of Morita type) between OGb and OHc with
endopermutation source induces clearly such an equivalence with endopermutation
source between kGb̄ and kHc̄, and by (a), this lifts back to an equivalence between
W (k)Gb and W (k)Hc with the properties as stated in (b). �

References

[1] R. Boltje and B. Xu, On p-permutation equivalences: between Rickard equivalences and

isotypies, Trans. Amer. Math. Soc 360 (2008), 5067–5087.
[2] S. Bouc, The Dade group of a p-group, Invent. Math., 164 (2006), 189–231.
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