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Privacy-preserving 1Vector based Speaker
Verification

Yogachandran Rahulamathavan, Kunaraj R Sutharsini, Indranil Ghosh Ray,
Rongxing Lu, and Muttukrishnan Rajarajan

Abstract—This paper proposes an efficient algorithm to per-
form a privacy-preserving speaker verification based on the
iVector and linear discriminant analysis. In this research we
have considered a scenario in which the users enrol their voice
biometric with the third-party service providers to access the
different services (i.e., banking). Once the enrolment is completed,
the users can verify themselves to the system using their voice
instead of passwords. Since the voice is unique for everyone,
storing the extracted voice features of the user at the third-party
server raises several privacy concerns. To address this challenge,
this paper proposes a novel technique based on randomisation
to perform voice authentication, which allows the user to enrol
and verify their voice in the randomised domain. To achieve
this, the iVector based speaker verification technique has been
redesigned to work on the randomised domain. The proposed
algorithm is validated using the TIMIT dataset. In addition,
the proposed algorithm does not compromise the accuracy due
to the randomisation as the additional complexity due to the
randomisation is negligible.

Index Terms—Privacy, security, speech, iVector, authentication,
random domain.

I. INTRODUCTION

RADITIONAL authentication methods such as pass-

words, PINs, and memorable words can be easily forgot-
ten, lost, guessed, stolen, or shared. However, authentication
using anatomical traits such as fingerprint, face, palm print, iris
and voice are very difficult to forge since they are physically
linked to the user. Thus, biometric systems impart higher levels
of security and have seen a rapid proliferation in a wide variety
of government and commercial applications around the world
in the last two decades [2]. However, various security and
privacy challenges deter the public confidence in adopting
biometric based authentication systems. There are several
security and privacy challenges that exist in such systems as
described below:

Non-revocability: It is impossible to reverse the biometric
data once its compromised; hence, once lost the same values
cannot be reused. In case if a person’s fingerprint data is
compromised then she or he may need to re-enrol using
different fingers. If the stolen biometric data characterises
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voice then it is not wiser for that person to use voice-based
authentication for different service providers. In addition it is
also possible for someone (adversary) to record an individual’s
voice and launch an impersonation attack. The impact of this
type of attack is minimal compared to an attack on the server
containing individual’s biometric data. In order to overcome
this vulnerability one of the main aims of this paper is to
protect the biometric data that is stored in the third party
untrusted server.

Privacy compromise: Inappropriate use of biometric data
may breach the user’s privacy directly and indirectly. The
privacy breaches can be categorised into three types as below:

e Biometric data privacy compromise: The raw biometric
data of the user can be recovered from the stored tem-
plates if there are no protections. For example, many
fingerprint-based systems use minutiae features and store
minutiae extracted from a reference fingerprint image
as templates. It is possible to reconstruct the original
fingerprint image from the stored minutiae.

o Information privacy compromise: When someone enrols
their biometric data in different services with the same
biometric trait, their biometric templates in all of these
systems are identical. This will allow, templates from
one system to be used to gain access to another system
whereby the user is not authorised to access.

o Identity privacy compromise: Since the biometric tem-
plates used for different services are reasonably similar,
there is a possibility for linkability based attacks.

In the literature (see Section II), there are a number of
cryptographic techniques that have been proposed to modify
various biometric verification algorithms designed for different
biometrics data to mitigate the above problems. To the best of
our knowledge, this is the first privacy-preserving work that
redesigns the state-of-the-art iVector based speaker verifica-
tion technique [1] without compromising the accuracy for a
negligible computational overhead. The proposed scheme has
been validated using the well known TIMIT speech corpus [6].
Theoretical proofs have been provided to validate the privacy
and security of the system. Rigorous experiments show that
the scheme mitigates the above issues without compromising
the accuracy.

The rest of this paper is organised as follows: The related
work is discussed in Section II. The speaker verification model
without privacy restriction, mathematical tools and notations
necessary for the proposed algorithm are given in Section
II. In Section IV, we redesign the iVector based speaker



verification model using randomisation technique and the
associated performance results are given in Section V. The
security and privacy analysis is given in Section VI followed
by conclusions are discussions.

II. RELATED WORKS

The speaker verification over the Internet is becoming very
popular after banks and other prominent industries are adopt-
ing speaker verification as a mean to verify its customers. At
the same time, recent changes in privacy legislation i.e., GDPR
in Europe, are enforcing organisations to provide sufficient
privacy guarantee when they use, process and store customer
data. Since voice data is unique, the privacy of the voice data
should be guaranteed.

This requires a novel speaker verification solution with high
accuracy and privacy guarantee. Privacy-preserving research
address this challenge by balancing privacy and usability of
data. When it comes to a privacy-preserving solution, it is
all about transforming the existing algorithm to process the
inputs when the inputs are either encrypted via homomorphic
encryption [3], [5], [7]-[10] or transformed via salting [11],
[17].

The ultimate goal of homomorphic encryption based
privacy-preserving solutions is protecting the privacy of the
input data. However, each of these works redesign different
machine learning algorithms i.e., face recognition based on
the principal component analysis in [7], facial expression
recognition based on the linear discriminant analysis in [10],
multi-class problem based on support vector machine in [5],
[9], are the few to mention here. The existing homomor-
phic encryption-based privacy-preserving solutions achieve the
same accuracy as their corresponding traditional algorithms
subject to hefty computational overhead — in some cases
the time required to perform the necessary operations is
around minutes [3], [10]. On the other hand, salting based
cancellable biometric solutions increase the computation speed
significantly compared to the homomorphic encryption-based
solutions [11], [17]. However, these solutions either decrease
the accuracy or privacy.

There are only a few notable works exist in the domain
of privacy-preserving speaker verification that we can use to
benchmark our solution [3], [11], [14], [16], [17]. In [14],
Smaragdis and Shashanka proposed the first application of
secure multi-party computation (SMC) concepts for privacy-
constrained speech technology. In their work, they realised
secure speech recognition using the hidden Markov model
(HMM) and a generalised version of the Paillier public-key
scheme, which allowed training and classification between
multiple parties and achieved perfect accuracy.

Pathak et. al redesigned the Gaussian Mixture Model
(GMM) based speaker recognition [3] to achieve a similar
privacy goal. The work in [3] relies on homomorphic cryp-
tosystems such as BGN and Paillier encryption. This work
has shown a proof-of-concept of privacy-preserving speaker
recognition without compromising the accuracy. However, the
shortcoming of these cryptographic approaches [3], [14] is that
far too much time is spent on the encryption, which makes

it impractical for real-life applications i.e., [3] requires few
minutes for authentication.

In order to overcome the heavy computation that is in-
volved with the homomorphic encryption schemes [3], [14],
string-matching frameworks were proposed in [11], [17]. The
schemes in [11], [17] proposed to convert the speech input
represented by the super-vectors to bit strings using locality
sensitive hashing (LSH) and counted the exact matches. Since
it is easy to perform string comparison with privacy, the
method proves to be more efficient; however, it lacks accuracy
with EER=11.86%.

To the best of our knowledge, one and only work that pro-
poses a privacy-preserving solution for ivector based speaker
verification is [16]. The work in [16] presented a secure binary
embedding (SBE) which is a hashing scheme in an attempt to
use the iVector based speaker recognition to support privacy.
The work in [16] used a hashing technique where similar
templates are placed in close proximity in the hash domain.
The inherent nature of hashing, the verification accuracy ob-
tained in [16] is much lower than the true accuracy (when the
traditional ivector solution provides EER = 1%, their proposed
privacy-preserving solution provides EER = 20% [16] when
the privacy is high).

In contrast to all the above works, the proposed work uses
randomisation technique from information theory which is nei-
ther computationally inefficient nor compromises the privacy.
Our work not only provides the speed necessary for real-time
computation but also provide information-theoretical privacy
and highest possible accuracy. This solution is significantly
advanced than the existing solution in terms of accuracy, pri-
vacy and speed. Note that the proposed solution can be applied
to variants of ivector based speaker verification solutions that
calculates scores using cosine distances. If a solution such as
PLDA based ivector [19] uses different scoring method then
the proposed solution may not be sufficient.

III. SPEAKER RECOGNITION BASED ON IVECTOR AND
COSINE DISTANCE SCORING

Recently Dehak et. al [1] proposed a pioneering work,
namely iVector, for speaker verification. The iVector model
generates a low-dimensional speaker-and-channel dependent
space using factor analysis. Serveral channel compensation
techniques such as, within-class covariance normalisation,
linear discriminant analysis, and nuisance attribute projection,
were applied in [1] on this low dimensional space to remove
the channel dependent noise. Through rigorous experiments,
the work in [1] concluded that iVector and linear discriminant
based speaker verification outperforms the other competitive
techniques and became one of the state-of- the-art speaker
verification techniques.

Hence, as discussed in Section I, a privacy-preserving ver-
sion of ivector based speaker verification model is developed
in this paper. The objective of this work is to achieve privacy
within user-server settings without reducing the accuracy at a
negligible complexity overhead. The following section briefly
describes the speaker verification model proposed in [1].

The work proposed in [1] mainly constitutes of two parts:
1) iVector feature extraction and speaker model building and



2) speaker verification. The first part extracts features of
speech using several techniques such as Mel frequency cepstral
coefficients (MFCC), Gaussian Mixture Model (GMM), Uni-
versal Back ground model (UBM), and maximum a posterior
adaptation (MAP) [4] followed by speaker model building
i.e., obtaining matrix R in the equation (2) below. Once R
is obtained, voice feature of a user, called ivector, Wiarget,
can be enrolled in the server. For additional technical details
of the first part, the readers are referred to [1].

During the second part (i.e., speaker verification), the user
is required to send voice feature vector wyest to the server.
The authors in [1] use cosine distance scoring for speaker
verification. The cosine distance scoring computes the value of
the cosine kernel between the target speaker i-vector Wiargetr €
R%*1 and the test i-vector wies; € R4*! as a decision score
[1]

< Wtarget7wtest > > 0
)

6]

score(Wiargot, Wiest) = [Wearget ||| [Weest|| =
arge es

where dimension d is the size of the iVector (i.e., d = 200 in
the experiments in Section V-D). In order to compensate the
channel effect, authors in [1] considered three different channel
compensation techniques namely 1) within-class covariance
normalisation (WCCN), 2) linear discriminant analysis (LDA),
and 3) nuisance attribute projection (NAP). All three tech-
niques above compute projection matrices Pwceon, Prpas
and Pyap from training speech data. In the following the
projection matrices are denoted by P (i.e., P = Pwceon =
Prpa = Pnap ).

In order to preserve the inner-product in (1), and to apply
these channel compensation techniques, Dehak et. al [1] used
the following approach

score(Wiarget, Weest)
(PTWtargct )T (PTWtcst )
\/(PTWtarget )T (PTWtarget )\/(PTWtest )T (PTWtest ) 7

Wl  RWies
_ target test > 0 )

wl L Rw vwl . Rw =
target target’ test test

where R = PPT ¢ R¥*4,

If we consider a traditional speaker recognition system
(i.e., without privacy constraints), during the enrolment phase,
the user device extracts a feature vector w; from a speech
utterance and send it to server. The server obtains R from all
the users who uses the system for speaker verification. During
the recognition phase, the user device extracts another feature
vector wo from a speech utterance and send it to the server.
Now the server computes the score using the feature vectors
w; and wo and matrix R as follows:

T
w; Rw
score(wy, wa) = L 2 . 3)
\/W{Rwl\/ngWQ
If score(wy,wz) > 6 then the server will assume that the
feature vectors w; and wy are generated by the same user.

IV. MODEL, OVERVIEW AND PRIVACY-PRESERVING
APPROACH

Consider a scenario where N number of users registered
with a service provider using their voice biometric. Lets

refer to the voice template enrolled in the server w; as the
speaker model. Once the enrolment is completed, the server
authenticates the user using user’s voice. To be authenticated,
the user needs to send a voice template wo to the server -
refer this template as the fest feature. The server verifies the
test feature against the speaker model.

Since this paper proposes a privacy-preserving model, lets
introduce a secret key (refer Section IV-B for more details)
to randomise (i.e., similar to encryption) speaker model and
test feature. Once the speaker model and test feature are
randomised (refer them as randomised speaker model and
randomised test feature), the secret key is split into two shared-
secret-keys (one for user and one for server).

Since there are N users, the server holds N randomised
speaker models and N shared secret keys. During the au-
thentication stage, the user device captures user’s speech
and generates a test feature vector. Then the user device
randomises the test feature vector using it’s shared secret key
and send the randomised test feature to the server. Within this
context, lets define the following privacy threats and goals of
the proposed work.

Revocablity: If the randomised speaker model at the server is
compromised by an adversary, it should be possible the revoke
the randomised speaker model and enrol new randomised
speaker model.

Template diversity: If an adversary has access to the
randomised speaker models registered at different service
providers, then it should be infeasible for that adversary to
reveal whether the same user has been registered for different
services.

Compromising the test feature: If an adversary has access to
the the test feature used during the authentication stage, then
it should be infeasible for the adversary to impersonate the
user in future.

Compromising the data from the user device: If the secret key
is compromised by the adversary from the user’s device then
the adversary cannot use that key to impersonate the user in
future.

In order to address the above privacy threats, the traditional
speaker verification needs to be redesigned. Lets introduce
a cryptographic primitive called randomisation technique in
the following section to develop a privacy-preserving speaker
verification.

A. Randomisation technique

Denote an integer message m € M = {—2M to 2™} and
an integer secret key s € S = {28 —2M o 28 4 2M}
where M and R are integers and 2% >> 2M_ Lets assume that
the secret key s € S is generated randomly from a uniform
distribution in the range of S = {—2%—2M (0 2% +2M} Now
the following algorithm can be used to randomise the message
m into a randomised message 7 € R = {—2 0 2%} using
s.

Lets consider a toy example with a message domain M =
{-2 to 2} (ie., M = 1), randomised message domain
R = {4 to 4} (ie, R = 2) and secret key domain
S ={-6t 6} M =1and R = 2) to understand the



Algorithm 1 Randomisation Technique
1: procedure RANDOMISE(m)

2: Generate secret key s

3: DOr=m+s

4  IFr € {-10" 1o 107}

5: Return r, s

6: ElselF

7: Go to Step 2

8: EndIF

Table 1
RANDOMISATION: A TOY EXAMPLE.
Randomised Possible Possible
Messages Messages Secret Key Values
[-4 to 4] [-2 to 2] [-6 to 6]
Ge,R=2)| e, M=1) | (ie, M =1and R=2)

-4 2,-1,0,1,2 -2,-3,-4,-5,-6
-3 -2,-1,0,1,2 -1,-2,-3,4,-5
-2 -2,-1,0,1,2 0, -1, -2, -3, 4
-1 -2,-1,0,1,2 1,0, -1, -2, -3
0 -2,-1,0,1,2 2,1,0,-1, -2
1 2,-1,0,1,2 3,2,1,0, -1
2 2,-1,0,1,2 4,3,2,1,0
3 -2,-1,0,1,2 5,4,3,2,1
4 -2,-1,0,1,2 6,5,4,3,2

above randomisation technique. The possible messages, secret
keys and the corresponding randomised messages for the toy
example are shown in Table L.

Let’s suppose the randomised message is —4. This —4 could
have been obtained from any messages in the message domain
e, 4=2+2o0or=-1+-3o0or=0+-4o0or=1+ -
5 or = 2 + -6). Similarly if the randomised message is —3,
this randomised message could have been obtained from any
possible messages (i.e., -3 =-2 +-lor=-1+-2o0r=0+
3or=1+ -4 or =2+ -5). It is obvious from Table I any
randomised message could be generated from any message.
Hence, if an attacker compromises a randomised message then
it is impossible for the adversary to recover message m from
the randomised message r without knowing the secret key s
i.e., posterior probability and prior probability of the messages
are equal. Hence this algorithm follows information-theoretic
security [13] (refer Section VI for formal proof).

B. The Proposed Privacy-preserving approach

The previous section described the mathematical model
for state-of-the-art speaker recognition without any privacy
requirements. This section proposes two algorithms namely
1) basic approach and 2) strong approach. The basic approach
protects the speaker model wy residing at the server side and
the strong approach protects both the speaker model and test
feature vector, w; and wy. The following sections explain
both the approaches in detail.

C. The Basic Approach

The basic approach (BA) transforms the speaker model
w; into a different vector using a one-way cryptographic

function such that the transformed version leak nothing about
the original values of w albeit it can still be used for speaker
recognition. This approach protects against any unwanted
privacy leakages if the server happens to be compromised.
The randomisation technique proposed in Algorithm 1 can be
used as a one-way cryptographic function.

The user uses Algorithm 1 to randomise the feature vector
w1 using a random vector r. Then user enrols wq +r; at the
server and keeps r;. During the recognition phase, the user
sends not only the feature vector wo but also r; to the server.
The server first obtains w; by subtracting r; from the stored
randomised feature w; + r; followed by executing (3). Once
the recognition process is completed, the server will keep only
the randomised vector w +r; and delete all other parameters
(i.e., ry, wWo and Wl).

Since the speaker model is randomised in the BA approach,
any attack on the server will not reveal wy to the adversaries.
In the event of an attack, the speaker model can be revoked
and a new speaker model can be generated. Note that this
approach cannot protect the privacy of user biometric if the
server has already been compromised by a malware which
can monitor the speaker verification process. Hence, the BA
approach trusts the server and assumes that the server follows
the procedure and free from malware.

D. The Strong Approach

The strong approach (SA) does not require a trusted server
for speaker recognition. The objective of the SA approach is
that even if the speaker verification server is being compro-
mised by a malware, it should be infeasible for the malware
to obtain w; and ws. To achieve this objective, during the
enrolment phase, the user randomises the feature vector wy
using random vectors r; and r, and enrols w; + r; and
w{ = w; + r, at the server and keeps r; and Wll/ = -
where

wi = wi +w. 4)

Then the user deletes wy from the user device (the intuition
behind this split is explained in Section VI-B). During the
speaker verification phase, the user randomises the test feature
vector wo using a random vector re and sends wo + 15 to the
server and keeps rs.

Then the server uses wy +ry, and wy + ro to compute (3)
as follows:

score(wi +r1, wg + ra)
(w1 +11)TR(wWy +12)
Vw1 + )T R(wy + 1)/ (we + r2)TR(wa + 1)
WTRWQ +ny

= ; (5
VWIRW, + noy/wi Rwy + ng3

where
ny = wiper + rTRwQ + I"{RI‘%
= waRrg + wzl’TRrg +rIRwy +rI Rry, (6)
ne = wi(2R)r; +r! Rry,
= w'T2R)r; + w!" (2R)r; 4+ rTRry, 7
ny = wi(2R)ry + riRry. 8)
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Figure 1. Message flow diagram of the proposed algorithm. Left figure shows the enrolment steps, right figure shows the verification steps, and the table
shows the parameters that are known only to the user and the parameters known only to the server.

In the numerator of (5), the true value wfRWQ has been
randomised by n;. Similarly, in the denominator of (5), the
true values w? Rw; and wi Rwy have been randomised by
ng, and ng, respectively. In order to correctly verify the user,
the server needs to calculate ni, no, and n3. However, the
server does not have all the variables to correctly computes
n1, ng, and ng. The table in Figure 1 shows all the variables
that are known only to the server and known only to the user.

Therefore, the user and server need to compute ni, ny, and
ns jointly without leaking any sensible information to each
other (i.e., secure two-party computation [15]). Lets define six
vectors uq, Si, Ug, Sg, Uz, and s3 as follows:

u; = -rQT vec(rgwi’T + worl + rrlT)} g c R(d+d2)“,
s1 = _wffTR vec(R)T}T c ]R(dJr<i2)X17

u; = [rlT vec(ryw)T vec(rlrf)T}T c R(d+2d2)><1,
So = -QWfTR vec(2R)T vec(R)T} ’ € R(@+2d)x1
uz; = [_vec(rQWQT)T vec(rQrQT)T}T c de"’m)

ss = [vec2R)T vec(R)T]T € R24° %1,

From the table in Figure 1, the vectors uj, us, and ug can
be obtained by the user without interacting with the server.
Similarly, the vectors si, ss, and s3 can be obtained by the
server without interacting with the user. Hence, the equations
(6) - (8) can be modified into

T T T
n1 = uy 81, N = U, S2, &n3:U383. (9)

To calculate ny, no, and ns, the user and server need to
interact with each other. The following subsection explains
this procedure.

E. The privacy-preserving scalar product algorithm

Since the server is not a trusted entity, the user cannot send
the vectors uj, ug, and ug to the server in the plain domain.
Similarly the server cannot send s;, s9, and s3 to the user
in the plain domain. To compute the required scalar products
in (9), the user and server follow privacy-preserving protocol
where no party can learn the other party’s input. At the end of
the protocol server should be able to obtain (9). This can be
achieved by the privacy-preserving scalar product algorithm in
Table II [18].

The user and server jointly execute the protocol in Table
II three times to compute (9). Initially the user generates a
number of random values to mask its input vector a (= u; for
first execution) and obtains masked vector [C1,Cy, ..., Cy].
As these masking operations use modulo reduction, the server
cannot reverse engineer and reveal the user’s input data from
[C1,Ca,...,C,] (refer [18] for the formal security proof).

Upon receiving [C1, Co, ..., C,], the server now performs
multiplication operations to get [D1, Do, ..., D,]. These val-
ues are then added through modulo addition followed by
masking operation using v and this is send to user. The user
obtains a’’b + ~ using the secret key s~! mod p. Finally
the server receives a’b + ~ from user and subtracts 7 to get
a’b (ie., = ul's;). Message flow diagram of the proposed
algorithm is shown in Figure 1.

V. PERFORMANCE ANALYSIS

In this section, we describe the dataset used in the ex-
periment and present results for the experiments performed
using both the traditional approach, i.e., without privacy and
proposed approach followed by the complexity, security, and
privacy analysis.

A. The dataset

TIMIT speech corpus [6] has been used to evaluate the
accuracy and reliability of the proposed algorithm. The TIMIT



Table II
PRIVACY-PRESERVING SCALAR PRODUCT ALGORITHM [18].
Input by User: a = [a1,...,a,]" € Fy
and Server: b = [b1,...,b,]" € F}
Output to Server: a’b
User performs the following operations:
Given security parameters ki, ko2, k3, ka,
choose two large primes «, p
such that |p| = k1, |a| = k2, set ant1 = any2 =0
Choose a large random number s € Z,, and n 4 2 random
numbers ¢;, ¢ = 1,2,...,n + 2, with |¢;| = k3
for each a;, 1 =1,2,....,n+ 2
Compute
C; = s(a;.a+ ¢;) mod p, a; #0
C; = sc; mod p, a; =0
end for
keeps s~ 'mod p secret,
and send (o, p,C1,...,Crhy2) to Server
Now Server executes the following operations
set bn+1 = bn+2 =0
for each b;, i =1,2,....n+ 2
Compute
D; = b;.a.C; mod p, b; #0
D, =r;.C; mod p, b; =0,
where 7; is a random number with |r;| = k4
end for
compute D = 372 D; 4+~ mod p
and send D back to User where |y| > | S7F? a;.b;|
Now User computes
E=5"'.D modpand get a’b +
=370 aibi+y= E(E mod of) ;2"‘1 o®)
and send a”’b + v to Server
Now Server obtains
aTb by subtracting v from a”b +
end procedure

speech corpus contains broadband recordings (each lasts for
around 3 seconds) of 630 speakers of eight major dialects of
American English. Each speaker has 10 speech samples. Out
of 10 samples, 8 were used to build the speaker model.

For experiment, the TIMIT data corpus has been split into
two: 1) the first two dialect regions with 151 speakers for
training and testing and 2) the last four dialect region with
277 speakers were used to build background model. Table III
shows the statistics of the TIMIT dataset.

Table III
TIMIT DATABASE.
Dialect
Region (DR) #Male | #Female | Total
DRI1 31 18 49
DR2 71 31 102
DR3 79 23 102
DR4 69 31 100
DR5 62 36 98
DR6 30 16 46
DR7 74 26 100
DR8 22 11 33
Total 438 192 630

B. Experiments on the TIMIT Database without privacy

To validate the proposed method, we first obtain the veri-
fication accuracy of the iVector algorithm on TIMIT dataset
using the pre-divided speech samples shown in Table III.

C. Definitions

The next subsections present various tests we conducted
to validate the proposed model. To facilitate the description
of tests, lets introduce several definitions used in speaker
verification to measure the performance: False Acceptance
Rate (FAR), False Rejection Rate (FRR), Equal Error Rate
(EER), and Detection Error Tradeoff (DET) curve'.

FAR and FRR are the two types of errors considered in
speaker recognition domain to measure the performance, and
are defined as follows:

_ Number of False Acceptance
« FAR= Total Numlljaer off ImlposterA Attempts x 100%’
e« FRR = Number of False Rejection % 100%’

Total Number of Geinune Attempts
where False Acceptance is when the system grants access to an

impostor, and False Rejection is when the system denies access
to an enrolled speaker. The EER is another criterion used
to compare the performance of speaker verification systems.
It represents the operating point where the FAR is equal to
the FRR. DET curve has been used in speaker verification to
view FAR, FRR, and EER on the same curve. The DET curve
comprises FRR in the y-axis and FAR on the x-axis. The EER
represents the point on the DET curve where both FRR and
FAR are equal.

D. Baseline Test

As described above, there are 151 users enrolled at the
server. There are two speech samples available for each user
for verification. To test the performance of the traditional (i.e.,
without privacy constraints) speaker recognition, the following
two tests are conducted:

1) Genuine Attempts:- Client-Client: In this test, for each
speaker, the score is calculated using the speaker’s speaker
model against the speaker’s two test utterances. Hence, scores
for 151 x 2 = 302 tests are obtained using (3).

2) Imposter Attempts:- Imposter-Client: In this test, each
speaker’s test utterances are tested against other 150 users’
speaker models. This leads to 151 x (151 — 1) x 2 = 45300
tests and the score for each test has been obtained using (3).
Figure 2 shows the distribution between genuine attempts and
imposter attempts tests. When the threshold 6§ = 1.34 the
equal error rate (EER) is 6.5%. We will use this result as
a benchmark to compare the performance of the proposed
algorithm.

E. Testing the proposed algorithm

Same experimental protocols described in Section V-D
has been repeated to test the proposed algorithm. Since the
privacy-preserving protocol in Table II is suitable for integers,
the decimal values in speaker models and test feature vectors

'DET curves are plotted using NIST DET-ware-v2.1 tool: Available On
line: https://www.nist.gov/file/65996, Accessed on Sth of June, 2018.



Table IV

SAMPLE DATA SHOWING THE EFFECTS OF SCALING, QUANTISATION AND RANDOMISATION.

Effect of Scaling (Supporting Data for Figure 3)

Effect of Randomisation (Supporting Data for Figure 4)

Randomising with

Randomising with

Randomising with

Sample Scaling (x100) | Scaling (x600) | Scaling (x1000) random number random number random number
iVector and Integer and Integer and Integer . . .
Values Quantisation Quantisation Quantisation in the range of in the range of in the range of
‘ ) ‘ [-10 to 10] [-100 to 100] [—10° to 10°]
0.010924 1 6 11 7 23 447961
0.017854 1 10 17 8 -6 359424
-0.027501 -2 -16 -27 -33 25 310168
0.017645 1 10 17 8 77 -674759
-0.025132 -2 -15 -25 -29 -88 -762030

Sample elements
of Projection

Scaling (x100)
and Integer

Scaling (x600)
and Integer

Scaling (x1000)
and Integer

Randomising with
random number
in the range of

Randomising with
random number
in the range of

Randomising with
random number
in the range of

Matrix R Quantisation Quantisation Quantisation [-10 to 10] [-100 to 100] [—10° to 10°]
2.080734 208 1248 2080 2088 2079 -1191
1.714698 171 1028 1714 1719 1704 921203
1.098638 109 659 1098 1095 1128 -318130
-1.406361 -140 -843 -1406 -1397 -1364 169130
-1.801433 -180 -1080 -1801 -1811 -1750 -554177
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Figure 2. Score distribution of genuine and imposter tests.

must be scaled to integers via scaling and quantisation opera-
tions followed by randomisation.

Table IV shows few examples for scaling, quantisation and
randomisation using the values of ivectors (i.e., w1 or ws) and
projection matrix (i.e., R). When the scaling factor increases,
the effect of quantisation is decreasing e.g., the sample value
in the first row in Table IV (0.010924) is almost half of the
value in the second row (0.017854). However, when scaling
factor is equal to 100 (2nd column), both the values became
equal. When the scaling factor has been set to 1000 (fourth
column), the ratio between both the values is getting closer to
the correct ratio.

Once the elements of input vectors are scaled and quantised
to nearest integers, the integers go through randomisation
process using random integers. The last three columns of Table
IV shows how the scaled values are randomised by different

Figure 3. The accuracy of the proposed scheme for various scaling factors.

sizes of random numbers. The fifth column in Table IV shows
how the scaled elements in fourth column are randomised
using random numbers between 10 and —10. Similarly last
column in Table IV shows how the scaled elements in fourth
column are randomised using random numbers between 10°
and —10°.

In order to evaluate the impact of scaling and rounding
operations, we repeated the two tests conducted in Section
V-D but using the proposed algorithm for scaling factors
s = 100, s = 200, s = 400, s = 600, s = 800, and
s = 1000 and randomisation with random numbers in the
range of —10° to 10°. Figure 3 shows the DET curves for the
above scaling factors. When the scaling factor increases from
100 to 1000, the accuracy of the proposed scheme approaches
the benchmark accuracy. For a scaling factor s = 1000,
the proposed algorithm illustrates identical recognition as the
benchmark. This validates that the proposed model does not
compromise the accuracy.
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Figure 4. The accuracy of the proposed scheme for various scaling factors.

In order to test the effect of randomisation (or to answer
why the scaled and quantised input elements are randomised
using large random numbers (10°) instead of 10), we repeated
the baseline test (experiment conducted in Section V-D) but
with a randomised test feature vector and projection matrix.
We used different size of random values ranging from 1 to
10° to randomise the elements of test features and projection
matrix (i.e., similar to 4, 5, and sixth columns in Table IV). We
also tested the baseline model with pure random vectors (i.e.,
generated independently of speech) as test features. As shown
in Figure 4, when the size of the random values decreases,
the accuracy increases. When the size of the random values
are in the range of 10°, there is no significant difference in
accuracy between random testing (Pure Random in the Figure
4) and randomised testing. It means if the input elements
are not masked by large random numbers then it is possible
for the adversary to infer the identity of the input samples.
However, when randomising the test features with larger
random numbers (i.e., 10° in this experiment), the accuracy
of the system is closer to the accuracy of pure random inputs.
It means when the input elements are randomised by large
random numbers, there is no different in statistical properties
between pure random values and randomised input values.

F. Complexity Analysis

The proposed privacy-preserving algorithms require addi-
tional mathematical operations to protect the parameters from
the untrusted server. The BA algorithm does not require
any additional mathematical operations except addition and
subtraction, hence we assume the complexity of BA is same
as the traditional (i.e., without privacy constraint) algorithm.
Lets denote the time complexity for one multiplication as ¢,
and for square-root as V- Since the ivector feature extraction is
common for both the traditional and proposed SA algorithms,
lets compare the complexity of both the algorithm after the
feature extraction.

In the traditional algorithm, once the ivector has been
extracted, the user device does not require to perform any
operations. However, the server needs to compute (3) which
requires 3(1%2 + D)tpu + /- operations if the ivectors are
l—dimensional. In the proposed SA algorithm, the user device
and server need to perform some additional computations
to obtain (9) via scalar product algorithm in Figure II. To
execute the algorithm in Figure II, the server needs to perform
(2n+4)t,. and the user device needs to perform (2n+5)t,,.1
if the dimension of the input vectors is n.

In order to compute the scalar products in (3), the user and
server need to invoke the protocol illustrated in Figure II twice
(to obtain nq and ng). It should be noted that no in (3) can be
calculated offline and pre-stored at the server side as it does
not require speaker recognition parameters. Hence the total
computational cost for the user and server would be 2(2n +
5)tmur and 2(2n + 4)t it + 3(1% + Dt ot + 2/~ respectively.
Hence the computational overheads for the user and server are
2(2n+5)tmw and 2(2n44)t,.,, respectively (i.e., subtract the
traditional algorithm’s complexity from proposed algorithm’s
complexity). It is obvious from these overheads that the user
device needs to do more additional work than the server in
order to protect the privacy.

In order to evaluate the complexity, we implemented the
proposed scheme on a computer - Intel(R) Core(TM) i5-
42100 CPU @1.70GHz with 8GM RAM - using Mat-
lab 2016a. We modified the iVector library from GitHub
(github.com/pedrocolon93/ivectormatlabmsrit) to implement
the proposed scheme. Using this implementation, we tested
the complexity of the proposed scheme for different values
of n. We performed 50 iterations of the proposed scheme
by varying the input size n from 103 to 105. The average
time taken is illustrated in Figure 5. The computational time
increases linearly up to n = 10°. From n = 10°, the time
increases exponentially due to processing large amount of data
in a sequential order. This problem can be solved by parallel
processing by executing the scalar product computation in
multiple threads. For example, if n = 6, instead of calculating
[0,1 ao a3z a4 as a6].[b1 b2 b3 b4 b5 b6]T sequentially, the
problem can be split into two: [a; as as3].[by by b3]T and
[as as ag).[bs bs be)T. The results can be added in the end.

For the experiment in Section V, the dimension of iVector
has been set to d = 200 [1]. Therefore the sizes of the input
vectors in (9) for Table II, are in the range of n = 40000 to
n = 80000. This is within the linear time complexity range
i.e., the incurred computational overhead is less than 0.05
seconds for both the user and server.

VI. SECURITY AND PRIVACY ANALYSIS

Since the proposed algorithm relies on randomisation, the
following subsections provide a formal security proof for
the proposed randomisation algorithm in Section VI-A and
a privacy analysis for the proposed SA algorithm in Section
VI-B.
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Figure 5. Computational overheads of the proposed scheme for user and
server.

A. Security model and proof for the proposed randomisation
algorithm in Section VI-A

This section proves that the proposed randomisation al-
gorithm in Section IV-A satisfies the information-theoretic
security. Denote a mapping f : M x & — R. We call such
a mapping f over a message space M to be perfectly random
if and only if for an uniform probability distribution s over
S, every message m € M and every randomised message
r € R, PrlM = m|R = r| is constant greater than zero,
i.e., looking at the randomised message no one can guess the
message. Theorem 1 shows that Algorithm 1 in Section IV-A
attains perfect randomisation.

Theorem I1: Let M = [—a,a]NZ and S = [v1,v2] N Z be
two sets such that a < v; < v1 4+ a < va. Also let
R={m+s;me M,s € Svi+a<m+r <wvy—a}.
Then for any r € R, Pr(M =m|R=r] = %

Proof: Let r € R and m € M. Then, it is easy to check
that v <r —m < vy. So,
PrilM =m|R=7r]= Prjr—s=m|R=r]
= Pr[r —s=m)|
= Pr[s =r —m)|
1
S|
|

The perfect randomness leads to adaptive indistinguishabil-
ity. But before giving the proof, we first consider the definition
of adaptive indistinguishability game.

Definition 1: [Gm_Ad 4 »(1°)]

1. The adversary A is given oracle access to Encs(.) and
outputs a pair of messages mg,m; € M of the same
length.

2. Random bit b < {0,1} is chosen, and s + S is also
chosen randomly. Then a ciphertext r = s + my is
computed and given to A.

3. The adversary A continues to have oracle access to
Encg(.) and outputs a bit b'.

4. The output of the experiment is defined to be 1 if &’ = b,
and 0 otherwise. In case Gm_Ad4 »(1°) = 1, we say
that A succeeded.

Definition 2: An encryption scheme, denoted by 7 =
(KeyGen, Enc, Dec), is said to be adaptively secure under
chosen plain text attack if for all probabilistic polynomial time
adversaries A, there exists a negligible function negl such that
PriGm_Ada(1°) = 1] < 2+negl(s), where the probability
is taken over the random coins used by 4, as well as the
random coins used in the game.

Let us consider the encryption scheme =/ =
(Gen, Encg, Decs) such that Gen() samples uniformly
at random a key s from the set S, i.e., Pr[S = s] = ﬁ
For any m € M, Encs(m) = m + s and for any r € R,
Decs(r) = r — s. Following theorem shows that this scheme
is adaptively secure.

Theorem 2: 7' is adaptively secure under chosen plain text
attack.

Proof: Let |S| ~ 2> Let us consider the game
Gm_Ad z - (1*). Note that A being a polynomial adversary,
may call the encryption oracle polynomial (in \) number of
times before receiving challenge cipher. Let this polynomial
be p(\). Let Repeat be the event that the key used in challenge
phase is used in any of the previous calls.

Note that Pr[(Gm_Ada. (1)) = 1) A Repeat] <
Pr[Repeat] = %.

Also when Repeat does not occur, adversary has absolutely
a random view and thus,
Pr((Gm_Ad 4 . (1) = 1
Pr(Repeat] x Pr[(Gm_Ad (1)
Pr[(Gm_Ad 4 (1*) = 1)| Repeat] = 1.
So,

A Repeat] =
= 1)| Repear] <

PT[Gm_AdA7ﬂ-I(1>\) = 1]
= PT[(Gm_AdA,w'(l/\) = 1) A Repeat] +
Pr((Gm_Ad (1) = 1) A Repeat]
<P 1

- 22 2

We note that Z 2(3\) is negligible in A which completes the proof.
|

B. Privacy Analysis privacy analysis for the proposed SA
algorithm in Section VI-B

The ultimate aim of the proposed algorithms is to protect
user voice biometrics stored at and transmitted to the server.
Both the proposed BA and SA algorithms randomise the voice
feature vectors using random vectors and invoke two-party
computation. During the two-party computations, if the user
and server exploit the proposed randomisation algorithm to
mask the data, as shown in the previous section, then the
randomised data is information theoretically secure. Hence
lets prove that the proposed SA algorithm does not leak any
unintended data during the two-party computation.



1) Privacy proof for SA algorithm: During the enrolment
process, the user device randomises the ivector wj using
the proposed randomisation algorithm and send only the
randomised ivector w; +r; and w{ = w; 4 r, to the server
and stores the random numbers r; and —r,, in the user device.
Then the user device deletes wy and r,. After this enrolment
process, the server holds wy + r; and wi = w; + r, while
the user holds r; and wzl’ = —r,. Hence, even if the server
has been compromised by an adversary after the enrolment,
it is information-theoretically infeasible for the adversary to
retrieve w; from wi +r; and w§ = w +r, without r; and
r,. Similarly, if the user device which holds r; and wlf =-r,
is being compromised by an adversary, it is information-
theoretically infeasible for the adversary to retrieve wy. To
launch a successful attack, the adversary needs to compromise
both the server and user device, which is an extreme condition
and out of the scope of this paper.

During the verification stage, the ivector wo is again ran-
domised into wo + ro where the user device keeps ro and
the server gets wo + ro. Similar to the above discussion, wo
cannot be obtained from ws +r5. However, in order to get the
true score, the user device and server need to perform two-
party computation using the privacy-preserving scalar product
algorithm in Figure II. As shown in [18], the security of the
algorithm in Figure II relies on randomisation (User’s inputs
ai, as, ... are randomised by large random numbers c1, co, . . .)
and achieves information-theoretic security.

C. Privacy Leakage Analysis

The previous section provided a theoretical proof showing
that the proposed algorithm is information theoretically secure.
To visualise this and analyse whether the randomised features
still preserve the statistical properties of speech feature, a
numerous experiments are conducted in this section. We
can broadly split the parameters required for a successful
verification into four: 1) voice 2) randomised iVector (w1 +17)
3) parameters stored on the user device and 4) server-side
parameters. In order to evaluate the strength of the proposed
algorithm, the following four attacks scenarios are considered:

1. Compromised user device attacks
2. Compromised server attacks

3. Compromised user voice attacks
3. Pure random attacks

1) Compromised user device attacks: In this attack, the
adversary has access to the user device and the parameters
stored during the enrolment. But do not have access to the user
voice to generate legitimate test ivector. Hence, the adversary
tries to combine the parameters from the compromised user
device with the test features of other users. Then the adversary
tries to verify against the compromised user’s speaker model
residing at the server. To evaluate this, 2 x 150 x 151 tests
[300 test utterances from other users are combined with the
parameters of the compromised user device and this is repeated
for all the users] are conducted and the corresponding decision
scores are obtained.

2) Compromised server attacks: In this attack, the adver-
sary has access to the randomised ivectors w + r; of all the

users stored at the server. Let’s also assume that the adversary
holds the feature vectors of all users but neither know the
corresponding ivectors stored at the server or keys stored at the
user device. Now the attacker uses these randomised ivectors
to simulate a speaker verification system and tries to find out
the corresponding users for each stolen randomised ivector.
Hence, the adversary tries to measure the decision score by
applying those features against each and every randomised
ivector. Again 2 x 151 x 151 tests are conducted and the
corresponding decision scores are obtained.

3) Compromised user voice attacks: In this attack, the
attacker has access to the user’s voice recording but does not
have access to the parameters stored at the user device. Now
the attacker generates random numbers and randomises the
voice feature and tries to impersonate. Hence, this experiment
generates 300 random vectors same size as the feature to
obtain 300 randomised test features. To analyse the perfor-
mance, we conduct 300 x 151 tests are conducted and the
corresponding decision scores are obtained.

4) Pure random attacks: In this final test, the traditional
solution has been considered but instead of using the legitimate
test features, purely random vectors in the same domain and
same size as the legitimate test ivector used. Hence, we
generate 300 random vectors for each user and conducted
300 x 151 tests.

We now use the decision scores obtained by all these tests
and the baseline scores, and displayed them in Figure 6.
Figure 6 displays the DET curves for the above attacks. In the
same figure, we displayed the baseline model. Interestingly,
from Figure 6, the equal error rate for all four attacks are
around 50% and there is no significant difference between the
first three attacks against the pure random attacks (the fourth
attacks). This clearly shows that there are no advantages for an
adversary who compromises the parameters of the proposed
systems than just launching random attacks. This concludes
that the proposed algorithm is information theoretically secure
and all four parameters must be combined to reveal the
statistical properties.
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Figure 6. Stolen key attack scenarios



VII. CONCLUSION

In this paper an efficient privacy preserving speaker ver-
ification protocol is proposed. To achieve better efficiency
and privacy, the proposed solution algorithmically redesigned
the iVector and linear discriminant analysis based speaker
verification techniques to incorporate randomness without af-
fecting the final outcome. The proposed scheme is based on
randomisation technique and it only relies on multiplication
and addition. In this scheme, two parties involved, the user
and the server, need to perform verification interactively. In
addition It is proved using information-theoretic security that
the algorithm is secure. It is also shown empirically that
the proposed scheme provides good overall accuracy without
increasing the computational overhead.
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